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a b s t r a c t 
This letter introduces a generalization of Isolation Forest (IF) based on the existing Extended IF (EIF). 
EIF has shown some interest compared to IF being for instance more robust to some artefacts. However, 
some information can be lost when computing the EIF trees since the sampled threshold might lead 
to empty branches. This letter introduces a generalized isolation forest algorithm called Generalized IF 
(GIF) to overcome these issues. GIF is faster than EIF with a similar performance, as shown in several 
simulation results associated with reference databases used for anomaly detection. 

1. Introduction

Anomaly Detection (AD, Chandola et al. [3] ) has gained atten- 
tion in the past few years, due to the enhancement of modern 
computers and the increasing interest for machine learning algo- 
rithms. AD consists in detecting rare patterns or unobserved sam- 
ples in data, referred to as anomalies. It is widely used in po- 
tentially critical environments, e.g., in credit fraud detection [1] , 
crowd surveillance [9] , or in satellite telemetry monitoring [12,15] . 
AD has received an increasing interest for satellite monitoring in 
the past few years, with new satellite constellations, resulting in 
a huge amount of data to be processed at the same time. Time- 
series resulting from satellite telemetry are of course used for the 
constellation mission but also for system monitoring and failure 
prevention. 

This letter focuses on unsupervised AD algorithms, which learn 
the normal behavior of unlabeled data using a so-called training 
dataset. The performance of the algorithm can then be tested us- 
ing a labeled dataset called test set. Various AD algorithms have 
been proposed in the literature including those based on near- 
est neighbors (Local Outlier Factor, Breunig et al. [2] , Local Outlier 
Probability (LoOP), Kriegel et al. [8] or Neighborhood Construction 
(NC), İnkaya et al. [7] ), support vector machines (Support Vector
Data Description, Tax and Duin [14] , One Class Support Vector Ma- 
chines, Schölkopf et al. [13] ), Sparse Coding [4] , or Isolation Forest 
(IF, Liu et al. [10] ). 
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A specific attention is devoted in this letter to IF, which aims 
at finding anomalies with the idea that in some feature space, 
anomalies should be “far” from other data. To look for these 
anomalies, IF generates random isolation trees in order to isolate 
each data point. The number of branches required to isolate each 
point is then computed for each tree. The mean of this number of 
branches defines the expected path length, which is used to isolate 
a point of interest. The expected path length is generally small for 
anomalies (contrary to nominal data) since anomalies are far from 
the majority of nominal data. However, the trees generated by IF 
are considering a random feature at each node, which can lead 
to some artefacts in the score map function, as shown in Hariri 
et al. [6] . In order to improve the isolation of data points, tree 
branches with random hyperplanes can be considered [6] . Ran- 
dom hyperplanes are not necessarily parallel to one of the com- 
ponents of the feature vector and have been used in the extended 
IF (EIF) algorithm. Unfortunately, this strategy generates a lot of 
empty branches, which increases the complexity of the trees be- 
longing to the forest. This letter goes a step further by proposing a 
new IF construction inspired by the work of [6] leading to the gen- 
eralized isolation forest (GIF) algorithm. The GIF algorithm gener- 
ates trees without any empty branch, which significantly improves 
the execution times when compared to EIF. 

This letter is organized as follow: Section 2 recalls the prin- 
ciples of IF and EIF and introduces the proposed GIF algorithm. 
Section 3 evaluates the performance of GIF using experiments on 
both synthetic and real benchmark datasets. Conclusion are re- 
ported in Section 4 . 













2.2. Extended IF 
To avoid artefacts such as those illustrated in Fig. 1,  an im- 

proved solution was presented in Hariri et al. [6] referred to as EIF. 
As explained in Hariri et al. [6],  the main drawback of IF is due 
to the way hyperplanes are constructed to split the data. Indeed, 
since the drawn normal vectors are chosen according to each di- 
mension of R d ,  a discrete set of orthogonal directions is generated, 
which is at the origin of these vertical lines appearing in the level 
sets of s ( x ).  To mitigate this problem, a normal vector w can be 
sampled for each decision hyperplane randomly chosen in the unit 
sphere of R d  [6],  i.e., a Gaussian vector is sampled according to u ∼
N
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the smallest axis-bouding hypercube enclosing all the samples at 
a branching point (as illustrated in Fig. 2 ). The two branches of 
the tree are defined depending  on whether ( x − p )T  w > 0 (right 
branch of the tree) or ( x − p )T w ≤ 0 (left branch of the tree). The

hyperplane is thus the one defined by the normal vector w and 
containing the intercept point p.  One drawback of this method is 
that it can lead to empty branches in the tree, which goes against 
the idea of IF (whose idea is to split the tree until the number of 
points equals one or until a given maximal depth has been reached 
in order to efficiently isolate the data). This situation is depicted in 
Fig. 2 for the previous 2D example. 

