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Abstract—In preparation of the micro-bolometer based MIcro
Satellite for Thermal Infrared GRound surface Imaging (MIST-
IGRI) mission, we study the error budget of the Temperature-
Emissivity Separation (TES) method using several spectral con-
figurations that differ in channel numbers, locations, and widths.
The error budget quantifies the contribution of (1) the TES
underlying assumption about emissivity spectral contrast, (2) the
errors on atmospheric corrections, and (3) the instrumental
noise. When dealing with atmospheric corrections, we consider
errors on atmospheric temperature, water vapor content, and
concentrations of CO2 and O3. To that end, we design an
end-to-end simulator of MISTIGRI measurements in order to
simulate the radiative and biophysical quantities involved in the
data processing. We conduct numerous simulations over a wide
range of realistic setups that include cavity effect, i.e., radiance
trapping within vegetation canopy. In the case of micro-bolometer
based sensing, the current study highlights that atmospheric and
instrumental noises have similar impacts on the TES retrievals,
with resulting errors twice as large as those due to the TES
intrinsic assumption about spectral contrast, where the latter
contributes to the TES error budget within the [0.005 - 0.009]
interval for emissivity, and within the [0.3 K - 0.4 K] interval
for LST. Also, we show that retrieval performance of surface
temperature is very similar across all considered MISTIGRI
spectral configurations, with RMSE variation within 0.2 K.
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Eventually, our study permits to select a 4-channels spectral
configuration as the most suited for the MISTIGRI instrument,
notably because it enables a moderately better capture of the
emissivity contrast than a 3-channels one.

Index Terms—Thermal infrared remote sensing, Satellite mis-
sion design, Temperature / emissivity separation, Vegetation
canopy - scaled cavity effects, Micro-bolometers detectors, At-
mospheric corrections, TES error budget

I. INTRODUCTION

THERMAL InfraRed (TIR) remote sensing is a power-
ful tool for Earth system monitoring, since it provides

proxies of Earth surface emissivity spectrum / radiometric
temperature that are widely used in several thematic studies.
Involved processes are related to radiation budget [1]–[5], land
surface energy balance and evapotranspiration [6]–[15], soil
moisture and vegetation water status [16]–[18], crop micro-
meteorological conditions [19], urban heat island and urban
atmospheric flows [20]–[22], volcanic ashes with sulfate and
sulfur dioxide deposits [23], [24], lava flow monitoring and
modeling [25], [26], mineral mapping [27], [28], cryospheric
inventory and worldwide glacier balance [29], [30], as well as
numerical weather prediction and ocean forecasting modeling
[31], [32].Various satellite TIR missions have been dedicated
to the estimation of land surface temperature (LST) during the
last three decades, either with high spatial resolution sensors
such as Landsat [33], [34] and ASTER [7], [35], [36], or
with high temporal resolution sensors such as AVHRR [37],
[38], MSG [39], [40], MODIS [41], [42], or SLSTR onboard
Sentinel 3 [31], [43]. Although disaggregation approaches
have been explored to overcome the lack of TIR data with both
high spatial and temporal resolutions [44], [45], several studies
have campaigned for satellite missions providing such TIR
data, including IRSUTE [46], SPECTRA [47], ECOSTRESS
[48], or LSTM [49].

The MIcro Satellite for Thermal Infrared GRound surface
Imaging (MISTIGRI) preparatory mission was initiated and
conducted by CNES (French space agency) in collaboration
with Spain, between 2010 and 2015 [50]. Follow-on from
IRSUTE and SPECTRA, it was the precursor of the Ther-
mal infraRed Imaging Satellite for High-resolution Natural
resource Assessment (TRISHNA) mission, to be launched in
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2025 [51]. The primary objective of the MISTIGRI mission 
was the monitoring of land surface energy and water budgets. 
The spatial resolution was set to 50 m, and the revisiting rate 
was set to one day, with an overpass within the [12:00-13:00] 
solar time interval. The one-day revisit induced a constant off-
nadir viewing with a view zenith angle lower than 40◦. Finally, 
the MISTIGRI instrument was designed with micro-bolometer 
sensors, which led to set large spectral channels for reducing 
instrumental noise, whose expected values were between 0.2 
and 0.5 K at 290 K. The baseline instrument spectral 
configuration included 4 channels labelled TIR3, TIR4, TIR1, 
and TIR2, respectively centered at 8.6 µm (0.32 µm width), 9.1 
µm (0.32 µm width), 10.3 µm (1.02 µm width), and 11.5 µm 
(1.02 µm width).

Retrieving surface emissivity and temperature from TIR 
remote sensor measurements is an ill-posed problem, with Nb 
equations from channel measurements and Nb + 1 unknowns 
that include Nb channel emissivities and one radiometric tem-
perature. Among the existing solutions that consist in adding 
an Nb + 1 equation to the system [52]–[54], we chose the 
Temperature Emissivity Separation method (TES, [35], [55]). 
This choice is motivated by the TES capability to retrieve 
surface emissivity and temperature from a unique multispectral 
snapshot at the satellite overpass time, thus making possible 
the monitoring of temporal changes of surface temperature 
on the basis of a one-day revisiting rate. The TES method 
relies on the assumption that any natural surface emissivity 
spectrum includes a value close to unity within the TIR 
spectral range, which induces the possibility to derive the 
emissivity minimum value from emissivity contrast by using 
an empirical relationship [56], [57]. The TES method has 
been extensively used and studied in the past three decades, 
notably in order to enhance its stability and performance, with 
regards to observation conditions driven by sensor capabilities, 
atmospheric conditions and land surface spectral properties 
[1], [3], [36], [55]–[75].

When designing any satellite mission, an important step is 
the definition of the mission characteristics in accordance to the 
approaches that are used for data processing and thematic uses. 
As overviewed by [50] for the MISTIGRI mission, some 
instances are the revisiting rate / overpass time in the light of 
evapotranspiration diurnal course, or the viewing direction in 
the light of radiative transfer processes. In the context of 
monitoring land surface temperature, the definition of the 
spectral configuration of the MISTIGRI sensor has to be 
investigated with regards to sensor technologies (i.e., micro-
bolometers detectors) and used methods (e.g., TES retrieval of 
emissivity / temperature with prior atmospheric correc-tions). 
More particularly, the appropriate locations and widths for the 
MISTIGRI spectral channels should balance between three 
constraints: capturing spectral contrasts of the observed 
emissivity spectra, minimizing atmospheric perturbations, and 
minimizing instrumental noise.

The current study aims to conduct an error budget for the 
TES method when used over MISTIGRI imagery of vegetated 
land surfaces (mission primary objective), in order to find an 
appropriate sensor spectral configuration among predefined 
configurations, on the basis of balancing between the three

aforementioned constraints. To that end, an end-to-end simu-
lator is implemented, which is dedicated to: (1) the simulation
of TIR multispectral measurements, and (2) use of the TES
method for LST retrieval after prerequisite atmospheric correc-
tions. The simulator relies on simulated land surface emissivity
spectra that account for radiance trapping within vegetation
canopy, since [57] showed that the subsequent cavity effect
induces an upper shift of emissivity for both the TES empirical
relationship and the subsequent retrievals. We first detail the
process flow of both the TES method and the end-to-end
simulator in § II and § III, respectively. Next, we present the
simulator implementation in § IV, and the simulation strategy
when addressing the MISTIGRI mission in § V. We finally
present and discuss our results in § VI, and we conclude with
current limitations and further perspectives in § VII.

II. TES PRESENTATION

A. TES principle and overview

Rather than associating the maximum emissivity with a
nominal value [76], the TES approach assumes that the emis-
sivity spectrum of a natural surface in the TIR spectral do-
main includes a maximum value bounded within the [0.98-1]
interval. Subsequently, any change in the emissivity spectrum
minimum value is related to a change in the spectral contrast
across the emissivity spectrum [57]. Thus, by empirically
relating the minimum emissivity to the spectral dynamics
observed across the Nb channels [68], TES overcomes the
indetermination by removing the (Nb + 1)th unknown of the
ill-posed problem for LST retrieval (see § I). To that end,
channel emissivities and radiometric temperature are retrieved
via an iterative process that includes four steps described
below.

