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ABSTRACT: A fully global satellite-based precipitation estimate that can transition across the changing Earth surface and

complex land/water conditions is an important capability formany hydrological applications, and for independent evaluation of the

precipitation derived from weather and climate models. This capability is inherently challenging owing to the complexity of the

surface geophysical properties upon which the satellite-based instruments view. To date, these satellite observations originate

primarily from a variety of wide-swath passive microwave (MW) imagers and sounders. In contrast to open ocean and large water

bodies, the surface emissivity contribution to passive MW measurements is much more variable for land surfaces, with varying

sensitivities to near-surface precipitation. TheNASA–JAXAGlobal PrecipitationMeasurement (GPM) spacecraft (2014–present)

is equipped with a dual-frequency precipitation radar and amultichannel passiveMW imaging radiometer specifically designed for

precipitation measurement, covering substantially more land area than its predecessor Tropical Rainfall Measuring Mission

(TRMM). The synergy between GPM’s instruments has guided a number of new frameworks for passive MW precipitation

retrieval algorithms, whereby the information carried by the single narrow-swath precipitation radar is exploited to recover pre-

cipitation from a disparate constellation of passiveMW imagers and sounders.With over 6 years of increased land surface coverage

provided byGPM, new insight has been gained into the nature of themicrowave surface emissivity over land and ice/snow-covered

surfaces, leading to improvements in a number of physically and semiphysically based precipitation retrieval techniques that adapt

to variableEarth surface conditions. In thismanuscript, theworkings and capabilities of several of these approaches are highlighted.

SIGNIFICANCE STATEMENT: High-resolution satellite-based precipitation data products are currently produced by

combining data products frommany individual satellites as they orbit Earth. However, the signals recorded by the sensors

on board these satellites are not directly related to the precipitation falling near Earth’s surface, but rather to a mixture of

the precipitation and the underlying Earth surface conditions. The challenge for the algorithms is to be able to effectively

separate and extract the desired portion of the signal representing the precipitation, from the undesired portion that is

attributed to Earth’s surface. A review of a number of methods for carrying out this procedure are described and dem-

onstrated, which capitalize on many years of satellite observations collected over many different Earth surface conditions.

KEYWORDS: Land surface; Precipitation; Snow;Winter/cool season;Algorithms;Microwave observations; Radars/Radar

observations; Satellite observations

1. Introduction

For many hydrological, climate, and weather forecasting

applications, an important quantity is the amount of precipita-

tion that falls on Earth’s surface over a given time interval,

i.e., the surface precipitation rate. A fully global satellite-basedCorresponding author: F. Joseph Turk, jturk@jpl.caltech.edu
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precipitation estimate that can transition across changing

Earth surface conditions and complex land–water boundaries

is an important capability for proper evaluation of the pre-

cipitation produced or diagnosed in weather and climate models

(Tapiador et al. 2019; Byrne and O’Gorman 2015).

However, no satellite instrument is unambiguously sensitive to

the instantaneous precipitation rate at Earth’s surface. Since 1987

with the advent of the operational Special Sensor Microwave

Imager (SSMI), satellite precipitation datasets produced from a

variety of scanning passive microwave (MW) radiometers have

formed the basic building blocks of nearly all global precipitation

datasets (Tapiador et al. 2012; Kidd et al. 2018). These measure-

ments are not directly sensitive to the near-surface rain, but rather

to Earth’s surface, further modulated by the emission/scattering

properties of the intervening water vapor and condensed water

structure. In general, the height of the ‘‘peak’’ sensitivity increases

as the radiometer channel wavelength decreases, up to infrared

(IR) radiometers, which are directly sensitive only to the con-

densed water at the very top of the cloud (Haddad et al. 2017).

Inversion of the passive MW equivalent blackbody brightness

temperature (TB) measurements into precipitation estimates

(either a single near-surface level, or multiple vertical levels) that

perform in a consistent fashion across the variety of complex

Earth surface conditions is inherently challenging. In contrast to

oceanic surfaces, the radiometers view against a high and variable

emissivity surface (;0.9 for dry soils) background, providing poor

radiometric contrast between the surface and the condensed

water structure above the surface. In this manuscript, the term

‘‘complex surfaces’’ refers to land surfaces whose emissivity is

controlled by a large number of factors such as vegetation

conditions, soil type and moisture (Harrison et al. 2015), and

(for frozen surfaces) the snow and/or ice properties (Hirahara

et al. 2020), but also surfaces whose geophysical properties

are not homogeneous over the resolution of the PMW radi-

ometer field of view including mixed land–water (Gouweleeuw

et al. 2012) and coastal boundaries (Mega and Shige 2016).

Shortcomings of satellite-based precipitation over these com-

plex surfaces have been highlighted in the reports of the

International Precipitation Working Group (IPWG) as far

back as the 2004 workshop (Levizzani et al. 2018).

It is not the intent of this manuscript to describe (or estimate)

the physical properties that control the microwave surface emis-

sivity (Ferraro et al. 2013). In this manuscript, a review of several

promising research methods for precipitation estimation are de-

scribed that adapt to the surface emissivity over complex surfaces,

with a focus on the passive MW observations collected by the

joint National Aeronautics and Space Administration (NASA)

and Japanese Aerospace Exploration Agency (JAXA) Global

Precipitation Measurement (GPM) mission (2014–present) (Hou

et al. 2014). The GPM core satellite 658 orbit inclination ob-

serves substantially more land surface than its predecessor

Tropical Rainfall Measuring Mission (TRMM) (Kummerow

et al. 1998). (Hereafter, GPM and TRMM are collectively

termed the Precipitation Measurement Missions, or PMM).

GPM and TRMM are satellite constellation-based measure-

ments, designed around the transfer of information from a

narrow-swath precipitation radar (Dual Frequency Precipitation

Radar for GPM, Ku/Ka band or 14/35GHz, denoted by DPR;

and the Precipitation Radar for TRMM,Ku band only, denoted

by PR) on the core spacecraft, to the constellation of wide-swath

passive MW radiometers, producing a consistent suite of global

precipitation products (Skofronick-Jackson et al. 2018). The

GPM Microwave Imager (GMI) observations are taken near

coincidentally with the DPR on the core satellite, but the other

constellationmembers have passiveMW-only capabilities. There

are two radar-based precipitation products produced from

the GPM core spacecraft, the Combined Radar–Radiometer

Algorithm (CORRA) (Grecu et al. 2016), and the DPR radar-

only algorithm (Seto et al. 2013), both of which have a single-

frequency (Ku band), and for GPM, a dual-frequency (Ku/Ka

band) variant of their respective precipitation algorithms.

Table 1 lists the current (late 2020) structure of the GPM

passive MW constellation. Each passive MW radiometer type

is designed with a unique set of channels, each with a unique

antenna beamwidth, receiver characteristic, and scan pattern.

Together with the orbital properties of the satellite upon which

the radiometer is deployed, these parameters determine the

Earth incidence angle, channel resolutions, and swath width

(Berg et al. 2016). The various constellation satellites observe

under different environmental characteristics (e.g., temperature

and water vapor structure), and surface physical conditions such

as the near-surface skin temperature at the time of the satellite

overpass (Tian et al. 2015). Furthermore, the passive MW pre-

cipitation estimation algorithm has to accommodate a range of

space–time variability in the microwave land surface emissivity.

In the common 10–90-GHz regime, the surface emissivity is

controlled by key geophysical conditions such as the surface

roughness, soil moisture, and vegetation type and water content

(Ferraro et al. 2013; Turk et al. 2014a; Tian et al. 2015). These

conditions (both surface and environmental) form the back-

ground TB from which the presence of precipitation is to be

discriminated (Munchak and Skofronick-Jackson 2013). While

surface conditions change slowly across seasons, they can also

changemore rapidly (minutes toweeks) during rapidly changing

temperature and weather patterns. Precipitation that reaches

the surface in solid phase (snowfall) is especially difficult to

contrast from the surface, especially during cold periods when

the surface is already snow and/or ice covered (Ebtehaj and

Kummerow 2017; Panegrossi et al. 2017; You et al. 2017b).

Ideally, the precipitation products produced from the constellation

passiveMWobservations are consistent across varying surface and

environmental conditions, so as to introduce minimal artifacts into

further gridded Level 3 global products, such as the Integrated

Multisatellite Retrievals for GPM (IMERG) (Tan et al. 2019)

and other global precipitation datasets (Sun et al. 2017).

Prior to the launch of TRMM, passive MW precipitation

retrieval over land surfaces was done using largely empirical

methods, typically involving empirical relationships relating

85GHz (or higher frequency) TB depressions (due to scat-

tering by the high-albedo ice aloft) to surface precipitation

inferred from ground radars (Grody 1991; Ferraro et al 2000).

The lower frequencies (,85GHz) were used for precipitation

over ocean and to discriminate particle scattering (originating

within the precipitation media) from surface scattering due to

snow cover and dry and barren land surfaces. Scattering-based

methods perform best for mature convective rain systems
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carrying a well-developed ice canopy regardless of surface

type, but are less suited for decaying convection (where the

upper-level ice has spread out, with stratiform precipitation) or

precipitation that evolves with little or no ice phase. Since these

algorithms would switch between emission and scattering based

methods, from the passive MW imagery it was often unclear

whether gradients in precipitation intensity along land–ocean

boundaries were physically realistic, or an artifact of the pre-

cipitation retrieval method. A scattering index-based method

was used for the passive MW overland algorithm for TRMM

prior to 2014 (Wang et al. 2009; Gopalan et al. 2010). The

current facility algorithm for the PMM missions, the Goddard

profiling algorithm (GPROF), is based on Bayesian-based pre-

cipitation estimation methods (Tassa et al. 2003; Ringerud et al.

