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Abstract

Anomaly detection consists of detecting elements of a database that are dif-
ferent from the majority of normal data. The majority of anomaly detection
algorithms considers unlabeled datasets. However, in some applications, labels
associated with a subset of the database (coming for instance from expert feed-
back) are available providing useful information to design the anomaly detector.
This paper studies a semi-supervised anomaly detector based on support vector
machines, which takes the best of existing supervised and unsupervised support
vector machines algorithms. The proposed algorithm allows the maximum pro-
portion of vectors detected as anomalies and the maximum proportion of errors
in the supervised data to be controlled, through two hyperparameters defining
these proportions. Simulations conducted on various benchmark datasets show
the interest of the proposed semi-supervised anomaly detection method.

Keywords: Machine learning, Semi-supervised learning, Anomaly detection,
Support vector machines

1. Introduction

Machine learning (ML) methods have been gaining a huge interest with
the computational abilities of modern computers, allowing a lot of data to be
processed in a reasonable amount of time. Moreover, various kinds of data
are becoming accessible due to various widespread sensors (Internet of things
(IOT), mobile phones, satellites, medical devices, etc.) and growing storage
capacities. ML algorithms for regression or classification classically use a so-
called training set to build a model that is able to predict the outputs associated
with other input vectors [1]. A well-known ML method is the support vector
machine (SVM) classifier that has shown impressive results in many practical
applications [2, Chap. 7], [1, Chap. 7].
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This paper focuses on specific ML algorithms designed for anomaly detection
(AD) [3, 4]. AD consists in detecting data that have not been generated by
some normal process. AD techniques can generally handle unlabeled samples
isolating some fraction of them that are classified as anomalies, the others being
classified as normal data. These techniques are usually based on a cost function,
which is estimated from the training dataset and a threshold (corresponding to
a given false alarm rate) that needs to be adjusted by the user. Some popular
AD techniques are based on the local outlier factor (LOF) [5] and the local
outlier probability (LoOP) [6], which compute an anomaly score based on the
nearest neighbors of each tested sample. Another popular algorithm is the
isolation forest (IF) algorithm [7] evaluating the ability of an abnormal sample
to be isolated from the majority of normal samples. The idea behind IF is
that anomalies are generally far from normal data, which are gathered in some
small subspace of the input space. Training samples are then isolated using
random trees until obtaining subsets of cardinal 1 containing each vector of the
database. An isolation score is finally computed for each vector of the database
by counting the number of nodes required to reach the bottom of the tree for
this vector. Methods based on SVMs have also been applied to AD leading
to very efficient algorithms. These algorithms include the support vector data
description (SVDD) algorithm [8], finding the smallest hypersphere containing
a given fraction of the training data, and the one-class support vector machine
(OCSVM) [9], finding the hyperplane separating the data from the origin with
a maximum margin. Finally, an important class of anomaly detectors are those
based on deep learning [10]. These detectors consider feature extraction, e.g.,
using a deep belief networks [11], learning of feature representations for normal
data, e.g., using autoencoders [12], and end-to-end anomaly score learning, e.g.,
using one-class classification with two deep networks (a novelty detector and
another detector enhancing the inlier samples and distorting the outliers) [13].

Anomaly detection can be obviously improved by using labeled data. How-
ever, obtaining labeled data representing all normal and abnormal behaviors,
is often prohibitively expensive [3]. Therefore, some methods have been de-
signed to process partially labeled datasets, leading to semi-supervised learn-
ing [14, 15, 16], with many applications to AD [17, 18, 19, 20]. In particu-
lar, extensions of SVMs have been proposed for semi-supervised learning [21],
leading to transductive SVMs (TSVMs) [15, Chap. 6], semi-supervised SVMs
(S3VMs) [22], and semi-supervised AD [23, 24, 25]. The principle of these
methods is to determine the classifier with maximum margin using both labeled
and unlabeled data vectors. The main drawback of these methods is that the
standard convex SVM problem is transformed into a non-convex and NP-hard
problem [16]. This problem can be solved by exploiting the fact that the ma-
jority of the data vectors are assumed to belong to the same class (containing
normal vectors).

This paper studies a new semi-supervised algorithm for AD. This algorithm
reduces to the state-of-the-art unsupervised SVM AD for unlabeled training
data and to the supervised SVM classifier for fully labeled data. However, it
can also be applied to partially labeled data leading to an interesting semi-
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supervised AD method. The proposed formulation is slightly different from the
one introduced in [26], allowing the hyperparameters to be adjusted more easily.
It has also some similarities with the approach of [25], except that it is more
user-friendly since its hyperparameters have a physical meaning. Section 2 sum-
marizes some important results on SVMs for supervised classification and for
unsupervised and semi-supervised AD. Section 3 introduces the proposed AD
method whose theoretical properties are detailed in Section 3.2. Section 4 eval-
uates the performance of the proposed AD method via simulations conducted
on various datasets. Conclusions are reported in Section 5. Proofs of the various
results can be found in the appendices.

2. State of the art

SVMs [2, Chap. 7], [1, Chap. 7] are powerful tools to determine data-driven
decision functions for classification. This section recalls how SVMs can be used
for supervised binary classification, unsupervised one-class classification, and
semi-supervised AD.

2.1. Supervised SVM

Consider a labeled dataset {(xi, yi)}i=1,...,n where xi ∈ Rd belongs to one of
two classes with labels yi = ±1. In the nonlinear setting, the idea of SVMs is
to find a feature mapping Φ : Rd → Rq, with q > d, such that the transformed
dataset Φ(X), with X = (x1, ...,xn)T , is linearly separable. This framework
can be handled by solving the following optimization problem

arg min
w∈Rq,b∈R

1

2
‖w‖22 (1a)

s.t. yi(w
TΦ(xi) + b) ≥ 1, i = 1, . . . , n. (1b)

In order to choose an appropriate mapping Φ ensuring linear separability of the
two classes, according to the kernel trick, one can define a kernel k such that

k : Rd × Rd → R
(xi,xj) 7→ k(xi,xj) = Φ(xi)

TΦ(xj). (2)

It can be shown that the solution of problem (1) only depends on a subset of
the training vectors, called support vectors, denoted as SV . Namely,

w =
∑
xi∈SV

αiyiΦ(xi), (3)

where αi > 0 for xi ∈ SV . The decision function for a new vector x is then

f(x) = sign
(
wTΦ(x) + b

)
(4)

= sign

( ∑
xi∈SV

αiyik(xi,x) + b

)
. (5)
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There are many ways of constructing kernels for classification [2, Chap. 2.3].
This paper focuses on the well known Gaussian kernel defined as

k(xi,xj) = exp

(
− 1

2σ2
‖xi − xj‖22

)
, (6)

which requires to adjust a unique hyperparameter σ ∈ R+. An advantage of
using the Gaussian kernel is that many heuristics have been proposed to estimate
the hyperparameter σ for binary classification, see for instance [27].

Problem (1) can be modified to allow some of the training data to violate
the constraint (1b). This can be useful when dealing with mislabeled data, or
to avoid overfitting. These methods are called soft margin SVMs [2, Chap. 7.5]
and have led to C-SVM [28] and ν-SVM [29] classifiers. This paper concentrates
on ν-SVM, because it has more interpretable parameters. However, under some
specific assumptions, the two methods are known to be equivalent [2, Prop.
7.6]. The C-SVM method considers slack variables ξi ≥ 0 associated with the
learning data xi, allowing the constraint (1b) to be violated, i.e.,

yi(w
TΦ(xi) + b) ≥ 1− ξi, 1 ≤ i ≤ n, (7)

with ξi ≥ 0. When the training vector xi satisfies the constaint (1b), then
ξi = 0. Conversely, when the constraint (7) is active, i.e., when yi(w

TΦ(xi) +
b) = 1 − ξi with ξi > 0, then the corresponding training vector is such that
yi(w

TΦ(xi) + b) < 1, which allows constraint (1b) to be violated. A slight
modification is generally introduced for constraint (7) leading to ν-SVM

yi(w
TΦ(xi) + b) ≥ ρ− ξi, 1 ≤ i ≤ n, (8)

where ρ ≥ 0. Note that instead of considering a canonical hyperplane (with
margin equal to 1), a hyperplane with margin ρ will be preferred, in order to
ensure specific properties for parameter ν defining the ν-SVM method described
hereafter. To summarize, the C-SVM problem is defined as

arg min
w∈Rq,ξ∈Rn,b∈R

1

2
‖w‖22 + C

n∑
i=1

ξi (9a)

s.t yi(w
TΦ(xi) + b) ≥ 1− ξi, 1 ≤ i ≤ n (9b)

ξi ≥ 0, 1 ≤ i ≤ n (9c)

and the so-called ν-SVM problem is defined as

arg min
w∈Rq,ξ∈Rn,ρ,b∈R

1

2
‖w‖22 − νρ+

1

n

n∑
i=1

ξi (10a)

s.t yi(w
TΦ(xi) + b) ≥ ρ− ξi, 1 ≤ i ≤ n (10b)

ξi ≥ 0, 1 ≤ i ≤ n (10c)

ρ ≥ 0. (10d)
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It can be shown that parameter ν is an upper bound for the fraction of data
points that violates the constraints (10b), i.e., the vectors such that ξi > 0, and
a lower bound on the fraction of the number of support vectors, i.e., the data
with αi > 0. For more details on soft-margin SVM, the interested readers are
invited to consult [30, 31]. Note that on-the-shelf codes are available in the very
popular libsvm package [32].

