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The collapse of a granular column in a liquid is investigated using numerical simulations.
From previous experimental studies, it has been established that the dynamics of the
collapse is mostly influenced by the Stokes number St, comparing grain inertia and
viscous fluid dissipation, and the initial volume fraction of the granular column φi.
However the full characterisation of the collapse in the (St, φi) plane is still missing,
restricting its modelling as a physical process for geophysical applications. Only numerical
tools can allow providing a variation on the parameter space (St, φi) hardly reachable
in experiments as well as a full description of the granular phase playing a major role
on dense granular flows. For this purpose, a dedicated numerical model is used including
a discrete element method to resolve the granular phase. The specific objectives of the
paper are then two-folds: (1) the characterization of the dynamics of the collapse and its
final deposit with respect to (St, φi) to complement available experimental data and (2)
the description of the granular rheology according to these two dimensionless numbers
including dilatancy effects. A simple predictive model stems from the obtained results,
allowing to explain the evolution of the final deposit with (St, φi).

1. Introduction

Destructive natural phenomena such as snow avalanches, landslides, rock falls, and
debris flows remain difficult to safeguard against. Given the complexity and the observed
heterogeneity in dynamics of these gravity driven and unsteady multiphase-flows, it is
natural to focus on canonical flows that can be controlled at the laboratory scale. For
this purpose, several studies have been devoted to model configurations dealing with dry
or wet granular flows.

Among other configurations, the collapse of an initial granular column in air and
over a horizontal surface, referred to as dry granular collapse, reveals the behaviour
of an unsteady granular flow starting from an initial unstable rest state and evolving
towards a final deposit. This configuration thus shares many key features with natural
situations, and it has naturally become the topic of several studies. It can be noted
that a specific attention has been paid to the case of dry monodisperse-granular medium
using laboratory experiments (Lajeunesse et al. 2004; Lube et al. 2004; Lajeunesse et al.
2005; Lube et al. 2005; Balmforth & Kerswell 2005; Lacaze et al. 2008) or numerical
modelling at different scales (Zenit 2005; Staron & Hinch 2005; Mangeney-Castelnau
et al. 2005; Staron & Hinch 2007; Lacaze & Kerswell 2009; Lagrée et al. 2011; Girolami
et al. 2012; Ionescu et al. 2015). Even for such a canonical design, the dynamics of the
collapse remains not fully understood, as many dry dense granular flows. Surprisingly,
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some simple features have nevertheless been observed in all these studies. In particular,
the characterization of the dynamics and of the final deposit has shown that the collapse
is mostly controlled by the aspect ratio a = Hi/Li of the initial column with Hi and Li
its initial height and its initial horizontal length respectively.

Complexity has been increasingly added to the dry granular collapse to incorporate
observable features in natural configurations, such as polydispersity or complex grain-
shape (Phillips et al. 2006; Degaetano et al. 2013; Cabrera & Estrada 2019), erodible
bottom (Mangeney et al. 2010; Crosta et al. 2009) or the influence of the surrounding
fluid (Roche et al. 2011; Rondon et al. 2011; Topin et al. 2012; Jing et al. 2018; Bougouin
& Lacaze 2018; Jing et al. 2019). In the latter situation, it has been highlighted that
beyond a, the initial volume fraction φi (Rondon et al. 2011) and Stokes number St
(Bougouin & Lacaze 2018) can also play a significant role on the dynamics of the collapse.
In other words, for given granular material and aspect ratio, the surrounding fluid can
affect the granular collapse because of its influence on falling grain inertia through viscous
dissipation, i.e. the St number, but also due to the initial compaction of the granular
column, i.e. φi.

The specific contribution of both St and φi on the immersed granular collapse now
requires to be characterized. For this purpose, a full picture of the influence of (St, φi)
needs to be provided, as it has been for now only considered for a limited set of
dimensionless parameters. In particular, the role of φi observed at small St (Rondon et al.
2011), and presumed to be negligible at large St according to the results obtained in dry
configuration, suggests a combined influence of (St, φi) which would both originate from
fluid viscosity. Thus, the influence of φi has to be clarified as a function of St. Moreover,
modelling granular collapse from physical analysis is required for larger scale situations.
This means in particular to extract pertinent continuous models for the granular phase
including its rheological behaviour. The granular collapse has already been shown to be
an attractive test case for rheological models in the case of dry configuration (Lacaze &
Kerswell 2009). It has to be extended to the case of immersed situations.

In order to achieve these objectives, fluid-particle properties have to be continuously
varied, and fluid-particle stresses have to be known. These objectives then suffer experi-
mental limitations, and can, for now, only be achieved using numerical simulations. Here,
a Volume-Average-Navier-Stokes/Discrete-Element-Method (VANS/DEM) coupling ap-
proach is used. This approach is referred to as the mesoscale approach in the following as it
allows to solve the fluid phase at a scale slightly larger than the grain scale. This provides
a reasonable scale of description to model laboratory scale configurations, keeping the
Lagrangian description of individual grains. It has therefore been often used when dealing
with immersed granular flows such as, among others, the immersed simple shear flow
(Trulsson et al. 2012) and sediment transport (Maurin et al. 2015; Charru et al. 2016;
Pähtz & Durán 2018). Even if most of the dynamics of the system is resolved with
this approach, the properties and dynamics of the fluid flow in between grains remains
modelled, and thus requires closure terms. This approach has nevertheless proved to be
relevant for the above mentioned configurations and, particularly, to provide the relevant
mechanisms, allowing to improve our understanding of the physics of these systems. This
means that most of the required subscale physics of the fluid phase is captured by these
closure models. Accordingly, this remains a pertinent scale approach to reach the main
objectives depicted previously.

The paper is organized as follows. The numerical VANS/DEM method used in the
paper, the collapse set-up and the dimensionless parameters are presented in section 2.
In order to discuss the reliability of the mesoscale model used in this paper, an alternative
resolved numerical approach for the fluid phase, solving part of the subscale physics, has
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also been tested. Results, comparisons and limitations are discussed in a supplementary
material available at [link to be added]. The influence of (St, φi) on the dynamics of
the collapse and its final rest state is then characterized in section 3, with a specific
attention on the prevailing role of φi when decreasing St. In section 4, the rheology of
the granular material is extracted and characterised as a function of (St, φi), in the spirit
of the µ − I model for dense granular flows. Prior to concluding, the link between the
proposed rheological model and the obtained final deposit for immersed granular collapse
is discussed in terms of a simplified predictive model in section 5.

2. A mesoscale approach for granular collapse modelling

The VANS/DEM numerical method used in the following has been explained in details
in Charru et al. (2016). The method is thus only briefly recalled for record. Nevertheless,
we pay attention here to highlight the terms that require closure models and the strategy
adopted accordingly (see also the supplementary material available at [link to be added]
for a discussion on these models). The physical setup and the associated dimensionless
parameters used are then given.

2.1. Granular phase: DEM

The dynamics of the granular phase is solved using a classical Discrete Element Method
(DEM). The motion of each solid particle j, with j ∈ [1, Np] (Np being the number of
particles), submitted to gravity acceleration, solid contact force with other particles and
hydrodynamics force induced by a surrounding fluid is obtained by integrating Newton’s
equations for linear and angular momentum of a solid sphere of mass mj ,

mj
dvj
dt

= mjg + Fhj +
∑
k 6=j

Fckj ;
mjdj

2

10

dωj
dt

= Γ hj +
∑
k 6=j

Γ ckj , (2.1)

where vj and ωj correspond to the linear velocity and the angular velocity respectively.

Fhj and Γ hj are the hydrodynamic force and torque exerted on each particle j respectively
and Fckj and Γ ckj are the solid contact force and torque, respectively, exerted by a particle

k on j if they are in contact. Note that with the previous formulation, Fhj then includes
the buoyancy contribution. The model of the hydrodynamics force on each particle will
be specified in the next section.

Solid contacts between particles are modelled using a soft sphere approach, i.e. by
allowing a small overlap between particles to mimic the deformation of real grains. This
overlap is then used to calculate the contact force between grains, using a linear spring-
dashpot model. The tangential force is limited by a Coulomb threshold allowing sliding
between grains. Details of the model can be found in Izard et al. (2014). We only recall
that the solid contact is then parametrized by the coefficient of restitution e and the
coefficient of friction µp between the two particles in contact and the stiffness of the
considered material kn, or equivalently the contact time tc. In the case of granular
material, we impose tc �

√
d/g to ensure rigidity of the material for dry situation

(Baran et al. 2006). Here, tc = 2. 10−3
√
d/g, or equivalently the stiffness of the particle

is kn = 2. 105mg/d. Note that in such limit, the stiffness of the material no longer
influences the dynamics of the granular material (Baran et al. 2006). Actually, we also
have tc � ρd2/η, with ρ and η are the density and the viscosity of the surrounding
fluid, respectively. The latter constraint ensures that the contact time is smaller than the
diffusive time scale in the vicinity of the moving particle.
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V

Vf

Vj

Figure 1. Sketch of the spatial scales used for the VANS/DEM approach in a 2D (x, y)
cross-section. (∆xV ,∆yV ) define the grid size for the fluid phase resolution in the 2D plane.
Grey disks are the 2D slice through the 3D spherical grain of diameter d in this 2D cross-section.