2015). This is due to the abundance of GPM and TRMM radar–

radiometer observations available to construct sufficiently rep-

resentative a priori datasets (Ringerud et al. 2015).

Of interest to this manuscript are PMW precipitation

estimation methods that utilize all spectral channels of the

constellation PMW radiometers, to adapt to the microwave

surface emissivity and environmental conditions. While the

poor radiometric contrast has traditionally limited the use

of lower-frequency channels (19 GHz and lower) for direct

overland precipitation estimation, these same channels

exhibit strong polarization differences [TB at vertical

(V) polarization . TB at horizontal (H) polarization] over

certain surface types (Norouzi et al. 2015). The surface

emissivity is highly correlated in the 10–90-GHz range

common to many across-track scanning PMW radiometers

in Table 1 (Prigent et al. 2006; Bytheway andKummerow 2010;

Turk et al. 2014b), forming the basis for a microwave-based

land surface classification (Aires et al. 2011). Furthermore,

these correlated properties can be used to constrain PMW

methods and improve the detection of snow and light precip-

itation (Ebtehaj et al. 2020). On some radiometers, the fields of

view of the various channels overlap, enabling resolution en-

hancement (Petty and Bennartz 2017) to distinguish precipi-

tation signatures along coastlines and other strong gradients in

surface emissivity.

On the higher end of the spectrum, the .90-GHz channel

suite common to operational across-track scanning passive

MW sounders (which contribute the bulk of the global GPM

coverage) is optimized for the purpose of sensing atmospheric

water vapor (Kidd et al. 2018). In this manuscript, observations

at frequencies above 95GHz are termed ‘‘high frequency’’

(HF) observations. The 183.31-GHz channels common to MW

sounders are nearly opaque to all Earth surface conditions, the

exceptions being regions of very dry air conditions where the

total column precipitable water vapor (TPW) , 15mm, com-

monly found in arid, dry regions and cold seasons where snow

cover is prevalent. For these sensors, a passive MW technique

should adapt by providing more weight to the environmental

(atmospheric water vapor and temperature profile) conditions

at the satellite overpass time (Casella et al. 2015; Skofronick-

Jackson and Johnson 2011).

Section 2 provides a brief description regarding how the

surface is accommodated in the current (2020) passive MW

algorithm (GPROF) for the GPM and TRMM constellation.

Subsequent sections highlight individual methods for improv-

ing the estimation of precipitation over complex surfaces:

d section 3: implementation of time-changing, dynamic surface

properties (Ringerud et al. 2020);
d section 4: temporal change detection between passive MW

satellite revisits (You et al. 2018);
d section 5: surface emissivity structure for a priori data in-

dexing (Turk et al. 2017);
d section 6: TB-based supervised machine learning for pre-

cipitation detection (Takbiri et al. 2019);
d section 7: frozen surface spectral signature signal for snowfall

retrieval (Camplani et al. 2021);
d section 8: spatial information in TB patterns to separate the

surface and precipitation (Guilloteau and Foufoula-

Georgiou 2020).

The manuscript concludes with future directions that are in

their early stage of development, such as machine-learning

methods, and indirect methods (e.g., soil moisture–deduced

inference of time-accumulated precipitation). We note that

orographically enhanced precipitation, while a surface-related

process, is not examined in this study, since it is more related to

the motion and direction of the lower-/midtropospheric water

vapor above the surface (Yamamoto et al. 2017). Furthermore,

over-ocean precipitation estimation is not specifically ad-

dressed. The factors that control the emissivity of open water

bodies are generally well modeled (Meissner andWentz 2012),

although it is recognized that uncertainty exists under low sea

surface temperatures or high wind speeds (Kilic et al. 2019).

Finally, is it noted that this is not intended as an exhaustive

review; theremay be similarly related research ormethods that

the authors have overlooked or are unaware of.

2. Background of the surface emissivity scheme used
in GPROF

The current GPM facility algorithm for constellation passive

MWprocessing (GPROF) (Kummerow et al. 2015) is designed

around a Bayesian method to locate and weight a priori ob-

servations most congruent to the input TB observation. The a

priori data use precipitation profile retrievals produced by

the CORRA algorithm to forward model the TB for each

sensor in Table 1 (Ringerud et al. 2019). In practice, adjust-

ments are done to the a priori dataset to account for the nature

of the marginal probability (precipitation rates are not equally

distributed; some conditions occur very infrequently), and

limitations of the radar data used to build the a priori. For

example, the DPR and PR radars are fairly insensitive to non-

precipitating clouds (Kubota et al. 2020), light rain (,0.5mmh21)

(Hamada and Takayabu 2016), cloud ice (Ringerud et al.

2019), and light snowfall (Skofronick-Jackson et al. 2019). The

GPROF a priori dataset is augmented with auxiliary sources to

properly account for these conditions while retaining radio-

metric consistency. This includes replacement of the CORRA

precipitation profiles with data from surface radar over snow

covered surfaces (NASA 2017).

To reduce the search for prior observations under similar

surface conditions, the overland algorithm is constrained
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using a surface classification index derived from a monthly

emissivity climatology (Aires et al. 2011; Prigent et al. 2006).

The surface classification is uncoupled from (not related to, or

dependent upon) the coincident atmospheric environmental

conditions. The values of the current surface classification in-

dex are provided in Table 2. For example, a pixel location with

surface class value of 4 (moderate vegetation) does not change

whether the surface temperature is unseasonably low or high,

or has experienced high antecedent precipitation conditions;

it will always look for surface class 4 when performing its

search of a priori data. However, it is recognized that the use

of a climatological classification is not applicable at the per-

pixel level snow or ice cover. A climatology can express

the probability of snow or ice cover on given date, but the

actual snow or ice cover on the surface (at the satellite overpass

time) is a result of recent weather events and temperature

conditions. Therefore, the current incarnation (version 5)

of GPROF uses the daily Global Multisensor Automated

Snow/Ice Mapping System (commonly referred to as Autosnow)

product (Romanov et al. 2000) to overwrite the surface clas-

sification index wheneverAutosnow indicates snow cover. This

index provides a convenient way to accommodate the actual

snow or ice surface emissivity to first order, but it does not

accommodate the complex snow or ice morphology, which is

further addressed in section 7. Vegetation and soil moisture

properties, two characteristics that are known to modulate the

microwave surface emissivity (Turk et al. 2014a; Ringerud

et al. 2020) are reduced to the five vegetation classes. It

is recognized that a climatological surface classification

method is not designed to adapt to surface emissivity

change on scales ranging from subhourly (e.g., soil mois-

ture change following the onset of precipitation) to days (e.g.,

appearance/disappearance of transient water bodies, ice–snow

transitions). These emissivity changes are what drive the ra-

tionale for the material shown in sections 4 and 5 below.

GPROF further constrains its search of the a priori dataset

with the 2-m air temperature (T2m) and TPW conditions, in-

terpolated from (for near-real-time products) an operational

global weather forecast model (later reprocessing of the

GPROF data utilize these same quantities interpolated from

the ERA model reanalysis). These three terms (surface clas-

sification index, T2m and TPW) are used to stratify the large a

priori dataset for each passive MW radiometer in the constel-

lation. Since these three terms can also be obtained at any

subsequent satellite overpass time; they provide the link into

the a priori database to identify TB that are most congruent to

the observed TB. Further details are provided in Kummerow

et al. (2015) and in the GPROF Algorithm Theoretical Basis

Document (ATBD) (NASA 2017).

As stated, a main intent of this manuscript is to examine

other means to advance the land surface constraint beyond a

fixed climatological classification. Below, the precipitation es-

timation methods that address the underlying surface condi-

tions (end of section 1) are described.

3. Dynamic surface properties/emissivity methods

Recent advances to PMW precipitation retrieval over land

have been achieved through the use physically based methods.

Physically based methods require some estimate of the in-

stantaneous emissivity so that the precipitation signal can be

separated from the background emission. This is more difficult

over land due to the dynamic nature of the emissivity as well as

its large signal in comparison to that identifying the precipi-

tation. In heavy precipitation cases, the retrieval is insensitive

to the surface; however, for light precipitation cases the emis-

sivity becomes highly relevant in any physically based retrieval

developed for land surfaces.

Physical models of emissivity, such as those included in

the NOAA Community Radiative Transfer Model (CRTM)

(Liu and Boukabara 2014) and the Community Microwave

Emission Modeling Platform (CMEM) implemented by the

European Centre for Medium-Range Weather Forecasts

(ECMWF) models (de Rosnay et al. 2020), require detailed

information about the instantaneous surface state above and

below the surface, as well as a radiative transfer model to

compute the radiance of each layer and interface. The methods

are often optimized for frequencies , 20GHz. Comparisons

between modeled emissivities and satellite-derived ones have

been performed (Prigent et al. 2015) and, especially over snow-

covered areas (Yan et al. 2008), themodels perform poorly; the

interaction between the medium and the radiation is complex

and the input parameters to the model are not available (e.g.,

snow depth, snow wetness, particle sizes). These modeled

values can be used to compute dynamic (real-time) emissivity

values for use in constraining the algorithm, as well as the

forward TB modeling necessary for creation of the constella-

tion GPROF radiometer databases for the GPM constellation

(Kummerow et al. 2015). Ringerud et al. (2014) developed a

semiempirical model for microwave emissivity using modeling

TABLE 2. Value of the surface classification index used in GPROF.