2.2. Unsupervised SVM

SVMs have been generalized to one-class SVMs for AD [9]. OCSVM con-
siders n unlabeled training data {x1, . . . ,xn} with a feature mapping Φ and
determines the hyperplane separating the data from the origin located at a
maximum distance of the origin. The use of slack variables ξi ≥ 0 allows some
points to be located in the wrong side of the hyperplane, leading to the following
problem

arg min
w∈Rq,ξ∈Rn,ρ∈R

1

2
‖w‖22 − ρ+

1

νn

n∑
i=1

ξi (11a)

s.t wTΦ(xi) ≥ ρ− ξi, 1 ≤ i ≤ n (11b)

ξi ≥ 0, 1 ≤ i ≤ n. (11c)

Note that contrary to Problem (10), no constraint is imposed to ρ, which might
even be negative. When using a Gaussian kernel, the heuristics introduced
in [33] can be considered to estimate the kernel hyperparameter in Eq. (6), i.e.,
estimating σ using the median of all pairwise distances between all vectors of
the training set. It can be shown [9] that parameter ν is again an upper bound
for the fraction of vectors that violate the constraints (11b), i.e., the vectors
such that ξi > 0, and a lower bound for the fraction of support vectors, i.e.,
with αi > 0.

In the following, SVM models will be introduced to perform AD using par-
tially labeled datasets.

2.3. Semi-Supervised Learning using SVM

This section considers a partially labeled dataset with two classes containing
anomalies (yi = −1) and normal data (yi = +1). The dataset is split into two
subsets associated with labeled and unlabeled training samples. Without loss of
generality, the data are sorted such that the first r vectors correspond to labeled
instances (i = 1, . . . , r) whereas the n− r last ones (i = r+ 1, . . . , n) correspond
to unlabeled instances. As claimed in the introduction, the proposed approach
borrows some ideas from the S3VM Anomaly Detection (S3VMAD) [25], which
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is described hereafter. The S3VMAD algorithm is formulated1 as

arg min
w∈Rq,ξ∈Rn,b

1

2
‖w‖22 +

n− r
C0(n− r + 1)

b+
1

C2(r + 1)

r∑
i=1

ξi

+
1

C1(n− r + 1)

n∑
i=r+1

ξi (12a)

s.t. yi(w
TΦ(xi) + b) ≥ 1− ξi, i = 1, . . . , r (12b)

wTΦ(xi) + b ≥ −ξi, i = r + 1, . . . , n (12c)

ξi ≥ 0, i = 1, . . . , n (12d)

with 0 < Ci ≤ 1, i = 0, ..., 2. This formulation is a trade-off between C-SVM and
OCSVM, which were proposed for labeled and unlabeled data respectively. Note
that the hyperparameters Ci are not easily interpretable and can be difficult to
adjust. Moreover, it enforces a margin equal to 1 for labeled data, and to 0 for
unlabeled data.

3. Proposed algorithm

The proposed algorithm uses a ν-SVM approach to process labeled data (tak-
ing the best of the given labels) and an OCSVM approach for unlabeled training
samples. The resulting approach is referred to as ν-SSVM in the following.

3.1. ν-SSVM formulation

The vector of labels y ∈ Rr is extended to Rn by setting yi = 1 for unlabeled
data (i = r+1, . . . , n). This will simplify the notations and yield more compact
formulas. The proposed ν-SSVM strategy is formulated as follow

arg min
w∈Rq,ξ∈Rn,b,ρ1,ρ2∈R

1

2
‖w‖22 − rρ1 − (n− r)(ρ2 − b) +

1

ν1

r∑
i=1

ξi +
1

ν2

n∑
i=r+1

ξi

(13a)

s.t. yi(w
TΦ(xi) + b) ≥ ρ1 − ξi, i = 1, . . . , r (13b)

wTΦ(xi) + b ≥ ρ2 − ξi, i = r + 1, . . . , n (13c)

ξi ≥ 0, i = 1, . . . , n (13d)

ρ1 ≥ 0 (13e)

ρ2 ≥ 0 (13f)

where 0 < ν1 ≤ 1 and 0 < ν2 ≤ 1 are two parameters controlling the values of
the slack variables, which can be tuned according to the application (the choice

1Note that ρ has been replaced by −b from the original formulation to be in agreement
with the C-SVM formulation.
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of these parameters will be discussed later). As one can see, we propose to use
two different margins ρ1 and ρ2 for labeled and unlabeled data, which will allow
specific properties detailed in Sec. 3.2.3 to be satisfied (as shown at the end of
Appendix D). By assigning the same value to ρ1 and ρ2, one would also perform
AD but without satisfying these properties.

The idea of the proposed algorithm is to define a boundary between normal
data and anomalies using the available labels and assuming that the majority
of unlabeled data are normal. This problem consists of looking for a hyperplane
in the feature space defined by w and b, with slack variables allowing some
labeled data to be in the wrong side of the boundary, and some unlabeled data
to be declared as anomalies. As shown in Appendix A, the dual problem of
Problem (13) is

arg min
α∈Rn

1

2
αTY GY α (14a)

s.t.
n∑
i=1

yiαi = n− r (14b)

n∑
i=r+1

αi ≥ (n− r) (14c)

r∑
i=1

αi ≥ r (14d)

0 ≤ αi ≤
1

ν1
, i = 1, . . . , r (14e)

0 ≤ αi ≤
1

ν2
, i = r + 1, . . . , n (14f)

where

• α = (α1, . . . , αn) ∈ Rn is the vector of Lagrange multipliers

• Y = diag(yi)1≤i≤n ∈ Rn×n is the diagonal matrix of labels

• G = ΦΦT ∈ Rn×n is the Gram matrix of the problem

• Φ = Φ(X) =
[
Φ(x1) . . . Φ(xn)

]T ∈ Rn×q is the matrix gathering the
training data mapped into the feature space.

This problem can be solved using quadratic programming. The values of b, ρ1
and ρ2 can be determined by considering the support vectors such that 0 < αi <
1
ν1

for i = 1, . . . , r, and 0 < αi <
1
ν2

for i = r + 1, . . . , n. More precisely, b, ρ1
and ρ2 are obtained as the solution of the following linear system of equations wTΦ(xi) = ρ1 − b if 1 ≤ i ≤ r and yi = +1

−wTΦ(xi) = ρ1 + b if 1 ≤ i ≤ r and yi = −1
wTΦ(xi) = ρ2 − b if r + 1 ≤ i ≤ n

(15)

which can be solved using the least squares method.
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3.2. Properties of ν-SSVM

This section provides some properties of the ν-SSVM method, whose proofs
follow the work of [31] and are reported in the appendices.

3.2.1. Cases in the limit

The ν-SSVM method reduces to ν-SVM when all the data are labeled and
to OCSVM when all the data are unlabeled (see proofs in Appendix B).

3.2.2. Necessary conditions on ν1 and ν2
Problem (14) is feasible if and only if 0 < ν1 ≤ ν1,max and 0 < ν2 ≤ 1, where

ν1,max =
min (#{i ≤ r|yi = +1},#{i ≤ r|yi = −1})

r
+

#{i ≤ r|yi = −1}
r

(16)

where #{i ≤ r|yi = +1} (resp. #{i ≤ r|yi = −1}) is the number of labeled
samples satisfying yi = +1 (resp. yi = −1). The proof is given in Appendix C.