2.2. Fluid phase: VANS model

The fluid phase is solved at a scale larger than the grain size, as sketched in figure 1. For
this purpose, the fluid-phase equations to be resolved are derived from the Navier-Stokes
equations spatially averaged over a spatial scale larger than the grain size (Jackson 2000).
In other words, the NS equations are averaged over a volume Vf of fluid contained in a
volume of reference V larger than a solid particle and similar to the mesh cell volume (see
figure 1 for a sketch). The Volume Averaged Navier-Stokes (VANS) mass and momentum
equations read (Jackson 2000)

∂ε

∂t
+∇. (ε〈u〉f ) = 0, (2.2)

ε
D〈u〉f
Dt

= εg +
1

ρ
∇ · S− 1

ρ
n〈fp/f 〉p, (2.3)

where ε = 1−φ is the local fluid volume fraction (φ is the particle volume fraction), 〈·〉f
and 〈·〉p denote the average operator over the fluid phase and particle phase within the
volume V, respectively. D/Dt is a fluid material derivative and is defined accordingly
with respect to the fluid velocity 〈u〉f as D/Dt = ∂/∂t + 〈u〉f · ∇. The fluid-particle
interaction force averaged over the particles within V is denoted n〈fp/f 〉p, with n the
number of particles per unit volume. To finish with, S is an effective stress tensor for
the fluid which has to be specified. Note that using this volume averaged formulation,
different contributions emerge in the stress S including the average fluid stress tensor
over Vf as well as what is referred to as the traction term in Jackson (2000), defined at
the interface between the particles and the fluid.

The fluid-particle interaction force n〈fp/f 〉p is simply related to the hydrodynamics

force on each grain Fhj in the lagrangian formulation (2.1) as

n〈fp/f 〉p =
1

V
∑
j∈V

Fhj . (2.4)

In the VANS/DEM model, particle-fluid interaction is not resolved at the grain scale
and Fhj , and thus n〈fp/f 〉p, have therefore to be modelled. According to Jackson (2000),
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the fluid-particle interaction force can be split into a buoyancy contribution and a local
interaction force. For sake of simplicity, we assume that the remaining contribution is
only a drag force. We thus write

n〈fp/f 〉p = φ∇ · S + nFMD , (2.5)

where FMD corresponds to a drag model force at the scale of the grain, superscript M
stands for Modeled. We choose in the following to model this drag contribution as (see
Richardson & Zaki 1954; Maurin et al. 2015, for instance)

nFMD =
18η

d2
φ (1− φ)

−ξ
(

1 +
1

60
Rep

)
(〈v〉p − 〈u〉f ) , (2.6)

with Rep = ρd|〈v〉p − 〈u〉f |/η, and ξ is a constant whose value lies in the interval
[1, 3]. Note that such force model does not provide any torque on the particle that
would be induced by the fluid, then Γ hj = 0 in (2.1) for this specific method. The only
torque applied to each grain therefore comes from solid contact. This is quite a crude
approximation, but it provides the most simple model leading to the expected dynamics
of the collapse (see the supplementary material available at [link to be added]).

Moreover, we assume that the deviatoric part of the stress can be simply written as a
generalized viscous stress, leading to a total stress S of the form

S = −〈p〉fI + ηeff
(
∇〈u〉+ T∇〈u〉

)
≡ −〈p〉fI + ηMeff

(
∇〈u〉+ T∇〈u〉

)
, (2.7)

where 〈·〉 stands for an average over the mixture and 〈u〉 = ε〈u〉f + φ〈v〉p is its average
velocity, with φ〈v〉p = 1

V
∑
j∈V Vjvj . The viscosity ηeff is an effective viscosity. This

viscosity has to be modeled and will thus be denoted ηeff ≡ ηMeff . Note that in (2.7),
mixture velocity has been chosen instead of the fluid velocity to model the viscous-
deviatoric stress component. In the literature both choices can be found as long as they
provide an actual deviatoric tensor for the viscous stress (see Jackson 2000, for a review).
Then, if the fluid velocity is chosen, its trace contribution has to be subtracted, as the
fluid phase is not divergence free in the case of the fluid (Baumgarten & Kamrin 2019).
Using the mixture velocity allows to satisfy straightforwardly the previous constraint as
it is divergence free, and moreover it has been shown to appear quite naturally in the case
of dilute Stokes flow (Jackson 2000; Zhang & Prosperetti 1997). The latter approach has
also been used to describe dense situations (Guazzelli & Pouliquen 2018). This definition
has thus been chosen here regarding the state of our knowledge. Moreover, the following
model will be used for the effective viscosity,

ηMeff/η = 1 +
5

2
φ+ 7.6φ2 + ζφ3, (2.8)

where we recognize the Einstein viscosity at O(φ), the Batchelor viscosity for hard sphere
at O(φ2), and an extra O(φ3) term to account for higher order correction in such dense
configuration.

In most of the simulations discussed in this paper, ξ = 1 in (2.6) and ηMeff/η = 1 + 5
2φ

in (2.8). However, a discussion on the influence of these models is given in section 3.4
including ξ = 2, ξ = 3 and higher order viscosity terms. Moreover, a resolved numerical
approach at the grain scale has been used to show the relevance of these different models
and to obtain an estimation of ζ ≈ 16 in (2.8) for the flows studied in this work (see the
supplementary material available at [Link to be added]).

The VANS equations (2.2) and (2.3) are solved numerically to obtain 〈u〉f and 〈p〉f
on a regular meshgrid ∆xV = ∆yV = ∆zV = 2d, where the cell volume matches the
elementary volume V (see figure 1). Note that we take advantage of the incompressibility
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Figure 2. Sketch of the 3D setup in a 2D streamwise (x, y) plane at a fixed z coordinate. Unit
vector z is in the out of plane direction. (a) initial configuration at t = 0 and (b) final deposit
for t > tf .

of the mixture (fluid+grains) to solve a divergent-free equation for the mixture phase
instead of equation (2.2), allowing the use of standard numerical algorithm developed for
incompressible flows. ε and 〈v〉p are obtained by averaging DEM results over the fluid
cell. For more details on the numerical algorithm, the reader can refer to Charru et al.
(2016).

2.3. Setup and dimensionless numbers

A typical sketch of the configuration considered in this study is shown in figure 2. The
computational domain consists of a rectangular box (Lx, Ly, Lz) in (x, y, z) with (x, y)
the main propagation plane, y being opposed to gravity (see figure 2), and z is the third
direction out of plane. Boundary conditions for both the fluid phase and the granular
phase are periodic in the z direction. For the fluid phase, a no slip condition is imposed
at the walls located at x = 0 and y = 0, while a slip condition is imposed at the walls
located at x = Lx and y = Ly, ∂〈u〉f/∂n = 0, n being the normal to the wall. Grains of
diameter d are glued on the bottom plane –on a square grid centred at y = 0– to prevent
the granular material from rolling on the bottom.

At the left side of the domain, x = 0, a rectangular column of base (Li, Lz) is filled
up to a height Hi with Np spherical grains of mean diameter d and same density ρp
(see figure 2(a)). Only a small dispersion –±5% in diameter of uniform distribution– is
imposed to the grain diameter to avoid crystal-like pattern in the medium while keeping a
monodisperse behaviour, i.e. no segregation is observed for such small dispersion in grain
diameter. The geometry of the system is unchanged for all simulations. In particular,
the aspect ratio of the initial column is set to a = Hi/Li = 0.5, i.e. Hi = Li/2, as its
influence on the collapse has already been reported in several studies. The dimensionless
base length of the column is Li/d = 64. The dimensionless size of the computational
domain is such as Lx/d ≈ 192, Ly/d ≈ 51, and Lz/d = 8.

At t = 0, the column is released in a liquid of density ρ and viscosity η. For t > 0, the
granular medium first collapses during a so-called slumping phase, and eventually stops
on a finite time t = tf . The final deposit can be characterized by two lengths, say a final
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spreading length Lf and a final maximum height Hf (see figure 2(b)), or equivalently,
Lf and a deposit slope tanα which will be defined later on.