Surface class index Description Properties

1 Ocean or large inland water body —

2 Sea ice —

3–7 Decreasing vegetation cover 3 5 Amazon, 7 5 Sahara Desert

8–11 Decreasing snow cover (85Antarctica, 115 lightly snow covered). Overwritten by daily land

snow 5 10.

12 Inland water, rivers, estuaries —

13 Coastline, land/water boundary —

14 Ocean/sea ice boundary —
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concepts from bothCRTMandCMEMalong with land surface

model inputs over the U.S. Southern Great Plains area. This

model was implemented in a test bed database for precipitation

retrieval (Ringerud et al. 2015), demonstrating modest im-

provements over climatological emissivities in simulation of

TB values over land for GPROF constellation retrievals. The

drawback to such methods is the need for instantaneous in-

formation about the surface state including vegetation, soil

type, soil moisture, and even the presence of dew, for emis-

sivity model input on a global scale.

An additional approach is to constrain the retrieval using

retrieved surface emissivity values. Microwave emissivity re-

trieval has a long history (Prigent et al. 2006;Wang et al. 2017),

and recent work deriving a retrieval for GPM shows the utility

of such retrievals (Munchak et al. 2020). A method for inte-

grating this information into a passive MW precipitation re-

trieval using a hybrid optimal estimation (OE)–Bayesian

technique is presented in Ringerud et al. (2020); an example

of implementation of the technique for the GPM GMI is

described here.

The first step in the hybrid retrieval process is an OE-based

nonraining retrieval. This retrieval is described in detail in

Munchak et al. (2020) and includes as output surface emissivity

at each radiometer frequency, TPW, and an error parameter

describing how well the algorithm converges under the as-

sumption of a hydrometeor-free atmosphere. This error pa-

rameter can then be used to detect areas of precipitation, as the

nonraining retrieval will not be able to converge in the pres-

ence of precipitation.

The emissivity retrieved in the first step can be used to de-

termine the presence of snow cover, which is important in

passivemicrowave precipitation retrieval, as snow cover can be

mistaken for a precipitation signal (Yan et al. 2008). A dem-

onstration of this is pictured in Fig. 1 for a GMI overpass on

6 December 2015. The snow cover identification scheme

compares retrieved emissivity values at the GMI 18.7- and

89.0-GHz V-pol channels to monthly mean snow-free emis-

sivity values for each location. Snow cover is detected when

there is a combination of an emission (increased emissivity)

signal as compared to the snow-free mean in the lower fre-

quency, and a scattering (decreased emissivity) signal in the

higher frequency. Figure 1 shows retrieved emissivity at these

two channels in the top panels, with the detection scheme re-

sults in the lower right. The NOAAAutosnow product for this

day is shown in the lower-left panel for reference. The

Autosnow product is currently used operationally for GPROF

retrievals, and has some drawbacks including that it is a daily

product, whereas using the instantaneous emissivity has the

benefit of accounting for new snow and melting throughout

the day.

Next the error parameter, describing how well the OE al-

gorithm converges under the assumption of a hydrometeor-

free atmosphere, output by the nonraining retrieval is used

to determine areas of possible precipitation. Ringerud et al.

(2020) test varying thresholds globally. Figure 2 shows an

example GMI overpass from 4 June 2016, using error param-

eters ranging from 0 to 0.5. Where the error parameter exceeds

the cutoff value, a Bayesian retrieval similar to GPROF is

performed. Rather than use the climatological surface classi-

fication and forecast model information to constrain the re-

trieval, however, the emissivity at 18.7GHz and retrieved TPW

are used. The 18.7-GHz channel is chosen as similar frequen-

cies exist on all GPM constellation imagers. A drawback to this

approach is that emissivity and TPW cannot be accurately re-

trieved in the presence of heavy precipitation. In the retrieval,

any retrieved values with error parameter above a threshold

indicating even light precipitation is discarded. Retrieved

values from the surrounding footprints are interpolated across

such areas and the constraints on the Bayesian database are

relaxed to allow for the possibility of higher values in precip-

itating areas. For the emissivity constraint, the recent seasonal

mean value retrieved from prior precipitation-free overpasses

is used, and the constraint is relaxed to allow for precipitation

effects on the surface (i.e., an area of the database is searched

ranging from the interpolated value over a small interval of

decreased emissivity and increased TPW as would be expected

in precipitating conditions). A cutoff value of zero indicates no

previous knowledge of precipitating areas, and the Bayesian is

used everywhere, and as values increase the Bayesian is run

only in areas where the nonraining retrieval hasmore andmore

trouble finding a solution. This is well illustrated in the example

of Fig. 2 [see Fig. 3 for the Multi-Radar Multi-Sensor System

(MRMS) ground validation data for this case], showing that the

area of precipitation decreases as the error parameter cutoff

value increases.

While knowledge of the emissivity is shown here to have a

potentially large effect on light precipitation retrievals, such

methods do not tend to show improvement in persistent

underestimation of higher rain rates over land where the

contribution of the upwelling TB from the surface becomes

irrelevant. It has been demonstrated that adding information

to the retrieval about the atmospheric boundary layer state,

such as convective available potential energy (CAPE) can

improve estimates at these higher rain rates (Casella et al.

2013; Smith et al. 2013; Petković et al. 2017). The ideal solution

in a physically based retrieval such as the operational GPM

GPROF then, would utilize constraints with sensitivity to both

the surface emissivity for improvement of light precipitation

estimates, and also information about the dynamic character-

istics of the precipitation and associated TB scattering signa-

tures relevant to the retrieval.

Current efforts in this area have a focus on soil moisture as a

main component of emissivity, and its indirect connection to

atmospheric state as evidenced by the connection between soil

moisture and convective initiation (Ford et al. 2018). A GPM-

based exploration of the relationship between soil moisture

and convective precipitation obtained globally using a land

surface model shows a promising link to the observed GMI

scattering signal as a function of DPR rain rate (Fig. 4). These

connections will be tested as algorithm improvements in future

research.

4. Temporal revisit methods

Over much of the land area observed by GPM, the clima-

tological microwave land surface emissivity is near 0.9 and
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highly heterogeneous (Prigent et al. 2006; Ferraro et al. 2013).

Therefore, deviations from this value are difficult to model

accurately, especially for HF channels and over snow- and ice-

covered regions. The fundamental idea of using the TB tem-

poral variation (referred to as delta-TB, denoted by DTB) as a
basis for the precipitation retrieval is to capitalize upon the

revisit sequence of satellite overpasses from the GPM satellite

constellation, to minimize the influence of the surface emis-

sivity. In essence, the DTB concept adds the time dimension

into the retrieval process to alleviate the surface contribution

to the net upwelling TB.

a. Derivation of DTB

To derive DTB, PMW radiometer observations from 10

polar-orbiting satellites are used, listed in Table 1. The Level

1C intercalibrated TB for the HF channels are used from

each sensor (Berg et al. 2016). The Level 1C TB for all sat-

ellites are available from March 2014 (launch of the GPM

satellite) to December 2019, except periods of missing

SSMIS-F16, MHS-NOAA-18, and ATMS-NOAA-20. For

SSMI-F16, the 183-GHz channels were not processed from

December 2013 to August 2015 due to quality issues. MHS-

NOAA-18 ceased to work in late October 2018. ATMS-

NOAA-20 data became available from late November 2017.

In addition, the 150-GHz channel of SSMIS-F18 stopped

functioning in February 2012.

You et al. (2017a, 2018) have documented how to implement

the DTB concept into the precipitation retrieval process. Here,

the procedure is briefly summarized.

The TB from the non-GMI satellites is first converted into

‘‘equivalent’’ GMI channels through the simultaneous coni-

cal overpass (SCO) technique and a principal component

analysis (PCA) (Cao et al. 2004). In contrast to You et al.

(2018), the conversion coefficients are derived in each 2.58
grid box instead of over the continental scale. The net result is

to transform each non-GMI sensor as if there are 10 sensors

measuring at four GMI frequencies, which are 89.0 (V/H)

166.0 (V/H), 183.3 6 3 (V), and 183.3 6 7 (V). For conve-

nience, these frequencies are referred to as V89, H89, V166,

H166, V186, and V190.

Next, the DTB is computed at 89.0 (V/H) 166.0 (V/H), 183.3

6 3 (V), and 183.3 6 7 (V) GHz. Similar to the TB naming

convention, these DTB are referred to as DV89, DH89, DV166,

DH166, DV186, and DV190 for convenience. The DTB is

computed as the current TB associated with precipitation

(judged by the linear discriminant analysis method; Turk et al.

2014b; You et al. 2017a) and the preceding TB at the same

location without precipitation. In essence, the DTB concept is

FIG. 1. Snow cover detection example from a GMI overpass on 6 Dec 2015. Emissivity retrievals from the (top

left) 18.7-GHz V pol and (top right) 89.0-GHz V pol are used in the detection scheme. (bottom right) Results

are shown, with (bottom left) the NOAA Autosnow product included for comparison.
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to extract the precipitation signal by minimizing the back-

ground information, assuming that the surface emissivity and

the environmental parameters (e.g., temperature) do not

change rapidly over this time. In the example below, the revisit

time from these 10 satellites is on average about 1 h over the

Alaska region.