3.2.3. Interpretation of ν1 and ν2
The two parameters ν1 and ν2 are easy to interpret, which simplifies their

choice:

• ν1 is a lower bound for the fraction of support vectors among the labeled
data. Moreover, if ρ1 > 0, ν1 is an upper bound for the fraction of labeled
data that are on the wrong side of the boundary. Therefore, it can be
interpreted as the trust behind the expert feedback or the tolerance with
respect to the labels. This hyperparameter will be generally chosen to
a small value (since we are confident with the expert feedback) and is
bounded by ν1,max as explained before. In the experiments considered in
this paper, this hyperparameter was fixed to ν1 = 0.05 (the proportion of
errors in the labeled dataset is upper-bounded by 5%).

• ν2 is a lower bound for the fraction of support vectors among the unlabeled
data. Moreover, if ρ2 > 0, ν2 is an upper bound for the fraction of
unlabeled data that are on the wrong side of the boundary. Therefore,
this hyperparameter can be interpreted as the prior knowledge about the
proportion of anomalies located in the training dataset. It was fixed to
ν2 = 0.1 in all experiments (the maximum proportion of anomalies located
in the unlabeled dataset is 10%).

Proofs of these properties are provided in Appendix D.

4. Experiments

This section evaluates the performance of the proposed method on 2D syn-
thetic data and several benchmark datasets. Using synthetic data with con-
trolled ground truth allows us to determine important performance measures
such as the probability of anomaly detection and the probability of false alarm.
It also allows the shape of the decision boundaries for the different detectors to
be analyzed.
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4.1. 2D synthetic data

To have visual information on the algorithms, ν-SSVM has been first imple-
mented on the toy2 dataset from [34] 2. This dataset is composed of 485 vectors
of R2 including 35 anomalies (corresponding to a probability of anomaly close
to 7%). This dataset has been normalized in order to be zero-mean with a unit
variance and is depicted in Fig. 1, where blue points correspond to normal data
and red points to anomalies.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
First labeled configuration

Normal data
Anomalies
Labeled
ν-SVM
OCSVM
S3VMAD
ν-SSVM

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Second labeled configuration

Figure 1: Illustration of the proposed ν-SSVM approach with two configurations of labeled
vectors versus unsupervised OCSVM and supervised ν-SVM.

The proposed algorithm has been compared to several state-of-the-art meth-
ods that have been applied to the whole dataset. The different methods are
summarized below:

• OCSVM with a Gaussian kernel whose parameter has been adjusted using
the heuristic presented in [33]. The algorithm is unsupervised and was
applied to the whole dataset (containing normal data and anomalies) with
a maximal proportion of data lying outside the boundary fixed to ν2 = 0.1.

• ν-SVM with a Gaussian kernel. This algorithm is supervised and was ap-
plied to the labeled anomalies and normal instances. The kernel parameter
was adjusted as in [33] using normal data only. The maximal proportion
of data lying outside the separating boundary was fixed to ν1 = 0.05.

• S3VMAD is a reference for semi-supervised learning, which is known (see
[25] for details) to outperform the semi-supervised AD (SSAD) method
introduced in [17], the support vector data description with negative exem-
ples (SVDD negative) [8] and the low density separation (LDS) method [35].
Looking carefully at (12a) and (13a), the hyperparameters of S3VMAD
were chosen as follows: C0 = 1

n−r+1 , C1 = ν2
n−r+1 and C2 = ν1

r+1 .

2The dataset is available in the author webpage at https://github.com/shubhomoydas/

ad_examples/tree/master/ad_examples/datasets/anomaly
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Figure 2: ROC (left) and Precision-Recall (right) curves of the various algorithms. Regard-
ing S3VMAD and ν-SSVM, plain lines correspond to the first configuration of labeled data,
and dashed lines to the second. For all curves, dots represent the results obtained with the
thresholds given by the algorithms.

• The proposed ν-SSVM method was applied to the whole dataset with
partially labeled data. More precisely, 20 normal data and 10 anomalies
were randomly selected (circled in green in Fig.1) in order to build the
labeled subset of data. The Gaussian kernel was used in the analysis, with
the heuristic rule in [33] applied to all the data except labeled anomalies.
The two hyperparameters of the algorithm were fixed to ν1 = 0.05 and
ν2 = 0.1, as explained before.

• To emphasize the importance of labelling, S3VMAD and ν-SSVM were
applied to a second subset of labeled vectors with the same values of ν1
and ν2.

The corresponding boundaries of the 3 algorithms are displayed in Fig. 1,
showing that the use of labeled data changes the boundary of the OCSVM,
in order to be in agreement with the given labels. Note that the influence
of labeled data on the decision boundary can be observed in the two figures.
For instance, labeled examples that are on the wrong side of the boundary
for OCSVM are located on the good side (or on the boundary) for ν-SSVM.
Moreover, in the second configuration, due to the labeling of the top right and
bottom left normal data, the decision function for ν-SSVM is stretched around
the axis defined by these two points. This clearly shows that if the number of
labeled examples fed to the algorithm is limited, the vectors to be labeled should
be optimized. These observations will be confirmed by the following statistical
analysis. Note that ν-SVM seems to overfit and gather the anomalies in small
clusters, i.e., it estimates the support of the anomalies rather than the support
of normal data. In order to complement this analysis, the Receiver Operational
Characteristic (ROC) and Precision-Recall (PR) curves are depicted in Fig.2
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Table 1: 2D AD Algorithms.

Algorithm Precision Recall F1 ROC AUC PR AUC
OCSVM 0.3541 0.4857 0.4096 0.8933 0.3353
ν-SVM 0.9666 0.8285 0.8923 0.9883 0.9542
S3VMAD - first configuration 0.4761 0.2857 0.3571 0.9140 0.4141
ν-SSVM - first configuration 0.4318 0.5428 0.4810 0.9101 0.4167
S3VMAD - second configuration 0.4782 0.3142 0.3793 0.8422 0.3977
ν-SSVM - second configuration 0.5121 0.6 0.5526 0.8951 0.4993

for all the algorithms. As one can see, for any configuration of labeled data, the
ROC and PR curves for the proposed ν-SSVM are above those of S3VMAD.

To have more insight on the AD performance, classical metrics are derived for
each method, namely the precision, the recall, the F1 score, the area under the
PR curve (PR-AUC) and the area under the ROC curve (ROC-AUC). Denoting
as TP the number of true positives (an actual anomaly is detected, i.e., the true
and estimated labels are −1), TN as the number of true negatives (a normal
point is declared as normal, i.e., the true and estimated labels are equal to +1),
FP as the number of false positives (a normal point is declared as anomaly, i.e.,
the true label is +1 and the estimated one is −1), and FN the number of false
negatives (an actual anomaly is not detected, i.e., the true label is −1 and the
estimated one is +1), the precision, recall and F1 score can be defined as follows

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 = 2

Precision× Recall

Precision + Recall
.

The results shown in Table 1 allow us to make the following comments. The
metrics obtained with ν-SSVM are far better than with OCSVM, even if the
algorithm uses few labeled instances (30 labels out of 485 data, i.e., roughly
6% of the data). Note that this observation is valid for the two considered
configurations. The ν-SVM algorithm, which can be considered as an ideal case
where all the labels of the dataset are available, outperforms ν-SSVM. However,
one has to keep in mind that ν-SVM requires a fully labeled dataset, which is
rarely the case in AD applications. As claimed before, the way labeled examples
are chosen has an impact on the decision function. At this point, it is interesting
to mention that some methods have been designed to optimize the way data
can be labeled [36, 37, 34, 26]. These methods are based on active learning,
which requires queries to an oracle. In what follows, more complete datasets
are considered, and the corresponding metrics are averaged over Monte-Carlo
runs to have a better appreciation of the proposed method.

4.2. Benchmark datasets

This section evaluates the proposed ν-SSVM method using the unsupervised
AD benchmark from Harvard dataverse [38], which contains several datasets
with various numbers of features and various sample sizes. The data corre-
sponds to two classes +1 and −1, with the class −1 highly unrepresented, and
have been normalized in order to be zero-mean with a unit variance. All the
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Table 2: Datasets used to evaluate the algorithms.