At the grain scale, the dynamics is controlled by several dimensionless parameters,
including solid-solid interaction and fluid-solid interaction. For the solid-solid interaction,
first, the dimensionless parameter characterising the rigidity is defined as κ = (τi/tc)

2

with τi = d
√
ρp/∆ρgHi a characteristic time of rearrangement imposed by the granular

pressure (see for instance MiDi 2004, here the characteristic pressure is the granulostatic
one at the bottom of the column using the apparent weight of the granular material
∆ρ = ρp − ρf ). The value of this parameter in the present simulations is κ = 5. 105

ensuring the rigidity of the material as mentioned previously (Da Cruz et al. 2005). In
this rigid limit, the significant parameters characterising the solid-solid interaction are
then, the coefficient of restitution e and the coefficient of friction µp. In the following, they
are set to e = 0.87 and µp = 0.25. For the fluid-solid interaction in such gravity driven
flow, two dimensionless parameters can be built upon the fluid and particle properties,
say a Stokes number St and a density ratio r. The density ratio r is usually defined as
r = (ρp/ρ)1/2 and is kept constant in the following, r = 1.6 corresponding to glass into
water as mostly used in laboratory experiments. Its influence on the collapse has been
reported in Bougouin & Lacaze (2018), and is beyond the scope of the present paper. St
can be defined in different ways, and we choose here to follow Bougouin & Lacaze (2018)
as

St =
1

18
√

2

(ρp∆ρgd
3)1/2

η
. (2.9)

In order to vary St, the viscosity of the fluid η is varied over 5 decades to range in
St ∈ [6. 10−3, 60]. This range of St allows to cover both the viscous regime and the free-
fall regime as defined in Courrech du Pont et al. (2003) and Cassar et al. (2005). Note
that the validity of the model (2.8) for ηMeff when increasing St in this range is probably
questionable, as fluid inertia at the scale of the grains could become not negligible.
However, the small-scale fluid-inertia contribution should be limited in a dense granular
configuration, and mostly dominant close to the upper surface of the granular medium.
This is therefore expected to decrease quickly in the granular medium and not to be a
dominant effect in the present configuration. Fluid inertia is therefore only accounted for
through the drag model (2.6).

At the scale of the initial column, beyond the initial aspect ratio a set constant in the
present study, recall a = 0.5, the column is characterized by its initial volume fraction
defined as

φi =

∑
j=1:Np

Vj
LiHiLz

, (2.10)

with Vj the volume of grain j. The volume fraction of the initial column φi is varied by
modifying the filling procedure. We cover the range φi ∈ [0.57, 0.63]. Note that the total
number of grains is Np ≈ 20 000 whose exact value depends on φi.

The set of dimensionless parameters used is recalled in Table 1.

3. On the influence of St and φi on immersed granular collapses

3.1. Preliminary considerations and typical observations

Experimental observations of dry and immersed granular collapses are noticeably
different, particularly, concerning the influence of φi reported in both cases. Even if
differences on the transient and the final profile for varying φi was observed for the dry
case in an almost similar configuration (Daerr & Douady 1999), they remain relatively
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a Li/d Lz/d φi r St

0.5 64 8 [0.57, 0.59, 0.63] 1.6 [6. 10−3 : 60]
(13 values evenly

distributed on a log-scale)

Table 1. Range of dimensionless parameters covered.
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Figure 3. Dimensionless height profiles h(x/d)/d of the granular medium at different time:

(a) (St, φi) = (6. 10−3, 0.57) and time step ∆t
√
g/d = 150, (b) (St, φi) = (6. 10−3, 0.63) and

time step ∆t
√
g/d = 150, (c) (St, φi) = (60, 0.57) and time step ∆t

√
g/d = 15 and (d)

(St, φi) = (60, 0.63) and time step ∆t
√
g/d = 15.

small. Then the influence of φi was not discussed any longer in the literature for the
case of dry granular collapse. On the other hand, when dealing with immersed granular
flows, Rondon et al. (2011) reported the influence of φi as one of the dominant effects on
the granular pile evolution. Their experiments were performed for St = {0.035, 0.065}
according to the definition (2.9), i.e. in a viscous regime at small St.

These experimental observations can be recovered using the VANS/DEM approach as
reported in figure 3. In particular, one shows the temporal evolution of the dimensionless
height profiles of the granular material h(x/d)/d for different values of (St, φi). We focus
here on St = {6. 10−3, 60} and φi = {0.57, 0.63}. In a viscous dominated situation,
St = 6. 10−3 (figures 3(a)-(b)), φi clearly influences both the dynamics and the final rest
state of the collapse. In particular, the initiation of the collapse is clearly delayed for
the dense initial situation φi = 0.63 with an initiation of the collapse at the right upper
corner of the initial column (figure 3(b)) while no delay is observed for the initial loose
configuration for which the collapse is initiated at the right bottom corner (figure 3(a)).
Moreover, the spreading length is significantly more important for the loose situation.
These observations are in qualitative agreement with experimental observations at small
St (Rondon et al. 2011). On the other hand, for a particle-inertia (free-fall) configuration,
St = 60 (figures 3(c)-(d)), the influence of φi is less obvious. For sure, the spreading length
is not affected which explained that no influence of φi was reported in experimental
studies dealing with dry collapse. However, a small difference can be observed close to
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Figure 4. Trajectories of the dimensionless position of the centre of mass
((2Yg − Li)/Li,(2Xg − Li)/Li) (inset: log-log representation). Light grey symbols, dark
grey symbols and black symbols correspond to φi = 0.57, φi = 0.59 and φi = 0.63, respectively
(squares St = 6. 10−2 and circles St = 6. 10−1). Solid line (triangular shape) and dash line
(trapezoidal shape) correspond to model (3.1).

the summit of the deposit. This observation reflects results reported by Daerr & Douady
(1999).

Numerical results reported in figure 3 highlight the relevance of the mesoscale approach
to provide the main behaviours obtained in previous experiments.

3.2. Granular morphology during collapse: a simple geometrical model

In order to highlight similitudes and differences of collapses in the range of (St, φi)
considered here, the main oder morphological properties of the granular material during
collapse is first considered. For this purpose, the trajectory of the centre of mass (2Yg −
Li)/Li,(2Xg − Li)/Li during the collapse, i.e. for t ∈ [0, tf ], is shown in figure 4 for
different values of (St, φi). Surprisingly, one observes that all trajectories remarkably
collapse onto a single curve prior reaching the final deposit. The only difference between
all the cases considered here is the position at which the trajectory of a given (St, φi)
stops onto this universal curve (see in particular the inset of figure 4). Note that this
observation confirms experimental results reported by Bougouin & Lacaze (2018) for
constant φi ≈ 0.64. Obviously, a closer investigations indicates some small deviations,
mostly at early stages of the collapse particularly for small φi and small St (light grey
squares). Assuming these deviations to be of second order, we focus here on the main
curve holding all these trajectories.

The trend of the trajectory of the centre of mass can be predicted by deriving
trajectories of simple geometric models. In particular, according to the shapes observed
for small spreading length situations and larger ones, one considers that the shape of the
collapse remains either trapezoidal or triangular during the entire collapse. We obtain
for the trapezoidal shape and the triangular shape, respectively,

2Yg −Hi

Hi
∼ −

(
2Xg − Li

Li

)1/2

and
2Yg
Hi
∼
(

2Xg

Li

)−1
. (3.1)

These two solutions are plotted in figure 4 with dashed line and solid line, respectively.
Such simple solutions are shown to predict quite well the numerical data far from the
initial state, i.e. for (2Xg − Li/Li, 2Yg −Hi/Hi) sufficiently far from (0, 0). In the latter
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Figure 5. (a) dimensionless runout r = (Lf − Li)/Li, (b) mean deposit slope tanα as defined
in the text (squares) and maximum deposit slope tanαt (dots) as sketched in the inset and (c)
dimensionless time scale T95/Tc, all as a function of St (green symbols φi = 0.57, red symbols
φi = 0.59 and blue symbols φi = 0.63). Full symbols in (c) corresponds to Tc = Ti while open
symbols are for Tc = Tv (see text for definitions of Ti and Tv). In (a) and (b), horizontal small
black lines at large St correspond to dry simulations of the present configuration for φi = 0.57
and φi = 0.63, respectively, while dark grey lines are extracted from the experimental results of
Lajeunesse et al. (2005).

case, trapezoidal and triangular predictive models give an identical trend. However, closer
to the initial state, i.e. (2Xg −Li/Li, 2Yg −Hi/Hi) ≈ (0, 0), the trapezoidal model gives
a better estimation of the collapse evolution in the range of parameters considered here
(dash line). This is in accordance with the small a = 0.5 aspect ratio considered here, for
which the granular medium remains in a trapezoidal shape during most of the collapse
and particularly at early stages, even if the final rest state can be closer to the triangular
shape for some cases (small φi and small St for instance). Note that it has been shown that
larger a situations are better estimated by the triangular model, as shown in Bougouin
& Lacaze (2018) for laboratory experiments.

