
HAL Id: hal-03382639
https://hal.science/hal-03382639

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A variational marginalized particle filter for jump
Markov nonlinear systems with unknown transition

probabilities
Cheng Cheng, Jean-Yves Tourneret

To cite this version:
Cheng Cheng, Jean-Yves Tourneret. A variational marginalized particle filter for jump Markov
nonlinear systems with unknown transition probabilities. Signal Processing, 2021, 188, pp.108226.
�10.1016/j.sigpro.2021.108226�. �hal-03382639�

https://hal.science/hal-03382639
https://hal.archives-ouvertes.fr


OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent 

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/28131

To cite this version: 

Cheng, Cheng and Tourneret, Jean-Yves  A variational marginalized particle 
filter for jump Markov nonlinear systems with unknown transition probabilities. 
(2021) Signal Processing, 188. 108226. ISSN 0165-1684  

Official URL: 

https://doi.org/10.1016/j.sigpro.2021.108226

Open  Archive  Toulouse  Archive  Ouverte



A Variational Marginalized Particle Filter for Jump Markov Nonlinear Systems

with Unknown Transition Probabilities ✩
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Abstract

This paper studies a new variational marginalized particle filter for jointly estimating the state and the system mode

parameters of jump Markov nonlinear systems. Contrary to the Markovian assumption usually considered to model

the evolution of the system modes, we introduce conjugate prior distributions for the system mode parameters. The

joint posterior distribution of the state and system mode parameters is then marginalized with respect to the mode

variables. The remaining state vector is sampled using a sequential Monte Carlo algorithm, and the mode parameters

are sampled using variational Bayesian inference. In order to obtain analytical solutions for the different variational

distributions, we use an extended factorized approximation simplifying the variational distributions. A comprehensive

simulation study is conducted to compare the performance of the proposed approach with the state-of-the-art for a

modified nonlinear benchmark model and maneuvering target tracking scenarios.

Keywords: Jump Markov nonlinear systems, marginalized particle filter, variational inference, extended factorized

approximation.

1. Introduction

Jump Markov systems have been widely investigated in the literature, especially for state-space models that are

conditionally linear Gaussian models, i.e., jump Markov linear systems (JMLSs), where a finite-state Markov chain

enables switches between different modes with an appropriate transition probability matrix (TPM). Many algorithms

have been proposed to solve this state estimation problem, mainly based on Gaussian mixture approximations, such

as the interacting multiple model algorithm [1] or the generalized pseudo-Bayes algorithm [2]. In addition, efficient

sequential Monte Carlo algorithms have been defined for JMLSs with a known TPM [3]. However, transition proba-

bilities among different system modes are often unknown in practice [4]. For instance, the target tracking problem can

be formulated as a jump Markov system where a finite number of possible maneuver models correspond to different

target behavior modes and the model switching is usually modeled by a homogeneous Markov chain [5]. The tran-

sition probabilities of this Markov chain are treated by engineers as “design parameters” due to the absence of prior

knowledge about the mean sojourn time for each mode. Other applications where the different modes are defined by

unknown transition probabilities include the vertical take-off/landing of a helicopter [6], the mobile terminal position-

ing in wireless networks [7] and the internet-based networked control system [8]. In general, using an inaccurate TPM

leads to performance degradation for the algorithms used for JMLS state estimation, mainly because the weights of

mode-matched filters depend on the TPM [9].

On the one hand, a wide range of techniques has been investigated to design state estimators that are robust

to uncertain TPs, such as the robust H∞ filter [10, 11] and the fuzzy L2 − L∞ filtering [12, 13]. On the other
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hand, different approaches can be found in the literature for estimating the TPM jointly with the JMLS state. The

proposed solutions consider that the transition probabilities are either deterministic quantities or random variables.

When transition probabilities are treated as deterministic quantities, they can be estimated by a statistical approach

based on the maximum likelihood (ML) principle, such as recursive Kullback-Leibler algorithms minimizing the

Kullback-Leibler divergence between the likelihood function given the TPM and the true likelihood [14, 15]. An

expectation-maximization (EM) algorithm was also studied in [16] for computing the ML estimator of the TPM,

by calculating the ratio between statistics associated with a Markov chain jump between two different modes and

statistics associated with the individual modes. A batch ML estimation of the TPM via convex optimisation was also

investigated in [17]. When transition probabilities are treated as random variables, their posterior distribution can be

derived by using the Bayesian rule. This strategy was proposed in [18] where Dirichlet priors were assigned to the

TPM and the marginal posterior of the TPM was determined using Bayesian inference. Jilkov also proposed in [19]

to approximate the posterior distribution of the TPM based on the minimum mean square error criterion.

The methods mentioned previously are not applicable to nonlinear state-space models, such as jump Markov

nonlinear systems (JMNLSs), which arise in various applications including target tracking [20, 21] and localization

[22, 23]. The state-of-the-art about JMNLS estimation reduces to the Rao-Blackwellized particle filter (RBPF) [7]

and an online EM approach embedded within the RBPF [24], which were proposed for estimating jointly the state and

the TPM of a JMNLS. This paper studies a new variational marginalized particle filtering (MPF) for jointly estimating

the state and the system mode parameters of JMNLS. The principle of the variational marginalized particle filtering

for state estimation in a nonlinear state-space system is to marginalize out the unknown noise and state parameters

of the state-space system, to approximate the posterior distribution of the state using an appropriate particle filter

and to calculate the distribution of the noise parameters conditionally on each state particle using variational Bayesian

inference. The MPF was studied in [25] for mixed linear/non-linear systems. It was combined with a variational Bayes

approximation in [26] to address cases where the additive observation noise has a Student-t distribution, leading to a

robust variational MPF. When the state and measurement equation depend on different modes, it is possible to consider

a jump Markov nonlinear system whose state and measurement equations depend on an unknown mode variable [7].