FIG. 2. Demonstration of rainfall retrieved using the hybrid method for cutoff error parameters ranging from (top

left) 0 to (bottom right) 0.5 for a GMI overpass on 4 Jun 2016.
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To compare the retrieval capability between TB and DTB, a
multiple linear regression model is trained in each 0.258 grid
box between the DPR Ku-only precipitation rates and TB

observations at V89,H89, . . . , andV190, and between theDPR

Ku-only precipitation rates and DTB observations at DV89,

DH89, . . . , and DV190, respectively. A random selection of

80% of the data are used as the training datasets, and the re-

maining 20% are used for validation purposes. While simple

linear regression is used as a proof of concept, more advanced

statistical approaches (e.g., neural networks and Bayesian

methods) may further improve the retrieval performance.

Additionally, the retrieval results are compared to the scat-

tering index (SI) approach discussed in section 1 above. There

are various forms of the SI definition; this study computes the

SI as the TB difference between V89 and V19 (i.e., SI5V892
V19) (Seto et al. 2005). Similarly, the relation between the

DPR Ku-only precipitation rates and SI in each 0.258 grid box

is established through the simple linear regression approach,

and the same ratio (80% and 20% of the data as the training

and validation datasets, respectively) is used.

b. Example over Alaska

The DTB method for precipitation estimate is evaluated

over the Alaska region (land portion of the domain 1308–
1708W, 508–658N), relative to the GPM DPR Ku-only precip-

itation observations. Figure 5 shows the correlation between

DPR Ku-only precipitation rates and TB at V89, V166, and

V190, and their DTB counterparts of DV89, DV166, and

DV190. V89 has a very weak correlation with precipitation.

Specifically, the vast majority of the correlation coefficient

is weaker than 20.3 over the Alaska regions because of the

relatively weak ice scattering from the light precipitation

(Fig. 5a). In contrast, the correlation from DV89 is greatly

improved to 20.7 over the majority of the region (Fig. 5b).

To illustrate this point, Fig. 6a shows the scatterplots be-

tween V89 and the DPR Ku-only precipitation rates at the

specific 0.258 grid box located at (149.758–1508W, 62.58–
62.758N). At this location, about 90% of the precipitation rates

are less than 1mmh21 (using DPR from 2014 to 2019). As

shown by previous studies (Skofronick-Jackson and Johnson

2011; You et al. 2017a), the 89-GHz TB is still affected by the

surface contribution under this light precipitation scenario. In

other words, the cold TB (less than 250K in Fig. 6a) are caused

by the low surface emissivity and the low surface temperature,

FIG. 3. MRMS surface radar precipitation for the 4 Jun 2016 case

shown in Fig. 2.

FIG. 4. GMI Tb at 166-GHz V pol as a function of DPR rain rate and soil moisture (colors;

m3m23) from 1 Sep 2014 through 31 Aug 2015 over all nonfrozen land surfaces.
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FIG. 5. Correlation maps at each 0.258 grid box. Panels are arranged from left to right beginning in the upper left.

Correlation between DPRKu-only precipitation rates and (a) brightness temperature (TB) at V89 and (b) DTB at

V89, (c) TB at V166 and (d) DTB at V166, and (e) TB at V190 and (f) DTB at V190. (g) Correlation between DPR

Ku-only precipitation rates and scattering index (SI 5 V89 2 V19), and (h) average daily observation count from

the 10 satellites. All data are from March 2014 to December 2019, excluding SSMIS-F16, MHS-NOAA-18, and

ATMS-NOAA-20.
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instead of by hydrometeor scattering processes. Using the TB

temporal variation derived from the 10 satellites, the correla-

tion between the precipitation rate and DV89 is improved

to 20.51 (Fig. 6b), compared with the correlation being 20.06

from V89 itself. On average, there are about 24 observations

each day from these 10 satellites at this location (Fig. 5h),

which ensures that the nonprecipitating background is usually

available within 1 h. Further, the relation between SI and DPR

Ku-only precipitation rates is also analyzed (Fig. 6c). Using the

simultaneous V19 as the background, the SI approach can

mitigate the surface influence to a certain extent. However, the

result from the SI (Fig. 6c) method is not as good as that from

DV89 (Fig. 6b). This same result is noted in the map panels in

Figs. 5b and 5g.

Large improvements have also been noticed by comparing

the correlation fromV166 and DV166 (cf. Figs. 5c and 5d). The

improvement from DV190 is marginal compared with V190

itself (cf. Figs. 5e and 5f) due to the weak surface influence on

V190 channel. The improvement magnitudes from H89, H166,

and V186 are similar to those from V89, V166, and V190,

respectively.

Figure 7 shows the precipitation retrieval results from (left

to right) DTB, TB, and SI using the simple linear regression

method. As expected, the retrieval performance from DTB is

better than that fromTB, in terms of all three statistical metrics

[correlation, root-mean-square error (RMSE), and bias]. The

improvement is particularly evident for the light precipitation

(,2mmh21), where the surface contamination is more severe.

The results based on the SI approach (Fig. 7c) are noticeably

worse than that from TB (Fig. 7b). This may be due to that fact

that SI uses information from 19 to 89GHz, while all frequency

channels between 89 and 190GHz are utilized in the TB re-

trieval procedure.

5. Separating the a priori data by microwave surface
emissivity

The use of principal component (PC) methods for brightness

temperature (TB) channel reduction has a long heritage in passive

MW precipitation estimation (Petty 2013), typically used in

such a way as to ‘‘separate’’ or isolate the desired precipitation

signal from the undesired surface emission/scattering signal.

The emissivity principal components (EPC) methodology is

designed the other way around, using the more frequent

satellite observations gathered under nonprecipitating con-

ditions, to quantify the variability in the microwave surface

emissivity, regardless of the surface type (Turk et al. (2017).

Increasing deviations from this quiescent, nonraining state

form a natural discrimination for the presence of precipitation-

affected TB scenes. As the discrimination from the nonraining

state becomes more certain, the retrieval candidate selec-

tion considers an increasingly larger number of precipitating

scenes. Similar to GPROF, the EPC is a precipitation profiling,

Bayesian-based inversion technique. It is focused on providing

an estimate of the precipitation structure (vertical profile)

jointly with the near-surface precipitation rate (Utsumi et al.

2020). A step-by-step process of how the EPC operates is

provided in appendix A of Turk et al. (2017) and briefly

summarized here.

Essentially, the EPC a posteriori precipitation estimate is

designed to transfer the information in the limited swath DPR,

to the wider swath of each passiveMW radiometer in the GPM

constellation, designed around observational a priori data-

bases (DB) built from orbital coincidences with GPM. For

GMI, the DPR Ku-band swath covers about the middle one-

third of the GMI swath. For the non-GMI radiometers, the a

priori DB are created from the collection of all 615-min co-

incidences between GPM–DPR and each of the constellation

radiometers. Each DB entry carries the precipitation profile

from the DPR and CORRA algorithms (Grecu et al. 2016),

averaged to (for conical instruments in Table 1) the resolution

of the 37-GHz channel, and (for across-track instruments) the

varying pixel resolution in the across-track direction.

Under nonprecipitating conditions, each channel in the ob-

served TB is influenced by differing contributions by the cor-

responding surface emissivity, the surface skin temperature,

and the intervening atmospheric temperature–moisture struc-

ture, quantities which are naturally correlated. Similar to

Boukabara et al. (2011), for each radiometer a principal com-

ponent (PC) analysis is carried out on the surface emissivity for

all channels near and below 90GHz, augmented with the sur-

face temperature (Ts), T2m, and TPW from the MERRA-2

reanalysis (Gelaro et al. 2017). While these quantities are not

known at the satellite observation time, Turk et al. (2017)

showed that the EPC vector can be estimated by nonlinear

combinations of the observed TB. The EPC is essentially a

FIG. 6. (a) Scatterplot between DPR Ku-only precipitation rates and V89 at the 0.258 grid box (149.758–1508W, 62.58–62.758N), from

March 2014 to December 2019. (b) As in (a), but for DV89. (c) As in (a), but for scattering index (SI 5 V89 2 V19).
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transformation of the observed TB, computed ‘‘on the fly’’

(and by definition, the emissivity vector can be reconstructed

from the EPC vector). The same TB-to-EPC transformation is

used to store the EPC values for each entry in the a priori DB.

Whereas in the GPROF the a priori databases are clustered

separately by a monthly class index, T2m, and TPW, the EPC

databases are clustered into N bins that extend across the ex-

pected range of each of the first three EPC values. Currently,

N5 29 bins are used, which discretizes the a priori dataset into

293 2 15 24 389 files (Utsumi et al. 2020). For example, if the

first three EPC values fall into bins 10, 8, and 25, the database

index is given by 10 3 292 1 8 3 29 1 25 5 8667. This is

convenient whenever a TB pixel falls into a portion of the a

priori database that is sparsely populated, and the search has to

expand around this area. In this example, the search expands

by gradually incrementing about index 8667 (8666, 8668, 8665,

8669, etc.) until the desired number of a priori candidates are

located. Expanding about the lower-order EPC first slowly

varies the surface emissivity state. Rather than comparing

passive MW observations and a priori candidates by their

Euclidean distance in TB space, the comparison is done by

distance in EPC space. Since the EPC structure adapts to the

joint variability in the surface emissivity and the environmental

conditions in the observed TB scene, it removes the need for

surface classification and reduces the dependence upon ancil-

lary moisture and temperature state variables.

a. Accounting for the quantities that control the surface
emissivity

In Fig. 8, the T2m, TPW, and 37H-GHz emissivity (e37H)

are shown for a 5-yr average in Northern Hemisphere summer

(July) and winter (January) seasons, computed directly from

the GMI TB. The TB is used to estimate the EPC, then the

emissivity, T2m, TPW, and Ts are reconstructed from the EPC.