Even if these simple models give a first insight of the dynamics of the collapse, the
final rest state remains unpredicted. In order to close model (3.1), i.e. to predict the final
state of the granular collapse, it would require to prescribe the time scale of the collapse
and one of the final state morphological property, as the final spreading length or the
final height or even deposit slope. This is discussed in the next section.
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3.3. Final state morphology and time scale

In order to quantify the combined influence of (St, φi) on both the final state and
the time scale of the collapse, figure 5 shows the final runout r = (Lf − Li)/Li (a), the
mean deposit slope tanα (b) and the dimensionless collapse time scale T95/Tc (c), as
a function of St and for several φi (φi = 0.57 green symbols, φi = 0.59 red symbols,
φi = 0.63 blue symbols). In figure 5(b), the mean deposit slope tanα is defined as
tanα = Lf/Hf for triangular deposit and tanα = (Lf −Lb)/Hf for trapezoidal deposit
(see inset of figure 5(b) for sketches and corresponding deposit lengths). Also shown in
figure 5(b) is the maximum deposit slope tanαt obtained at the top of the deposit (dot
symbols). In figure 5(c), T95 corresponds to the time at which 95% of the final spreading
length is reached by the front of the granular avalanche. Two different characteristic
times Tc have been considered here (full symbols and open symbols in the figure 5(c))
and defined as in Bougouin & Lacaze (2018). A so-called free-fall characteristic time

Tc = Ti =
√

2ρpHi

(ρp−ρ)g corresponds to the time that a particle needs to fall from a height

Hi with a constant acceleration induced by gravity g, assuming no interaction with the
surrounding fluid (full symbols in figure 5(c)). A second characteristic time corresponds
to a viscous time scale that a grain needs to fall from a height Hi when its velocity
remains constant as an equilibrium between weight and viscous drag. In this case, one
can write Tc = Tv = 18ηHi

(ρp−ρ)gd2 and the corresponding results are shown by empty symbols

in figure 5(c).
When St is large enough, St > 10, figure 5(a) shows that (Lf −Li)/Li is independent

of φi and reaches the expected dry situation (grey horizontal line from experiments
of Lajeunesse et al. (2005) and black horizontal lines from dry DEM simulations; dry
DEM simulations are preformed by removing the fluid solver on the same granular
configuration). The spreading length then clearly decreases with decreasing St when
the initial packing is dense enough, φi = 0.63 and to a lesser extent φi = 0.59, as could
be expected from the role of viscous dissipation. Yet, an opposite trend is observed for
the initial loose packing, φi = 0.57. In particular, (Lf −Li)/Li increases with decreasing
St, reaching a maximum around St = 0.12. For St < 0.12, the spreading length slightly
decreases with St as for the dense situations, but keeping a value larger than the large
St limit one. For all φi reported here, (Lf − Li)/Li reaches a plateau when St � 1,
whose value increases for decreasing φi. Accordingly, figure 5(b) shows a similar trend
for the deposit slope tanα (squares). A noticeable difference is however observed at large
St where a small difference on the deposit slope tanα (as it is defined here) is obtained.
This remains in the range of values reported from experiments (horizontal grey line from
Lajeunesse et al. 2005) and dry DEM simulations (horizontal black lines). This difference
at large St quantifies observations reported in figure 3(c-d), and is probably a signature
of previous experimental observation on a similar configuration (Daerr & Douady 1999).
Finally, the maximum slope close to the top of the deposit tanαt support previous
observations (dots in figure 5(b)). Small differences between tanαt and tanα somehow
measures an apparent uncertainty between macroscopic behaviour induced by (St, φi)
on the shape of the final deposit and a local manifestation of different spatio-temporal
dynamics, close to the front or close to the upper part of the deposit. Then, accordingly,
the influence of (St, φi) is considered as remaining small for St ' 1.5, above which tanαt
no longer depends on St or φi.

At large St, the time scale of the collapse scales with a free-fall situation for which
the fluid is disregarded (see full symbols in figure 5(c)). This time scale then strongly
increases when St decreases (full symbols in figure 5(c)) to reach a viscous time scale
whatever φi (open symbols in figure 5(c)). One observes here that the regime of the
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Figure 6. (a) Ratio of the spreading length Lf − Li to the dry one Ldf − Li as a function of

the effective Stokes numbers St∗ = St × η/ηMeff (open symbols) or St∗ = St/
(
φi(1− φi)−ξ

)
(full symbols) for the initially dense configuration φi = 0.63 (see text for details):
simulations for (ξ = 1, ηMeff/η = 1 + 5

2
φ) (squares) and an extra lubrication model (circles),

(ξ = 2, ηMeff/η = 1+ 5
2
φ+7.6φ2+16φ3) (up triangle) and (ξ = 3, ηMeff/η = 1+ 5

2
φ+7.6φ2+16φ3)

(down triangle); and experimental data from Bougouin & Lacaze (2018) (crosses). (b) mean
deposit slope tanα as a function of φi: numerical simulations for (ξ = 1, ηMeff/η = 1 + 5

2
φ)

and St ≈ 6. 10−3 (dark squares; blue squares correspond to the same simulations but shifting
φi of ≈ 0.012, value based on the difference of rheological parameters between experiments
and simulations, as explained in section 4.1), experimental data from Rondon et al. (2011) for
St ≈ 5. 10−2 (small dots) and for St ≈ 5. 10−2 and a ≈ 0.5 or a ≈ 0.65 (big dots).

collapse, viscous vs. free-fall, changes for 1 < St < 10, actually close to St ≈ 1.5, as
the transition observed for the deposit shape mentioned previously. This confirms the
influence of the viscous dissipation on the final deposit. Yet, fluid viscosity can act on
a very different manner on the dynamics and the deposit when St → 0, depending on
the value of φi. A non intuitive consequence is a possible enhancement of the spreading
length due to the fluid viscosity. This means that the influence of the fluid viscosity is not
only to slow the collapse down as could be expected through St whatever φi, but plays
another role through φi at given St. The only other source of dissipation is obviously
the granular friction, which has therefore to be strongly affected by φi. The rheological
properties of the granular material then plays a major role on these observations. This
will be discussed in section 4.

3.4. An effective St definition: unifying closure models and laboratory experiments.

Before discussing the rheological properties, we focus on the generalization of the
above mentioned results regarding the fluid phase closure models and with respect to
experimental data available in the literature. So far, we have provided results for a given
set of parameters of the closure models (2.6) and (2.8). According to the results discussed
in the supplementary material available at [link to be added], this specific set of parameters
should contain all the required physics of the fluid phase at the microscale, smaller than
d, to provide the expected behaviour of the collapse, at least qualitatively. This would
mean that the influence of a specific choice of the closure model, in the range of the one
proposed in section 2.2 could only affect quantitatively the dynamics. We will show in
this section that this quantitative influence of the closure models can actually be simply
accounted for by defining an adequate effective Stokes number. Moreover, this will be
then discussed in light of experimental results to highlight their predictability from the
present simulations.
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We have shown previously that the collapse is strongly affected by the transition
from the viscous regime towards the free-fall regime. This transition has been shown
to be controlled by the St number according to many configuration involving fluid-
particle interactions. One can thus anticipate that closure models, affecting viscous
dissipation at the microscale, should modify the critical range of St characterizing the
transition from the viscous regime towards the free-fall regime. However, the qualitative
trend obtained previously by varying (St, φi) should be maintained. To highlight that
assumption, different models have been considered for φi = 0.63 and varying St. Results
are reported in figure 6(a). The different symbols correspond to different closure models as
(ξ = 1, ηMeff/η = 1+ 5

2φ) (squares; circles correspond to the same closure models but with
an extra lubrication force added into the DEM contact model as in Izard et al. 2014), (ξ =
2, ηMeff/η = 1 + 5

2φ+ 7.6φ2 + 16φ3) (up triangle), (ξ = 3, ηMeff/η = 1 + 5
2φ+ 7.6φ2 + 16φ3)

(down triangle). One shows in this figure that providing a relevant definition of St,
say St∗, allows almost to collapse the different cases on a master curve. In particular,
this modification of St includes the influence of φi through the effective models as
St∗ = St×η/ηMeff (open symbols in figure 6(a)) or St∗ = St/

(
φi(1− φi)−ξ

)
(full symbols

in figure 6(a)), i.e. accounting for the φi contribution included in either the effective
viscosity closure model or the effective drag closure model, respectively. Note that for
the specific situation of an additional lubrication force in the contact model (circles),
the definition of St∗ is chosen as St∗ = Stη/ηMeff uses ηMeff/η = 1 + 5

2φ + 7.6φ2 + 16φ3,
even if the first order Einstein viscosity was used here, as lubrication adds dissipation
which is not incorporated in the fluid phase solver. Then, one shows that models used for
drag and/or viscosity, and even lubrication, only shift transition from viscous to free-fall
regimes that could be easily understood using an appropriate definition of the St number.
This is a remarkable results as it provides the relevance of the mesoscale approach for
modelling immersed granular flows, even if the accurate closure models to be used are
still debated.