B. TES processing flow

The first step estimates radiometric surface temperature
T surR as the maximum temperature over the Nb channels j:

T surR = max(Tj) (1)

where radiometric temperature Tj for channel j is deduced via
the inverse Planck’s law L−1BB applied to the corresponding
surface-emitted radiance Lemj , itself derived from measured
surface outgoing radiance Lsur↑j after atmospheric corrections,
and from atmospheric downwelling irradiance Eatm↓j :

Lemj = Lsur↑j − (1− εj)
Eatm↓j

π
(2)

Tj = L−1BB

(
Lemj
εj

, λj

)
(3)

L−1BB(Lj , λj) = c2

[
λj ln

(
c1

πλ5jLj
+ 1

)]−1
(4)

with c1 and c2 the first and second radiation constants, equal
to 3.74151.10−16 W.m−2 and 0.0143879 m.K, respectively.
εj and λj are channel emissivity and central wavelength,
respectively.
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The second step is the calculation of relative emissivities as 
the ratios of channel emissivities εj to the mean emissivity over 
the Nb channels:

βj =
εj

< εj >
=

Lemj /LBB(T
sur
R , λj)

< Lemj /LBB(T surR , λj) >
(5)

where LBB is the Planck’s law:

LBB(T
sur
R , λj) = c1

[
λ5jπ

[
exp

(
c2

λjT surR

)
− 1

]]−1
(6)

The third step consists of calculating the minimum value
of the emissivity spectrum as an empirical relationship of the
Maximum Minimum Difference (MMD ≡ spectral contrast)
of the relative emissivities βj :

MMD = βmax − βmin =
max(εj)−min(εj)

<εj>
(7)

εmin = A+B ×MMDC (8)

where A, B, and C are coefficients that depend on the spectral
configuration of the instrument, and which are estimated from
non-linear regression over a database of emissivity spectra (see
details in [57]).

In the fourth and last step, the channel emissivities over the
Nb channels are derived from the minimum channel emissivity
value as:

εj =
εmin
βmin

βj (9)

The TES iterative process is initialized by setting to unity
the emissivity values εj in Equation 2 for each channel j (ra-
diometric temperature is set to brightness temperature). From
this initialization, the iterative procedure follows Equation 1
to 9. For our study, we set a maximum of ten iterations,
but the process systematically converges in fewer than six
iterations. Once convergence is reached, TES retrievals of
both channel emissivity TES-εj over the Nb channels and
radiometric temperature surface TES-T surR are obtained from
the last iteration on Equation 9 and 1, respectively.

III. SIMI DESCRIPTION

A. SiMi overview

The specification of the optimal MISTIGRI spectral con-
figuration is performed using simulated data. The simulator
for MISTIGRI measurements (SiMi) is designed, on a single
pixel basis, 1/ to simulate radiative transfer processes involved
in TIR data measurements along with related quantities, and
2/ to analyse the performance of the retrieval procedure for
the variables of interest, including atmospheric corrections and
recovering of land surface emissivity / temperature with the
TES method. The simulations cover the TIR spectral range
([7.5 - 13.5] µm) with a 10−3 µm resolution. SiMi includes
five connected modules illustrated in Figure 1 and described
below (quantities mentioned in Figure 1 are defined in Table I).

1) The synthetic scene module (Module 1) describes the
scene at the land surface level, by considering an equiv-
alent homogeneous body with the same radiative char-
acteristics, namely emissivity spectrum and radiometric

temperature, than the actual composite of plant canopy
and underlying soil [77].

2) The atmosphere module (Module 2) is dedicated to the
simulation of atmospheric effects on the measured sig-
nal. On the basis of predefined atmospheric conditions,
it simulates the atmospheric radiative transfer and the
resulting signal at the sensor input (top of atmosphere -
TOA), and it quantifies the atmospheric radiative quan-
tities to be used for atmospheric corrections.

3) The instrument module (Module 3a) computes the quan-
tities measured by the instrument (channel radiances /
brightness temperatures) in accordance to spectral re-
sponse function and instrumental noise for each channel.

4) The calibration module (Module 3b) deals with the
calibration of the TES empirical relationship εmin =
f(MMD) (Equation 8). This relationship depends upon
the channel locations and widths, and has to be cali-
brated for each spectral configuration [57].

5) The inversion module (Module 4) performs the inversion
of the simulated measurements. It first applies atmo-
spheric corrections, and then makes use of the TES
method to separate target emissivity and temperature.

B. The land surface module (Module 1)
The land surface module generates emissivity spectra for a

given scene consisting of vegetation canopy and underlying
soil, using the Scattering by Arbitrarily Inclined Leaves-
Thermique (SAIL-Thermique) radiative transfer model [78],
[79]. It describes land surface as a turbid medium, with a
stack of homogeneous vegetation layers above a soil substrate.
Vegetation canopy is characterized by canopy structure (i.e.,
leaf area index LAI and leaf inclination distribution function
ALA) and leaf optical properties (reflectance and transmit-
tance spectra). Underlying soil surface is characterized by
optical properties (soil reflectance spectra). Radiative transfer
is simulated by accounting for successive scattering within the
canopy, and between the canopy and the soil. SAIL-Thermique
considers the Kirchhoff’s law at the thermodynamical equi-
librium, where directional surface emissivity ελ is calculated
from the directional-hemispherical reflectance ρλ: ελ = 1−ρλ.
SAIL-Thermique is used to generate two datasets.
• The first dataset, called DB1, is used to compute the

spectral surface leaving radiance Lsur↑λ , by combining
any emissivity spectrum ελ with prescribed values of
surface radiometric temperature T surR . Each pair {ελ
spectrum, T surR value} corresponds to a land surface
scene. This pair is provided to Module 2, and further
serves as a reference for validation exercises. The first
exercise consists in validating the TES semi-empirical
relationship, once calibrated. The second exercise consists
in validating TES retrievals of channel emissivity and
radiometric temperature (Figure 1).

• The second dataset, called DB2, is used to calibrate the
TES semi-empirical relationship (Module 3b).

C. The atmosphere module (Module 2)
For any pair {ελ spectrum, T surR value}, the atmo-

sphere module computes several spectral quantities: atmo-
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Fig. 1. Overview of the approach used to identify an optimal spectral configuration in the TIR range for the MISTIGRI instrument. Quantities mentioned in
the Figure are defined in Table I.

spheric downwelling irradiance Eatm↓λ , surface-leaving radi-
ance Lsur↑λ (Equation 10 and 11), atmospheric transmittance
τatmλ , atmospheric upwelling radiance at the sensor level
Latm↑λ , and TOA radiance at the sensor entrance LTOA

λ (Equa-
tion 12).

Lsur↑λ = Lemλ + (1− ελ)
Eatm↓λ

π
(10)

Lemλ = ελLBB(T
sur
R , λ) (11)

LTOA
λ = τatmλ Lsur↑λ + Latm↑λ (12)

The calculations of Eatm↓λ , τatmλ , and Latm↑λ involve the sim-
ulation of atmospheric radiative transfer based on atmospheric
profiles of pressure, temperature, humidity, as well as of
concentrations in carbon dioxide [CO2] and ozone [O3] [80],
[81]. The radiative transfer is simulated using the MATISSE-
v2 code [82], [83]. MATISSE is chosen for its consistent
atmospheric profile database, given that it is very similar to
its counterparts such as MODTRAN for radiative transfer
simulation. After these calculations, each atmospheric profile
is characterized by a triplet {Eatm↓λ , τatmλ , Latm↑λ }, to be
combined with each pair {ελ spectrum, T surR value}.

The atmosphere module also computes the atmospheric
radiative quantities, namely EN atm↓

λ , τN atm
λ , and LN atm↑

λ ,
to be used for atmospheric corrections in Module 4 after
convolution with the instrumental spectral response function

(ISRF) in Module 3a (Figure 1). To that end, and in order to
account for errors on atmospheric corrections due to partial
knowledge on atmospheric status, atmospheric profiles are
noised on temperature Tatm(z) and humidity hr(z), as well
as on concentrations of carbon dioxide [CO2](z) and ozone
[O3](z), where z is the altitude above sea level. Each variable
profile V ar(z) is noised using a Gaussian white noise:

V ar(z) = V ar(z) +N (0;α.V ar(z) + β) (13)
V ar(z) ∈ {Tatm(z), hr(z), [CO2](z), [O3](z)} (14)

where α and β are set up as following:

• in accordance with [84], we set a standard deviation of
0.8 K for Tatm(z) (α = 0, β = 0.8), which corresponds
to a maximum error of 2 K;

• in accordance with [85] and [84], we set a standard
deviation of 0.1 × hr(z) for hr(z) (α = 0.1, β = 0),
which corresponds to a maximum relative error of 25%;

• in accordance with [81], we set a standard deviation of
0.15×[CO2](z) for [CO2](z) (α = 0.15, β = 0), which
corresponds to a maximum relative error of 40%;

• In accordance with [85], we set a standard deviation
of 0.2×[O3](z) on [O3](z) (α = 0.2, β = 0), which
corresponds to a maximum relative error of 50%.
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TABLE I
SIGNIFICATION OF THE RADIATIVE QUANTITIES THAT ARE MENTIONED IN FIGURE 1.