The transitions between different modes at consecutive time instants are generally governed by a Markov model for

simplicity. The main innovations of this paper are summarized below

• Contrary to the Markovian assumption usually considered to model the evolution of the system modes, we

introduce conjugate prior distributions for the system mode parameters, which allows non Markovian transition

between the different system modes to be considered.

• The joint posterior distribution of the state and system mode parameters is derived using a variational Bayes

MPF

• Since analytical solutions for the different variational distributions cannot be obtained in closed form due to

difficulties in calculating a multivariate log-inverse-beta function, we propose to use the extended factorized

approximation introduced in [27] to obtain closed-form expressions for these variational distributions.

The paper is organized as follows: Section II formulates the joint state and mode parameter estimation problem

for JMNLSs and introduces the conjugate prior distributions for the system mode parameters. Section III studies

the proposed new variational marginalized particle filter, allowing the state of JMNLSs and the corresponding time-

varying parameters to be estimated sequentially. The performance of the resulting filter is evaluated in Section IV

using a modified nonlinear benchmark model and realistic target tracking scenarios. Conclusions are finally reported

in Section V.

Nomenclature

Acronyms

EM expectation-maximization
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JMLS jump Markov linear system

JMNLS jump Markov nonlinear systems

KL Kullback-Leibler

MAP maximum a posteriori

ML maximum likelihood

MPF marginalized particle filtering

pdf probability density function

RBPF Rao-blackwellized particle filter

RMSE root mean square error

TPM transition probability matrix

Mathematical Notations

α concentration parameter vector of Dirichlet distribution

θ mode parameter vector containing r, u and α

u probability vector for system mode

x state vector

y measurement vector

(·)T transpose of a vector

E [·] expectation

ω weight of particle

a shape parameter of gamma distribution

b rate parameter of gamma distribution

K number of system modes

k, t, i integer indexes

N number of particles

Nm number of Monte Carlo runs

r indicator variable for system mode

Other Symbols

x expected quantity

x̂ estimator quantity

x̃ approximate quantity

x−, x+ quantity computed a priori and a posteriori
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2. Problem Formulation

In this paper, we consider the following discrete-time JMNLS related to a hidden state vector xt ∈ R
nx and the

measurement vector yt ∈ R
ny

xt ∼ f (xt|xt−1, rt) (1)

yt ∼ g (yt |xt, rt) (2)

where t = 1, . . . , T denotes the tth time instant, rt ∈ {1, · · · ,K} is a discrete variable indicating the system mode

at time t, K denotes the number of modes, and f (xt|xt−1, rt) and g (yt|xt, rt) are the conditional probability density

functions (pdfs) of the state and measurement vectors associated with the rtth system mode. In order to implement the

state estimation of JMNLS, the statistical structure of the indicator variable rt is generally assumed to be a first-order

finite-state homogeneous Markov chain with a fixed TPM. This paper relaxes this assumption and considers a more

general categorical distribution Cat (·) [28] denoted as

rt ∼ Cat (rt |ut) (3)

with

Cat (rt |ut) =

K∏

k=1

u
I(rt=k)

k,t
, (4)

where I (rt = k) is an indicator for the kth mode (equal to 1 when rt = k and 0 otherwise), ut =
(
u1,t, · · · , uK,t

)T
is a

vector containing the probabilities of the different modes at the tth time instant, i.e.,

Pr (rt = k) = uk,t, k = 1, ...,K (5)

with uk,t > 0 and
∑K

k=1 uk,t = 1. In addition, the probability vector ut =
(
u1,t, · · · , uK,t

)T
is assigned a Dirichlet

distribution Dir (·),

ut ∼ Dir (ut|αt) (6)

with

Dir (ut|αt) =
Γ
(∑K

k=1 αk,t

)

∏K
k=1 Γ

(
αk,t

)
K∏

k=1

u
αk,t−1

k,t
, (7)

where αt =
(
α1,t, · · · , αK,t

)T
is a concentration parameter vector and Γ (α) ,

∫ ∞
0

uα−1 exp(−u)du is the gamma func-

tion. Note that the Dirichlet distribution can reduce to the uniform distribution on the simplex {uk,t > 0,
∑K

k=1 uk,t = 1}

or can be more informative depending on the value of the hyperparameter vector αt. This paper assumes that the K

variables αk,t are mutually independent and distributed according to gamma distributions

q
(
αk,t

)
= γ

(
αk,t|ak,t, bk,t

)
, (8)

where k = 1, · · · ,K, γ
(
αk,t|ak,t, bk,t

)
denotes the gamma distribution with shape parameter ak,t and rate parameter

(inverse scale parameter) bk,t, whose pdf is defined as:

γ (α|a, b) =
ba

Γ (a)
αa−1 exp(−bα)IR+ (α), (9)

where IR+ is the indicator function on R
+. Note that conjugate distributions have been assigned a priori to rt, ut and

αt, which will simplify the analysis. As a consequence, the joint prior of {rt, ut,αt} is defined as

q (rt, ut,αt) = Cat (rt |ut) Dir (ut |αt)

K∏

k=1

γ
(
αk,t|ak,t, bk,t

)
. (10)

When the system is possibly switching between different modes, the parameters rt, ut,αt are time-varying. Thus,

the state estimation problem for JMNLSs considered in this work is defined as estimating jointly the state and time-

varying parameters of a state-space model. The Bayesian strategy adopted in this work is based on the joint posterior

distribution of all unknown variables given the measurements y1:t = {y1, · · · , yt}, denoted as p (x1:t, θt|y1:t) with x1:t =