Global patterns are well represented and the TB-estimated

values exhibit a high degree of correlation (.0.95) with the

corresponding MERRA-2 data, with the exception of a;20%

underestimate in TPW across the heavily vegetated South

American regions (not shown). In general, the first emissivity

PC (EPC1) is smallest over cold, dry, and snow-covered sur-

faces, and largest over warmer surfaces, whereas the second

emissivity PC (EPC2) corresponds with the overall pattern of

TPW, including surface emissivity patterns when TPW ,
15mm (not shown). Earlier work by Turk et al. (2014a)

applied a physical emissivity model to 8 years (2004–12) to

TRMM and WindSat data. Those findings showed a strong

correspondence between the first two EPC and the corre-

sponding soil moisture (SM) and vegetation water content

(VWC) conditions (cf. Fig. 1 in Turk et al. 2014a).

Figure 9 shows the global map of locations of all entries from

one subset (database index 18 572) of the EPC-indexed a priori

dataset. Expressing in powers of 29, 18 572 5 22 3 292 1 2 3
291 1 123 290. Therefore, this database represents candidates

with high EPC1 (bin 22), low EPC2 (bin 2), and moderate

EPC3 (bin 12). The colors indicates the 3-month interval de-

scribed in the caption. These entries occur predominantly in

very dry, low vegetation conditions in the summer season of

each hemisphere. Using the same color scheme to represent

the 3-month interval, the top panel of Fig. 10 shows the his-

togram of the TELSEM index for this same database subset,

consisting of very low vegetation conditions (index 7) from

Table 2, in accord with the vegetation conditions expected at

the locations in Fig. 9.

The bottom four panels in Fig. 10 separate the data from Fig. 9

by their 3-month period, and match the time (nearest day) and

location (within 10km) of each subset entry to the WindSat

physical model database. Thismatchup is done for each year from

2004 to 2012, to gather variability in the physical conditions across

the 8-yr period. The majority of the data from June to August

(third panel from left) occur where SM , 0.2 and VWC , 5.

By contrast, Figs. 11 and 12 are identical to Figs. 9 and 10,

representing database subset 19 146. Expressing in powers of

29, 19 146 5 22 3 292 1 2 3 291 1 6 3 290. Therefore, this

database represents candidates with high EPC1 (bin 22), high

EPC2 (bin 22), and low EPC3 (bin 6). Figure 11 shows that

these database subset entries occur for known areas of high

vegetation, in accord with the clustering near TELSEM index 3

in Fig. 12. Matchups of these database entries with the corre-

sponding physical emissivitymodel conditions in Fig. 12 reveals

that they cover higher VWC conditions (clumped . 5kgm22).

b. Example from GMI

To illustrate how a priori database candidates are selected

‘‘on the fly’’ when running the EPC retrieval with input passive

FIG. 7. (a) Precipitation retrieval performance using DTB method, (b) precipitation retrieval performance using the TB method, and

(c) precipitation retrieval performance using the scattering index (SI 5 V892 V19) method. Correlation, RMSE, and bias are provided

for each method.
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MW radiometer data, the ascending GPM overpass over the

central United States near 0043 UTC 8 June 2018 is used for an

example. While other locations (over-ocean, coastal or mixed

pixels, etc.) could be used, here the central United States was

selected since in general the dense vegetation cover sharply

decreases westward of 1008W longitude. Consequently, it is an

appropriate area to examine an automated capability of the

retrieval scheme to adapt to variable vegetation surface

conditions.

One of the diagnostic fields produced by the EPC retrieval is

the locations of the top-ranked database entries for each pixel.

The ranking is done by ordering (from smallest to largest) the

root-mean-square (RMS) difference between the EPC vector

for the input pixel and each database candidate. Figure 13

shows the locations of the top-ranked database entries for

the GMI pixel closest to 368N, 988W, where the symbol

color indicates the 3-month interval. The locations largely

cluster in the summer months in southern Madagascar,

northern Tanzania, and Kenya, which are known light-to-

moderate vegetated areas in the African continent. Conversely,

for the GMI pixel closest to 368N, 948W inside the Oklahoma–

Arkansas border (Fig. 14), the top-ranked database candidates

generally cluster in known heavy vegetated areas in Bolivia,

Paraguay, and northern Zambia, which occur during the same

season in the Southern Hemisphere.

As precipitation begins to occur over either of these areas,

the a priori database search will gradually begin to move to-

ward similar-surface bins that contain some precipitating

scenes. Eventually, for heavy enough precipitation rates the

search will move toward bins that are heavily raining, where

the land surface emissivity does not significantly influence the

observed TB. This is accommodated by spacing the bins at the

extreme ends in logarithmic intervals. Since the extreme rain

events have an EPC structure that tends to cluster at the ends

(last bin), this allows the EPC search to better narrow its search

to capture heavy rain events.

6. Improving precipitation detection with TB-based
supervised machine learning

This class of algorithms hypothesizes that ‘‘physical simi-

larity’’ between the observed or simulated brightness temper-

atures can be characterized through a ‘‘mathematical distance.’’

In other words, closer vectors of brightness temperatures, in a

mathematical sense, represent a more physically consistent

condition across the surface and atmospheric continuum. For

example, pixel-level brightness temperatures of a snowfall

profile over snow-covered tundra shall be closer to those of

snowfall over grasslands than those of rainfall over woody sa-

vannas. Figure 15 provides evidence for acceptance of such a

FIG. 8. Global maps of (top) the average 2-m air temperature (T2m), (middle) total column precipitable

water vapor (TPW), and (bottom) horizontally polarized 37-GHz emissivity (e37H), estimated from the 5 years of

GMI TB data during (left) January and (right) July. For e37H, ocean areas are masked to improve emissivity

contrast.
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hypothesis showing that the nearest neighbors in vector space

of TB values can isolate physically consistent rainfall profiles.

These results simply demonstrate that the uncertainty of such a

matching approach can be higher over land than oceans.

Building on such a hypothesis, the Bayesian retrieval algo-

rithms can be equipped with a detection step using a multi-

frequency k-nearest neighbor (kNN) classification method

(Ebtehaj et al. 2015, 2016).

Specifically, for an observed TB, this approach searches the

entire a priori database and isolates its k-nearest neighbors

based on the Euclidean or the Mahalanobis distance. Using

those nearest neighbors, the occurrence and phase of precipi-

tation are decided based on a nested probabilistic vote rule

(Takbiri et al. 2019). After detection of precipitation and its

phase, statistics of the precipitation profiles corresponding to

those nearest neighbors can be used for the retrieval of the

precipitation profile of interest. Since all frequency channels are

used, the dependencies between the surface and atmospheric

emissivity values are implicitly accounted for, which makes the

retrievals less sensitive to potential changes of surface emissivity.

FIG. 10. (top) Histogram of the TELSEM surface classification (Table 2), for all data points shown in Fig. 10. The line color refers to the

3-month period corresponding to Fig. 9. The points cluster near class5 7, indicative of low vegetation conditions, but also some for lighter

vegetation (classes 3–6). (bottom) Scatterplots of vegetation water content (kgm22) as a function of soil moisture, from the corresponding

WindSat physical model. Each 3-month period (each panel) is colored by its corresponding color in Fig. 9.

FIG. 9. Locations of entries from EPC database index 18 572, corresponding to regions of light vegetation.

This database represents high EPC1, low EPC2, and moderate EPC3. The symbol color indicates the 3-month

period, where blue5December–February (DJF), green5March–May (MAM), orange5 June–August (JJA),

and brown 5 September–November (SON).
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Figure 16 compares the results of a kNN classification ap-

proach for precipitation phase detection in two different

storms captured by a GPM overpasses. The classification uses

a database populated with a statistically representative num-

ber of coincidences between GMI and DPR (Ebtehaj and

Kummerow 2017). The storms occurred late fall and early

winters in 2016 and 2015 over Lake Michigan and its southern

shores, where the land surface was partly covered by snow.

Due to sharp changes of near surface air temperature, ground-

based radars captured occurrence of precipitation in both liq-

uid and solid phases. The results are compared with coincident

ground-based observations from the MRMS and the actual

retrievals from the DPR. Over such complex and heteroge-

neous land surface emissivity dynamics, visual comparisons

with the MRMS data show that the kNN approach can

properly retrieve precipitation occurrence and phase change

without using any ancillary information about land surface

emissivity and near surface air temperature. Nevertheless, it

is expected that narrowing down the search for the nearest

neighbors using a priori information about the land surface

emissivity will significantly improve the results.

7. Frozen surface spectral signature signal for snowfall
retrieval

Detection and quantification of snowfall by passive micro-

wave observations remains among the most challenging tasks

in global precipitation retrieval (Levizzani et al. 2011;

FIG. 11. As in Fig. 9, but for locations of entries fromEPC database index 19 146, corresponding to regions of heavy

vegetation. This database represents high EPC1, high EPC2, and low EPC3.

