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ABSTRACT

This letter introduces a generalization of Isolation Forest (IF) based on the existing Extended IF (EIF).
EIF has shown some interest compared to IF being for instance more robust to some artefacts. However,
some information can be lost when computing the EIF trees since the sampled threshold might lead
to empty branches. This letter introduces a generalized isolation forest algorithm called Generalized IF
(GIF) to overcome these issues. GIF is faster than EIF with a similar performance, as shown in several
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1. Introduction

Anomaly Detection (AD, Chandola et al. [3]) has gained atten-
tion in the past few years, due to the enhancement of modern
computers and the increasing interest for machine learning algo-
rithms. AD consists in detecting rare patterns or unobserved sam-
ples in data, referred to as anomalies. It is widely used in po-
tentially critical environments, e.g., in credit fraud detection [1],
crowd surveillance [9], or in satellite telemetry monitoring [12,15].
AD has received an increasing interest for satellite monitoring in
the past few years, with new satellite constellations, resulting in
a huge amount of data to be processed at the same time. Time-
series resulting from satellite telemetry are of course used for the
constellation mission but also for system monitoring and failure
prevention.

This letter focuses on unsupervised AD algorithms, which learn
the normal behavior of unlabeled data using a so-called training
dataset. The performance of the algorithm can then be tested us-
ing a labeled dataset called test set. Various AD algorithms have
been proposed in the literature including those based on near-
est neighbors (Local Outlier Factor, Breunig et al. [2], Local Outlier
Probability (LoOP), Kriegel et al. [8] or Neighborhood Construction
(NC), inkaya et al. [7]), support vector machines (Support Vector
Data Description, Tax and Duin [14], One Class Support Vector Ma-
chines, Scholkopf et al. [13]), Sparse Coding [4], or Isolation Forest
(IF, Liu et al. [10]).

* Editor: Jose Ruiz-Shulcloper
* Corresponding author.
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simulation results associated with reference databases used for anomaly detection.

A specific attention is devoted in this letter to IF, which aims
at finding anomalies with the idea that in some feature space,
anomalies should be “far” from other data. To look for these
anomalies, IF generates random isolation trees in order to isolate
each data point. The number of branches required to isolate each
point is then computed for each tree. The mean of this number of
branches defines the expected path length, which is used to isolate
a point of interest. The expected path length is generally small for
anomalies (contrary to nominal data) since anomalies are far from
the majority of nominal data. However, the trees generated by IF
are considering a random feature at each node, which can lead
to some artefacts in the score map function, as shown in Hariri
et al. [6]. In order to improve the isolation of data points, tree
branches with random hyperplanes can be considered [6]. Ran-
dom hyperplanes are not necessarily parallel to one of the com-
ponents of the feature vector and have been used in the extended
IF (EIF) algorithm. Unfortunately, this strategy generates a lot of
empty branches, which increases the complexity of the trees be-
longing to the forest. This letter goes a step further by proposing a
new IF construction inspired by the work of [6] leading to the gen-
eralized isolation forest (GIF) algorithm. The GIF algorithm gener-
ates trees without any empty branch, which significantly improves
the execution times when compared to EIF.

This letter is organized as follow: Section 2 recalls the prin-
ciples of IF and EIF and introduces the proposed GIF algorithm.
Section 3 evaluates the performance of GIF using experiments on
both synthetic and real benchmark datasets. Conclusion are re-
ported in Section 4.
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Fig. 1. lllustration of IF problems using artificial 2D data. Training data are depicted in the left figure as well as the curve s(x,n) = sp (displayed in red). The right figure
shows the heat map of the anomaly score (dark blue corresponds to values next to 0 and light yellow to value close to 1). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Illustration of an EIF drawback using artificial 2D data. A splitting hyperplane is created by sampling a random unit vector and a random intercept in the sampling
area. As one can see, using this strategy, all the data points are below the hyperplane (for this outcome). Thus the corresponding right branch of the tree will be empty.