{x1, · · · , xt} and θt =
(
rt, u

T
t ,α

T
t

)T
, which is studied in the next section.
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3. A Variational Bayes Marginalized Particle Filter for the JMNLS

Since the joint posterior distribution p (x1:t, θt|y1:t) of JMNLSs has a complex expression and cannot be calculated

in closed form, we propose to study a particle filter approximating this posterior by using sequential importance

sampling. Following the concept of the MPF [25], the joint posterior distribution of the state and system mode

variables can be factorized as follows

p (x1:t, θt|y1:t) = p (θt|x1:t, y1:t) p (x1:t|y1:t) , (11)

where the mode vector θt has been marginalized out in the second term of the right hand side. This paper proposes to

approximate p (x1:t|y1:t) by using an empirical density following the principle of particle filters

p (x1:t|y1:t) ≈

N∑

i=1

ωi
tδ

(
x1:t − xi

1:t

)
, (12)

where N is the number of particles, δ (·) is the Dirac delta function, xi
1:t

is the ith particle path and ωi
t is the corre-

sponding weight at the tth time instant, which can be updated as follows

ωi
t ∝

p
(
yt, x

i
t|x

i
t−1
, y1:t−1

)

q
(
xi

t|x
i
1:t−1
, y1:t

) ωi
t−1 (13)

with

xi
t ∼ q

(
xt|x

i
1:t−1, y1:t

)
, (14)

where i = 1, · · · ,N and q
(
xt|x

i
1:t−1
, y1:t

)
is the optimal importance distribution introduced in [29]. Replacing (12) in

(11) leads to

p (x1:t, θt|y1:t) ≈

N∑

i=1

ωi
k p

(
θt|x

i
1:t, y1:t

)
δ
(
x1:t − xi

1:t

)
. (15)

Since the system mode parameters θt =
(
rt, u

T
t ,α

T
t

)T
is dependent of the state xt at the tth time instant, (15) can be

simplified as follows

p (x1:t, θt|y1:t) ≈

N∑

i=1

ωi
k p

(
θt|x

i
t, y1:t

)
δ
(
x1:t − xi

1:t

)
, (16)

where the conditional distribution p
(
θt|x

i
t, y1:t

)
at the tth time instant is the distribution of the mode variables condi-

tionally on the ith particle xi
t. In this paper, we propose to approximate the distribution p

(
θt|x

i
t, y1:t

)
using variational

Bayesian inference. As a consequence, samples
{
xi

1:t

}N

i=1
distributed according to p (x1:t|y1:t) are generated using a

sequential Monte Carlo method, and then the posterior distribution of θt conditionally on xi
t is calculated according

to variational Bayesian inference and replaced in (16), allowing the joint distribution of the state and system mode

variables to be determined. These two steps are detailed in the following sections.

3.1. Generating samples x0:t using a particle filter

In order to update the weight ωi
t associated with the ith particle at the tth time, the conditional distribution

p
(
yt, xt|x

i
t−1
, y1:t−1

)
appearing in the numerator of (13) is the mixture distribution of the pdfs p

(
yt, xt, r

i
t |x

i
t−1
, y1:t−1

)

where rt ∈ {1, · · · ,K}, i.e.,

p
(
yt, xt|x

i
t−1, y1:t−1

)
=

K∑

k=1

p
(
yt, xt, r

i
t |x

i
t−1, y1:t−1

)

=

K∑

k=1

g
(
yt|x

i
t, r

i
t

)
f
(
xi

t|x
i
t−1, r

i
t

)
p
(
ri

t |y1:t−1

)
,

(17)
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where i = 1, · · · ,N and p
(
ri

t |y1:t−1

)
is the predictive distribution of the indicator variable rt for the ith particle at the

tth time instant. The predictive distribution is defined as follows

p
(
ri

t |y1:t−1

)
=

K∏

k=1

(
u

i,−

k,t

)I(ri
t=k)
, (18)

where ui,−
t =

(
ui,−

1,t
, · · · , ui,−

K,t

)T
contains the predicted mode probabilities for the ith particle and the superscripts “-

” means that the quantity are computed a priori. Note that the distribution of ui,−
t is then a Dirichlet distribution

according to (6)

u
i,−
t ∼ Dir

(
ut|α

i,−
t

)
, (19)

where αi,−
t =

(
α

i,−

1,t
, · · · , α

i,−
K,t

)T
is the so-called predicted concentration parameter vector for the ith particle. In order

to maintain some conjugacy between the different considered distributions, we propose to decompose the parameters

α
i,−

k,t
as follows

α
i,−

k,t
=

a
i,−

k,t

b
i,−

k,t

, k = 1, ...,K (20)

where a
i,−

k,t
and b

i,−

k,t
are the predicted hyperparameters of a gamma distribution associated with the ith particle, i.e.,

ai,−

k,t
= ρai,+

k,t−1
, bi,−

k,t
= ρbi,+

k,t−1
, (21)

where ρ ∈ (0, 1) is a forgetting factor (this strategy was used successfully in [30] for tracking the parameters of

a randomly drifting stochastic resonator) and the superscripts “+” mean that the quantity are computed a posteriori.