This letter studies a variation of EIF avoiding empty branches in 
each tree, referred to as generalized isolation forest (GIF), which is 
detailed in the next section. 
2.3. Generalized isolation forest 

In order to avoid empty branches in EIF, we transpose the EIF 
problem into the original one defining IF. More precisely, we pro- 
pose to project all the data on the sampled normal unit vector, 
look for the minimum and maximum values of the projections 
(identified by the dotted lines in Fig. 3)  and sample a split value 
uniformly between these two values. Note that this sampling en- 
sures that there is at least one data in each branch of a tree: 
the first branch being defined from the min value and the second 
branch associated with the max value. This is equivalent to sam- 
ple an intercept point on the restriction of the line spanned by the 
normal vector to the segment between the minimum and maxi- 
mum values of the projected data points as shown in Fig. 3.  This 
strategy ensures that the two branches of a tree are not empty, 
contrary to EIF. Note that it is equivalent to EIF where the sampling 
volume has been reduced to the convex hull of the data. Empty 
branches in EIF are due to intercepts sampled outside the convex 
hull of the considered samples and inside the axis-bounding hy- 
percube. For EIF, the probability of sampling an intercept leading to 
an empty branch is therefore the volume between the hypercube 
and the convex hull, divided by the volume of the hypercube. Con- 
versely, this volume equals 0 for GIF. Note that probability of hav- 
ing an empty branch in EIF increases as the number of dimensions 
increases, due to the curse of dimensionality, which motivates the 
need to avoid such situations. Finally, the proposed method can 
be defined by three algorithms summarized in Algorithms 1–3,  in- 
spired by Hariri et al. [6] and Liu et al. [10].  
3. Experiments

This section evaluates the performance of the proposed GIF al- 
gorithm using synthetic 2D data and some benchmark datasets 
considered in Hariri et al. [6] and Goldstein [5].  

Algorithm 1 Create the forest. 
Input: X - input data, t - number of trees, ψ - subsampling size 
Output: F orest - a set of iT rees 

1: function iForest ( X, t, ψ) 
2: initialize F orest ← struct ! Empty structure
3: set l = ceil ( log 2 ψ ) ! Height limit
4: for all i = 1 to t do
5: ′ ← Sample (X, ψ ) ! Subsample of size ψ
6: F or est.T r ee (i ) ← iTree (′ , 0 , l)
7: end for 
8: end function 

Algorithm 2 Create a tree. 
Input: X - input data, e - current tree height, l - height limit 
Output: iT ree - a tree 

1: function iTree ( X, e, l) 
2: initialize T ree ← struct ! Empty structure
3: if e ≥ l or | X| ≤ 1 then
4: T ree.Size ← | X| ! Number of remaining data
5: T ree.T ype ← ’ext’ ! No nodes after this one
6: else 
7: draw w ∼ N (0 , I d )
8: w ← w / ‖ w ‖ 2 ! Random unit vector of R d
9: p min ← min (Xw)

10: p max ← max (Xw)
11: draw p ∼ U([ p min ; p max ])
12: X l ← X (X w ≤ p, :)
13: X r ← X (X w > p, :)
14: T ree.Le v el ← e ! Level of the node
15: T ree.Le f t ← iTree (X l , e + 1 , l)
16: T ree.Right ← iTree (X r , e + 1 , l)
17: T ree.Normal ← w
18: T r ee.T hr eshold ← p
19: T ree.T ype ← ’int’ ! Nodes after this one
20: end if 
21: end function 
3.1. Synthetic datasets 

In order to appreciate the benefits of GIF with respect to EIF 
and IF, we first consider three datasets of synthetic 2D samples 
displayed in Fig. 4 . For each dataset, IF, EIF and GIF are run on the 
same data to learn the corresponding isolation forest. After build- 
ing the isolation forests, a square area containing all the samples is 
transformed into a 100 × 100 grid. The anomaly score is computed
for each point of this grid in order to build heat maps that are 
displayed in Fig. 5 . The advantages of EIF and GIF with respect to 
IF, as already highlighted in Hariri et al. [6] , are clear: the “cross”
on the single blob, the sinusoid, and the ghost blobs for the sec- 
ond example disappear for GIF and EIF. In order to have a quan- 
titative appreciation of the various methods, the next experiments 
consider several benchmark datasets whose anomalies are detected 
using the different algorithms. 
3.2. Benchmark datasets 

This section evaluates the performance of GIF on the datasets 
investigated in Hariri et al. [6] 1 and Goldstein [5] . Note that the 
different datasets are described in Table 2 and are ranked in in- 
creasing order regarding the anomaly proportion (datasets in italic 
are those used in Hariri et al. [6] ). 

1 The datasets can be downloaded from http://odds.cs.stonybrook.edu/ 







Fig. 12. Mean score for inner (bottom) and outer (top) shells versus the number of trees in the forest with corresponding standard deviations (vertical lines) for IF (left), EIF 
(center) and GIF (right). 
GIF seem to converge to a constant value using a relatively small 
number of trees (around 100 trees in each forest). 
4. Conclusion

This letter studied a new isolation forest algorithm referred to 
as generalized isolation forest for anomaly detection. This algo- 
rithm allows some artefacts of isolation forest to be bypassed and 
produces trees without empty branches, which is a drawback of 
the extended isolation forest (EIF) algorithm. Experimentations on 
both synthetic and benchmark datasets allowed us to evaluate the 
performance of the proposed method, which is similar to that ob- 
tained with EIF. However, the proposed algorithm has a signifi- 
cantly reduced execution time when compared to EIF, and requires 
few parameters to store (a threshold at each node for GIF versus an 

intercept vector for each node for EIF). Future work will consider 
active learning and the injection of user feedback into the anomaly 
detectors to reduce the false alarm rate and improve anomaly de- 
tection. 
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