2. Isolation forest nominal data are more concentrated than anomalies and thus re-
quire more nodes to be isolated.

2.1. Original formulation To create a random isolation tree, assume that we have n train-
ing data {xy,..., %}, where x;=[x;; ... x,;d]T c RA. We will

IF generates t > 0 random trees to partition the data, and com-
putes for each tree the number of nodes required to isolate each
training vector. Anomalies are then detected as the vectors whose
average path lengths are the smallest, motivated by the fact that

also use the notation X = [x; ... x,.]T e R"™d for the matrix
gathering all the training data. To create a random node and split
the dataset into two subsets, one component of R? (denoted as
q) is chosen randomly, and a split value p is sampled uniformly in
the interval [mini_; _,X;q; MaX;—y 5 X;gql- The dataset is then split
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Fig. 3. Illustration of the proposed GIF approach. A splitting hyperplane is created by sampling a random unit vector and a random intercept in the sampling area, which
reduces to a line (and not a square). This strategy has the advantage of having data points on each side of the splitting hyperplane.

into two parts: the so-called left branch corresponding to the set
{%i,X; g < p} and the so-called right branch, corresponding to the
set {x;,x;q > p}. The tree is created by applying this procedure iter-
atively to each branch until a branch contains a unique data point,
or until some depth I has been reached. To create an IF, this proce-
dure could be applied several times to the whole learning dataset.
However, authors in Liu et al. [10] have shown that for each tree, a
sub-sample of the whole dataset of size ¥ > 0 (chosen to ¥ =256
in this letter) can be considered with similar performance and im-
proved computation time.

Once the forest has been created by generating t random iso-
lation trees, the expected path length h(x) to isolate a point x is
computed using the mean of the path lengths required to isolate
the point using each generated tree. Finally, an anomaly score is
defined as

s(x) = 2~ 7 1)
where c(n) is the average value of h(x) for a dataset of size n,
which can be computed as

n-1)

c(n) =2H(n—1)—2(T, (2)

where H(n) is the nth harmonic number (that can be approxi-
mated by In(n) + y, where y ~ 0.577 is the Euler-Mascheroni’s
constant). Thus, when E[h(x)] = c(n), the anomaly score of x is
s(x,n) =0.5. When h(x) tends to +o0, i.e., when x is not an iso-
lated point, the anomaly score tends to 0. Finally, when h(x) is
small compared to c(n), i.e.,, when x is an isolated point, the corre-
sponding anomaly score tends to 1. Thus we can define an anomaly

Table 1

Proposed values for the various parameters of IF.
Parameters ~ Meaning Proposed value
t Number of trees 100
¥ Sub-sample size 256
1 Tree maximum depth ceil(log, ¥) =8
So Anomaly detection threshold 0.6

threshold sqg < [0, 1] such that x is detected as an anomaly when
s(x) > sp, and as a nominal data when s(x) <sg. Of course, the
closer the anomaly score to 1, the more likely x is an anomaly, and
the closer the anomaly score to 0, the more likely x is a nominal
vector. Thus, a trade-off has to be made to determine an appropri-
ate value of sy. Authors in Liu et al. [10] have proposed values for
the different parameters that are summarized in Table 1.

The resulting IF algorithm is a convenient solution to detect
anomalies without assumptions on the data distribution and it is
computationally efficient. However, this algorithm suffers from a
bias due to the way trees are created. Indeed, by randomly choos-
ing one dimension to split the data, parallel hyperplanes are used
(with a normal vector collinear to the selected dimension), and
data spread around stripes parallel to the axis and passing through
the cluster have a lower anomaly score, as depicted in Fig. 1.
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Fig. 4. Synthetic 2D datasets used to visualize the gain of EIF and GIF.
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Fig. 5. Heat maps for the three algorithms and the three datasets: IF, EIF, GIF from left to right, and single blob, dual blob and sinusoidal from top to bottom. Pink values
correspond to low anomaly scores and yellow to high.