The a priori quantities
{
ui,−

k,t
, α

i,−

k,t
, ai,−

k,t
, bi,−

k,t

}K

k=1
are then used as initial values for variational Bayesian iterations (detailed

in the Section 3.2), leading to the a posteriori quantities
{
ui,+

k,t
, α

i,+

k,t
, ai,+

k,t
, bi,+

k,t

}K

k=1
defined as hyperparameters of the

variational distributions associated with the system mode parameters. As a consequence, p
(
ri

t |y1:t

)
is also a categorical

distribution denoted as

p
(
ri

t |y1:t

)
=

K∏

k=1

(
u

i,+

k,t

)I(ri
t=k)
. (22)

Replacing (18) in (17) leads to

p
(
yt, xt|x

i
t−1, y1:t−1

)
=

K∏

k=1

[g
(
yt |x

i
t, r

i
t = k

)
f
(
xi

t|x
i
t−1, r

i
t = k

)
ui,−

k,t
]I(ri

t=k). (23)

The generation of particles distributed according to the marginalized state posterior requires to define an appropriate

importance distribution. In this work, the bootstrap proposal [31] is chosen as the important distribution defined in

(14), i.e.,

q
(
xt|x

i
1:t−1, y1:t

)
= p

(
xt|x

i
t−1, y1:t−1

)
=

K∏

k=1

[ f
(
xt|x

i
t−1, r

i
t = k

)
ui,−

k,t
]I(ri

t=k). (24)

According to (23) and (24), (13) can be rewritten as follows

ωi
t ∝

∏K
k=1[g

(
yt|x

i
t, r

i
t = k

)
f
(
xi

t|x
i
t−1
, ri

t = k
)

ui,−

k,t
]I(ri

t=k)

∏K
k=1[ f

(
xt|x

i
t−1
, ri

t = k
)

u
i,−

k,t
]I(ri

t=k)
ωi

t−1 (25)

where

xi
t ∼

K∏

k=1

[ f
(
xt|x

i
t−1, r

i
t = k

)
u

i,−

k,t
]I(ri

t=k), i = 1, ...,N. (26)
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3.2. Calculating p
(
θt|x

i
t, y1:t

)
based on an extended factorized approximation

Considering that it is difficult to calculate the posterior distribution p
(
θt|x

i
t, y1:t

)
conditionally on the ith particle

xi
t in closed form, we propose to approximate this posterior by the variational Bayesian inference. According to the

mean-field theory in the variational Bayesian inference [32], the joint pdf of system mode variables q (θt) can be

factorized into single-variable factors, i.e., q (θt) = q (rt) q (ut) q (αt). Note that the state xt carries information about

rt and thus serves as an extra measurement in this work. According to the factorized approximation [33], the logarithm

of the marginal likelihood ln p
(
yt, x

i
t|θt, y1:t−1

)
can be defined by using the following identity

ln p
(
yt, x

i
t|θt, y1:t−1

)
= L + KL

[
q (θt) , p

(
θt|x

i
t, y1:t

)]
(27)

with

L = Eθt

ln
p
(
yt, x

i
t, θt|y1:t−1

)

q (θt)



=

∫ ∫ ∫
q (rt, ut,αt) ln

p
(
yt, x

i
t, rt, ut,αt |y1:t−1

)

q (rt, ut,αt)
dαtdutdrt

(28)

and

KL
[
q (θt) , p

(
θt|x

i
t, y1:t

)]
= Eθt

ln
q (θt)

p
(
θt|x

i
t, y1:t

)


=

∫ ∫ ∫
q (rt, ut,αt) ln

q (rt, ut,αt)

p
(
rt, ut,αt|x

i
t, y1:t

)dαtdutdrt,

(29)

where L is a variational objective function used in variational inference, KL
[
q (θt) , p

(
θt|x

i
t, y1:t

)]
is the Kullback-

Leibler divergence between the true posterior and its approximation. Accordingly, the joint pdf p
(
yt, x

i
t, θt|y1:t−1

)
in

(28) can be expressed according to (7), (8) and (23)

p
(
yt, x

i
t, θt|y1:t−1

)
= p

(
yt|x

i
t, rt

)
p
(
xi

t|y1:t−1, rt

)
q (rt, ut,αt)

=
Γ
(∑K

k=1 αk,t

)

∏K
k=1 Γ

(
αk,t

)
K∏

k=1

{
u
αk,t−1

k,t
γ
(
αk,t|ak,t, bk,t

) [
uk,tg

(
yt|x

i
t, r

i
t = k

)
f
(
xi

t|x
i
t−1, r

i
t = k

)]I(rt=k)
}
.

(30)

Since the KL divergence is non-negative, minimizing the KL divergence can be achieved by maximizing the varia-

tional objective functionL. Accordingly, maximizingL can be achieved by computing expectations of ln p
(
yt, x

i
t, θt|y1:t−1

)

with respect to q (rt), q (ut) and q (αt) in turn, i.e.,

ln q (rt) = Eθt\rt

[
ln p

(
yt, x

i
t, θt|y1:t−1

)]
, (31)

ln q (ut) = Eθt\ut

[
ln p

(
yt, x

i
t, θt|y1:t−1

)]
, (32)

ln q (αt) = Eθt\αt

[
ln p

(
yt, x

i
t, θt|y1:t−1

)]
, (33)

where Eθt\X denotes the expectation with respect to the variational distributions of all variables in θt except those

contained in X. However, analytical solutions for these variational distributions cannot be obtained in closed form

due to the presence of the multivariate log-inverse-beta function defined by

MLIB(αt) = ln
Γ
(∑K

k=1 αk,t

)

∏K
k=1 Γ

(
αk,t

) . (34)

In this work, the extended factorized approximation proposed in [27] is considered to derive analytical solutions for

the variational distributions. According to the extended factorized approximation, a lower-bound L̃ for the variational

objective function L can be defined as follows

L ≥ L̃ (35)
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with

L̃ = Eθt

ln
p̃
(
yt, x

i
t, θt|y1:t−1

)

q (θt)

 (36)

where Eθt

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]
satisfies the following inequality

Eθt

[
ln p

(
yt, x

i
t, θt|y1:t−1

)]
≥ Eθt

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]
. (37)

Accordingly, maximizing this lower bound L̃ is asymptotically equivalent to maximizing the variational objective

function L in (27) [27]. Appendix A explains how the lower-bound L̃ and Eθt

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]
can be defined.