Parameters Description
ελ Spectral land surface emissivity
εj Channel land surface emissivity
εmin Minimum value of εj across Nb channels
MMD Maximum-Minimum Difference (Equation 7)
T surR Land surface radiometric temperature
Eatm↓
λ Spectral atmospheric downwelling irradiance

EN,atm↓
λ Noised spectral atmospheric downwelling irradiance (1)

Eatm↓
j Channel atmospheric downwelling irradiance

EN,atm↓
j Noised channel atmospheric downwelling irradiance (1)

τatmλ Spectral atmospheric transmittance
τN,atmλ Noised spectral atmospheric transmittance (1)
τatmj Channel atmospheric transmittance
τN,atmj Noised channel atmospheric transmittance (1)
Latm↑
λ Spectral atmospheric upwelling radiance

LN,atm↑
λ Noised spectral atmospheric upwelling radiance (1)

Latm↑
j Channel atmospheric upwelling radiance

LN,atm↑
j Noised channel atmospheric upwelling radiance (1)

Lsur↑λ Spectral surface leaving radiance
Lsur↑j Channel surface leaving radiance
LTOA↑
λ Spectral top of atmosphere radiance

LTOA↑
j Channel top of atmosphere radiance

SBTj Surface brightness temperature
TOABTj Top-of-atmosphere brightness temperature
OSBTj Out-of-sensor brightness temperature
TES−(εBOAj , T sur,BOAR ) TES retrievals of emissivity / temperature from SBTj
TES−(εTOAj , T sur,TOAR ) TES retrievals of emissivity / temperature from TOABTj
TES − (εOSj , T sur,OSR ) TES retrievals of emissivity / temperature from OSBTj
(1) from noised atmospheric profile to account for uncertainties on atmospheric status

D. The instrument module (Module 3a)

The instrument module accounts for the sensitivity of each
spectral channel, and for the associated Noise Equivalent
Difference Temperature (NEDT) that depends upon channel
width.

To account for sensitivity of channel j, any spectrum (e.g.,
emissivity, radiance, transmittance) Qλ is convolved with
the dedicated ISRF that spreads over the [λmin,j − λmax,j ]
interval, thus providing the waveband equivalent value Qj :

Qj =

λmax,j∫
λmin,j

QλSj(λ)dλ

λmax,j∫
λmin,j

Sj(λ)dλ

(15)

Accounting for instrumental noise on measured temperature
consists of adding, for any channel j, a Gaussian white noise
with a standard deviation equal to the corresponding NEDTj :

OSBTj = BTj +N (0,NEDTj) (16)

where BTj is the brightness temperature at the sensor level,
and OSBTj is the output sensor brightness temperature with
instrumental noise. NEDTj is provided by the sensor manu-
facturer as function of both measured brightness temperature
and channel width (full width at half maximum - FWHM).

In the context of satellite mission design, it is valuable
to characterize the error budget at different levels. To that
end, Module 3a provides estimates of measured brightness
temperatures over the Nb channels j for three different cases
of BTj (Figure 1):

1) SBTj corresponds to brightness temperatures at the
surface level, it is derived from radiance spectrum Lsur↑λ ;

2) TOABTj corresponds to brightness temperatures at the
satellite level above the atmosphere, it is derived from
radiance spectrum LTOAλ ;

3) OSBTj is derived from TOABTj by applying the Gaus-
sian white noise formulation (Equation 16).

Note that both SBTj and TOABTj are derived from corre-
sponding radiances after convolution with the dedicated ISRF
and application of the inverse Planck’s Law L−1BB (Equation 4).

E. The calibration module (Module 3b)
The calibration module aims to calibrate the TES empirical

relationship εmin = f(MMD) that derives minimum emis-
sivity from the spectral contrast captured by multispectral TIR
measurements over Nb channels. To that end, emissivity min-
imum and maximum values, as well as MMD (Equation 7),
are derived for each emissivity spectrum from DB2 database,
after convolution with ISRF S(λ) (Equation 15).

The calibration is performed by computing the empirical
coefficients A, B and C of the εmin = f(MMD) relationship
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cal

(Equation 8) using the ”Optim” R function [86]. The latter 
minimizes the calibration residual error expressed as the root 
mean square error RMSEεmin [87]:

RMSEεmin

cal =

√√√√∑
n2
(εobs-calmin − εestmin)2

n2
(17)

where εobs-calmin and εestmin are respectively the εmin reference
values from the DB2 subset of emissivity spectra and the εmin
estimates from Equation 8 with the calibrated coefficients, and
n2 is the number of emissivity spectra within the DB2 subset:

The validation of the calibrated empirical relationship is
conducted using the DB1 subset of emissivity spectra, by
computing RMSEεmin

val as:

RMSEεmin

val =

√√√√∑
n1
(εobs-valmin − εestmin)2

n1
(18)

where εobs-valmin are the εmin reference values from DB1 subset
of emissivity spectra, and n1 is the number of emissivity
spectra within the DB1 subset.

F. The inversion module (Module 4)

The inversion module aims to retrieve land surface emissiv-
ity and radiometric temperature from the MISTIGRI simulated
measurements. It first corrects sensor data from atmospheric
perturbations, and second applies the TES method to retrieve
emissivity εj over the Nb channels j along with the associated
radiometric surface temperature T surR (see Figure 1).

Upon entry in the inversion module, brightness temperatures
from Module 3a are converted into channel radiances by using
the Planck’s law LBB (Equation 6). Atmospheric corrections
are then performed using the noised atmospheric radiative
quantities that are computed from noised atmospheric profiles
in Module 2 and next ISRF-convolved in Module 3a, namely
the noised channel atmospheric transmittance τNatmj and the
noised upwelling radiance at the sensor level LN atm↑

j :

Lsur↑j =
LOSj − LN atm↑

j

τN atm
j

(19)

where LOSj and Lsur↑j are the radiances over channel j at
the sensor level (before atmospheric corrections) and at the
surface level (after atmospheric corrections), respectively.

Afterwards, the TES method is applied on the channel radi-
ances at the surface level Lsur↑j , by using the ISRF-convolved
values of noised atmospheric downwelling irradiance EN atm↓

j

(see Figure 1 and Equation 2). As explained in the previous
section, it is valuable to characterize the error budget at
different levels, in the context of satellite mission design. To
that end, SiMi permits to apply the inversion procedure at three
levels (Figure 1):

1) applying the TES method on sensor measurements of
surface brightness temperature at the surface level, so-
called SBTj , to quantify errors resulting from TES
assumptions only;

2) applying atmospheric corrections and the TES method
on TOA brightness temperature at the sensor level, so-
called TOABTj , to quantify errors resulting from both
atmospheric perturbations and TES assumptions;

3) applying atmospheric corrections and the TES method
on output sensor (OS) brightness temperature, so-called
OSBTj , to quantify errors resulting from instrumental
noise, atmospheric perturbations and TES assumptions.

Thus, TES retrieves the pairs {TES-εBOAj , TES-T sur,BOAR }
from SBTj (BOA stands for bottom of atmosphere), {TES-
εTOAj , TES-T sur,TOAR } from TOABTj (TOA stands for top
of atmosphere), and {TES-εOSj , TES-T sur,OSR } from OSBTj
(OS stands for out of sensor), where each pair corresponds to
each of the three aforementioned cases, respectively.

G. Performance analysis

For each spectral configuration characterized by a set of
Nb channels with the corresponding ISRF Sj(λ), the TES re-
trievals of surface emissivities and temperatures are compared
with their initial counterparts at the simulator entrance (see
Figure 1). For emissivity, these counterparts are the ISRF-
convolved values of the emissivity spectra ελ within the
DB1 subset. The comparison is based on the quantification
of RMSE values between the initial counterparts (εj , T surR )
and their corresponding values for the three types of product
considered (TES-εkj , TES-T sur,kR )k∈{BOA, TOA, OS}:

RMSETESεk
j

=

√√√√ ∑
Nret

(TES-εkj − εj)2

Nret
(20)

RMSETES
T sur,k
R

=

√√√√ ∑
Nret

(TES-T sur,kR − T surR )2

Nret
(21)

where Nret is the number of retrievals considered in each case.