FIG. 12. As in Fig. 10, but for the data points in Fig. 11. FromTable 2, these points cluster near class5 3, indicative of high-vegetation conditions.
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Skofronick-Jackson et al. 2019, among others). The weak

snowfall signal (Kulie et al. 2010) is highly dependent on the

complex scattering properties of snowfall (Kneifel et al. 2020,

and references therein), and tends to be masked by the water

vapor and cloud liquid water emission (Liu and Seo 2013;

Panegrossi et al. 2017). At the same time, the snow-covered

surface emissivity is extremely variable due to rapid changes of

snow cover extent, snow accumulation on the ground, and

snowpack radiative properties, with significant effects on the

snowfall microwave signal (Prigent et al. 2003; Yan et al. 2008;

Ebtehaj and Kummerow 2017; Takbiri et al. 2019; Munchak

et al. 2020).

Several studies have demonstrated the complex intercon-

nection between the snow cover conditions, water vapor, cloud

liquid water, and snowfall intensity on the MW spectral sig-

nature (Panegrossi et al. 2017; Ebtehaj and Kummerow 2017;

Edel et al. 2019; Takbiri et al. 2019). Takbiri et al. (2019) an-

alyzed GMI multichannel response to snowfall in presence of

vegetated land, wet (shallow) snow, and dry (deep) snow.

These authors showed that GPM-based light but prolonged

snowfall intensities (,22mmh21) tend to occur at latitudes

above 588N over dry and thicker snow cover, while high-

intensity but less-frequent snowfall more likely occurs over

lower latitudes with a thinner snow-cover climatology. For

snowfall over the surfaces with no snow cover, 166-GHz (H

and V pol) channels, as well as 183.31-GHz water vapor ab-

sorption band channels, show greater capabilities for snowfall

retrieval compared to the 89-GHz channels with distinct

snowfall scattering signal (Bennartz and Bauer 2003; Skofronick-

Jackson et al. 2013; You et al. 2017b; Panegrossi et al. 2017).

When snow begins to accumulate on the ground, the snowfall

scattering signal decreases at frequencies.289GHz, showing

an irregular transition from a scattering to an emission regime.

The authors demonstrate that the anomaly is largely due to

changes of the surface conditions and snow cover dynamics,

rather than atmospheric-related reasons (i.e., enhanced emis-

sion from the cloud liquid water and/or water vapor).

It is therefore necessary to be able to account for the frozen

background surface conditions at the time of the overpass in

the snowfall retrieval process, rather than relying on the use of

FIG. 13. Locations of top-ranked a priori database candidates, for the GMI pixel near 368N, 988W (see inset box at

lower left), from the GPM overpass near 0043 UTC 8 Jun 2018 covering the central United States.

FIG. 14. As in Fig. 13, but for the GMI pixel near 368N, 948W near the Oklahoma–Arkansas border.
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climatological microwave emissivity datasets (Prigent et al.

2008), often used in conjunction with daily products for snow

cover extent (and sea ice concentration) (as in GPROF, see

section 2). A first attempt to account for such variability has

been made in a recently developed snowfall retrieval algo-

rithm for the GMI (Snow Retrieval Algorithm for GMI, or

SLALOM) (Rysman et al. 2018, 2019), based on machine

learning techniques and on the use of CloudSat/CALIPSO

snowfall/cloud products in the training phase, where no as-

sumptions on the background surface are made, and where the

GMI low-frequency (LF) channels (less than 95GHz) are used

to optimally exploit the snowfall-related signal at the high

frequencies. SLALOM is able to predict snowfall occurrence

(with and without supercooled cloud water), snow water path,

and surface snowfall rate in very good agreement with the

CloudSat CPR observations with the advantage of ensuring a

much larger spatial coverage corresponding to the GMI swath.

In a recent study, Mroz et al. (2021) have carried out an

extensive validation of surface snowfall rate estimates from

GPM products (DPR-based products, as well as GPROF (V5)

and SLALOM) and from the CloudSat CPR 2C-SNOW-

PROFILE v5 product (Wood and L’Ecuyer 2013) over the

CONUS region using a 4-yr MRMS snowfall rate dataset as a

reference. All of the analyzed satellite-based products tend to

underestimate the intensity of the snowfall events (by 50% for

the GPM products and by 30% for CPR), confirming that

snowfall quantitative estimation from space is indeed a big

challenge. CPR snowfall rate estimates, although by far in

better agreement with the ground-based radar estimates, are

affected by underestimation of intense snowfall rate due to

W-band (94GHz) reflectivity saturation and issues related

to the attenuation correction [see Battaglia and Panegrossi

(2020) for a recent study on this issue]. In terms of snowfall

detection,Mroz et al. (2021) show that SLALOM [withHeidke

skill score (HSS) close to 60%, only 10% worse than of the

CPR] outperforms the other GPM products. These authors

have analyzed GPROF and SLALOM detection capabilities

for different surface types, using the GPROF surface classifi-

cation in Table 2. The results indicate that SLALOM is rela-

tively stable irrespective of the land surface type (HSS varying

from 63% over minimum vegetation to 58% over maximum

snow cover). On the other hand, GPROF shows almost a factor

of 3 difference between the lowest and the highest HSS over

different surfaces, with lowest HSS (14%) reported over the

maximum snow class, and higher over other snow classes (HSS

around 30%–40%). The main issue in GPROF are the false

alarms (60%–70% false alarm ratio. Evidently, SLALOM

(with 20%–40% false alarm ratio over snow cover, 10%–20%

over vegetated land), through the exploitation of all GMI

channels, is able to better interpret the signal over the different

surface types.

It is worth noting that GPROF (V5) uses DPR-based

products in the a priori database for precipitation retrievals

over all surfaces (vegetated land, inland waters, coastlines

oceans, sea ice and sea ice–ocean boundaries), except for the

four snow-covered surface types, where the a priori database is

built from MRMS-based snowfall estimates. Therefore, for

snowfall retrieval the correct identification of snow cover at the

time of the GMI overpass is not only important for the surface

category partitioning of the a priori database (see section 2),

FIG. 15. (top) Two arbitrary sampled raining vectors of the TMI spectral brightness temperatures (dotted black

lines with circles) over ocean and land. The gray lines are the 50-nearest neighbors using the Euclidean distance,

obtained from an independent database of TMI and DPR coincidences. (bottom) Surface rainfall probability

histograms of the 50 spectral neighbors shown in the top panels fromPR-2A25 product (v04). In the top and bottom

panels, the red squares and the blue solid lines with diamonds show the first nearest neighbor in the spectral (1-nnT)

and rainfall (1-nnR) domains, respectively (Ebtehaj et al. 2015).
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but also because it determines which snowfall reference data-

set is used in the retrieval process. In a recent study by Milani

et al. (2020), the impact of GPROF surface classification and a

priori database selection on snowfall detection and retrieval

has been thoroughly analyzed. Two very intense shallow lake

effect snowfall (LES) events occurring in extremely dry con-

ditions over the U.S. Great Lakes region, were examined in

detail. Both LES systems exhibit a very distinct GMI snowfall

scattering signature (strong TB depression in the HF channels

at 166 and 183.31GHz) in correspondence of the most intense

snowfall bands observed along the coast of Lake Ontario

and Lake Erie by closest NEXRAD weather radars. The au-

thors evidence that GPROF’s ability to detect the snowfall and

to capture the snowfall intensity critically depends on the

GPROF background surface categorization, in particular on

the correct assignment of the snow cover class to the coastal

areas (based on Autosnow daily updates overwriting the

monthly TELSEM-based classification, see section 2), which

were affected by the most intense snowfall. The monthly sur-

face classification, at relatively low spatial resolution, may be

not suitable for coastal areas, and in general where the surface

status is rapidly evolving, as in presence of seasonal snow. The

use of a daily snow cover high-resolution product such as

Autosnow, can sometimes mitigate this issue. However, the

subdaily snow cover variability may not be correctly repre-

sented, and the snow cover types (with different radiative

properties) will be only related to the monthly climatology.

These studies evidence how critical is the influence of snow-

covered surface temporal and spatial variability on the snow-

fall passive microwave signature, especially in dry conditions,

and how it is fundamental to be able to account for such vari-

ability in the snowfall retrieval process. The passive MW em-

pirical cold surface classification algorithm (PESCA) has been

recently developed for the detection and characterization of

the frozen background surface at the time of the overpass using

passiveMWsatellitemeasurements, with the aim of supporting

snowfall detection and retrieval (Camplani et al. 2021), espe-

cially in dry conditions. Themethodology is based on the use of

the lower-frequency channels (,90GHz) common to most

microwave radiometers, with the main intent to make it ap-

plicable to conically and cross-track scanning radiometers.

PESCA classifies the background surface into nine classes

(Fig. 17) through a series of simple tests (a decision tree) built

upon an empirical method applied to observational datasets. It

uses a limited number of inputs, namely, the 2-m air temper-

ature (T2m) and three tests based on TB observations. These

are the ratio between the 23.8- and the 89-GHz TB (RLF),

the ratio between 23.8-GHz TB and 2-m air temperature

FIG. 16. Results of precipitation phase detection over snow cover for two GPM overpasses, by the standard 2A-DPR product, the

ground-based Multi-Radar Multi-Sensor System (MRMS), and the proposed k-nearest neighbor (kNN) approach (Ebtehaj and

Kummerow 2017). The snow-cover maps in the fourth column are from the NOAA Autosnow product (Romanov et al. 2000). (top) 21

Nov 2016, orbit 10412 and (bottom) 28 Dec 2015, orbit 9833.