A comparison of the results with available experimental data is given in figure 6. More
particularly, figure 6(a) compares the influence of St in a dense configuration φi ≈ 0.64
on the spreading length as experimentally studied by Bougouin & Lacaze (2018), and
figure 6(b) shows the comparison of the deposit angle as a function of φi at small St
as reported by Rondon et al. (2011). In figure 6(a), the final spreading length is shown
relatively to the dry one. This is done to ensure comparability between the numerical
simulations and the experiments for which the bottom surface is different. In figure 6(b),
the comparison is done on the deposit slope tanα. Moreover, note that, here, the values of
St between numerical simulations and experiments are slightly different. However, their
small values ensure a viscous regime, for which the final state remains roughly unchanged
up to St ≈ 10−1. In both cases (figure 6(a) and figure 6(b)), a good agreement is obtained
between the numerical simulations and the experimental data. In particular, the evolution
of the final deposit as a function of the (St, φi) is clearly captured and, moreover, the
quantitative ranges of evolution are in reasonable agreements. Note that, as the value of
φi is very sensitive, we also provide in figure 6(b) results for which φi is slightly shifted
for the numerical data (blue square; the shift value is not arbitrary and is based on the
difference of equilibrium rheological states obtained in experiments and simulations as
explained in section 4).

It can be noted that adding φi in St∗ only accounts for the rate of fluid dissipation
induced by compaction in the granular pores. This allows to capture the relevant range
of variation of the final state as a function of fluid dissipation (figure 6(a)) but not to
provide, solely, an explanation for the influence of φi at given St reported in the previous
section. Actually, the latter highlights a too significant influence on the final state to be



14 L. Lacaze et al.

only attributed to the definition of St∗. This shows again that the obtained results are
to be linked to a significant influence of the rheological properties of the granular phase.

4. Rheological model of the granular phase

Following Lacaze & Kerswell (2009), we use here a coarse-graining approach to extract
the equivalent stress tensor of the granular medium in this unsteady configuration. We do
not recall here this methodology which has become quite standard and refer the reader to
Goldhirsch & Goldenberg (2002) for details. It should be noted that the granular collapse
is an interesting configuration to test and validate rheological models – as equilibrium
models obtained from steady and 1D shear flows– in the case of unsteady and multi-
directional shear configurations. Moreover, it allows to extract out-of-equilibrium local
behaviours, that could be significant for unsteady configurations and required to improve
models. In return, the averaging procedure of the coarse graining method has to be
localised in space and time to extract the local component of the shear and stress tensors,
which are space and time dependent (Lacaze & Kerswell 2009). This usually leads to
relatively dispersed results, as it will be shown in the following. Note, however, that the
granular collapse allows to cover a wide range of dynamical properties such as shear rate
and stress contribution, allowing to extract most of the rheological law, during a single
event.

Here, coarse graining is performed on a regular grid in the (x, y) plane of resolution
2d at different times of the collapse. The averaging procedure is performed over volumes
of gaussian shape in the (x, y) of standard deviation d and invariant in the z direction.
From the coarse-grained results, the rheological law will be characterized by the local
volume fraction φ, which can also be refedred to the local state of the granular material,
and the coefficient of local effective friction µ defined as

µ = ‖〈τ 〉p‖/〈p〉p, (4.1)

with both the deviatoric contribution of the granular stresse tensor 〈τ 〉p and the granular
pressure 〈p〉p being obtained from the coarse graining method. Once again, in such
configuration all these quantities depend on (x, y) and t. In the case of a 3D flow, ‖.‖
refers to the second invariant of a tensor.

The µ(I)-rheology as defined in Jop et al. (2006) is used as the relevant rheological
model, but including the extension of Trulsson et al. (2012) defined when transition from
viscous to free-fall granular flow occurs, as observed for instance when increasing St (see
previous section). Note that in gravity driven configuration, a distinction is sometimes
made between inertial and free-fall regimes, for which inertial referred to as the state
of the fluid drag at large Rep. However, Bougouin & Lacaze (2018) shows that a fluid-
inertial regime that would differ from the free-fall regime is hardly observable in the range
of properties of the immersed granular collapse covered here. Then, we do not clearly
distinguish the inertial regime and free-fall regime as they both share quite common
features for the granular phase. In Trulsson et al. (2012), the high St limit is referred
to as an inertial regime in their neutrally buoyant configuration. However, inertial refers
to the inertia of the grain and the rheology then shares the same features as for dry
situation. This is basically the same as the free-fall case considered here, in which gravity
now drives particle inertia through their apparent weight, i.e. weight and buoyancy.

The rheological model defines the effective friction µ of the granular material as
function of a single dimensionless number, comparing a time scale of macroscopic de-
formation of the granular media induced by a shear ‖〈γ̇〉p‖ and a microscopic time scale
of rearrangement of the media due to a confining granular pressure 〈p〉p. Depending on
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the flow regime, Cassar et al. (2005) has proposed two different relevant definitions for
this dimensionless number, say J in the viscous regime and I in the free-fall regime.
Trulsson et al. (2012) then proposed a combination of these different definitions I and J ,
labelled K, unifying a large range of St, from the viscous regime to the free-fall regime.

One therefore uses the dimensionless number K which can be written as

K = J + βI2, with

∣∣∣∣∣∣∣∣
J =

η‖〈γ̇〉p‖
〈p〉p

I =
‖〈γ̇〉p‖d√
〈p〉p/ρp

, (4.2)

where β is a constant, found to be ≈ 0.65 in Trulsson et al. (2012). It should be noted
that this value of β was found for 2D simulations. In the present case of 3D simulations,
a different value could be obtained. However, in the range of parameters considered
here, small variations of β around this reference value does not show any significant
improvement for universal collapse of the rheological data. It has been chosen to be set to
the value already proposed by Trulsson et al. (2012). Note that dedicated 3D simulations
should help in adjusting more accurately this parameter for 3D configurations.

4.1. Influence of St in the loose packing configuration

In this section, we focus on the initial loose packing configuration, i.e. φi = 0.57. This
initial case is first considered as most of the initial column contributes to the granular
motion, while for large φi, most of the bottom-left corner remains static during the
collapse. It will be shown that this configuration more clearly highlights an equilibrium
state according to the rheological and state parameters (φ, µ), as obtained in steady
flows.

The discussion on the rheological results obtained from the coarsening method is first
discussed over the entire collapse without making distinction of specific regions, i.e. over
the domain A ∈ {x > 2d, y > 2d, y < h(x, t)}, with h the time-dependent height profile
of the granular medium, and over a linear time stepping scale, as t ∈ [0 T95] with a time
step T95/10. Note that T95 is a function of St, then this time stepping account for the
different dynamics of the collapse to cover regularly the full range of evolution. Moreover,
boundaries are excluded from the analysis as they would need a specific attention such
as an adapted coarse-graining approach (Weinhart et al. 2012).

Only the influence of St is thus considered here. The results obtained from the coarse
graining approach are shown for (St, φi) = (6. 10−3, 0.57) (light green symbols) and
(St, φi) = (6, 0.57) (dark green symbols) in figure 7. Note that larger values of St have
been performed up to St = 60, for which no significant difference is observed with St = 6.
St = 6 is thus discussed here without altering the analysis. The volume fraction φ and the
effective friction µ are plotted as a function ofK in figure 7(a) and figure 7(b) respectively.
We can first note that, beyond an important dispersion of the results as anticipated, φ
and µ show a clear evolution with respect to K, thus highlighting the relevance of the
parameter K as the controlling dimensionless parameter to describe the rheology of
immersed granular material. Moreover, the two different cases (St, φi) = (6. 10−3, 0.57)
and (St, φi) = (6, 0.57) nearly collapse on a similar trend curve, even if a slight difference
is actually observes as will be discussed in the following. These observations reinforce the
role of K whose purpose is to unify the different regimes from viscous to free-fall.