Name Samples n Features d # +1 # -1
ANN Thyroid 6916 21 6666 250 (0.0361%)
Breast Cancer 367 30 357 10 (2.72%)
Letter 1600 32 1500 100 (6.25%)
Pen Global 809 16 719 90 (11.12%)
Satellite 5100 36 5025 75 (1.47%)
Speech 3686 400 3625 61 (1.65%)

datasets used in this paper along with their properties are gathered in Ta-
ble 2. The proposed algorithm was tested with various proportions of labeled
data, i.e., from 10% to 90% (the labeled data were selected uniformly in the
full dataset). All the experiments were repeated 100 times to perform Monte
Carlo simulations. The presented results are averaged and the corresponding
standard deviations are computed using these 100 iterations. Note that for su-
pervised (ν-SVM) and unsupervised (OCSVM) algorithms, there is no need to
perform Monte Carlo simulations since only one configuration of labeled data is
possible. The hyperparameters of the different algorithms were initially set to
ν1 = min(0.05, 0.999ν0), where ν0 is the maximum value for ν in ν-SVM, and
ν2 = 0.1. Note that the value of ν1,max changes with respect to the number of
labeled data and the considered configuration, cf. Eq. (16). When ν1 ≥ ν1,max,
the hyperparameter ν1 was set to 0.999ν1,max. For each SVM-based algorithm, a
Gaussian kernel was used with a hyperparameter adjusted as for the 2D dataset.

4.2.1. Why should we introduce expert feedback into AD?

The first results illustrate the importance of introducing expert feedback in
an AD algorithm. The average precision-recall curves with their confidence in-
tervals (defined as plus and minus one standard deviation) for ν-SVM, OCSVM,
S3VMAD, ν-SSVM show the impact of expert feedback into the unsupervised
OCSVM algorithm. Note that ν-SVM requires that all the vectors from the
dataset are labeled, providing an upper bound of performance. We recall here
that S3VMAD is the state-of-the art in terms of semi-supervised AD and that ν-
SSVM is the proposed approach. The corresponding curves have been computed
for the datasets Breast Cancer, Letter and Pen Global and are displayed in Fig-
ures 3, 4 and 53. As one can see, the curves obtained for S3VMAD and ν-SSVM
are above those of OCSVM, showing the interest of introducing labeled data for
AD. Moreover, the performance of the unsupervised methods tend to approach
those of ν-SVM when the percentage of labeled data increases. Finally, it is
interesting to note that the proposed ν-SSVM methods performs better than
S3VMAD in all cases. The next section is dedicated to the qualitative evaluation
of the proposed method.

3This paper only considers three datasets for space limitations. However, the conclusions
would be the same for the other datasets from Harvard dataverse.
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Figure 3: Mean PR curves for various percentages of labeled data - Breast Cancer dataset.
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Figure 4: Mean PR curves for various percentages of labeled data - Letter dataset.

14



0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

10% labelled data

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

20% labelled data

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

30% labelled data

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

40% labelled data

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

50% labelled data

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

60% labelled data

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

70% labelled data

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

80% labelled data

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

90% labelled data

ν-SVM
OCSVM
S3VMAD
ν-SSVM

Pen Global

Figure 5: Mean PR curves for various percentages of labeled data - Pen Global dataset.
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Table 3: Precision of S3VMAD, SSAD-IF and ν-SSVM for various datasets

ANN Thyroid Breast Cancer Letter Pen Global Satellite Speech
OCSVM 0.069 0.216 0.110 0.325 0.637 0.024

S3VMAD - 10% 0.160 ± 0.005 0.498 ± 0.054 0.136 ± 0.008 0.466 ± 0.044 0.708 ± 0.011 0.026 ± 0.004
SSAD-IF - 10% 0.769 ± 0.068 0.529 ± 0.174 0.339 ± 0.095 0.963 ± 0.112 0.977 ± 0.058 0.085 ± 0.027
ν-SSVM - 10% 0.161 ± 0.057 0.560 ± 0.194 0.125 ± 0.024 0.419 ± 0.037 0.628 ± 0.012 0.030 ± 0.017

S3VMAD - 20% 0.189 ± 0.006 0.571 ± 0.043 0.142 ± 0.010 0.559 ± 0.047 0.705 ± 0.010 0.032 ± 0.005
SSAD-IF - 20% 0.813 ± 0.044 0.613 ± 0.090 0.517 ± 0.095 0.977 ± 0.058 0.934 ± 0.106 0.140 ± 0.033
ν-SSVM - 20% 0.170 ± 0.039 0.734 ± 0.148 0.137 ± 0.010 0.500 ± 0.033 0.623 ± 0.009 0.034 ± 0.019

S3VMAD - 30% 0.213 ± 0.008 0.607 ± 0.059 0.154 ± 0.012 0.660 ± 0.054 0.722 ± 0.010 0.034 ± 0.005
SSAD-IF - 30% 0.826 ± 0.036 0.643 ± 0.078 0.646 ± 0.097 0.995 ± 0.016 0.836 ± 0.173 0.184 ± 0.032
ν-SSVM - 30% 0.184 ± 0.016 0.835 ± 0.126 0.151 ± 0.011 0.575 ± 0.039 0.636 ± 0.006 0.049 ± 0.028

S3VMAD - 40% 0.234 ± 0.013 0.668 ± 0.079 0.174 ± 0.013 0.760 ± 0.051 0.750 ± 0.008 0.031 ± 0.006
SSAD-IF - 40% 0.829 ± 0.030 0.650 ± 0.074 0.739 ± 0.070 1.0 ± 0.000 0.839 ± 0.178 0.227 ± 0.031
ν-SSVM - 40% 0.212 ± 0.019 0.923 ± 0.111 0.169 ± 0.013 0.637 ± 0.044 0.656 ± 0.006 0.057 ± 0.032

S3VMAD - 50% 0.243 ± 0.019 0.783 ± 0.101 0.198 ± 0.016 0.835 ± 0.040 0.790 ± 0.010 0.030 ± 0.003
SSAD-IF - 50% 0.827 ± 0.041 0.676 ± 0.057 0.796 ± 0.071 0.999 ± 0.007 0.799 ± 0.165 0.274 ± 0.028
ν-SSVM - 50% 0.246 ± 0.027 0.990 ± 0.031 0.200 ± 0.016 0.710 ± 0.048 0.677 ± 0.006 0.089 ± 0.045

S3VMAD - 60% 0.264 ± 0.021 0.865 ± 0.107 0.217 ± 0.028 0.880 ± 0.027 0.832 ± 0.014 0.032 ± 0.004
SSAD-IF - 60% 0.823 ± 0.034 0.691 ± 0.067 0.838 ± 0.056 1.0 ± 0.000 0.798 ± 0.186 0.311 ± 0.031
ν-SSVM - 60% 0.347 ± 0.044 0.997 ± 0.014 0.238 ± 0.019 0.800 ± 0.067 0.705 ± 0.008 0.148 ± 0.064

S3VMAD - 70% 0.329 ± 0.021 0.940 ± 0.075 0.228 ± 0.019 0.913 ± 0.024 0.866 ± 0.010 0.037 ± 0.004
SSAD-IF - 70% 0.815 ± 0.033 0.703 ± 0.065 0.861 ± 0.060 1.0 ± 0.000 0.773 ± 0.199 0.343 ± 0.029
ν-SSVM - 70% 0.592 ± 0.022 1.0 ± 0.000 0.296 ± 0.031 0.928 ± 0.026 0.735 ± 0.010 0.321 ± 0.132

S3VMAD - 80% 0.533 ± 0.034 1.0 ± 0.000 0.253 ± 0.017 0.935 ± 0.065 0.877 ± 0.016 0.057 ± 0.005
SSAD-IF - 80% 0.814 ± 0.032 0.715 ± 0.082 0.881 ± 0.039 1.0 ± 0.000 0.771 ± 0.188 0.379 ± 0.028
ν-SSVM - 80% 0.837 ± 0.014 1.0 ± 0.000 0.386 ± 0.054 0.986 ± 0.009 0.762 ± 0.014 0.736 ± 0.129

S3VMAD - 90% 0.906 ± 0.048 1.0 ± 0.000 0.276 ± 0.024 0.755 ± 0.091 0.826 ± 0.032 0.043 ± 0.005
SSAD-IF - 90% 0.801 ± 0.041 0.729 ± 0.065 0.887 ± 0.041 1.0 ± 0.000 0.769 ± 0.186 0.408 ± 0.025
ν-SSVM - 90% 0.954 ± 0.009 1.0 ± 0.000 0.937 ± 0.021 0.999 ± 0.002 0.793 ± 0.022 0.998 ± 0.007

ν-SVM 0.968 1.0 1.0 1.0 0.882 1.0

4.2.2. Quantitative evaluation

The proposed ν-SSVM algorithm was also compared quantitatively to a
recent non SVM-based AD method based on isolation forests [34] (referred to as
SSAD-IF). The various parameters for SSAD-IF have been tuned as advised in
the original paper. The performance of the algorithms can be appreciated using
the previous metrics (precision, recall, F1, PR AUC and ROC AUC), which are
reported in Tables 3, 4, 5, 6 and 7 respectively. Note that all the codes used
to obtain the different results are available on the first author webpage4. Our
conclusions are summarized below:

• For all metrics, the values of the performance measures obtained for semi-
supervised algorithms vary from the values obtained for OCSVM (unla-
beled data) to the values obtained with ν-SVM (fully labeled data), as
expected.