IV. SIMI IMPLEMENTATION

Once the SiMi simulator is designed, the next step is imple-
mentation. This consists of providing ancillary information in
order to document land surface and atmospheric conditions.

A. Database for land surface emissivity

We select for the current study the emissivity dataset com-
puted with Module 1 in the framework of a previous study
that evaluated the impact of vegetation cavity effect on the
performance of the TES method [57]. The resulting dataset
includes simulated emissivity spectra for a panel of soil /
vegetation canopy combinations, which provides a represen-
tative dataset for satellite mission design. By considering a
large range of inputs related to vegetation canopy architecture
and vegetation / soil optical properties (LAI, ALA, spectra of
leaf reflectance and transmittance, spectra of soil reflectance),
the dataset includes 63,700 spectra of emissivity of vegetated
surface over the [7.5-13.5] µm spectral range.

Since large similarities appears between several simulated
spectra of emissivity, and in order to reduce computation time,
the database is reduced by selecting emissivity spectra using



7

the Spectral Angle Mapper (SAM) method [88]. The resulting 
subset includes 271 emissivity spectra represented in Figure 2. 
Eventually, and as described in § III-B, a random equal split of 
the dataset is conducted (Figure 1). The first part, namely DB1, 
includes 135 spectra and is used for the simulations and for 
validation exercise. The second part, namely DB2, includes 136 
spectra and is used to calibrate the MMD empirical relationship 
of the TES method.

We verify the robustness of the split between DB1 and DB2, 
by quantifying the variability of the calibrated coefficients for 
the TES empirical relationship when repeating the procedure 
100 times on a random basis. The observed variability, about 
1–2% relative, confirms the robustness of the split.

B. Atmospheric profile dataset

For documenting the atmospheric status, we used the
MATISSE-v2 atmospheric profile database that includes three
libraries called Air Force Geophysics Laboratory (AFGL)-
lib, CLIMATO-lib and Thermodynamic Initial Guess Retrieval
(TIGR)3-lib.
• AFGL-lib includes six profiles that are known as tropi-

cal, mid-latitude summer, mid-latitude winter, sub-arctic
summer, sub-arctic winter and 1976 US Standard [89].

• CLIMATO-lib includes 144 profiles from a climatology
database that provides an averaged thermodynamic profile
for each latitude [90].

• TIGR3-lib includes 2311 atmospheric profiles. It is
a climatological library of representative atmospheric
situations selected by statistical methods from 80,000
radiosonde-based profiles [91].

Each of the 2461 atmospheric profiles of the database includes
vertical profiles of atmospheric pressure Patm(z), temperature
Tatm(z), humidity hr(z), as well as of concentration in carbon
dioxide [CO2](z) and ozone [O3](z).

Given the large size of the MATISSE-v2 atmospheric profile
database, and in order to minimize the computation load,
a first step consists of reducing the number of atmospheric
profiles to construct a representative dataset without redun-
dancy. This process is conducted by considering main drivers
of atmospheric radiative transfer in the TIR domain, namely
atmospheric water vapor content (AWVC), which drives at-
mospheric transmittance and emission, and equivalent atmo-
spheric temperature T eqatm, which drives atmospheric emission.
Both values are computed by following Equation 22 and 23.

AWVC =

∫ zmax

0

ρv(z)dz (22)

T atmeq =

∫ zmax

0
Tatm(z)ρv(z)dz
AWVC

(23)

where zmax is the highest altitude of the atmospheric profile
and ρv(z) is the water vapor density. Hence, the reduction
method consists of selecting a set of profiles that verify two
comparison criteria: (1) differences between two AWVC val-
ues are larger than 0.15 g.cm−2, and (2) differences between
two T atmeq values are larger than 2 K. This reduction method
leads to the selection of a subset of 248 atmospheric profiles
among the 2461 initial profiles, hereafter referred to as SEL1

subset. Figure 3 illustrates the distribution of the original
dataset (top panels) and of the SEL1 subset (bottom panels)
in the spaces {T eqatm, AWVC}, {[CO2], AWVC}, and {[O3],
AWVC}. We note that the envelopes of the scatterplots are
preserved, while their densities are reduced.

When conducting the inversion procedure to retrieve surface
emissivity and radiometric temperature from the simulated
MISTIGRI measurements (§ III-C), we account for uncer-
tainties on atmospheric corrections by noising atmospheric
profiles. When dealing with uncertainties on atmospheric tem-
perature and humidity, we use the SEL1 subset of atmospheric
profiles. For uncertainties on atmospheric concentrations of
carbon dioxide [CO2] and ozone [O3], we use portions of
the SEL1 subset, always with the objective of reducing the
computation load. A portion of SEL1, namely SEL2, is gen-
erated by selecting SEL1 profiles that verify two comparison
criteria: (1) differences between two AWVC values are larger
than 1 g.cm−2, and (2) differences between two vertically inte-
grated values of [CO2(z)] are larger than 10 ppmv. Similarly, a
portion of SEL1, namely SEL3, is generated by selecting SEL1
profiles that verify two comparison criteria: (1) differences
between two AWVC values are larger than 0.5 g.cm−2, and
(2) differences between two vertically integrated values of
[03(z)] are larger than 0.15 ppmv. The resulting SEL2 and
SEL3 selections contain 16 and 41 atmospheric profiles. We
observe that SEL2 and SEL3 datasets are representative of
the [CO2] and [O3] dynamics depicted by the SEL1 subset.
Indeed, the envelopes of the scatterplots are preserved, while
their densities are reduced (figure not shown).

C. Computation of radiative quantities and of variables of
interest

First, each of the 135 emissivity spectra of DB1 (see § IV-A)
is associated to ten values of radiometric temperature T surR .
These temperatures are determined by a random selection
within the [270 - 340] K interval, by setting up a constraint to
provide realistic cases: for large canopy coverage (LAI larger
than 4), the T surR value is lower than 315 K.

Second, each pair {emissivity spectra ελ, radiometric tem-
perature T surR } is combined with each atmospheric profile
within the SEL1 subset, when the following condition is
verified: T surR ∈ [Tatm(1)-10; Tatm(1)+30], where Tatm(1)
is the temperature of the lowest atmospheric level. For
this, we combine each pair {ελ, T surR } with the triplet
{atmospheric transmission τatmλ , atmospheric downwelling
irradiance Eatm↓λ , atmospheric upwelling radiance Latm↑λ }
of any atmospheric profile, by using Equations (10)-(12) to
compute surface-leaving Lsur↑λ and top-of-atmosphere LTOA

λ

radiances (Figure 1). This process results in a number of
simulated MISTIGRI measurements = 52 916 sets of SBTj ,
TOABTj and of OSBTj (Figure 1).

Third, atmospheric profiles from subsets SEL1, SEL2 and
SEL3 are noised on Tatm(z) and hr(z) only, on [CO2](z)
only and on [O3](z) only, respectively, by following the pro-
cedure detailed in § III-C, to next calculate the corresponding
radiative atmospheric quantities, namely τN atm

λ , LN atm↑
λ and

EN atm↓
λ . Then, the latter are used to perform atmospheric
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Fig. 2. The 271 SAIL-generated emissivity spectra of vegetation canopy over soils.

corrections in Module 4 (Equation 19) after convolution with
channel filters (ISRF S(λ), Equation 15). Atmospheric cor-
rections are performed on simulated data at the sensor level
(prior to instrumental noise, TOABTj), and on simulated data
of output sensor brightness temperature (after instrumental
noises, OSBTj).

For both OSBTj and TOABTj , atmospheric corrections
using the SEL1, SEL2 and SEL3 subsets respectively result
in Nret = 52 916, 3 126 and 8 531 sets of corrected MISTIGRI
measurements. Finally, the TES method is applied on all sets
of atmospherically corrected MISTIGRI measurements. When
dealing with SBTj , we apply TES on sensor measurements
at the surface level by including errors on atmospheric down-
welling radiance, which is consistent with former studies based
on field measurements [71], [92]–[94].