-
"lonosphere’ - == Standard
. === Extended -
‘Satellite’ === Generalized

"Pen Global”

"‘Cardio’

I'} i}i

4 ’ ——
Letter

==
’ANN Thyroid’

"Aloi’

"Breast Cancer’

Y%

'Mammography’

Y

’Shuttle’

"Speech’

i

——
'Forest Cover’

"Pen Local’

0.4 0.5 0.6 07
ROC AUC

Fig. 6. Comparison of ROC AUC for several datasets (a line represents a 95% confidence interval and a dot the corresponding mean).

—_—
0.8

09 1.0

-l
*lonosphere’ - === Standard .
. === FExtended =,
‘Satellite’ = Generalized
——
————
"Pen Global
io’ o —
Cardio
"Letter” :
-
“ANN Thyroid’ -
ANN Thyroi =
‘Aloi’ o
oi’ &
—_—
"Breast Cancer’
—_—
—u—
Mammography .
——
’Shuttle’ .
‘Speech’ &
pee s
——
"Forest Cover’ -
P
"Pen Local’ E
0.0 0.2 0.4 0.6 0.8 1.0

PR AUC

Fig. 7. Comparison of PR AUC for several datasets (a line represents a 95% confidence interval and a dot the corresponding mean).



‘lonosphere’ - === Extended
== _(Generalized ..

'Satellite’ = e
"Pen Global’ - —
'Cardio’ - >
"Letter’ - -
’ANN Thyroid’ * o
'Aloi’ ""_
"Breast Cancer’ - e
'Mammography’ = -
"Shuttle’ *= ——
"Speech’ == —
"Forest Cover’ == ———
"Pen Local’ bl -
0 1 2 3 4 5 6 7 8

Forest creation time [s]

Fig. 8. Comparison of EIF and GIF computation times for several datasets (a line represents a 95% confidence interval and a dot the corresponding mean).

"lonosphere’ = — e=== Extended
e _(Generalized ..
"Satellite’ ——p—
"Pen Global’ —
"Cardio’ ———
'Letter’ e e—
"ANN Thyroid” ——
’ i ———
Alo‘ ——
'Breast Cancer’ _—_._
lMamngr aphy ! o e—
‘Shuttle’ e
,SpeeCh’ e—
'Forest Cover’ ——
"Pen Local’ ——
0.35 0.40 0.45 0.50 0.55 0.60 0.65

Proportion of external nodes at max depth

Fig. 9. Comparison of external nodes at maximum depth proportion for several datasets (a line represents a 95% confidence interval and a dot the corresponding mean).



2.2. Extended IF

To avoid artefacts such as those illustrated in Fig. 1, an im-
proved solution was presented in Hariri et al. [6] referred to as EIF.
As explained in Hariri et al. [6], the main drawback of IF is due
to the way hyperplanes are constructed to split the data. Indeed,
since the drawn normal vectors are chosen according to each di-
mension of R?, a discrete set of orthogonal directions is generated,
which is at the origin of these vertical lines appearing in the level
sets of s(x). To mitigate this problem, a normal vector w can be
sampled for each decision hyperplane randomly chosen in the unit
sphere of R? [6], i.e., a Gaussian vector is sampled according to u ~

N(O, I;) eR?and normalized leading tow = u/||ul|, [11]. To select

Algorithm 1 Create the forest.
Input: X - input data, t - number of trees, ¥/ - subsampling size
Output: Forest - a set of iTrees

1: function IFOREST(X, t, V)

2 initialize Forest < struct > Empty structure
3:  set | = ceil(log, V) > Height limit
4 foralli=1tot do

5: 1 < Sample(X, 1) > Subsample of size
6 Forest.Tree(i) < ITREE(7, 0, 1)