• The performance of S3VMAD, SSAD-IF and ν-SSVM increases when us-
ing 10% of labeled data instead of 0%. This shows the benefit of using few
labeled data and highlights the interest of incorporating expert feedback
into an AD algorithm.

4https://perso.tesa.prd.fr/jlesouple/codes.html
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Table 4: Recall of S3VMAD, SSAD-IF and ν-SSVM for various datasets

ANN Thyroid Breast Cancer Letter Pen Global Satellite Speech
OCSVM 0.192 0.8 0.18 0.3 0.201 0.098

S3VMAD - 10% 0.145 ± 0.002 0.654 ± 0.065 0.087 ± 0.012 0.188 ± 0.033 0.172 ± 0.008 0.045 ± 0.010
SSAD-IF - 10% 0.643 ± 0.057 0.688 ± 0.227 0.166 ± 0.046 0.278 ± 0.032 0.093 ± 0.005 0.156 ± 0.049
ν-SSVM - 10% 0.139 ± 0.025 0.637 ± 0.234 0.138 ± 0.059 0.342 ± 0.097 0.277 ± 0.008 0.031 ± 0.017

S3VMAD - 20% 0.149 ± 0.003 0.667 ± 0.067 0.098 ± 0.012 0.248 ± 0.048 0.220 ± 0.010 0.056 ± 0.011
SSAD-IF - 20% 0.680 ± 0.037 0.797 ± 0.117 0.253 ± 0.046 0.282 ± 0.017 0.089 ± 0.010 0.257 ± 0.062
ν-SSVM - 20% 0.157 ± 0.019 0.528 ± 0.233 0.136 ± 0.031 0.435 ± 0.081 0.340 ± 0.008 0.028 ± 0.013

S3VMAD - 30% 0.149 ± 0.004 0.660 ± 0.085 0.116 ± 0.014 0.305 ± 0.055 0.265 ± 0.012 0.063 ± 0.011
SSAD-IF - 30% 0.690 ± 0.030 0.836 ± 0.102 0.316 ± 0.047 0.287 ± 0.004 0.080 ± 0.016 0.338 ± 0.058
ν-SSVM - 30% 0.187 ± 0.017 0.519 ± 0.244 0.152 ± 0.033 0.524 ± 0.079 0.402 ± 0.009 0.031 ± 0.015

S3VMAD - 40% 0.147 ± 0.010 0.655 ± 0.121 0.141 ± 0.017 0.370 ± 0.067 0.314 ± 0.011 0.078 ± 0.015
SSAD-IF - 40% 0.693 ± 0.025 0.846 ± 0.097 0.362 ± 0.034 0.288 ± 0.000 0.080 ± 0.017 0.418 ± 0.057
ν-SSVM - 40% 0.212 ± 0.021 0.554 ± 0.203 0.168 ± 0.029 0.606 ± 0.063 0.463 ± 0.008 0.032 ± 0.013

S3VMAD - 50% 0.137 ± 0.012 0.650 ± 0.132 0.184 ± 0.023 0.443 ± 0.050 0.350 ± 0.011 0.102 ± 0.011
SSAD-IF - 50% 0.691 ± 0.034 0.879 ± 0.075 0.390 ± 0.035 0.288 ± 0.002 0.076 ± 0.015 0.503 ± 0.053
ν-SSVM - 50% 0.24 ± 0.021 0.563 ± 0.210 0.201 ± 0.032 0.674 ± 0.059 0.522 ± 0.009 0.044 ± 0.021

S3VMAD - 60% 0.124 ± 0.012 0.655 ± 0.154 0.229 ± 0.021 0.506 ± 0.048 0.391 ± 0.014 0.124 ± 0.018
SSAD-IF - 60% 0.688 ± 0.028 0.899 ± 0.087 0.410 ± 0.027 0.288 ± 0.000 0.076 ± 0.017 0.571 ± 0.057
ν-SSVM - 60% 0.311 ± 0.027 0.619 ± 0.188 0.250 ± 0.025 0.746 ± 0.050 0.586 ± 0.011 0.051 ± 0.024

S3VMAD - 70% 0.120 ± 0.013 0.653 ± 0.179 0.276 ± 0.018 0.553 ± 0.044 0.424 ± 0.014 0.158 ± 0.018
SSAD-IF - 70% 0.682 ± 0.028 0.915 ± 0.085 0.421 ± 0.029 0.288 ± 0.000 0.074 ± 0.019 0.630 ± 0.054
ν-SSVM - 70% 0.415 ± 0.038 0.674 ± 0.172 0.303 ± 0.032 0.854 ± 0.032 0.650 ± 0.011 0.062 ± 0.030

S3VMAD - 80% 0.119 ± 0.013 0.638 ± 0.178 0.316 ± 0.020 0.594 ± 0.049 0.444 ± 0.017 0.259 ± 0.027
SSAD-IF - 80% 0.680 ± 0.027 0.930 ± 0.107 0.431 ± 0.019 0.288 ± 0.000 0.073 ± 0.018 0.696 ± 0.052
ν-SSVM - 80% 0.467 ± 0.031 0.723 ± 0.135 0.448 ± 0.061 0.947 ± 0.015 0.711 ± 0.014 0.097 ± 0.035

S3VMAD - 90% 0.110 ± 0.019 0.632 ± 0.175 0.296 ± 0.028 0.509 ± 0.061 0.406 ± 0.024 0.155 ± 0.019
SSAD-IF - 90% 0.669 ± 0.035 0.948 ± 0.085 0.434 ± 0.020 0.288 ± 0.000 0.073 ± 0.017 0.750 ± 0.046
ν-SSVM - 90% 0.484 ± 0.016 0.767 ± 0.120 0.752 ± 0.026 0.986 ± 0.014 0.771 ± 0.021 0.246 ± 0.073

ν-SVM 0.5 0.8 0.98 1.0 0.920 0.573

Table 5: F1 score of S3VMAD, SSAD-IF and ν-SSVM for various datasets

ANN Thyroid Breast Cancer Letter Pen Global Satellite Speech
OCSVM 0.102 0.340 0.136 0.312 0.306 0.039

S3VMAD - 10% 0.152 ± 0.002 0.563 ± 0.047 0.106 ± 0.010 0.266 ± 0.036 0.277 ± 0.010 0.033 ± 0.006
SSAD-IF - 10% 0.700 ± 0.062 0.598 ± 0.197 0.223 ± 0.062 0.431 ± 0.050 0.170 ± 0.010 0.110 ± 0.035
ν-SSVM - 10% 0.141 ± 0.009 0.527 ± 0.147 0.122 ± 0.017 0.367 ± 0.066 0.384 ± 0.008 0.028 ± 0.009

S3VMAD - 20% 0.167 ± 0.003 0.614 ± 0.042 0.115 ± 0.010 0.340 ± 0.046 0.336 ± 0.011 0.040 ± 0.007
SSAD-IF - 20% 0.741 ± 0.040 0.693 ± 0.102 0.340 ± 0.062 0.438 ± 0.026 0.163 ± 0.018 0.181 ± 0.043
ν-SSVM - 20% 0.159 ± 0.008 0.568 ± 0.181 0.134 ± 0.015 0.460 ± 0.049 0.440 ± 0.007 0.028 ± 0.009