Considering that maximizing L̃ can be achieved by computing expectations of ln p̃
(
yt, x

i
t, θt|y1:t−1

)
with respect to

q (rt), q (ut) and q (αt) in turn, the variational distributions can be approximated as follows

ln q (rt = k) ≈ Eθt\rt

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]

∝
{
E

[
ln uk,t

]
+ ln g

(
yt|x

i
t, r

i
t

)
+ ln f

(
xi

t|x
i
t−1, r

i
t

)}
I (rt = k) , (38)

ln q (ut) ≈ Eθt\ut

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]

∝

K∑

k=1

{
E [I (rt = k)] + E

[
αk,t

]
− 1

}
ln uk,t, (39)

ln q (αt) ≈ Eθt\αt

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]

∝

K∑

k=1

ak,t +

Ψ


k∑

k=1

αk,t

 −Ψ
(
αk,t

)
αk,t − 1

 lnαk,t −

K∑

k=1

(
bk,t − E

[
ln uk,t

])
αk,t, (40)

where the detailed derivations for (38)-(40) are defined in Appendix B. The expectations appearing in the above

equations to be computed as follows

E
[
ln uk,t

]
= Ψ

(
αk,t

)
− Ψ


K∑

k=1

αk

 , (41)

E [I (rt = k)] =
q (rt = k)

∑K
k=1 q (rt = k)

, (42)

E
[
αk,t

]
=

ak,t

bk,t

. (43)

As a consequence, the a posteriori quantities u
i,+

k,t
, α

i,+

k,t
, a

i,+

k,t
, and b

i,+

k,t
defined as hyperparameters of the variational

distributions associated with the system mode parameters conditionally on the ith particle xi
k

can be updated as follows

(for k = 1, · · · ,K and i = 1, · · · ,N)

ui,+

k,t
= exp

[
E

(
ln ui

k,t

)
+ ln g

(
yt|x

i
t, r

i
t = k

)
+ ln f

(
xi

t|x
i
t−1, r

i
t = k

)]
, (44)

α
i,+

k,t
= E

[
I

(
ri

t = k
)]
+ E

[
αi

k,t

]
, (45)

ai,+

k,t
= ai,−

k,t
+

Ψ


k∑

k=1

αk,t

 −Ψ
(
αk,t

)
αk,t, (46)

bi,+

k,t
= bi,−

k,t
− E

[
ln ui

k,t

]
. (47)

Thus p
(
θt|x

i
t, y1:t

)
can be approximated by calculating (44)-(47) iteratively until a stopping rule has been satisfied.

Finally, the proposed variational marginalized particle filter for JMNLSs is summarized in Alg. 1.
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Algorithm 1 Proposed variational marginalized particle filter for JMNLSs.

Inputs:

{
xi

t−1
,
{
ai

k,t−1
, bi

k,t−1

}K

k=1

}N

i=1

Outputs:

{
xi

t, r
i
t ,u

i
t,α

i
t,
{
ai

k,t
, bi

k,t

}K

k=1

}N

i=1

1: for i = 1, . . . ,N do

2: Compute
{
ai,−

k,t
, bi,−

k,t
, αi,−

k,t

}K

k=1
according to (21) and (20), and then generate

{
ui,−

k,t

}K

k=1
by using (19).

3: Generate xi
t by using (26), and then compute ωi

t according to (25).

4: Initialize u
i,+

k,t
(0) = u

i,−

k,t
, α

i,+

k,t
(0) = α

i,−

k,t
, a

i,+

k,t
(0) = a

i,−

k,t
and b

i,+

k,t
(0) = b

i,−

k,t
where k = 1, · · · ,K.

5: for κ = 1, . . . , κmax do

6: Compute
{
u

i,+

k,t
(κ)

}K

k=1
according to (44).

7: Compute
{
α

i,+

k,t
(κ)

}K

k=1
according to (45).

8: Compute
{
a

i,+

k,t
(r) , b

i,+

k,t
(κ)

}K

k=1
according to (46) and (47).

9: if the parameters change by less than 0.1 then

10: stop the iteration;

11: else

12: set κ = κ + 1.

13: end if

14: end for

15: end for

16: Normalize ω̃i
t = ω

i
t/

∑N
i=1

(
ωi

t

)
and perform particle resampling.

17: Recursion: t = t + 1.

4. Experimental results

4.1. Illustrative Example

In order to evaluate the proposed variational marginalized particle filter, we consider as a benchmark model a

JMNLS having the same state equation as in [34, 35] with different observation equations corresponding to different

system modes

xt = 0.5xt−1 + 25
xt−1

1 + x2
t−1

+ 8 cos (1.2t) + ωrt ,t (48)

yt =



xt + vrt ,t vrt,t ∼ U ([−10, 10]) , if rt = 1

x2
t

20
+ vrt ,t vrt ,t ∼ N (0, 1) , if rt = 2

(xt − 10)2

20
+ vrt ,t vrt ,t ∼ N (3, 5) , if rt = 3

(49)

with

ωrt ,t ∼



N (0, 1) , if rt = 1

N (0, 10) , if rt = 2

N (0, 5) , if rt = 3

where t = 1, · · · , T , the simulation time T is set to 200 s, U ([a, b]) and N
(
µ, σ2