7 end for

8: end function

the split value, an intercept vector ¢ R? is sampled uniformlyin Algorithm 2 Create a tree.

the smallest axis-bouding hypercube enclosing all the samples at
a branching point (as illustrated in Fig. 2). The two branches of
the tree are defined depending on whether (x — p)” w > 0 (right
branch of the tree) or (x — p)T w < 0 (left branch of the tree). The
hyperplane is thus the one defined by the normal vector w and
containing the intercept point p. One drawback of this method is
that it can lead to empty branches in the tree, which goes against
the idea of IF (whose idea is to split the tree until the number of
points equals one or until a given maximal depth has been reached
in order to efficiently isolate the data). This situation is depicted in
Fig. 2 for the previous 2D example.

This letter studies a variation of EIF avoiding empty branches in
each tree, referred to as generalized isolation forest (GIF), which is
detailed in the next section.

2.3. Generalized isolation forest

In order to avoid empty branches in EIF, we transpose the EIF
problem into the original one defining IF. More precisely, we pro-
pose to project all the data on the sampled normal unit vector,
look for the minimum and maximum values of the projections
(identified by the dotted lines in Fig. 3) and sample a split value
uniformly between these two values. Note that this sampling en-
sures that there is at least one data in each branch of a tree:
the first branch being defined from the min value and the second
branch associated with the max value. This is equivalent to sam-
ple an intercept point on the restriction of the line spanned by the
normal vector to the segment between the minimum and maxi-
mum values of the projected data points as shown in Fig. 3. This
strategy ensures that the two branches of a tree are not empty,
contrary to EIF. Note that it is equivalent to EIF where the sampling
volume has been reduced to the convex hull of the data. Empty
branches in EIF are due to intercepts sampled outside the convex
hull of the considered samples and inside the axis-bounding hy-
percube. For EIF, the probability of sampling an intercept leading to
an empty branch is therefore the volume between the hypercube
and the convex hull, divided by the volume of the hypercube. Con-
versely, this volume equals 0 for GIF. Note that probability of hav-
ing an empty branch in EIF increases as the number of dimensions
increases, due to the curse of dimensionality, which motivates the
need to avoid such situations. Finally, the proposed method can
be defined by three algorithms summarized in Algorithms 1-3, in-
spired by Hariri et al. [6] and Liu et al. [10].

3. Experiments

This section evaluates the performance of the proposed GIF al-
gorithm using synthetic 2D data and some benchmark datasets
considered in Hariri et al. [6] and Goldstein [5].

Input: X - input data, e - current tree height, | - height limit
Output: iTree - a tree
1: function 1TREE(X, e, [)

2 initialize Tree < struct > Empty structure
3 if e> 1 or |[X| <1 then

4 Tree.Size < |X| > Number of remaining data
5: Tree.Type < ’ext’ > No nodes after this one
6 else

7 draw w ~ N(0, Iy)

8 w < w/||wl; > Random unit vector of R?
9: Pmin < Min(Xw)

10: Pmax < Max(Xw)

1 draw p ~ U([Pmin; Pmax])

12: X« XXw=<p,:)

13: X<~ X(Xw>p,:)

14: Tree.Level < e > Level of the node
15: Tree.Left < ITREE(X, e+ 1,])

16: Tree.Right < ITREE(X;, e+ 1,1)

17: Tree.Normal < w

18: Tree.Threshold < p

19: Tree.Type < ’int’ > Nodes after this one

20: end if
21: end function

3.1. Synthetic datasets

In order to appreciate the benefits of GIF with respect to EIF
and IF, we first consider three datasets of synthetic 2D samples
displayed in Fig. 4. For each dataset, IF, EIF and GIF are run on the
same data to learn the corresponding isolation forest. After build-
ing the isolation forests, a square area containing all the samples is
transformed into a 100 x 100 grid. The anomaly score is computed
for each point of this grid in order to build heat maps that are
displayed in Fig. 5. The advantages of EIF and GIF with respect to
IF, as already highlighted in Hariri et al. [6], are clear: the “cross”
on the single blob, the sinusoid, and the ghost blobs for the sec-
ond example disappear for GIF and EIF. In order to have a quan-
titative appreciation of the various methods, the next experiments
consider several benchmark datasets whose anomalies are detected
using the different algorithms.