The results obtained here show that at small φi, the rheology is not significantly
affected by St, and that the obtained critical volume fraction φc = φ(K → 0) is larger
than the initial state one. These observations suggest that the rheological state is close
to a somehow universal one, independent of the initial state, which should therefore be
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Figure 7. Volume fraction φ (a) and effective coefficient of friction µ (b) (inset: average data on
a regular K−scale from rough local data) as a function of K for (St, φi) = (6. 10−3, 0.57) (light
green dots) and (St, φi) = (6, 0.57) (dark green dots). Solid lines correspond to model (4.3) with
φc = 0.592, a = 0.18, µc = 0.24, ∆µ = 0.6 and

√
K0 = 0.2. Dash Lines correspond to the model

used at large St and extracted from figure 8(b), i.e. φc = 0.6 and µc = 0.29, keeping the other
parameters equal to the former case.

expected to be the one obtained for steady state systems. We thus compare these results
to the model proposed by Trulsson et al. (2012) obtained for steady state and considered
here as the equilibrium state rheology. This model can be written as

φeq = φc − a
√
K,

µeq = µc +
∆µ√

K0/K + 1
,

(4.3)

where subscript eq stands for equilibrium. In figure 7, black solid lines correspond to
the model (4.3) with φc = 0.592, a = 0.18, µc = 0.24, ∆µ = 0.6 and

√
K0 = 0.2.

These values correspond to the best fit that can be obtained from the data shown in
figure 7 for St = 6. 10−3 which shows less dispersion. Moreover, the values for ∆µ and√
K0 are consistant with results obtained for the dry collapse (Lacaze & Kerswell 2009).

This leads to values of the fitting data which are in reasonable agreement with what is
obtained in the literature. It can also be noted at this point that usual value of φc found
in experiments are around 0.58 (see for instance Pailha & Pouliquen 2009). The ≈ 0.012
difference of φc between experiments and simulations has thus been used as the shift
value for φi in figure 6(b) (blue symbols).

The agreement between numerical results and the equilibrium model in figure 7
confirms the reliability of this model in the case of an unsteady and 3D configuration
for a large range of St, at least for φi = 0.57. However, a closer inspection of the results
suggest that the influence of St is not inexistent, and that the spatio-temporal domain of
extraction of the rheological characteristics requires a specific attention as it highlights
different states during collapse. This point is discussed in the following, and will also be
considered attentively in the next section.

As mentioned above, the general rheological trend given in figure 7 is obtained at 10
regularly spaced time steps for t ∈ [0 T95]. At large St, this includes both accelerating
and decelerating stages of the collapse, while at small St it only includes decelerating
stages. This is highlighted in figure 8(a) in which the average value < K > is plotted as a
function of t/T95 for St = 6. 10−3 and St = 6, and with < K > being the spatial average
of K over the non static area AD ∈ {x > 2d, y > hs(x), y < h(x, t)}, where hs is the
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Figure 8. (a) Evolution of < K > as a function of time t/T95 over the domain AD (see text
for details) for (St, φi) = (6. 10−3, 0.57) (black squares) and (St, φi) = (6, 0.57) (grey squares).
(b) µc (black squares) and φc (grey dots) as a function of St. Vertical lines in (b) indicate the
typical uncertainty in evaluating µc and φc.

height profile delimiting the granular region which remains static for t ∈ [0 T95]. We now
focus on the decelerating stage, referred to as the resting stage, which is characterized
as the time interval of decreasing < K >. Note that according to results shown in figure
8(a), the case St = 6. 10−3 is not significantly affected by this new procedure as previous
results were already obtained in the resting stage. However, this is somehow different for
St = 6, for which part of the coarse-grained results are removed with this new procedure.
It explains the more important dispersion of results for St = 6 in figure 7. Using this
new procedure, each St is investigated independently. Insets of figure 7 show the average
value of φ and µ, respectively, obtained on AD during the resting stage, for the two values
of St considered previously. The average is obtained here by binning the spatio-temporal
rough data in log-scale compartments of K. This first confirms the K-trend of both φ
and µ. Moreover, µ and φ merges at large K for the different St, typically K > 10−3

here, i.e. at the beginning of the resting stage. This would naturally support the fact
that the granular material has reached a universal equilibrium state. However, according
to the definition of φc and µc in (4.3) and obtained as K → 0 during the resting stage,
this refined investigation shows that they are both functions of St. The dependence of
φc and µc with St is shown in figure 8(b).

The evolution of µc(St) and φc(St) shown in figure 8(b) highlights a rapid transition
around St ≈ 1 delimiting two asymptotic behaviours at small St and large St, at which
plateaus are obtained. In particular, for both µc and φc, values on these plateaus are
found to be slightly larger for St� 1 than St� 1. Note that the value found at St� 1
is very close to the one reported for dry collapses in Lacaze & Kerswell (2009). However,
the physical reason for the sudden decrease of µc at small St remains unclear, even
if viscous/free-fall transitions are usual observations for several properties in different
configurations (see for instance Gondret et al. 2002, for case of particle bouncing). It can
be at least noted that this is associated with the state of the granular medium for K → 0
as φc follows a similar trend, such as µc decreases with φc. This indicates an influence of
the history of the collapse on the final state, through St, which leads to a small deviation
from a universal equilibrium law.

For an unsteady configuration such as the collapse, the state of the granular system
and its associated rheological law, described here by φ and µ during the resting stage,
i.e. for decreasing K, are close to the equilibrium law obtained for steady flows. However,
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Figure 9. Volume fraction φ (a) and effective coefficient of friction µ (b) as a function of J
for (St, φi) = (6. 10−3, 0.57) (green dots) and (St, φi) = (6. 10−3, 0.63) (blue dots). Angle of
dilatation tanψ (4.4) as a function of J for (St, φi) = (6. 10−3, 0.63) (Inset of (a)). Corrected
coefficient of friction µ− tanψ as a function of J (c) (symbols are similar to figures (a) and (b)).
Notes: the dilatation effect for φi = 0.57 is hardly observable, its correction tanψ has therefore
been neglected for this case (green dots in (c)); the dilatation angle correction tanψ is only
observable when grain motion is significant enough, data below J ≈ 10−4, i.e. in the plastic
region, have therefore been disregarded for φi = 0.63 (blue dots (c)). Solid lines in (a) and (c)
correspond to model (4.5) with φeq = φc. Solid line in (b) corresponds to model (4.3)

the unique function of K with constant parameters in (4.3) as obtained in steady
configurations is not clear in the state. Here, different states can exist for the same value
of K. In the loose configuration considered here, it has been shown to be possibly modeled
by including a St dependency in µc and φc, keeping the trend of the equilibrium model.
To finish with, note that the obtained evolution of µc(St) is in line with the conclusions
drawn previously from the final state shape of the initial loose packing case, i.e. the
spreading length increases while µc decreases for decreasing St (see figure 5(b)).

4.2. Influence of φi at small St

The same procedure can be followed to identify the influence of the initial volume
fraction φi. As the influence of φi is clearer at small St, we focus here on St = 6. 10−3.
In this case, the granular flow remains in the viscous regime and then K = J . Figure 9
reports the coarse-graining results obtained over the temporal interval t ∈ [0 T95] with
a time step T95/10 and over the spatial domain A ∈ {x > 2d, y > 2d, y < h(x, t)}, as
done in the previous section. More particularly, the volume fraction φ and the effective
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coefficient of friction µ are plotted as a function of J for (St, φi) = (6. 10−3, 0.57) (green
symbols) and (St, φi) = (6. 10−3, 0.63) (blue symbols) in figure 9(a) and figure 9(b),
respectively. Note again that the equilibrium law is recovered for φi = 0.57 on this
spatio-temporal domain as discussed in the previous section. Yet, as observed in figure
9, the case φi = 0.63 does not show the same trend as for φi = 0.57; the influence of the
initial decompaction of the granular medium prior collapsing cannot be disregarded from
the rheological point of view. This behaviour has been reported in Pailha & Pouliquen
(2009), specifying a dilatancy angle ψ having to be accounted for when defining the
effective friction angle. Following their analysis, we define the dilatancy angle ψ as

tanψ = ∇ · 〈v〉p. (4.4)

The rheological model (4.3) can then be modified to include the influence of the
dilatancy angle ψ as discussed in Roux & Radjai (1998) and Pailha & Pouliquen (2009)

tanψ = b(φoeq − φeq),

µoeq − tanψ = µc +
∆µ√

K0/J + 1
,

(4.5)

where subscript oeq stands for out of equilibrium. According to this model, µ − tanψ
is plotted as a function of J in figure 9(c), with the same symbols as previously. For
φ = 0.63, only values above J ≈ 10−4 are reported here. As will be shown later, this
is actually similar to considering only the moving region of the granular medium after
the initial stages of the collapse corresponding to the initial expansion of the granular
material. Below J ≈ 10−4, the µ− tanψ does not collapse on the same curve (not shown
here). The reason is probably to be attributed to the connection with the plastic region
which is not well captured by the µ(J) rheology (probably to be related to the behaviour
of the µ(I) rheology at small I as discussed in Barker & Gray 2017). This very specific
behaviour should be addressed in future works but is beyond the scope of the present
paper, as it does not affect significantly the physics and the dynamics of the collapse.
However, for J > 10−4, one obtains a collapse of µ− tanψ on a single function of J for
φi = 0.57 and φ = 0.63.