)
are the uniform distribution on

the interval [a, b] and the Gaussian distribution with mean µ and variance σ2, respectively. We compare the proposed

approach with the RBPF-based online EM approach studied in [24] and the RBPF [7]. The number of particles N was

set to 100 for the three approaches. The forgetting factor used in our experiments was set to ρ = 0.1. The impact of ρ

on the algorithm will be studied in Section 4.2 devoted to a target tracking problem. In order to evaluate the different

methods, the maximum a posteriori (MAP) estimates of rt and the average root mean square errors (ARMSEs) of xt

are defined as

r̂t = argmax
rt={1,··· ,K}

1

Nm

Nm∑

m=1

ûk,t (m) (50)
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Table 3: ARMSEs of state estimates obtained with different approaches.

Approaches
Case A Case B

T1 = [0, 100] T2 = [101, 200] T = [0, 200]

RBPF 4.71 5.94 6.07

RBPF-based online EM 5.74 5.78 6.33

Proposed approach 5.46 5.49 5.76

Table 4: Execution times for different numbers of particles in Case A.

N

Execution times for 100 MC runs (s)

Proposed method Proposed method RBPF-based

with the stopping rule with rmax = 5 online EM

100 340.27 565.58 248.29

200 687.31 996.58 473.95

400 1287.90 1858.55 950.10

the statistical properties of rt can be estimated both using the RBPF-based online EM and the proposed variational

approach, the state estimation accuracy of these two approaches is hardly impacted by the uncertainty regarding the

TPM. According to the results in Case B, the state estimation accuracies of the RBPF and RBPF-based online EM

are degraded when the system mode rt does not satisfy the Markovian assumption. On the contrary, the proposed

approach provides a better state estimation accuracy, demonstrating a good robustness to a bad knowledge about the

TP of the JMNLS.

When the number of variational Bayesian inference iterations is maximum, the computational complexities of

the RBPF-based online EM and the proposed approach are O (NT ) and O (κmaxNT ), respectively. Table 4 shows the

execution times for 100 MC runs by using different numbers of particles for the RBPF-based online EM and the

proposed approach in Case A (similar results should be obtained in Case B). In addition, the proposed approach was

evaluated with the stopping rule defined as Line 10 of Alg. 1. and the fixed iterations κmax = 5 2, respectively. The

computations of the variational Bayesian iterations, that are embedded in the RBPF for updating the posterior pdf of

rt, lead to a higher computational cost. However, it is interesting to note that this cost can be efficiently reduced by

introducing the stopping rule of Line 10 of Alg. 1.

4.2. Application to Target Tracking

This section shows the interest of the proposed variational marginalized particle filter for a generic air traffic

control problem [36, 37]. In order to track an aircraft moving within the x − y plane, the motion of the aircraft is

modeled by using a coordinated-turn of the form [21]

xt =



1 sinΩt∆T

Ωt
0 −

1−cosΩt∆t

Ωt

0 cosΩt∆T 0 − sinΩt∆T

0 1−cosΩt∆t

Ωt
1 sinΩt∆T

Ωt

0 sinΩt∆T 0 cosΩt∆T


xt−1 +



∆T 2

2
0

∆T 0

0 ∆T 2

2

0 ∆T


νt−1 (52)

where xt = (xt, ẋt, yt, ẏt)
T is a vector containing the position and velocity of the target in the x − y plane, Ωt is the

turn rate (this model simplifies to the nearly constant velocity model when Ωt = 0), ∆T denotes the sampling period,

the process noise νt is modeled as a zero-mean Gaussian white noise with covariance Qt = η
2
t I2×2, where ηt denotes

the standard deviation and I2×2 is the 2 × 2 identity matrix. Noisy nonlinear observations of the target in the form of

2According to the simulation results, the parameters in the variational Bayesian iterations change by less than 0.1 for κmax ≤ 5.
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Table 5: The coordinated-turn model parameters for the different system modes.

Parameters
System mode rt

#1 #2 #3 #4 #5

Ω (◦/s) -6.0 -3.0 0.0 3.0 6.0

η
(
m/s2

)
1.0 0.5 0.1 0.5 1.0

range, Doppler speed and bearing measurements are acquired by a fixed observer positioned at st =
(
sx, sy

)T
, i.e.,

yt =



√
(xt − sx)2 +

(
yt − sy

)2

(xt ẋt + yt ẏt)√
(xt − sx)2 +

(
yt − sy

)2

arctan

(
yt − sy

xt − sx

)



+ ǫt (53)

where the observation noise ǫt is modeled as a zero-mean Gaussian white noise with covariance matrix Rt. A target

trajectory was simulated according to the target maneuver models in (52) with 200 time steps with sampling period

∆T = 1 s, where the turn rate Ωt takes its values in the set {0, 3, 0,−6, 0, 6, 0,−3, 0} ◦/s with changes occurring at

times {30, 60, 75, 90, 105, 135, 150, 180}, respectively. The corresponding standard deviation ηt of the process noise

belongs to the set {0.1, 0.5, 0.1, 1.0, 0.1, 1.0, 0.1, 0.5, 0.1} m/s2 and the covariance of the measurement noise was set

to Rt = diag
[
(25 m)2 , (2 m/s)2 , (0.2◦)2

]
, where diag [λ1, · · · , λN] denotes a diagonal matrix with diagonal elements

λ1, · · · , λN . The initial state of the target was chosen as x0 = (30 km, 120 m/s, 30 km, 0 m/s, 0 ◦/s)T and the observer

position was fixed to st = (0 km, 0 km)T. We considered five system modes (i.e., K = 5 and rt ∈ {1, · · · , 5}) defining

the target motion in the x−y plane. The corresponding parameters in the coordinated-turn model are reported in Table

5. Note that Ω = ±3◦/s and ±6◦/s correspond to standard and emergency situation turn rates for an aircraft [38], and

the process noise with standard deviation 0.1m/s2 is used to model the nearly constant velocity model, whereas the

maneuver is defined by higher standard deviations [36].