1772 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by JET PROPULSION LABORATORY | Unauthenticated | Downloaded 06/14/21 02:22 PM UTC



(TB23.8/T2m), and the scattering index (SI), calculated here as

the difference between the (V-polarization) TB at/near 90 and

23.8GHz. These channels are available from most sensors

(e.g., GMI, AMSR-2, SSMIS, ATMS) (Table 1). These are

referred to below as test 1, test 2, and test 3, respectively.

Unlike the four decreasing snow classes used in Table 2,

PESCA is able to distinguish between various classes of snow

and sea ice, besides coast, snow-free land, and ice-free ocean.

In particular over land at midlatitudes, snow cover is further

distinguished as ‘‘deep dry snow’’ and ‘‘thin snow,’’ while

‘‘perennial snow’’ is foundmostly at higher latitudes. Camplani

et al. (2021) show that PESCA has very good snow cover de-

tection capabilities in dry conditions, when TPW, 10mm, for

T2m , 270K and for surface elevation (averaged over the

radiometer instantaneous field of view, IFOV) less 2500m,

especially for deep dry snow and perennial snow. The algo-

rithm tends to miss thin snow with spectral signature very

similar to snow-free land, while false alarms are mostly related

to thin snow at T . 270K. The geographical and seasonal

distribution of the PESCA snow classes is coherent with pre-

vious studies (Takbiri et al. 2019; Munchak et al. 2020) and

tend to correspond to different snow physical properties (e.g.,

snow water equivalent, SWE). Most importantly (since the

main target of PESCA is to identify distinct surface emissivity

spectra), the first two classes show distinctive spectral features:

‘‘deep dry snow’’ is polarized and characterized by generally

lower emissivity and by a steep decrease of the emission

spectrum between 19 and 90GHz, whereas ‘‘thin snow’’ is

found in correspondence of higher T2m, and shows high

emissivity at all frequencies below 90GHz and low emissivity

above 90GHz.

Figure 17 shows an example of application of PESCA to one

LES event (Milani et al. 2020), which occurred on 9 January

2015 (GMI orbit 4914) over the Great Lakes in extremely dry

conditions (TPW around 4mm). The left panels of Fig. 17 show

the GPROF surface classification index, the corresponding

PESCA surface classification, and the SnowData Assimilation

System (SNODAS) (Carroll et al. 2006) snow depth for the

same day. The panels on the right present the main input

variables of PESCA’s decision tree. GPROF assigns snow

cover almost everywhere, except for the inner part of the lakes

and the coastal areas south of Lake Ontario and Lake Erie. In

FIG. 17. GMI overpass at 1226 UTC for a lake effect snow event on 9 Jan 2015. (left) GPROF surface classifi-

cation, and PESCA surface classification, and Snow Data Assimilation System [SNODAS, from the National

Operational Hydrologic Remote Sensing Center (NOHRSC)] snow depth. (right) Representation of the three

main tests used in the PESCAdecision tree for snow cover categorization, where test 1 identifies deep dry snow, test

2, perennial snow, and test 3 thin snow (where the first two tests fail). The input variables used for each test are

indicated on top of each panel.
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contrast, PESCA classifies the extended region labeled as D as

snow-free land, where SNODAS reports very thin snow. The

intense (shallow) LES snow bands occurred mostly in the two

areas labeled as A (see Milani et al. 2020). In this area

SNODAS reports moderate (up to 300 cm) snow depth and is

identified by PESCA as thin snow. In GPROF, this area is

assignedmainly to the coast class, and all the surrounding areas

are assigned to moderate or low snow (class 9 or 10 in Table 2)

by GPROF. PESCA instead reports mostly thin snow around

the Lakes (and some broken sea ice on the lakes’ shore). In

regions B and C, GPROF assigns thin snow (class 11 in

Table 2), while PESCA detects deep dry snow in area B, while

in C a mixture of various snow types (mostly deep dry snow,

thin snow, and some perennial snow) and scattered areas of

snow-free land are found. SNODAS, instead, reports deep

snow in both regions. As opposed to region D, region C is

characterized by dense needleleaf evergreen forest that prob-

ably masks the signal from the deep snow. The right panels of

Fig. 17 show the input variables used by PESCA to highlight

some spectral characteristics of the snow surfaces identified by

the algorithm. The deep dry snow identified in area B and C is

characterized byRLF. 1.01 (test 1) in the top right panel, while

the small areas of perennial snow in area C (light blue pixels in

the northeastern corner of the middle-right panel) are identi-

fied with the TB at 23.8GHz (test 2). The test on the scattering

index (test 3, bottom-right panel) is applied to areas, where the

two previous tests fail. This last test identifies the thin snow if

the SI . 5K.

The PESCA surface categories have been used to compute

the clear sky TB, for this case study, in order to separate the

signal due to the presence of clouds from that due to snow

cover. First, the surface emissivities have been computed based

on the CloudSat–GPM coincidence dataset 2B-CSATGPM

V03B (Turk et al. 2021, manuscript submitted to Remote

Sens.), where each GMI observation is associated to PESCA

snow cover class, andwhere the CPR cloudmask has been used

to remove observations with cloud cover. A d-Eddington ra-

diative transfer code, applied using ERA5 temperature, water

vapor profiles, and skin temperature, and the GMI observed

TB have been used to retrieve the 13 GMI channels emissivity

(emissivity spectrum) for every clear-sky observation in the

dataset. Then, all observations in the dataset have been

grouped based on PESCA surface class (the nine classes shown

in Fig. 17) and 5-K T2m bins, and the mean emissivity in each

T2m bin has been calculated. Then, for each pixel in the case

study, the emissivity spectrum for each surface class has been

used in a d-Eddington radiative transfer model, in order to

calculate the clear sky TB.

Figure 18 shows the TB measured by GMI at 166GHz (V

pol) and 183 6 7GHz, the most suitable to identify shallow

snowfall signature according to Milani et al. (2020), and the

corresponding DTB (i.e., measured minus clear sky TBs) for

the same channels. Using themeasured TB alone, it is difficult

to discriminate between clouds and snow-covered surfaces, as

some snow areas with low emissivity (e.g., area B with deep

dry snow) can be easily misinterpreted. The DTBs shows in-
stead relatively strong TB depressions at 166GHz (DTBs
down to 220K) due to the scattering from the most intense

snowfall regions, less evident scattering signature over Lake

Ontario, and TB enhancement at 166GHz (less evident at

183 6 7GHz) in area B. This may be attributed to super-

cooled cloud water emission (MRMS observes some scat-

tered area of snowfall in that region, see Milani et al. 2020),

over the radiatively cold deep dry snow. The DTBs show also

some features that can be attributed to the surface emis-

sivity computation. For example, in area C the positive DTBs
could be partly related to the not correct surface character-

ization (evergreen forests), while along the shore of the lakes

it is related to the uncertainty of the surface emissivity over

water–ice–land boundaries.

This case study is used as a proof of concept of the potentials

(and limitation) of using the frozen surface characterization at

the time of the overpass, and of DTBs (measured-clear sky) for

snowfall retrieval. The DTBs can play a role similar to the

polarization corrected temperatures (PCTs) usually applied to

enhance the precipitation signature over ocean–land bound-

aries. The DTBs could be used, in principle, over all surfaces,

and can be particularly useful over dry snow cover. Deep dry

snow is characterized by significant volume scattering (low

emissivity), that, especially in dry conditions (TPW , 5mm),

makes it very difficult for the PMW retrieval algorithm to

identify snowfall scattering signature at frequencies. 89GHz.

TB depression with respect to clear sky could be a useful input

parameter for snowfall retrieval. Moreover, the warming effect

by cloud liquid water (embedded or at the cloud top) may re-

sult in an emission signal (TB increase) at frequencies .
89GHz, that, if correctly interpreted, could indicate the like-

lihood of snowfall.

8. Leveraging the spatial patterns of brightness
temperature to separate the surface and precipitation

When considered at the pixel level, multispectral TB sig-

natures are generally ambiguous because they are the product

of both the surface’s emission and the atmospheric contribu-

tion. To help separate the two signals, other than utilizing an-

cillary information, one can leverage the spatial dynamics and

patterns in the observed TB fields. Indeed, the variations of TB

coming the variations of the surface properties and the varia-

tions caused by hydrometeors occur at different spatial scales

and show different spatial dynamics, leading to distinguishable

spatial patterns. In Guilloteau and Foufoula-Georgiou (2020)

it is demonstrated that over oceans, adequate spatial filtering

helps distinguish ice scattering signal from liquid rain drops

emission signal at 37 and 89GHz. Over land, the signal asso-

ciated to ice scattering in a convective cell at frequencies be-

tween 15 and 200GHz generally corresponds to a local

depression of the TB. The specific scale of an individual con-

vective cell over land is typically smaller than 50 km 3 50 km.

The spatial dimensions of the corresponding TB depression

tend to decrease with frequency, as the lower frequencies are

only sensitive to the largest ice particles present in the very

core of the convective cells. The TB depressions caused by

convective cells are generally shaped as disks or elliptical disks

with low eccentricity. All these geometrical characteristics

make the signature of convective cells relatively easy to
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identify and distinguish from other sources of variability for the

human eye analyzing TB fields.