V. SETUP OF THE SIMI SIMULATOR FOR MISTIGRI

A. Instrumental configuration

As mentioned in introduction, the solution chosen for the
MISTIGRI was micro-bolometer sensors. This solution im-
poses to consider wide spectral channels of at least 0.5 µm
full width at half maximum (FWHM), in order to minimize
radiometric noise (NEDT, see Equation 16). For comparison,
in the case of the ASTER sensor, which used first-generation
MCT detectors, the minimum FWHM is 0.25 µm [95]. The
ISRF set for the reference configuration is provided by the
sensor manufacturer (top panel of Figure 4). This configuration
includes four channels: TIR1 over [9.8 - 10.8] µm, TIR2 over
[11 - 12] µm, TIR3 over [8.15 - 9.1] µm, and TIR4 over [8.6 -
9.55] µm. According to the sensor manufacturer, uncertainty
on both central wavelengths λj and FWHMs is 0.15 µm. For

the current study, this reference configuration is disregarded
since the TIR1 channel significantly overlaps the strong ozone
absorption region around 9.6 µm.

From the reference configuration, other configurations are
generated by varying the number of channels, their positions,
and their FWHM, with the following constraints.

• The number of spectral channels Nb is fewer than five
as regard to mission requirements, and greater than two
in order to capture the spectral variability of natural
surfaces, for the sake of consistency with the use of the
TES method.

• The spectral channels are as wide as possible to minimise
instrumental noise, and as narrow as possible to capture
emissivity variations, especially between 8 and 10 µm.

• The spectral channels are located on atmospheric win-
dows, i.e., spectral intervals where atmospheric transmit-
tance is large.

From these considerations, six spectral configurations are
proposed for the MISTIGRI mission (see Figure 4): two sets
of two configurations with Nb = 4 channels (MIS-1, MIS-2)
on the one hand, and (MIS-3, MIS-4) on the other hand; as
well as one set of two configurations with Nb = 3 channels
(MIS-5, MIS-6). These six configurations are selected for the
reasons discussed below.

• The set of configurations (MIS-5, MIS-6) differs from the
sets (MIS-1, MIS-2) and (MIS-3, MIS-4) by the number
of spectral channels Nb. These differences permit to study
the impact of channel number over the [8 - 10] µm spec-
tral interval that is typified by large emissivity variations
(see Figure 2).

• The sets (MIS-1, MIS-2) and (MIS-3, MIS-4) differ in the
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Fig. 4.

location of the two channels over the [8 - 10] µm range.
Similarly, the MIS-5 and MIS-6 configurations differ in
the location of the single channel over the [8 - 10] µm
range. Again, these differences permit to study the impact
of channel localisation within the [8 - 10] µm spectral
interval that is characterized by large emissivity variations
(see Figure 2).

• The MIS-1 and MIS-2 configurations differ in channel
widths for TIR1 and TIR2, as do MIS-3 and MIS-
4 configurations for TIR3 and TIR4. These differences
permit to evaluate the impact of channel FWHM.

Each spectral channel j has a Gaussian shape with a central
wavelength λj and a FWHMj (Table II).

From the abacuses provided by the manufacturer, the
NEDTj values are finally computed for all channels included
in each of the six MISTIGRI spectral configurations to be
evaluated (see Figure 5). Any abacus expresses NEDTj as
function of both measured brightness temperature and channel
width (full width at half maximum - FWHM). Using micro-
bolometer detectors, NEDTj is significantly larger when chan-

nel width decreases. Furthermore, NEDTj decreases when the
measured brightness temperature is larger, whereas channel
central wavelength as negligible impact.

B. MMD calibration and validation

The empirical relationship εmin = f(MMD) is calibrated
by using the DB2 subset of emissivity spectra that contains
135 samples, and it is validated by using the 136 emissivity
included into the DB1 subset. Emissivity spectra are ISRF-
convolved by using the MISTIGRI spectral configurations
defined in § V-A. Initial values of empirical coefficients are set
according to previous studies [55]: A = 0.994, B = −0.687,
and C = 0.737. Note that we obtained the same calibration
results regardless of initial guess.

VI. RESULTS AND DISCUSSION

We report and discuss the results we obtain when calibrating
the TES empirical relationship, and when validating the TES
retrievals of emissivity and radiometric temperature. For TES
retrievals, we report results by considering first uncertainties
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Fig. 4. The various MISTIGRI spectral configurations considered in the current study, typified by their instrumental spectral response function (ISRF), along
with a typical example of atmospheric transmittance. Central wavelengths and FWHMs are given into Table II.
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TABLE II
SUMMARY OF THE SIX MISTIGRI SPECTRAL COMPOSITIONS WE CONSIDER IN THE CURRENT STUDY. CHANNELS ARE ORDERED ACCORDING TO

INCREASING WAVELENGTHS.

Channel TIR3 TIR4 TIR1 TIR2
λ3 FWHM3 λ4 FWHM4 λ1 FWHM1 λ2 FWHM2

MIS-1 8.65 0.32 9.1 0.32 10.7 1.02 11.9 1.02
MIS-2 8.65 0.32 9.1 0.32 10.7 0.84 11.9 0.84
MIS-3 8.45 0.32 9.1 0.32 10.7 1.02 11.9 1.02
MIS-4 8.45 0.54 9.1 0.54 10.7 1.02 11.9 1.02
MIS-5 8.88 0.74 - - 10.7 1.02 11.9 1.02
MIS-6 8.60 0.74 - - 10.7 1.02 11.9 1.02
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Fig. 5. NEDT values as a function of brightness temperature and channel width (FWHM), for all channels in each of the six MISTIGRI spectral configurations
to be evaluated. A unique illustration is given when a channel is identical across several spectral configurations (see Table II for channel equality across
configurations).

on atmospheric profiles of temperature and humidity, and
second uncertainties on carbon dioxide and ozone concen-
trations. In both cases, we compare TES retrievals derived
from brightness temperature at the surface level (TES-εBOAj ,
TES-T sur,BOAR ), from brightness temperature at the sensor
level (TES-εTOAj , TES-T sur,TOAR ), and from out-of-sensor
brightness temperature (TES-εOSj , TES-T sur,OSR ). The results
are discussed in the light of spectral configuration, including
channel number, widths, and locations, in order to highlight
any influence of these factors in the context of the MISTIGRI
mission.

A. Calibrating the TES empirical relationship.

Figure 6 displays the MMD calibration results obtained
for each of the six MISTIGRI configurations, along with
the corresponding values for the A, B, and C coefficients
(Equation 8) and the associated residual errors RMSEεmin

cal

(Equation 17).

In all cases, the calibration results are good, with
RMSEεmin

cal values lower than 0.007. The MIS-3 and MIS-
4 configurations have the lowest calibration residual errors,
which is ascribed to the combination of channel locations
(Subplots 4 and 5 in Figure 4) and emissivity spectral dy-
namics (Figure 2), where location of TIR3 below 8.5 µm
allows a better capture of the spectral contrasts. The 3-channels
configurations MIS-5 and MIS-6 have the largest calibration
residual errors, since they capture less spectral variability
of emissivity with only one channel over the [8 - 9.5] µm
spectral range. The A, B, C coefficients are different from
one configuration to another, but they are similar when channel
numbers are equal, i.e., spectral configurations MIS-1 to MIS-
4 with 4 channels versus spectral configurations MIS-5 and
MIS-6 with 3 channels.

The validation results are very similar to the calibration
results, both in error magnitude and error variations from one
spectral configuration to another (figure not shown). Indeed,
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Fig. 6. Results of the εmin = f(MMD) calibration for each of the six MISTIGRI spectral configurations.

Fig. 7.

the RMSEεmin

val values are consistent with those obtained for
calibration and remain as well below 0.007 for all MISTI-
GRI spectral configurations. However, the similitude between
RMSE values for calibration and validation must be considered
with caution. Indeed, the calibration and validation datasets are
not fully independent since they are extracted from a unique
dataset that was simulated by the same model. Overall, the
calibration errors we report here are similar to those reported
in previous studies [1], [56], [57], [62], [63], [66], [68], [74].

B. Retrieval accuracies with errors on atmospheric correc-
tions related to temperature and humidity.

Table III displays the validation results obtained with the
TES method when using the SEL1 subset of atmospheric
profiles noised on temperature and humidity. We consider each
of the three types of retrievals to be considered (Figure 1):
retrievals from brightness temperatures SBTj at the surface
level (TES-εBOAj , TES-T sur,BOAR ), retrievals from brightness
temperatures TOABTj at the top of atmosphere (TES-εTOAj ,
TES-T sur,TOAR ), and retrievals from output sensor brightness
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temperature OSBTj at the top of atmosphere with instrumental
noise (TES-εOSj , TES-T sur,OSR ).