S3VMAD - 30% 0.175 ± 0.005 0.630 ± 0.059 0.132 ± 0.011 0.415 ± 0.057 0.388 ± 0.013 0.044 ± 0.006
SSAD-IF - 30% 0.752 ± 0.033 0.726 ± 0.089 0.424 ± 0.064 0.446 ± 0.007 0.146 ± 0.030 0.238 ± 0.041
ν-SSVM - 30% 0.185 ± 0.012 0.596 ± 0.201 0.150 ± 0.018 0.544 ± 0.046 0.492 ± 0.007 0.034 ± 0.012

S3VMAD - 40% 0.181 ± 0.011 0.656 ± 0.088 0.155 ± 0.013 0.495 ± 0.067 0.442 ± 0.011 0.044 ± 0.007
SSAD-IF - 40% 0.755 ± 0.027 0.735 ± 0.084 0.486 ± 0.046 0.448 ± 0.000 0.146 ± 0.031 0.294 ± 0.040
ν-SSVM - 40% 0.211 ± 0.014 0.665 ± 0.169 0.167 ± 0.017 0.618 ± 0.035 0.543 ± 0.006 0.037 ± 0.012

S3VMAD - 50% 0.175 ± 0.015 0.700 ± 0.097 0.190 ± 0.018 0.577 ± 0.046 0.485 ± 0.010 0.046 ± 0.004
SSAD-IF - 50% 0.753 ± 0.037 0.764 ± 0.065 0.524 ± 0.047 0.447 ± 0.003 0.139 ± 0.028 0.355 ± 0.037
ν-SSVM - 50% 0.241 ± 0.016 0.692 ± 0.179 0.199 ± 0.019 0.688 ± 0.029 0.589 ± 0.005 0.051 ± 0.019

S3VMAD - 60% 0.169 ± 0.015 0.735 ± 0.125 0.222 ± 0.019 0.641 ± 0.042 0.532 ± 0.011 0.051 ± 0.006
SSAD-IF - 60% 0.750 ± 0.031 0.781 ± 0.076 0.551 ± 0.036 0.448 ± 0.000 0.139 ± 0.032 0.403 ± 0.040
ν-SSVM - 60% 0.326 ± 0.024 0.746 ± 0.159 0.243 ± 0.016 0.769 ± 0.039 0.640 ± 0.005 0.067 ± 0.026

S3VMAD - 70% 0.176 ± 0.016 0.755 ± 0.139 0.249 ± 0.014 0.688 ± 0.037 0.569 ± 0.011 0.060 ± 0.006
SSAD-IF - 70% 0.743 ± 0.030 0.795 ± 0.074 0.566 ± 0.040 0.448 ± 0.000 0.135 ± 0.034 0.444 ± 0.038
ν-SSVM - 70% 0.487 ± 0.026 0.791 ± 0.132 0.297 ± 0.015 0.889 ± 0.021 0.690 ± 0.003 0.091 ± 0.033

S3VMAD - 80% 0.195 ± 0.019 0.763 ± 0.142 0.280 ± 0.015 0.724 ± 0.043 0.589 ± 0.012 0.093 ± 0.009
SSAD-IF - 80% 0.741 ± 0.029 0.808 ± 0.093 0.579 ± 0.026 0.448 ± 0.000 0.134 ± 0.033 0.491 ± 0.037
ν-SSVM - 80% 0.598 ± 0.026 0.831 ± 0.096 0.408 ± 0.023 0.966 ± 0.008 0.735 ± 0.003 0.168 ± 0.050

S3VMAD - 90% 0.197 ± 0.031 0.759 ± 0.146 0.285 ± 0.023 0.604 ± 0.052 0.544 ± 0.021 0.068 ± 0.007
SSAD-IF - 90% 0.729 ± 0.038 0.824 ± 0.074 0.583 ± 0.027 0.448 ± 0.000 0.134 ± 0.032 0.529 ± 0.032
ν-SSVM - 90% 0.642 ± 0.015 0.862 ± 0.079 0.834 ± 0.016 0.992 ± 0.007 0.781 ± 0.002 0.390 ± 0.092

ν-SVM 0.659 0.888 0.989 1.0 0.901 0.729
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Table 6: PR AUC of S3VMAD, SSAD-IF and ν-SSVM for various datasets

ANN Thyroid Breast Cancer Letter Pen Global Satellite Speech
OCSVM 0.079 0.577 0.095 0.308 0.450 0.018

S3VMAD - 10% 0.091 ± 0.002 0.600 ± 0.038 0.100 ± 0.001 0.374 ± 0.027 0.481 ± 0.005 0.018 ± 0.000
SSAD-IF - 10% 0.759 ± 0.083 0.620 ± 0.250 0.244 ± 0.058 0.791 ± 0.085 0.885 ± 0.048 0.133 ± 0.038
ν-SSVM - 10% 0.091 ± 0.002 0.625 ± 0.060 0.100 ± 0.001 0.381 ± 0.030 0.481 ± 0.005 0.018 ± 0.000

S3VMAD - 20% 0.103 ± 0.004 0.619 ± 0.054 0.106 ± 0.002 0.450 ± 0.032 0.518 ± 0.005 0.019 ± 0.000
SSAD-IF - 20% 0.817 ± 0.048 0.763 ± 0.163 0.371 ± 0.063 0.888 ± 0.070 0.854 ± 0.098 0.212 ± 0.051
ν-SSVM - 20% 0.104 ± 0.004 0.699 ± 0.079 0.106 ± 0.002 0.464 ± 0.032 0.519 ± 0.005 0.019 ± 0.000

S3VMAD - 30% 0.118 ± 0.006 0.644 ± 0.069 0.114 ± 0.003 0.534 ± 0.045 0.563 ± 0.007 0.020 ± 0.000
SSAD-IF - 30% 0.838 ± 0.033 0.837 ± 0.132 0.482 ± 0.071 0.948 ± 0.029 0.770 ± 0.152 0.283 ± 0.046
ν-SSVM - 30% 0.123 ± 0.006 0.787 ± 0.091 0.114 ± 0.003 0.559 ± 0.045 0.565 ± 0.007 0.020 ± 0.000

S3VMAD - 40% 0.139 ± 0.010 0.684 ± 0.082 0.125 ± 0.004 0.616 ± 0.048 0.619 ± 0.006 0.021 ± 0.000
SSAD-IF - 40% 0.843 ± 0.027 0.850 ± 0.101 0.575 ± 0.057 0.971 ± 0.017 0.770 ± 0.157 0.353 ± 0.050
ν-SSVM - 40% 0.146 ± 0.011 0.853 ± 0.102 0.127 ± 0.004 0.654 ± 0.045 0.622 ± 0.006 0.022 ± 0.002

S3VMAD - 50% 0.164 ± 0.008 0.718 ± 0.110 0.143 ± 0.005 0.694 ± 0.036 0.675 ± 0.004 0.022 ± 0.000
SSAD-IF - 50% 0.843 ± 0.042 0.893 ± 0.067 0.641 ± 0.063 0.981 ± 0.011 0.726 ± 0.150 0.425 ± 0.043
ν-SSVM - 50% 0.183 ± 0.014 0.916 ± 0.070 0.145 ± 0.005 0.744 ± 0.035 0.683 ± 0.004 0.025 ± 0.002

S3VMAD - 60% 0.188 ± 0.009 0.736 ± 0.138 0.176 ± 0.010 0.752 ± 0.031 0.722 ± 0.005 0.026 ± 0.001
SSAD-IF - 60% 0.843 ± 0.026 0.892 ± 0.075 0.703 ± 0.042 0.986 ± 0.009 0.731 ± 0.160 0.487 ± 0.045
ν-SSVM - 60% 0.255 ± 0.020 0.960 ± 0.054 0.180 ± 0.010 0.828 ± 0.030 0.738 ± 0.005 0.033 ± 0.005

S3VMAD - 70% 0.206 ± 0.012 0.751 ± 0.148 0.248 ± 0.014 0.798 ± 0.029 0.756 ± 0.004 0.035 ± 0.003
SSAD-IF - 70% 0.839 ± 0.026 0.895 ± 0.075 0.744 ± 0.061 0.992 ± 0.004 0.719 ± 0.162 0.538 ± 0.043
ν-SSVM - 70% 0.490 ± 0.027 0.983 ± 0.032 0.262 ± 0.015 0.940 ± 0.017 0.789 ± 0.003 0.058 ± 0.013