The challenge for precipitation retrieval algorithms is to

find the operators able to extract useful spatial patterns from

the TB fields. Figure 19 shows the average spatial pattern

observed by GMI for 11 747 convective cells over land at

18.7, 37, 89, and 166GHz. The presence of a convective cell

for each one of the 11 747 cases is established through the

collocated DPR observations. TB patches of dimensions

55 km 3 65 km centered on each cell are extracted and av-

eraged at each frequency. One will note the asymmetry of

the patterns in the cross-scan direction. This asymmetry is

not a property of the precipitation system themselves but

comes from the observation geometry of GMI, which in-

volves a 538 Earth incidence angle and results in a

frequency-dependent parallax shift in the cross-scan di-

rection (Guilloteau et al. 2018; Guilloteau and Foufoula-

Georgiou 2020). In general, the deeper the convection, the

more pronounced the parallax shift and the asymmetry. The

geometrical distortions resulting from the Earth incident angle

of conical-scanning imagers are often considered as a deteri-

orating factor for precipitation retrievals, but in fact, they re-

sult in specific patterns that can be exploited to recognize and

characterize specific atmospheric features and differentiate the

atmospheric signal from the surface signal. The patterns shown

in Fig. 19, corresponding to the ‘‘average’’ spatial signature of a

convective cell, may be used as convolution kernels to identify

convective cells in the TB fields.

However, these simple average patterns may not capture

well the variability in terms of spatial organization and mi-

crophysical properties across different convective cells. In

Guilloteau and Foufoula-Georgiou (2020), spatial filtering of

the 37- and 89-GHz TBs with a local derivative operator was

found to allow extracting information capable of improving the

retrieval of precipitation over land. A promising approach for

identifying relevant TB patterns for precipitation retrieval is

machine learning through deep neural networks as these have

allowed major breakthroughs in the field of image recognition

in the past two decades (LeCun et al. 2015).

9. Conclusions

This manuscript has described several recent developments

to passive MW overland precipitation retrieval algorithms that

have resulted from the availability of the GPM core radar

(DPR) and radiometer (GMI) and other GPM constellation

radiometers. In general, these findings point to the importance

of adapting to the surface emissivity conditions and the large-

scale environmental conditions that exist near the time of

the satellite observation. For the Bayesian-based algorithms,

knowledge of these conditions better isolates and constrains

the selection of candidate precipitation profiles from the large

collection of a priori data.

Even with their coarser resolution relative to the higher-

frequency channels, incorporation of passive MW channels at

37GHz and below, especially channels with a polarization

capability, clearly improve the overland estimates. These

channels help to better separate and discriminate the variable

surface conditions and the precipitation above. This is an im-

portant consideration for precipitation estimates based on the

abundant observations from the high-frequency passive MW

sounders (e.g., AMSU-B, ATMS, MHS, and future systems

such as MWS on MetOp-SG-A), which also have channels

at/near 23 and 31GHz.

The narrow-swath precipitation radars on board TRMMand

GPMalso serve to separate the precipitating and nonprecipitating

FIG. 18. GMI overpass at 1226 UTC for a lake effect snow event on 9 Jan 2015. Comparison of the (left) TB

measured byGMI at 1836 7GHz and 166GHz and (right) the TBdifferences, betweenmeasured TBs and the clear

sky TBs. The clear sky TBs have been calculated from the mean emissivity for the corresponding PESCA surface

category (see text for details).
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passive MW observations from the GPM constellation ra-

diometers. Using this capability, semiempirical approaches

that are designed to reproduce the observed DPR precipi-

tation products perform quite well. The EPC method elimi-

nates surface classification, using the emissivity principal

component structure for constructing and interrogating the a

priori dataset. This method has demonstrated to transition

across oceanic, land, and the complex nature of mixed land–

water scenes with minimal surface-related artifacts in the

resultant precipitation structure (Utsumi et al. 2020). These

techniques require sufficient collection of a passive MW

sensor together with a precipitation radar (PR or DPR) to

build the a priori dataset.

An advantage of simulated TB data is that any passive MW

sensor can be modeled, including future sensors not yet

deployed, to design future algorithms and collect a large vol-

ume of simulated a priori precipitation data. To effectively

model the overland TB for future passive MW sensors,

forward-modeled TB simulations (initialized with the precipi-

tation radar microphysics) are needed. This highlights the

broader need to further integrate the land surface into atmo-

spheric radiative transfer models to more accurately model TB

across land surface conditions (Ringerud et al. 2015).

While there has been improvement to the quantification of

cold-season precipitation and snow-covered surfaces, there are

complex surface–atmosphere interactions that are challenging

to disentangle even with the capabilities of the DPR and high-

frequency radiometer channels. High-frequency radar obser-

vations such as CloudSat and future radars (Battaglia et al.

2020), even if they are not coincident with DPR, have abun-

dant fortuitous coincidences with DPR and the polar-orbiting

passive MW sensors at the high latitudes (Hayden and Liu

2018). Despite the sampling and spatial resolution differences,

joint CloudSat–passive MW observations have guided the ca-

pability to better detect the light end of the precipitation rate

with the numerous passive MW sounders (Behrangi et al. 2014).

FIG. 19. Average TB pattern at 18.7, 37, 89, and 166GHz observed by GMI for 11 747 convective cells over land

(vegetated surfaces). Each one the 11 747 averaged TB patches is centered on a convective cell identified by the

DPR. (left) The vertical polarization TB and (right) the polarization difference (H 2 V).

1776 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by JET PROPULSION LABORATORY | Unauthenticated | Downloaded 06/14/21 02:22 PM UTC



Even with the increased radar sensitivity in this precipitation

regime, challenges remain in estimating light rain over land

surfaces (Mitrescu et al. 2010). Finer spatial/temporal-scale

numerical weather prediction data to define the atmospheric

and land surface state can better guide the estimation.

With the abundance of passive MW high-frequency sounder

data in the GPM era, much of the area poleward of 608 latitude
has revisit times of 3 h or less. The complex surface emissivity

properties at these latitudes can be circumvented to some ex-

tent by utilizing TB time-change methods to estimate the

nonprecipitating background TB, to mitigate the surface con-

tamination and improve rainfall retrieval performance. This

approach has the potential to augment the GPROF land pre-

cipitation retrieval algorithm by including the ‘‘time dimension’’

into the retrieval process. On the other hand, current passive

MW retrievals are based on a ‘‘per pixel’’ retrieval; i.e., the

spatial characteristics of the precipitation as revealed in the

TB patterns are not taken into account. Operators that intro-

duce the ‘‘spatial dimension’’ into the retrieval process hold

promise to differentiate the atmospheric signal from the sur-

face signal (Guilloteau and Foufoula-Georgiou 2020).

This manuscript has intentionally focused on passive MW-

only precipitation algorithms. However, the variable nature

of the microwave land surface properties also affects the

CORRA algorithm for TRMM and GPM (Grecu et al. 2016),

by introducing uncertainties in the relationship between the

radar surface backscatter cross section and the surface emis-

sivity (Munchak et al. 2020). Since the CORRA precipitation

profile is used in the a priori data used for many passive MW

precipitation methods highlighted here, any surface-induced

precipitation characteristics within CORRA eventually mani-

fest themselves in subsequent multisatellite (Level 3) IMERG

products.

Looking ahead, there are several promising methods not

covered in this manuscript. The methods described have all

operated on the principle of discriminating precipitation

against a high-emissivity land surface at the time of the satellite

overpasses. Conversely, the relative change in the surface

emissivity can be related to the amount and duration of pre-

cipitation that impacts the surface prior to the satellite over-

pass (You et al. 2014). When rain impacts the surface, the

surface emissivity of many soils changes dramatically owing to

the strong contrast between the permittivity of dry and wet soil

types, especially at C-band frequencies (5GHz) and below.

This principle has guided the development of antecedent pre-

cipitation estimates from other active/passive satellite obser-

vations that are sensitive to soil moisture change. These

include, but are not limited to observations from microwave

scatterometers (Brocca et al. 2014; Turk et al. 2015), L-band

(1.4GHz) radiometers such as SMOS and SMAP (Brocca et al.

2020), and the expanding collection of L-band land surface

reflection data fromGlobalNavigation Satellite System (GNSS)

telemetries (Wan et al. 2019) and other signals of opportunity

(Edokossi et al. 2020).

The highly nonlinear and multidimensional nature of the

MW surface emissivity is a highly under constrained problem

when working with the limited set of passiveMWTB channels.

As shown in section 6, this complexity makes this topic an

appropriate candidate for machine learning methods. Use of

these techniques have been proposed for satellite-based pre-

cipitation estimation for many years (Tapiador et al. 2004), but

have evolved with computational advances, readily available

tools, and more meteorological-driven insight, discovery and

training methods (Ebert-Uphoff and Hilburn 2020; Boukabara

et al. 2019). These methods may help to identify connections

between physical properties that are not represented in current

physical emissivity models, and improved utilization of the

high-frequency MW sounder data (Sanò et al. 2015). Current

initiatives are largely focused on improved Level 3 precipita-

tion products, especially incorporating surface and topo-

graphical features (Bhuiyan et al. 2020), but also to improve

the quality of instantaneous passive MW estimates (Petković

et al. 2019) and MW–IR estimates in the high latitudes (Tang

et al. 2018).
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