In order to evaluate the proposed algorithm, we compared its accuracy for position estimation with that obtained

using the RBPF-based online EM approach and the RBPF, where the TPM used in the RBPF is defined as follows

Π =



0.96 0.01 0.01 0.01 0.01

0.01 0.96 0.01 0.01 0.01

0.01 0.01 0.96 0.01 0.01

0.01 0.01 0.01 0.96 0.01

0.01 0.01 0.01 0.01 0.96


.

The number of particle N for the three approaches was set to 2000 and Nm = 100 Monte Carlo simulations were

considered for each filter. The forgetting factor ρ used in the proposed approach was adjusted as in the illustrative

example.

The first results show the means of α̂t =
(
α̂1,t, · · · , α̂5,t

)T
computed using 100 Monte Carlo simulations, which

are depicted in Fig. 5. The estimators α̂k,t (k = 1, · · · , 5) gradually increase when the system stays in the same

mode and tend to a small value otherwise, leading to an accurate posterior distributions for the mode probability

ut. In order to evaluate the effect of different forgetting factors on the mode probability estimate, the means of

ût =
(̂
u1,t, · · · , û5,t

)T
computed using 100 Monte Carlo simulations with different forgetting factors are compared in

Fig. 6. On the one hand, smooth mode probability estimates can be obtained for a large forgetting factor. On the other

hand, a small forgetting factor allows more abrupt changes in the mode probabilities to be tracked. The RMSEs of

the position estimates obtained using the different approaches are shown in Fig. 7 for the x- and y-axis. The position

estimation accuracy obtained with the proposed approach is better than that obtained with the other two approaches.

This improvement results from a better estimation of the system mode parameters yielding better state estimation.
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5. Conclusion

This paper considered conjugate prior distributions for the system mode parameters of a jump Markov nonlinear

system instead of using the Markovian assumption classically used in this context. A variational marginalized particle

filter was then investigated for obtaining the joint posterior distribution of the state and unknown mode parameters. A

simulation study was conducted for a modified nonlinear benchmark model and for more realistic manoeuvring target

tracking scenarios. The proposed approach was compared to the state-of-the-art, namely the RBPF-based online EM

algorithm and the RBPF algorithm, providing accurate estimates of the system mode parameters at the price of a

higher computational cost. In particular, the proposed algorithm was shown to be robust to uncertainties about the

mode transition probabilities, improving state estimation accuracy when these transition probabilities are imperfectly

known.

We think that the proposed approach could be interesting for jump semi-Markov systems, especially when the

transition probabilities of the embedded Markov chain are time-varying leading to discrete-time non-homogeneous

jump semi-Markov linear systems (JS-MLSs). For instance, the variational Bayesian marginalized particle filter could

be investigated for estimating the time-varying transition probability matrix of non-homogeneous JS-MLSs, in the case

where the distributions of sojourn times for different system modes are independent of the jump instants, as in [39].

Since time-varying transition probabilities are associated with a convex polytope, the application of the proposed

approach to a nonhomogeneous Markov chain with a polytope-structured TPM [40] would also be interesting to

investigate.

In order to obtain a closed-form solution for the unknown system mode parameters of a jump Markov nonlinear

system, the extended factorized approximation was used for maximizing the cost function of interest. Recent work

on stochastic variational inference might solve this problem by applying stochastic optimization to this cost function

[41]. This work is currently under investigation.

Appendix A. The lower-bound L̃ for the variational objective functionL

The log-inverse-beta function being convex over its range, the multivariate log-inverse-beta function is a convex

function of lnαk,t when
∑K

m=1,m,k αm,t > 1 [42]. Thus the multivariate log-inverse-beta function MLIB(αt) satisfies the

following inequality according to its first-order Taylor expansion for
(
lnα1,t, · · · , lnαK,t

)T
around

(
lnα1,t, · · · , lnαK,t

)T

MLIB(αt) ≥ MLIB(αt) +

K∑

k=1

Ψ


k∑

m=1

αm,t +

K∑

l=k+1

αl,t

 − Ψ
(
αk,t

)
αk,t

(
lnαk,t − lnαk,t

)
, (A.1)

where αk,t = E
[
αk,t

]
denotes the expected value of αk,t, k = 1, · · · ,K and Ψ (·) is the digamma function. Replac-

ing (A.1) in (28), Eθt

[
ln p

(
yt, x

i
t, θt|y1:t−1

)]
appearing in the variational objective function L satisfies the following

inequality

Eθt

[
ln p

(
yt, x

i
t, θt |y1:t−1

)]
≥

MLIB(αt) +

K∑

k=1

Eαt



Ψ


k∑

m=1

αm,t +

K∑

l=k+1

αl,t

 −Ψ
(
αk,t

)
αk,t

(
lnαk,t − lnαk,t

)
 + R

(A.2)

with

R = Eθt


K∑

k=1

ln

{
u
αk,t−1

k,t
γ
(
αk,t|ak,t, bk,t

) [
uk,tgk

(
yt|x

i
t

)
fk

(
xi

t|x
i
t−1

)]I(rt=k)
} , (A.3)

where R denotes the remaining unchanged parts in Eθt

[
ln p

(
yt, x

i
t, θt|y1:t−1

)]
. Considering that

{
α1,t, · · · , αK,t

}
are

parameters of the digamma function, the expectation operation in the right hand side (RHS) of (A.2) is not tractable.