S3VMAD - 80% 0.212 ± 0.015 0.749 ± 0.151 0.345 ± 0.013 0.824 ± 0.027 0.768 ± 0.006 0.072 ± 0.009
SSAD-IF - 80% 0.839 ± 0.023 0.899 ± 0.095 0.787 ± 0.038 0.993 ± 0.004 0.709 ± 0.163 0.593 ± 0.041
ν-SSVM - 80% 0.764 ± 0.013 0.995 ± 0.016 0.440 ± 0.023 0.993 ± 0.002 0.838 ± 0.002 0.166 ± 0.020

S3VMAD - 90% 0.190 ± 0.021 0.804 ± 0.161 0.354 ± 0.018 0.738 ± 0.047 0.712 ± 0.012 0.180 ± 0.021
SSAD-IF - 90% 0.833 ± 0.033 0.900 ± 0.097 0.822 ± 0.044 0.996 ± 0.002 0.714 ± 0.154 0.633 ± 0.034
ν-SSVM - 90% 0.931 ± 0.006 1.0 ± 0.000 0.816 ± 0.019 0.999 ± 0.000 0.888 ± 0.002 0.560 ± 0.031

ν-SVM 0.944 1.0 1.0 0.999 0.975 0.984

Table 7: ROC AUC of S3VMAD, SSAD-IF and ν-SSVM for various datasets

ANN Thyroid Breast Cancer Letter Pen Global Satellite Speech
OCSVM 0.587 0.973 0.501 0.741 0.540 0.460

S3VMAD - 10% 0.619 ± 0.007 0.975 ± 0.003 0.511 ± 0.004 0.791 ± 0.019 0.589 ± 0.004 0.465 ± 0.002
SSAD-IF - 10% 0.980 ± 0.023 0.967 ± 0.036 0.736 ± 0.049 0.954 ± 0.017 0.937 ± 0.014 0.616 ± 0.044
ν-SSVM - 10% 0.620 ± 0.007 0.978 ± 0.006 0.512 ± 0.004 0.795 ± 0.020 0.590 ± 0.004 0.466 ± 0.001

S3VMAD - 20% 0.662 ± 0.011 0.973 ± 0.006 0.522 ± 0.005 0.832 ± 0.015 0.637 ± 0.005 0.471 ± 0.002
SSAD-IF - 20% 0.990 ± 0.009 0.984 ± 0.017 0.814 ± 0.038 0.977 ± 0.018 0.932 ± 0.037 0.689 ± 0.046
ν-SSVM - 20% 0.662 ± 0.012 0.981 ± 0.010 0.524 ± 0.005 0.838 ± 0.014 0.638 ± 0.005 0.472 ± 0.002

S3VMAD - 30% 0.717 ± 0.011 0.973 ± 0.009 0.535 ± 0.007 0.865 ± 0.018 0.683 ± 0.006 0.478 ± 0.004
SSAD-IF - 30% 0.993 ± 0.002 0.989 ± 0.012 0.860 ± 0.033 0.991 ± 0.007 0.898 ± 0.077 0.735 ± 0.036
ν-SSVM - 30% 0.721 ± 0.013 0.987 ± 0.012 0.538 ± 0.006 0.873 ± 0.017 0.685 ± 0.006 0.480 ± 0.002

S3VMAD - 40% 0.775 ± 0.014 0.970 ± 0.014 0.552 ± 0.008 0.896 ± 0.017 0.736 ± 0.007 0.488 ± 0.004
SSAD-IF - 40% 0.994 ± 0.001 0.991 ± 0.007 0.896 ± 0.022 0.995 ± 0.003 0.897 ± 0.081 0.780 ± 0.036
ν-SSVM - 40% 0.780 ± 0.017 0.988 ± 0.022 0.556 ± 0.008 0.908 ± 0.016 0.740 ± 0.007 0.490 ± 0.003

S3VMAD - 50% 0.817 ± 0.008 0.972 ± 0.014 0.578 ± 0.010 0.922 ± 0.012 0.787 ± 0.004 0.504 ± 0.006
SSAD-IF - 50% 0.993 ± 0.007 0.994 ± 0.004 0.923 ± 0.019 0.997 ± 0.001 0.878 ± 0.088 0.831 ± 0.032
ν-SSVM - 50% 0.840 ± 0.013 0.995 ± 0.006 0.582 ± 0.009 0.936 ± 0.011 0.793 ± 0.004 0.508 ± 0.004

S3VMAD - 60% 0.833 ± 0.009 0.971 ± 0.018 0.617 ± 0.013 0.939 ± 0.009 0.820 ± 0.004 0.526 ± 0.007
SSAD-IF - 60% 0.994 ± 0.001 0.994 ± 0.005 0.941 ± 0.011 0.998 ± 0.001 0.881 ± 0.088 0.866 ± 0.028
ν-SSVM - 60% 0.890 ± 0.010 0.997 ± 0.004 0.621 ± 0.014 0.958 ± 0.008 0.832 ± 0.003 0.531 ± 0.005

S3VMAD - 70% 0.835 ± 0.010 0.970 ± 0.020 0.686 ± 0.019 0.951 ± 0.008 0.843 ± 0.003 0.565 ± 0.011
SSAD-IF - 70% 0.994 ± 0.001 0.995 ± 0.004 0.954 ± 0.015 0.999 ± 0.000 0.877 ± 0.087 0.902 ± 0.026
ν-SSVM - 70% 0.938 ± 0.007 0.999 ± 0.003 0.694 ± 0.020 0.986 ± 0.004 0.868 ± 0.002 0.574 ± 0.006

S3VMAD - 80% 0.827 ± 0.013 0.966 ± 0.025 0.770 ± 0.011 0.957 ± 0.007 0.851 ± 0.003 0.640 ± 0.010
SSAD-IF - 80% 0.994 ± 0.000 0.995 ± 0.006 0.968 ± 0.010 0.999 ± 0.000 0.869 ± 0.098 0.935 ± 0.017
ν-SSVM - 80% 0.974 ± 0.004 0.999 ± 0.001 0.820 ± 0.014 0.998 ± 0.001 0.903 ± 0.001 0.658 ± 0.008

S3VMAD - 90% 0.743 ± 0.019 0.966 ± 0.033 0.759 ± 0.012 0.933 ± 0.014 0.795 ± 0.008 0.753 ± 0.012
SSAD-IF - 90% 0.994 ± 0.003 0.996 ± 0.003 0.980 ± 0.007 0.999 ± 0.000 0.876 ± 0.085 0.963 ± 0.013
ν-SSVM - 90% 0.994 ± 0.001 1.0 ± 0.000 0.933 ± 0.007 0.999 ± 0.000 0.936 ± 0.001 0.845 ± 0.012

ν-SVM 0.996 1.0 1.0 1.0 0.986 0.997
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• The precision can be very low for small percentages of labeled data for
SVM-based algorithms, see for instance the dataset speech with 50% of
labeled data. This highlights the fact that the data to be labeled should
be optimized.

• Globally, the proposed ν-SSVM seems to provide very competitive results
when compared to S3VMAD, whereas the comparison between ν-SSVM
and SSAD-IF depends on the dataset. Note that for small fractions of
labeled data, the values obtained using ν-SSVM are not far from those of
S3VMAD.

4.2.3. Discussion

The proposed ν-SSVM and SSAD-IF algorithms provide the best AD results
for all datasets. However, ν-SSVM only requires the two hyperparameters ν1 and
ν2 to be tuned. These two hyperparameters have a clear interpretation, which
makes them easy to adjust. Conversely, SSAD-IF requires 6 hyperparameters
to adjust: the forest size, the subsampling size, and the tree maximal height
(to initialize the unsupervised IF), and three parameters to take into account
the given labels (the fraction of data detected as anomalies to determine the
threshold of the anomaly score, and two parameters in the cost function), which
are less interpretable. The algorithm S3VMAD has also 3 hyperparameters that
may be difficult to adjust in practical applications. Note that for SSAD-IF the
threshold is determined using a fixed proportion of data located outside the
boundary, whereas in the proposed approach this threshold is automatically
provided by the algorithm to satisfy the constraints imposed by ν1 and ν2. In
addition to that, SSAD-IF requires to project data into a high dimensional
feature space (one component per node in the forest). Thus, we might have to
deal with big vectors, whereas the proposed approach benefits from the kernel
trick. To conclude this discussion, we think that ν-SSVM is an interesting
algorithm for incorporating expert feedback into AD.