3.2. Benchmark datasets

This section evaluates the performance of GIF on the datasets
investigated in Hariri et al. [6]' and Goldstein [5]. Note that the
different datasets are described in Table 2 and are ranked in in-
creasing order regarding the anomaly proportion (datasets in italic
are those used in Hariri et al. [6]).

1 The datasets can be downloaded from http://odds.cs.stonybrook.edu/



Algorithm 3 Compute isolation score (path length).

Input: = - input vector, Tree - an iTree, e - current path length
1: # e must be initialized to 0 when first called

Output: Length - isolation score

2: function PL(z, Tree, e)
3: if Tree.Type = 'ext’ then

4 if Tree.size > 1 then

5: Length < e + c(Tree.size) > see (22)
6: else

7 Length < e

8 end if

9 else

10: w « Tree.Normal

11: p < Tree.Threshold
12: if zTw < p then
13: Length < PL(x, TreeLeft,e+ 1)
14: else
15: Length < PL(x, Tree.Right,e + 1)
16: end if

17: end if

18: end function

Table 2

Datasets used in the experiments.
Name Samplesn  Featuresd  Anomalies
Pen Local 6724 16 0.15%
Forest Cover 286,048 10 0.96%
Speech 3686 400 1.65%
Shuttle 46,464 9 1.89%
Mammography 11,183 6 2.32%
Breast Cancer 367 30 2.72%
Aloi 50,000 27 3.02%
ANN Thyroid 6916 21 3.61%
Letter 1600 32 6.25%
Cardio 1831 21 9.60%
Pen Global 809 16 11.12%
Satellite 6435 36 31.64%
Ionosphere 351 33 35.90%

Since IF-based anomaly detectors include some randomness
due to the way the trees are built, Monte-Carlo simulations (using
100 iterations) were performed for all the datasets and the three
methods (IF, EIF and GIF) to compute the average area under the
curve (AUC) for both receiver operational characteristics (ROC) and
precision recall (PR) curves, as well as quantiles «/2 and 1 — /2
where « = 5% in order to obtain 95% confidence intervals. The re-
sults are gathered in Fig. 6 for the ROC and in Fig. 7 for PR curves.

Note that the computations were made using Python, with the
IF algorithm from scikit learn?, EIF from the author’s github®, and
our own implementation of GIF. The whole code as long as the
datasets are available on the first author’s webpage®. Note that all
datasets have been preprocessed in order to obtain zero mean and
unit variance for each feature. This preprocessing is not necessary
for IF because splittings are made along a single feature. However,
they are useful for EIF ad GIF especially in high dimensions since
these algorithms are sensitive to scaling.

As one can see, there is not a significant difference between EIF
and GIF in terms of ROC AUC, except for the datasets Pen Local,
Letter, Satellite and Ionosphere, where EIF seems to give a bet-
ter result, and datasets Forest Cover and Cardio in favor of GIF.
EIF and GIF also provide good results when compared to IF, ex-
cept for the dataset ANN Thyroid. Regarding PR AUC, EIF and GIF

2 https://scikit-learn.org/stable/
3 https://github.com/sahandha] eif
4 http://perso.tesa.prd.fr/jlesouple/codes.html
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Fig. 10. Dataset for the additional experiments. The red circles represent 1, 2 and 3
data standard deviations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

seem to have the same behavior, except for datasets Forest Cover
and Shuttle, where GIF outperforms EIF. Finally note that EIF per-
forms slightly better than IF and GIF for the dataset lonosphere.
From these experiments, we conclude that the performances of EIF
and GIF are globally similar. In order to appreciate the interest of
GIF, we have compared the execution times of the different algo-
rithms, i.e., the time required to produce the forest (for both EIF
and GIF) and the average proportion of external nodes at the max-
imum depth among all the external nodes computed for all the
trees of a forest. The results are shown in Figs. 8 and 9.