For the BOA retrievals (TES-εBOAj , TES-T sur,BOAR ), the
RMSE values on channel emissivities RMSETES

εBOA
j

and ra-

diometric temperature RMSETES
T sur,BOA
R

across all MISTIGRI
configurations range between 0.005 and 0.009, and between
0.30 and 0.45 K, respectively. These RMSE values corre-
spond to the errors due to the TES underlying assumptions
(i.e., empirical relationship), as well as to the errors on the
quantification of atmospheric downwelling radiance (§ IV-C).
Regardless of spectral configuration, the relative variations
in emissivity RMSE values across spectral channels range
up to 20%, and larger RMSE values are observed at lower
wavelengths. This can be explained by two factors in this range
of wavelength. The first factor is related to sharp changes in
emissivity between 8 and 9.5 µm, which are more difficult
to capture as compared to flatter spectra portions between
10 and 12.5 µm (Figure 2). The second factor is related to
error propagation in the right term of Equation 2, for which
errors in emissivity combine with magnitude of atmospheric
downwelling irradiance that increases at lower wavelengths
[57]. Given a large part of MMD values are below 0.03
over our dataset of simulated emissivity spectra (Figure 6),
this can also be explained by the grey body problem of the
TES method that occurs over land surfaces with low spectral
contrasts [36], [57], [70], [96]. When dealing with spectral
configuration, the inclusion of one more channel over the [8 -
9.5] µm spectral interval induces slightly lower RMSE values
on channel emissivities and radiometric temperature (i.e., MIS-
1 to MIS-4 versus MIS-5 and MIS-6). This is associated with a
better capture of spectral variability across the aforementioned
spectral interval with large emissivity variations (Figure 2).
When considering the four-channels configurations, a larger
gap between the TIR3 and TIR4 channels over the [8 - 9.5] µm
spectral interval induces lower RMSE values (MIS-3 and MIS-
4 versus MIS-1 and MIS-2), which is also explained by a better
capture of spectral variability. Finally, decreasing channel
widths over both spectral intervals (i.e., [8 - 9.5] µm and [10 -
12.5] µm) does not impact the captured spectral variability,
since the RMSE values are similar (MIS-1 versus MIS-2 and
MIS-3 versus MIS-4). Beyond the changes in RMSE values
explained above, it is worth noting that differences in RMSE
values remain low from one spectral configuration to another,
up to 0.0023 and 0.13 K on channel emissivity and radiometric
temperature, respectively.

For the TOA retrievals (TES-εTOAj , TES-T sur,TOAR ), the
RMSE values on channel emissivities RMSETES

εTOA
j

and ra-

diometric temperature RMSETES
T sur,TOA
R

across all MISTIGRI
configurations range between 0.008 and 0.0140, and between
0.70 and 0.80 K, respectively. These RMSE values are due
to the combination of uncertainties related to the TES im-
plementation (see previous paragraph) and uncertainties on
atmospheric corrections. Regardless of spectral configuration,
the relative variations in emissivity RMSE values across
spectral channels range up to 85%, and larger RMSE values
are observed at extreme wavelengths, namely 8.6 µm and

11.9 µm. This is ascribed to lower atmospheric transmittances
at these wavelengths (Figure 4), which enhance errors on
atmospheric corrections [36], [80], [97]. When dealing with
spectral configuration, the inclusion of one more channel over
the [8 - 9.5] µm spectral interval induces slightly lower RMSE
values on channel emissivities and radiometric temperature
(i.e., MIS-1 to MIS-4 versus MIS-5 and MIS-6), which, as in
the BOA case, can be explained by a better capture of spectral
variability. When considering the four-channels configurations,
a larger gap between the TIR3 and TIR4 channels over the [8
- 9.5] µm spectral interval does not induce any change in
RMSE values (MIS-3 and MIS-4 versus MIS-1 and MIS-2).
This is converse to what is reported for the BOA retrievals,
and it is therefore ascribed to uncertainties on atmospheric
corrections. Finally, decreasing channel widths does not induce
significant changes on RMSE values (MIS-1 versus MIS-2
and MIS-3 versus MIS-4). Overall, the differences in RMSE
values remain low from one spectral configuration to another,
up to 0.002 and 0.1 K on channel emissivity and radiometric
temperature, respectively.

For the OS retrievals (TES-εOSj , TES-T sur,OSR ), the RMSE
values on channel emissivities RMSETES

εOS
j

and radiometric

temperature RMSETES
T sur,OS
R

across all MISTIGRI configura-
tions range between 0.0160 and 0.037, and between and 0.8
ans 0.9 K, respectively. These larger RMSE values result
from the combination of uncertainties related to the TES
implementation, of uncertainties on atmospheric corrections,
and of uncertainties induced by instrumental noise. Regardless
of spectral configuration, the relative variations in emissivity
RMSE values across spectral channels range up to 85%, and
larger RMSE values are observed at extreme wavelengths,
namely 8.6 µm and 11.9 µm. This is ascribed to the combined
effects of uncertainties induced by instrumental noise and
uncertainties on atmospheric corrections at wavelengths with
lower atmospheric transmittances. Moreover, the RMSE values
for emissivity are larger than in the TOA case, with increases
up to a factor 3 for some channels, which highlights the impact
of instrumental noise when dealing with micro-bolometer de-
tectors. In terms of spectral configuration, the largest (respec-
tively lowest) RMSE values are observed for configurations
with lowest (respectively largest) channel widths, namely MIS-
2 (respectively MIS-5 and MIS-6), which is ascribed to the
impact of channel width on instrumental noise (Figure 5).
Overall, the differences in RMSE values remain low from one
spectral configuration to another, up to 0.0185 and 0.1 K on
channel emissivity and radiometric temperature, respectively.
Figure 7 displays examples of scatterplots when considering
the TES retrievals from output sensor brightness temperature
OSBTj after atmospheric corrections, for the three-channels
spectral configuration MIS-5. It is shown that retrievals and
reference values are in agreement for channel emissivity at
8.88 µm and radiometric temperature, whereas a moderate
(respectively large) discrepancy is observed for channel emis-
sivity at 10.7 µm and 11.9 µm. Such discrepancies are not
observed when validating TES retrievals from measurements
of brightness temperature at the surface level [57], and they
underline the impact of inaccurate atmospheric corrections on
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TABLE III
ERRORS ON RETRIEVALS OF EMISSIVITY AND RADIOMETRIC TEMPERATURE FROM THE TES METHOD ALONG WITH ATMOSPHERIC CORRECTIONS FROM

PROFILES NOISED ON TEMPERATURE AND HUMIDITY. WE REPORT RMSE VALUES FOR (1) THE PAIR {TES-εBOAj , TES-T sur,BOAR } THAT
CORRESPONDS TO APPLYING THE TES METHOD ON SENSOR MEASUREMENTS OF SURFACE BRIGHTNESS TEMPERATURE AT THE SURFACE LEVEL,

(2) FOR THE PAIR {TES-εTOAj , TES-T sur,TOAR } THAT CORRESPONDS TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES METHOD ON TOA
BRIGHTNESS TEMPERATURE AT THE SENSOR LEVEL, AND (3) THE PAIR {TES-εOSj , TES-T sur,OSR } THAT CORRESPONDS TO APPLYING ATMOSPHERIC

CORRECTIONS AND THE TES METHOD ON OUTPUT SENSOR (OS) BRIGHTNESS TEMPERATURE (FIGURE 1). CHANNEL EMISSIVITIES ARE ORDERED
ACCORDING TO INCREASING WAVELENGTHS.