In order to predict simply the rheological behaviour shown in figure 9, we can first
assume that φeq ≈ φc in (4.5) as it is shown to be roughly constant in the inset of
figure 9(a), where tanψ is shown to be a single linear function of φ whatever J . This
is moreover shown here to be equal to φc = 0.592 (intersection of the solid line and
tanψ = 0 in the inset of figure 13(a)), similar to the value obtained with model (4.3)
for (St, φi) = (6. 10−3, 0.57). Solid lines in figure 9(a,c) correspond to the model (4.5)
with φeq = φc keeping the values of µc, ∆µ and K0 obtained previously and b = 5.5.
This model prescribes relatively well the trends of rheological parameters obtained from
the simulations, particularly for µ− tanψ as a function of J and tanψ as a function of
φ, highlighting the influence of the deviation of the volume fraction φ with respect to a
reference value φc. Nevertheless, this model does not allow to provide the trend of φoeq
as a function of J , i.e. model (4.5) is not closed as we basically end up with one equation
for two unknowns (φoeq, µoeq).

A slightly more advanced approach to close the rheological model (4.5) in our con-
figuration would be to prescribe φoeq. This is not necessarily an obvious task without
solving an appropriate time dependent equation. For sake of simplicity, we propose in the
following a prediction based on the expected behaviour of φoeq, or more likely on tanψ,
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during the collapse. For that purpose, we rewrite the dilatancy angle ψ such as

tanψ = − 1

φ

Dφ

Dt
γ̇−1 = − 1

φ

Dφ

Dt̃
J−1, (4.6)

where t̃ = t/tm with tm = η/〈p〉p is a microscopic time scale of rearrangement of the
granular material in the viscous regime (Cassar et al. 2005). As dilatation/compaction

are precisely a rearrangement process, then we can assume that
1

φ

Dφ

Dt̃
= O(1) and then

tanψ ∼ J−1. That said, we seek for a solution which is also regular when J → 0. φ(J → 0)
can take several values as shown in figure 9(a). However, these values can be anticipated
to be either φi or φc, depending on the situation. These situations can be distinguished
as J → 0 at two different stages of the collapse, say at the very beginning of the collapse
and when reaching its final rest state. In particular, the former case φ(J → 0) = φi is
more likely to be expected at the initial stage of the collapse, when the granular medium
starts from an imposed volume fraction φi. This will be referred to as the initiation
stage. The latter one, φ(J → 0) = φc, on the other hand, is more likely to be reached at
the end of the collapse when the granular material returns to rest. As already discussed
in the previous section, this resting stage could be considered as mainly described by
its equilibrium state. This can be summarized as φ(J → 0, t → {0; tf}) = {φi;φc}. A
solution that would be consistent with (4.5) and (4.3) when J → 0 should then have
the form tanψ → b(φi − φc) for an initiation state and tanψ → b(φc − φc) = 0 for
a resting state. We thus propose the following simple model that would account for
out-of-equilibrium state during the granular collapse

φoeq = φeq +
({φi;φc} − φc) J1

J + J1
,

µoeq = µeq +
b ({φi;φc} − φc) J1

J + J1
,

(4.7)

where {φi;φc} takes one of these values depending on the considered stage, i.e. initiation
versus resting. Note again that with this description, the resting stage is nothing but an
equilibrium state. J1 in (4.7) is a regularization term allowing to reach a finite nonzero
value when J → 0. Its value is found here to be J1 ≈ 10−3 to fit the numerical data. This
can be seen as the transition from a dominance of dilatation/compaction effect towards
a rheology controlled by the equilibrium state, this transition being found here to be
controlled by the number J .

In order to show the relevance of the above mentioned model, one proposes in the
following to extract and to separate results from simulations during the so-called initia-
tion stage and resting stage, labelled in the following (.i) and (.ii) respectively. For that
purpose, the distinction between these two stages has to be prescribed. We propose here to
use the temporal evolution of averaged quantities over the granular medium. We thus plot
the evolution of 〈J〉 and 〈φ〉 as a function of t/Tv in figure 10(a) for both φi = 0.57 (left
column, labelled L. for loose) and φi = 0.63 (right column, labelled D. for dense). Recall
that Tv is a viscous time scale. Here, the procedure to obtain 〈·〉 is the same as the one
explained in section 4.1 but over the domain ADt ∈ {x > 2d, y > hs(x, t), y < h(x, t)},
with hs delimiting flowing region and plastic region at each time step. Note that domain
ADt is slightly more restrictive than AD as used previously in section 4.1.

For the loose packing configuration L., one observes that the dynamics of the collapse,
measured as 〈J〉, quickly reaches its maximum inertial state, and then 〈J〉 → 0. At the
same time 〈φ〉 increases during all the collapse (see figure 10(a) L.). However, in the
log-lin representation of figure 10(a) (L.), the slope of 〈φ〉(t/Tv) suddenly changes. This
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Figure 10. Time dependent rheology of the viscous collapse, St = 6. 10−3, for φi = 0.57 (loose
L.: left column) and φi = 0.63 (dense D.: right column). (a) 〈J〉 (black symbols) and 〈φ〉 (grey
symbols), averaged over domain ADt (see text for details), as a function of time (upper plots
show snapshots of the granular medium within the different phases with static grains in grey
and moving grains in black). (b) state and rheological parameters φ and µ as a function of J
for the different phases as labelled in each figure. (.0), (.i) and (.ii) correspond to the different
stages of the granular flow according to its dynamical behaviour and rheological state: (.0) is
an initial decompaction stage prior collapsing only observation for dense configuration (D.), (.i)
correspond to the initiation stage as an accelerating phase of the collapse and (.ii) is the resting
stage during which the granular material goes to rest.

also corresponds to a change in slope of 〈J〉(t/Tv). This time is chosen as a delimitation
of region (L.i) and region (L.ii). For the dense packing configuration, the evolution of
〈J〉 and 〈φ〉 is slightly different (see figure 10(a) D.). In particular, a first initial stage
(D.0) is observed during which 〈J〉 ≈ 0. This corresponds to the initial dilatancy during
which both 〈J〉 and 〈φ〉 evolve very slowly. Then 〈J〉 increases suddenly. The rest of the
dynamics can also be separated into two stages (D.i) and (D.ii) roughly similarly to
the loose configuration, therefore corresponding to the initiation stage and resting stage.
Here, however, the delimitation is characterized by an inversion of evolution of 〈φ〉(t/Tv)
which decreases during (D.i) and increases during (D.ii). Note that in both cases (loose
and dense), the chosen delimitation between stage (.i) and (.ii) more clearly corresponds
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Figure 11. Comparison of the coarse-graining results reported in figure 9 for φi = 0.63 (blue
dots) and φi = 0.57 (green dots) with the model (4.7) (lines). (a) φ as a function of J and (b)
µ as a function of J . Dash lines correspond to the equilibrium rheological model, i.e. φi = φc,
while solid lines show the out-of-equlibrium model for φi = [0.57 : 0.01 : 0.63].

to a change in the evolution of the state of the granular medium through the evolution of
〈φ〉. However, it is clear from figure 10(a) that this separation also delineates dynamical
stages of the collapse, as for instance 〈J〉 is maximum during the initiation stage (.i),
while it slowly goes to zero during the resting stage (.ii). On the other hand, stages (.i)
and (.ii) actually correspond to significant difference in the mass evolution, and thus the
runout, between loose and dense configurations (as shown by the snapshot of the grains
position in figure 10(a); black dots correspond to moving grains). In particular, T95 is
obtained at the end of stage (L.ii) for the loose configuration, while it is at the end of
(D.i) or only early (D.ii) for the dense one. Note that the latter observation explains
coarse-grained results shown in figure 9, as will be discussed later on.

Using the above-mentioned delimitation in time, the rheological and state variables µ
and φ are plotted as a function of J during stage (.i) (red dots) and stage (.ii) (green
dots) in figure 10(b). Here, coarse-graining is performed over the spatial domain ADt.
Even though coarse-grained results are a bit sparse, trends can be observed. These coarse-
grained results are compared to the model (4.7) for φ(J → 0, t → 0) = φi (solid line)
and φ(J → 0, t → tf ) = φc (dash lines). The qualitative agreement between the model
and the simulations confirms the assumptions used to obtain model (4.7).