As one can see, the times to compute the forests are signifi-
cantly smaller for GIF compared to EIF, with generally smaller con-
fidence intervals. The mean proportion of limit nodes among all
the external nodes shows the capability of the method to isolate
data. Indeed, an external node is either due to a reach of the given
maximal depth, or to an isolated data. Therefore, if this number is
close to one, few data are isolated (and conversely, the lower the
mean proportion of limit nodes, the more data are isolated by the
method). As the purpose of IF methods is precisely to isolate data,
this ratio should be as low as possible. As one can see in Fig. 9,
GIF leads to smaller proportions of this ratio than EIF (except for
the Aloi dataset), which was expected.

3.3. Anomaly scores

Additional experiments were conducted as presented in Hariri
et al. [6] to analyze the anomaly scores of the different algorithms.
More precisely, IF, EIF and GIF were trained on the 2D single blob
synthetic dataset, and testing points were generated around con-
stant radii, as shown in Fig. 10. This dataset allowed us to ap-
preciate the behavior of the various algorithms to isotropic nor-
mal data. Indeed, for grey dots located around the same circle, the
anomaly score should be approximately the same. The mean scores
versus constant radius and the corresponding standard deviations
are plotted for the various algorithms in Fig. 11a.

As one can see, the anomaly scores are equivalent for all the
algorithms: there is a fast increase from zero to a value in the in-
terval (2,3) when the radius increases, and slower variations after-
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Fig. 11. Mean anomaly scores (left) and corresponding standard deviations (right) for the various algorithms versus the radius. The vertical blue lines represented the 1, 2
and 3 standard deviations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

wards. One can observe that the standard deviations of the scores
are significantly larger for IF than for EIF and GIF, which is ex-
plained by the absence of the “cross” effect for this dataset. These
results were already shown in Hariri et al. [6] and are repeated
here to show that the proposed GIF performs similarly to EIF, with
the advantage of being faster, thanks to the absence of empty
branches in the trees. The same experiments were run on a 3D
blob and a 4D blob, as shown in Fig. 11b and c leading to the same
conclusions.

The convergence of the mean anomaly scores was also studied,
as in Hariri et al. [6]. The average anomaly scores for the inner an
outer shell of each blob and the corresponding standard deviations
were computed for each blob for various numbers of trees in the
forest. The results are depicted in Fig. 12a-c for the 2D, 3D and
4D blobs respectively. As one can see, EIF and GIF provide simi-
lar results, with lower standard deviations when compared to the
standard IF algorithm. Moreover, the anomaly scores for EIF and
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Fig. 12. Mean score for inner (bottom) and outer (top) shells versus the number of trees in the forest with corresponding standard deviations (vertical lines) for IF (left), EIF

(center) and GIF (right).

GIF seem to converge to a constant value using a relatively small
number of trees (around 100 trees in each forest).

4. Conclusion

This letter studied a new isolation forest algorithm referred to
as generalized isolation forest for anomaly detection. This algo-
rithm allows some artefacts of isolation forest to be bypassed and
produces trees without empty branches, which is a drawback of
the extended isolation forest (EIF) algorithm. Experimentations on
both synthetic and benchmark datasets allowed us to evaluate the
performance of the proposed method, which is similar to that ob-
tained with EIF. However, the proposed algorithm has a signifi-
cantly reduced execution time when compared to EIF, and requires
few parameters to store (a threshold at each node for GIF versus an

intercept vector for each node for EIF). Future work will consider
active learning and the injection of user feedback into the anomaly
detectors to reduce the false alarm rate and improve anomaly de-
tection.
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