BOA RMSETES
εBOA
3

RMSETES
εBOA
4

RMSETES
εBOA
1

RMSETES
εBOA
2

RMSETES
T

sur,BOA
R

MIS-1 0.0077 0.0067 0.0061 0.0063 0.35
MIS-2 0.0074 0.0065 0.0059 0.0061 0.34
MIS-3 0.0071 0.0059 0.0054 0.0054 0.30
MIS-4 0.0074 0.0059 0.0053 0.0054 0.30
MIS-5 0.0084 - 0.0074 0.0077 0.43
MIS-6 0.0086 - 0.0068 0.0070 0.40
TOA RMSETES

εTOA
3

RMSETES
εTOA
4

RMSETES
εTOA
1

RMSETES
εTOA
2

RMSETES
T

sur,TOA
R

MIS-1 0.0112 0.0098 0.0082 0.0131 0.70
MIS-2 0.0104 0.0093 0.0076 0.0141 0.68
MIS-3 0.0124 0.0095 0.0076 0.0124 0.68
MIS-4 0.0125 0.0100 0.0075 0.0121 0.69
MIS-5 0.0118 - 0.0095 0.0135 0.78
MIS-6 0.0122 - 0.0089 0.0128 0.76
OS RMSETES

εOS
3

RMSETES
εOS
4

RMSETES
εOS
1

RMSETES
εOS
2

RMSETES
T

sur,OS
R

MIS-1 0.0299 0.0246 0.0203 0.0289 0.89
MIS-2 0.0311 0.0251 0.0211 0.0321 0.91
MIS-3 0.0376 0.0247 0.0203 0.0298 0.89
MIS-4 0.0277 0.0194 0.0165 0.0258 0.79
MIS-5 0.0191 - 0.0161 0.0232 0.85
MIS-6 0.0212 - 0.0159 0.0230 0.83

the performance of the TES method.
The aforementioned results for the BOA, TOA, and OS

retrievals, permit to address the TES error budget at different
levels, and to compare the combined effects of uncertainties
that accumulate at each step, namely TES implementation,
atmospheric corrections, and instrumental noise related to the
use of bolometer-based sensors.
• First, the impacts of sharp emissivity changes at lower

wavelengths (i.e., larger RMSE values for lower wave-
lengths, benefit of larger gap between channels within the
[8 - 9.5] µm spectral interval, benefit of a second channel
over the [8 - 9.5] µm spectral interval) tend to vanish
when accumulating errors induced by atmospheric cor-
rections and uncertainties related to instrumental noise.

• Second, the impact of errors on atmospheric correction
is large, since it almost doubles the RMSE values on
channel emissivities and radiometric temperature, with
largest impacts for channels located close to the atmo-
spheric window boundaries (8 µm and 12.5 µm).

• Third, consideration for additional instrumental noise
significantly increases the errors on channel emissivity,
but the resulting impact on radiometric temperature is
limited. However, the benefit of adding a second channel
over the [8 - 9.5] µm spectral interval is very lim-
ited when alternatively considering a unique channel
with a large width. This underlines the balance between
capturing spectral contrast and minimizing instrumental
noise for bolometer-based sensors with large instrumental
noise.

The MIS-5 configuration seems to be the most robust to the
coupling of errors on atmospheric corrections and instrumental

noise, since it corresponds to the lowest error increase on
radiometric temperature (from 0.43 K to 0.85 K). In absolute
terms, i.e., by adding the intrinsic uncertainty of TES, the
most accurate configuration is MIS-4, since it provides the
lowest error on radiometric temperature (0.79 K). Overall, the
RMSE values that encompass all uncertainties range between
0.83 K and 0.91 K across all MISTIGRI spectral configu-
rations. This shows that the spectral configuration is not a
critical issue for surface temperature retrieval in our study
case with bolometer-based detectors. We note we deal here
with accuracy on radiometric temperature, in accordance to the
primary objectives of the MISTIGRI mission on land surface
energy and water budgets. Nevertheless, we note that there is
no systematic agreement between RMSE values on channel
emissivities and on radiometric temperature, especially when
the number of channel varies (i.e., from three to four channels).
This is ascribed to the high non linearity of the TES equation
system (Equations 1 to 9), where any retrieval of radiometric
temperature results from an iterative process that involves
an incremental estimation of minimum emissivity across Nb
channels. Eventually, the TES performance we observe here
is moderately larger than those reported in former studies also
based on modeling approaches, with RMSE values ranging
between 0.6 and 1 K [48], [59], [63], [74], [75].

C. Retrieval accuracies with errors on atmospheric correc-
tions related to carbon dioxide and ozone concentration.

Table IV and V display the validation results obtained with
the TES method when using the SEL2 and SEL3 subset of
atmospheric profiles noised on [CO2] and [O3]. We consider
each of the three types of retrievals to be considered (Figure 1):
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Fig. 7. Comparison of TES retrievals against reference values when considering (1) the MIS-5 spectral configuration with 3 channels (Figure 4), (2) atmospheric
corrections from atmospheric profiles noised on temperature and humidity, and (3) the TES retrievals of channel emissivities and radiometric temperature
from output sensor brightness temperatures OSBTj (TES-εOSj , TES-T sur,OSR ).

retrievals from brightness temperatures SBTj at the surface
level (TES-εBOAj , TES-T sur,BOAR ), retrievals from brightness
temperatures TOABTj at the top of atmosphere (TES-εTOAj ,
TES-T sur,TOAR ), and retrievals from output sensor brightness
temperature OSBTj at the top of atmosphere with instrumental
noise (TES-εOSj , TES-T sur,OSR ). Since the TES retrievals
from brightness temperatures SBTj at the surface level were
previously analysed in § VI-B, we do not discuss them here,
and they are included in Table IV and V to serve as references
when analysing (1) the TOA retrievals that involve errors on
atmospheric corrections related to [CO2] and [O3], and (2) the
OS retrievals that additionally involve uncertainties related to
instrumental noise. We note the results for BOA retrievals
are not identical in Table III, Table IV and V, since they
correspond to different numbers of retrievals (52 916 with the
SEL1 subset, 3 126 with the SEL2 subset, and 8 531 with the
SEL3 subset, see § IV-C), as well as to different values for
noised atmospheric downwelling irradiance.

For the TOA retrievals (TES-εTOAj , TES-T sur,TOAR ), the
RMSE values on channel emissivities RMSETES

εTOA
j

and ra-

diometric temperature RMSETES
T sur,TOA
R

across all MISTIGRI
configurations range between 0.060 and 0.013, and between
0.30 and 0.45 K, respectively, for both SEL2 and SEL3 subsets

of atmospheric profiles noised on [CO2] and [O3]. Across both
subsets, errors on TOA retrievals are very similar to those
observed on BOA retrievals, which indicates that errors on
atmospheric corrections related to [CO2] and [03] have a very
small impact on the TES retrievals.

For the OS retrievals (TES-εOSj , TES-T sur,OSR ), the RMSE
values on channel emissivities RMSETES

εOS
j

and radiometric

temperature RMSETES
T sur,OS
R

across all MISTIGRI configura-
tions range between 0.02 and 0.05, and between 0.8 and
1 K, respectively, for both SEL2 and SEL3 subsets. Thus,
additional consideration of instrumental noise has a significant
impact on the RMSE values, since these values reach the
same magnitude than those reported for TOA retrievals with
the SEL1 subset (Table III). This indicate that the impact on
TES retrievals of uncertainties due to instrumental noise is
similar to that of errors on atmospheric corrections related
to atmospheric temperature and humidity. Then, the similar
RMSE values observed for TOA and OS retrievals in Table III
are explained by compensation effects between atmospheric
and instrumental perturbations, the latter being characterized
by Gaussian processes (Equations 13 and 14).

Eventually, and similarly to the result obtained with the
SEL1 subset, the spectral configuration that seems robust
to coupling between [CO2] / [O3] concentration errors and
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TABLE IV
ERRORS ON RETRIEVALS OF EMISSIVITY AND RADIOMETRIC TEMPERATURE FROM THE TES METHOD ALONG WITH ATMOSPHERIC CORRECTIONS FROM

PROFILES NOISED ON [CO2]. WE REPORT RMSE VALUES FOR (1) THE PAIR {TES-εBOAj , TES-T sur,BOAR } THAT CORRESPONDS TO APPLYING THE

TES METHOD ON SENSOR MEASUREMENTS OF SURFACE BRIGHTNESS TEMPERATURE AT THE SURFACE LEVEL, (2) FOR THE PAIR {TES-εTOAj ,
TES-T sur,TOAR } THAT CORRESPONDS TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES METHOD ON TOA BRIGHTNESS TEMPERATURE AT

THE SENSOR LEVEL, AND (3) THE PAIR {TES-εOSj , TES-T sur,OSR } THAT CORRESPONDS TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES
METHOD ON OUTPUT SENSOR (OS) BRIGHTNESS TEMPERATURE (FIGURE 1). CHANNEL EMISSIVITIES ARE ORDERED ACCORDING TO INCREASING

WAVELENGTHS.