To finish with, we come back to results obtained in figure 9. Recall that there, coarse-
grained results were obtained in the interval t ∈ [0, T95] over a regular time grid in
a lin-scale, and also includes the static region. According to results reported in figure
10 and the scale of T95 for the loose and dense configuration, the spreading phase t ∈
[0, T95] mostly lasts at the end of (L.i) and during (L.ii) for loose configuration while
it mostly lasts during (D.i) for the dense one. In figure 11, one compares model (4.7)
with this previously obtained coarse-grained results. Solutions of (4.7) are shown here
for {φi;φc} = φi = [0.57 : 0.01 : 0.63] (thin lines), with highlights on {φi;φc} = φc (dash
line) and {φi;φc} = φi = 0.63 (solid line). We can first conclude that the model proposed
is in good agreement with numerical data showing its relevance for out-of-equilibrium
situations. Moreover, the dense packing configuration highlights more clearly an out-of-
equilibrium law model with {φi;φc} = φi while the loose packing situation shows an
equilibrium state, i.e. {φi;φc} = φc, during most of the spreading phase t ∈ [0, T95]. This
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latter remark does not mean that the loose configuration is not affected by the initiation
stage, but that it happens on a short time scale compared to the entire collapse one,
unlike the dense configuration.

5. Discussion

A simple phenomenological model is proposed in an attempt to provide a link between
the rheological models obtained in the previous section and the morphology of the final
state of the collapse. If the inertial acceleration of the granular slumping is not a dominant
contribution of the collapse, which seems reasonable for immersed configurations and
more particularly for small a, the final state is controlled by a balance between the macro
pressure gradient, linked to the height gradient, and the friction term close to threshold.
In other words, we suppose a quasi-static evolution of the collapse preventing the granular
medium to spread further than its state at the threshold of motion. Obviously more
complex situations could be imagined particularly when increasing a, but it is shown
here that this assumption is sufficient to explain the influence of (St, φi) discussed so far.
Assuming the final deposit to have a trapezoidal shape, one simply obtains

tanα = µ and
Lf − Li
Li

=
a

2µ
, (5.1)

with µ some effective friction coefficient at the macroscopic scale to be determined. Then
the deposit only depends on the model prescribed to µ for a given a. According to the
results obtained in the previous section, the friction parameter, even at threshold can
vary for varying St and φi. This leads to a finite interval of possible deposit slope, even
for a quasi-static situation. Based on (4.6) and (4.7), we propose here to write this friction
parameter as

µ = µc(St) + b (φi − φc)
Γ̇−1

tφ
, (5.2)

with tφ a time scale associated with the evolution of φ, from φi to φc during the initiation

stage, and Γ̇−1 is a macroscopic time scale of deformation of the granular medium.
Defining these two time scales is not straightforward for such a predictive model as

different stages of the collapse have been shown to highlight different behaviours. A key
point is thus to anticipate the stage controlling the final deposit. We thus base their
definition on the observations extracted from figure 5 and figure 10. In particular, we
have shown that φi influences the final deposit mostly at small St. Moreover, φi has been
shown to affect the rheological behaviour during the initiation stage. We thus anticipate
that the initiation stage is of main importance at small St while it probably does not
affect much the final state at large St. Accordingly, Γ̇−1/tφ should be order one at small
St and decreases with increasing St.

According to the definition of tφ as given in the previous section, i.e. a microscopic

time scale of rearrangement, we write tφ = η/∆ρgHi + βd
√
ρp/∆ρgHi, obtained for a

granulostatic pressure over the column height, and accounting for a viscous to free-fall
transition. Note that β is used here as in the definition of K for the sake of simplicity,
as the transition parameter from viscous to free-fall regime. tφ then accounts for the
difference in time scale for rearrangement depending on the state, viscous vs free-fall.
According to the previous discussion, this time scale should be compared to a viscous time
scale of macroscopic deformation of the granular medium, then Γ̇−1/tφ would actually be
order one at small St. This therefore implies that the relevant deformation accounting for
dilatancy/compaction of the initial granular column, is associated with a viscous scale.
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Figure 12. Geometrical characteristics of the final deposit, as the deposit angle (a) and the
dimensionless spreading length r = (Lf −Li)/Li (b) as a function of St and different φi (green:
φi = 0.57; red: φi = 0.59, blue: φi = 0.63). Symbols correspond to mesoscale VANS/DEM
simulations (reported from 5(a-b), see the corresponding caption for details) and lines are model
(5.3) with µc(St→ 0) = 0.24 (solid lines) and µc(St� 1) = 0.29 (dash lines).

It is thus written as Γ̇−1 = η/∆ρgHi, imposed by the balance between pressure gradient
and viscous shear. This leads to

µ = µc(St) + b (φi − φc)
1

1 + βSt
√
Hi/d

. (5.3)

Figure 12 shows a comparison of this model for both the spreading length and final
deposit angle with numerical results. Here, each line corresponds to the St dependency
of the final deposit through the dilatancy/compaction term in (5.3), µc being either the
value obtained in figure 8(b) at large St (dashed lines) or at small St (solid lines). Even
if the quantitative agreement seems poor, it clearly captures the trend of the evolution
of the final state depending on (St, φ). Then the ingredient to understand and predict
the final deposit seems to be captured. For sure, the specific evolution of the collapse
and the different stages observed depending on (St, φ) has not been explicitly considered
here, as for instance loose and dense configurations do not have a similar initiation
stage and resting stage. A better description and understanding of the physics of the
immersed granular collapse would thus require an intermediate description between the
meso-scale approach and such a simple model. In particular, Euler-Euler simulations
would be necessary to show the relevance of the local rheology obtained in the previous
sections in the concept of continuum modelling. A full shallow-layer prediction on the
unsteady flow could then be used to confirm the pertinent time scales required for a
simple predictive model as discussed here.

6. Conclusion

Numerical simulations of an immersed granular collapse have been reported. The
objective of the paper was to provide a characterization of the immersed granular collapse
with respect to the Stokes number St and the volume fraction of the initial column φi,
which have been reported as the two parameters controlling the dynamics and the final
deposit in experimental studies. The relative influence of these two parameters have been
studied here using numerical simulations at a scale referred to as the mesoscale according
to the scale of the fluid resolution, the granular phase being solved using a Lagrangian
DEM approach. This method has been referred to as the VANS/DEM approach.
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The influence of the two control parameters (St, φi) which characterize the immersed
granular column in this case can thus be investigated. First, their influences on the
dynamics and the final deposit have been considered. In particular, the influence of φi
is quite significant on the dynamics of the flow at small St, i.e. in the viscous regime as
reported by Rondon et al. (2011), but tends to disappear at large St, probably explaining
why its influence has been mostly not reported in dry granular flows. However, when
St→ 0, varying φi can lead to very distinct behaviours, as it can enhance the mobility of
the granular material compared to the dry case for small φi, while the spreading length
decreases with decreasing St for large φi.

These simulations have been then used to provide visco-plastic rheological models
proposed, based on models obtained for steady configurations in the literature. In
particular, the well known µ(I) rheology has been considered as the rheological base
model, but accounting for both an extension to the inertial number K as defined in
Trulsson et al. (2012) unifying free-fall and viscous granular flows, and a dilatancy ψ-
model. In particular, the rheology is characterised here by φ(K) and µ(K) obtained using
a coarse-graining method. The rheological behaviour has been studied by separating two
stages of the collapse: an initiation stage dominated by a dilatancy/compaction process
and a resting stage assumed as being characterized by an equilibrium rheological law as
in steady configuration. The initiation stage has been shown to be strongly influenced
by φi. Accordingly, an extension of the equilibrium rheological model accounting for
dilatancy/compaction effect has been proposed, then referring to out-of-equilibrium
rheological states. This shows to be pertinent for the configuration studied in this paper.
However it would have to be confirmed in other situations, as the assumptions made here
to obtain the model could be only relevant for the considered flow. The resting stage has
been shown to slightly depends on St. However, this latter observation remains unclear
as it has no clear physical support. This would deserve a specific attention, particularly
on the process of compaction during the resting stage, probably influenced by St.

To finish with, a link between this rheology and the shape of the final deposit has
been highlighted assuming a quasi-static evolution state towards an equilibrium between
the pressure gradient and a friction term at threshold. A comparison with the numerical
results shows that the influence of (St, φi) on the final state can be captured by this simple
model. A more refined model would be required to improve the quantitative evolution of
the final state in the (St, φi) parameter space.
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