However, Ψ (·) and ln (·) are concave functions leading to Ψ (E [x]) ≥ Ex [Ψ (x)] and ln (E [x]) ≥ Ex [ln (x)] by using
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Jensen’s inequality. Thus, the expectation operation in the RHS of (A.2) can be written as follows [42]

Eαt



Ψ


k∑

m=1

αm,t +

K∑

l=k+1

αl,t

 −Ψ
(
αk,t

)
αk,t

(
lnαk,t − lnαk,t

)


=

Eαt

Ψ


k∑

m=1

αm,t +

K∑

l=k+1

αl,t



 −Ψ
(
αk,t

)
αk,t

(
Eαk,t

[
lnαk,t

]
− lnαk,t

)

≥

Ψ


k∑

m=1

αm,t + Eαt


K∑

l=k+1

αl,t



 −Ψ
(
αk,t

)
αk,t

(
Eαk,t

[
lnαk,t

]
− lnαk,t

)

=

Ψ


k∑

k=1

αk,t

 −Ψ
(
αk,t

)
αk,t

(
Eαk,t

[
lnαk,t

]
− lnαk,t

)

(A.4)

where Eαt

[
Ψ

(∑k
m=1 αm,t +

∑K
l=k+1 αl,t

)]
≤ Ψ

(∑k
m=1 αm,t + Eαt

[∑K
l=k+1 αl,t

])
and Eαk,t

[
lnαk,t

]
− lnαk,t 6 0. Using (A.4)

in (A.2), the lower-bound L̃ for the variational objective functionL can be defined as follows

L̃ = Eθt

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]
− Eθt

[
ln q (θt)

]
, (A.5)

where

Eθt

[
ln p̃

(
yt, x

i
t, θt |y1:t−1

)]
= MLIB(αt) +

K∑

k=1

Ψ


k∑

k=1

αk,t

 −Ψ
(
αk,t

)
αk,t

(
Eαk,t

[
lnαk,t

]
− lnαk,t

)
+ R. (A.6)

Appendix B. The expression of Eθt\X

[
ln p̃
(
yt , x

i

t
, θt |y1:t−1

)]

According to (A.5), the expectations of ln p̃
(
yt, x

i
t, θt|y1:t−1

)
with respect to θt exceptX (where X is equal to rt, ut,

and αt, respectively) can be defined as follows

Eθt\rt

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]
=

K∑

k=1

{
E

[
ln uk,t

]
+ ln g

(
yt |x

i
t, r

i
t

)
+ ln f

(
xi

t|x
i
t−1, r

i
t

)}
I (rt = k) +C1 (B.1)

with

C1 = MLIB(αt) +

K∑

k=1

Ψ


k∑

k=1

αk,t

 − Ψ
(
αk,t

)
αk,t

(
Eαk,t

[
lnαk,t

]
− lnαk,t

)

+

K∑

k=1

Euk,t ,αk,t

[
ln

(
u
αk,t−1

k,t
γ
(
αk,t|ak,t, bk,t

))]
,

(B.2)

where C1 denotes terms independent of rt.

Eθt\ut

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]
=

K∑

k=1

{
E [I (rt = k)] + E

[
αk,t

]
− 1

}
ln uk,t + C2 (B.3)

with

C2 = MLIB(αt) +

K∑

k=1

Ψ


k∑

k=1

αk,t

 − Ψ
(
αk,t

)
αk,t

(
Eαk,t

[
lnαk,t

]
− lnαk,t

)

+

K∑

k=1

Ert,αk,t

[
ln

{
γ
(
αk,t|ak,t, bk,t

) [
gk

(
yt|x

i
t

)
fk

(
xi

t|x
i
t−1

)]I(rt=k)
}]
,

(B.4)
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where C2 denotes terms independent of ut.

Eθt\αt

[
ln p̃

(
yt, x

i
t, θt|y1:t−1

)]
=

K∑

k=1

ak,t +

Ψ


k∑

k=1

αk,t

 − Ψ
(
αk,t

)
αk,t − 1

 lnαk,t −

K∑

k=1

(
bk,t − E

[
ln uk,t

])
αk,t + C3

(B.5)

with

C3 =

K∑

k=1

Ert ,uk,t

[
ln

{[
uk,tgk

(
yt|x

i
t

)
fk

(
xi

t|x
i
t−1

)]I(rt=k)
}]
, (B.6)

where C3 denotes terms independent of αt.
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[24] O. Cappé, Online EM algorithm for hidden markov models, J. Comput. Graphical Statist. 20 (7) (2011) 728–749.

[25] T. Schön, F. Gustafsson, P.-J. Nordlund, Marginalized particle filters for mixed linear/nonlinear state-space models, IEEE. Trans. Signal

Process. 53 (7) (2005) 2279–2289.

[26] D. J. Xu, C. Shen, F. Shen, A robust particle filtering algorithm with non-Gaussian measurement noise using Student-t distribution, IEEE

Signal Process. Lett. 21 (1) (2014) 30–34.

[27] Z. Y. Ma, A. Leijon, Bayesian estimation of Beta mixture models with variational inference, IEEE. Trans. Pattern Anal. Mach. Intell. 33 (11)

(2011) 2160–2173.

[28] K. P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, Cambrigde, 2012, Ch. The multinomial and multinoulli

distribution, pp. 35–36.

[29] A. Doucet, S. Godsill, C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Statist. Comput. 10 (2000) 197–208.
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