BOA RMSETES
εBOA
3

RMSETES
εBOA
4

RMSETES
εBOA
1

RMSETES
εBOA
2

RMSETES
T

sur,BOA
R

MIS-1 0.0075 0.0066 0.0061 0.0063 0.34
MIS-2 0.0073 0.0064 0.0058 0.0061 0.33
MIS-3 0.007 0.0058 0.0054 0.0054 0.29
MIS-4 0.0073 0.0058 0.0053 0.0054 0.29
MIS-5 0.0082 - 0.0073 0.0076 0.41
MIS-6 0.0085 - 0.0067 0.007 0.38
TOA RMSETES

εTOA
3

RMSETES
εTOA
4

RMSETES
εTOA
1

RMSETES
εTOA
2

RMSETES
Tsur2
R

MIS-1 0.0102 0.008 0.0069 0.0061 0.35
MIS-2 0.0086 0.0067 0.0058 0.0059 0.32
MIS-3 0.0124 0.0077 0.0065 0.0055 0.32
MIS-4 0.0129 0.0086 0.0065 0.0056 0.32
MIS-5 0.0107 - 0.0084 0.0079 0.44
MIS-6 0.0117 - 0.0078 0.0074 0.41
OS RMSETES

εOS
3

RMSETES
εOS
4

RMSETES
εOS
1

RMSETES
εOS
2

RMSETES
T

sur,OS
R

MIS-1 0.0356 0.029 0.0249 0.0324 0.93
MIS-2 0.0389 0.0324 0.0275 0.0385 0.99
MIS-3 0.047 0.0305 0.0272 0.0383 0.97
MIS-4 0.0336 0.0239 0.021 0.0332 0.76
MIS-5 0.0245 - 0.0217 0.0249 0.8
MIS-6 0.0276 - 0.0213 0.0269 0.79

TABLE V
ERRORS ON RETRIEVALS OF EMISSIVITY AND RADIOMETRIC TEMPERATURE FROM THE TES METHOD ALONG WITH ATMOSPHERIC CORRECTIONS FROM
PROFILES NOISED ON [O3]. WE REPORT RMSE VALUES FOR (1) THE PAIR {TES-εBOAj , TES-T sur,BOAR } THAT CORRESPONDS TO APPLYING THE TES

METHOD ON SENSOR MEASUREMENTS OF SURFACE BRIGHTNESS TEMPERATURE AT THE SURFACE LEVEL, (2) FOR THE PAIR {TES-εTOAj ,
TES-T sur,TOAR } THAT CORRESPONDS TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES METHOD ON TOA BRIGHTNESS TEMPERATURE AT

THE SENSOR LEVEL, AND (3) THE PAIR {TES-εOSj , TES-T sur,OSR } THAT CORRESPONDS TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES
METHOD ON OUTPUT SENSOR (OS) BRIGHTNESS TEMPERATURE (FIGURE 1). CHANNEL EMISSIVITIES ARE ORDERED ACCORDING TO INCREASING

WAVELENGTHS.

BOA RMSETES
εBOA
3

RMSETES
εBOA
4

RMSETES
εBOA
1

RMSETES
εBOA
2

RMSETES
Tsur1
R

MIS-1 0.0075 0.0067 0.0061 0.0063 0.35
MIS-2 0.0073 0.0065 0.0059 0.0061 0.34
MIS-3 0.007 0.0058 0.0054 0.0054 0.3
MIS-4 0.0073 0.0059 0.0053 0.0054 0.3
MIS-5 0.0083 - 0.0074 0.0076 0.42
MIS-6 0.0085 - 0.0068 0.007 0.39
TOA RMSETES

εTOA
3

RMSETES
εTOA
4

RMSETES
εTOA
1

RMSETES
εTOA
2

RMSETES
T

sur,TOA
R

MIS-1 0.0102 0.0081 0.0068 0.0062 0.36
MIS-2 0.0087 0.0069 0.0059 0.0059 0.33
MIS-3 0.0118 0.0078 0.0064 0.0055 0.32
MIS-4 0.012 0.009 0.0064 0.0056 0.33
MIS-5 0.0109 - 0.0084 0.0079 0.45
MIS-6 0.0113 - 0.0077 0.0073 0.42
OS RMSETES

εOS
3

RMSETES
εOS
4

RMSETES
εOS
1

RMSETES
εOS
2

RMSETES
T

sur,OS
R

MIS-1 0.0367 0.0304 0.025 0.0303 0.89
MIS-2 0.0384 0.0312 0.0267 0.0386 0.94
MIS-3 0.05 0.0332 0.0413 0.0592 0.9
MIS-4 0.0378 0.026 0.0229 0.0307 0.79
MIS-5 0.0243 - 0.0206 0.0262 0.79
MIS-6 0.0288 - 0.0217 0.0255 0.79
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instrumental noise is MIS-5. In absolute terms, the most 
accurate configuration is still MIS-4, although the differences 
with the other configurations also remain small (Tables IV and 
V).

D. Sensitivity of the MISTIGRI / TES retrievals to uncertain-
ties on channel location and bandwidths.

Our results also provide information about the sensitivity of 
the TES retrievals to uncertainties on MISTIGRI channel 
locations and widths, which is an important issue for sensor 
design and subsequent accuracy on emissivity / temperature 
retrievals. On the one hand, uncertainty on both channel 
locations and widths is 0.15 µm, according to the information 
provided by the detector manufacturer (§ V-A). On the other 
hand, the variability on channel location and widths across the 
six MISTIGRI spectral configurations is slightly larger than the 
aforementioned uncertainty, i.e., around 0.2 µm, as indicated in 
Figure 4 and Table II. Therefore, it is possible to evaluate the 
impact of this uncertainty, by quantifying the variability we 
observe on TES retrieval accuracy across the six MISTIGRI 
spectral configurations.

On the basis of the TES retrieval accuracy across the six 
configurations, for each of the three cases (BOA, TOA, OS) 
reported by Table III, IV and V, we note a variability on TES 
retrieval accuracy that ranges between 0.05 K and 0.15
K. This underlines the low impact of changes in channel
locations and bandwidths, and therefore the low impact of
uncertainty on channel locations and bandwidths. Eventually,
we note that changes between the six spectral configurations
(i.e., channel locations and bandwidth) are similar to the
uncertainty on channel locations and bandwidths. Indeed, the
variability across spectral configurations is constrained by both
channel overlaps and atmospheric windows, notably because
of large bandwidths. This highlights that using bolometer-
based detectors induces a trade-off between instrumental noise
and bandwidth. Such constraint should be overcome by using
last generation of MCT cooled detectors.

VII. CONCLUDING REMARKS

The current study aims to propose an appropriate spectral
configuration for the micro-bolometer based TIR sensor of the
MISTIGRI mission.

The strategy is typified by the following points. First, we
address the various errors related to each step of the retrieval
procedure: the TES underlying assumptions about emissivity
spectral contrast, the errors on atmospheric corrections related
to knowledge about atmospheric status when the satellite
overpasses, and the instrumental noise related to filter response
functions for micro-bolometer based detectors. Second, when
dealing with uncertainties on atmospheric status, we consider
atmospheric profiles of temperature and humidity, as well as
of carbon dioxide and ozone concentrations. Third, the error
budget analysis is based on numerical model simulations, by
including last generation of land surface emissivity spectra
that account for the cavity effect. Fourth, we evaluate six
predefined spectral configurations for the MISTIGRI TIR

sensor, where the spectral configurations differ in terms of
channel number, locations, and widths.

On the basis of the error budget analysis, the main out-
comes of the current study are the following. First, errors on
atmospheric corrections related to knowledge on temperature
and humidity profiles have similar impact on TES retrievals
than uncertainties related to instrumental noise. The equiva-
lence in contribution to the error budget is ascribed to the
large instrumental errors due to the use of micro-bolometer
detectors. The resulting errors on TES retrievals are twice
as large as those due to the TES underlying assumption
about emissivity spectral contrast. Second, retrieval accuracies
are very similar across all MISTIGRI spectral configurations,
where differences are within 0.2 K on radiometric temperature.
This shows that the spectral configuration to be chosen is not a
critical issue in our study case that addresses the use of micro-
bolometer based sensing with significant instrumental noises
or large channel widths. Third, retrieval accuracies on radio-
metric temperature are moderately larger than those reported
in former studies based on numerical model simulations,
for MCT cooled detectors such as ASTER or ECOSTRESS
sensors.

Main limitations of the current study, to be overcome with
on-going works, are the following. First, we consider a micro-
bolometer based sensor, and results may vary if considering
last generation of MCT cooled detectors that permit to reduce
both channel widths and instrumental noises. In this case,
the challenge is to increase the accuracy of atmospheric
corrections. Second, we consider a set of predefined spectral
configurations to be evaluated by analysing the simulations
based error budget. However, results are expected to be more
robust if using an optimisation procedure that combines the
simultaneous sliding of several channels, since it is possible
to identify a global minimum on retrieval errors.

From a practical point of view, eventually, the study suc-
ceeds in defining the most suited spectral configuration for the
MISTIGRI sensor, i.e., the spectral configuration that provides
retrievals of land surface radiometric temperature with lower
errors.
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