5. Conclusion

This paper studied a new SVM-based algorithm for anomaly detection using
partially labeled datasets, with a given tolerance on the labels to avoid over-
fitting. The presented approach, called ν-SSVM, was shown to have interest-
ing properties: 1) the proposed approach is equivalent to the OCSVM method
when the whole dataset is unlabeled and to ν-SVM when the whole dataset
is labeled, and 2) the user can control the tolerance on both the labeled and
unlabeled data independently, thanks to two hyperparameters (denoted as ν1
and ν2 in the paper) that are easy to adjust and lead to smooth decision bound-
aries. Experiments conducted on both synthetic and real datasets allowed us to
appreciate the performance of the proposed algorithm compared with OCSVM
(unsupervised), ν-SVM (supervised), S3VMAD (semi-supervised) and SSAD-
IF (semi-supervised). One interesting result is that few labels allow the results
of OCSVM to be improved significantly. However, general conclusions on the
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optimal number of labeled data to consider could not be drawn because the
results vary from one dataset to another.

Future works will consider applications of the proposed method to active
learning. Active learning consists in finding efficient ways to partially label
datasets, so as to minimize the number of requests to the so-called oracle. Some
methods were already proposed using SVM [36, 26] or Isolation Forest [7, 34]
and are compatible with the presented ν-SSVM. For instance, one could apply
user feedback to Isolation Forest, thanks to the approach presented in [34] and
control the tolerance on the labeled and unlabeled data using ν-SSVM.

Appendix A. Dual problem for ν-SSVM.

The Lagrangian of Problem (13) is

L(w, ξ, b, ρ1, ρ2,α,β, δ) =
1

2
wTw − rρ1 − (n− r)(ρ2 − b) +

1

ν1

r∑
i=1

ξi +
1

ν2

n∑
i=r+1

ξi

−
r∑
i=1

αi
(
−ρ1 + ξi + yi

(
wTΦ(xi) + b

))
−

n∑
i=r+1

αi
(
−ρ2 + ξi +wTΦ(xi) + b

)
−

n∑
i=1

βiξi − δρ1 − γρ2 (A.1)

where α = (α1, . . . , αn) ∈ Rn contains the Lagrange multipliers associated with
constraints (13b) (for α1, . . . , αr) and (13c) (for αr+1, . . . , αn), β = (β1, . . . , βn) ∈
Rn is a vector whose components are the Lagrange multipliers for constraint (13d),
δ ∈ R is the Lagrange multiplier for (13e), and γ ∈ R is the Lagrange multiplier
for constraint (13f). Setting to zero the derivatives of L with respect to the
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primal variables to zero, one obtains

w =
n∑
i=1

yiαiΦ(xi) (A.2)

βi =
1

ν1
− αi, , i = 1, . . . , r (A.3)

βi =
1

ν2
− αi, , i = r + 1, . . . , n (A.4)

n∑
i=1

yiαi = n− r (A.5)

r∑
i=1

αi = r + δ (A.6)

n∑
i=r+1

αi = n− r + γ. (A.7)

Moreover, KKT conditions lead to

αi ≥ 0 (A.8)

βi ≥ 0 (A.9)

δ ≥ 0 (A.10)

γ ≥ 0 (A.11)

αi
[
−ρ1 + ξi + yi

(
wTΦ(xi) + b

)]
= 0, i = 1, . . . , r (A.12)

αi
(
−ρ2 + ξi +wTΦ(xi) + b

)
= 0, i = r + 1, . . . , n (A.13)

βiξi = 0 (A.14)

δρ1 = 0 (A.15)

γρ2 = 0. (A.16)

Using (A.3), (A.4), (A.8) and (A.9) leads to

0 ≤ αi ≤
1

ν1
, , i = 1, . . . , r (A.17)

0 ≤ αi ≤
1

ν2
, , i = r + 1, . . . , n (A.18)

whereas (A.6) and (A.10) yield

r∑
i=1

αi ≥ r. (A.19)

In addition, (A.7) and (A.11) yield

n∑
i=r+1

αi ≥ n− r. (A.20)
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Using the notation
Y = diag(yi)1≤i≤n (A.21)

with (A.2) leads to the compact formula

w = ΦTY α (A.22)

where Φ = Φ(X) =
[
Φ(x1) . . . Φ(xn)

]T ∈ Rn×q. After replacing (A.22),
(A.3), (A.4) (A.5) and (A.6) into the Lagrangian (A.1), the following result is
obtained

L(α) = −1

2
αTY GY α. (A.23)

As a consequence, the dual problem consists of maximizing the Lagrangian
with respect to the Lagrange multipliers under constraints resulting from KKT
conditions, i.e.,

arg min
α∈Rn

1

2
αTY GY α (A.24a)

s.t.
n∑
i=1

yiαi = n− r (A.24b)

n∑
i=r+1

αi ≥ n− r (A.24c)

r∑
i=1

αi ≥ r (A.24d)

0 ≤ αi ≤
1

ν1
, i = 1, . . . , r (A.24e)

0 ≤ αi ≤
1

ν2
, i = r + 1, . . . , n. (A.24f)

Appendix B. Cases in the limit for ν-SSVM.

If all the data are labeled, r = n, and (13) is equivalent to

arg min
w∈Rq,ξ∈Rn,b,ρ1∈R

1

2
‖w‖22 − nρ1 +

1

ν1

n∑
i=1

ξi (B.1a)

s.t. yi(w
TΦ(xi) + b) ≥ ρ1 − ξi, i = 1, . . . , n (B.1b)

ξi ≥ 0 (B.1c)

ρ1 ≥ 0. (B.1d)
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The problem does not change if the objective function is multiplied by
ν2
1

n2 and
the constraints by ν1

n > 0. Thus, Problem (B.1) is equivalent to

arg min
w∈Rq,ξ∈Rn,b,ρ1∈R

ν21
2n2
‖w‖22 −

ν21
n
ρ1 +

ν1
n2

n∑
i=1

ξi (B.2a)

s.t. yi

(ν1
n
wTΦ(xi) +

ν1
n
b
)
≥ ν1

n
ρ1 −

ν1
n
ξi (B.2b)

ν1
n
ξi ≥ 0 (B.2c)

ν1
n
ρ1 ≥ 0. (B.2d)

Introducing the notations w′ = ν1
n w, b

′ = ν1
n b, ρ

′ = ν1
n ρ1 and ξ′i = ν1

n ξi, Prob-
lem (B.2) can be rewritten

arg min
w′∈Rq,ξ′∈Rn,b′,ρ′∈R

1

2
‖w′‖22 +

1

n

n∑
i=1

ξ′i − ν1ρ′ (B.3a)

s.t. yi
(
w′TΦ(xi) + b′

)
≥ ρ′ − ξi′ (B.3b)

ξ′i ≥ 0 (B.3c)

ρ′ ≥ 0 (B.3d)

which is exactly ν-SVM (10). Because ν1 is strictly positive, the solution of
(B.1) and (B.3) will lead to the same decision function, i.e., sign(w′TΦ(x)+b′) =
sign(ν1n w

TΦ(x) + ν1
n b) = sign(wTΦ(x) + b).

If all the data are unlabeled, r = 0, and (13) is equivalent to

arg min
w∈Rq,ξ∈Rn,b,ρ2∈R

1

2
‖w‖22 − n(ρ2 − b) +

1

ν2

n∑
i=1

ξi (B.4a)

s.t. wTΦ(xi) ≥ ρ2 − b− ξi, i = 1, . . . , n (B.4b)

ξi ≥ 0. (B.4c)

Multiplying the cost function by 1
n2 and the constraints by 1

n , one has

arg min
w∈Rq,ξ∈Rn,b,ρ2∈R

1

2n2
‖w‖22 −

1

n
(ρ2 − b) +

1

n2ν2

n∑
i=1

ξi (B.5a)

s.t.
1

n
wTΦ(xi) ≥

ρ2 − b
n
− 1

n
ξi, i = 1, . . . , n (B.5b)

1

n
ξi ≥ 0 (B.5c)

Introducing the notations w′ = 1
nw, b

′ = 1
nb, ρ

′ = 1
n (ρ2 − b) and ξ′i = 1

nξi,
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Problem (B.5) can be rewritten

arg min
w′∈Rq,ξ′∈Rn,ρ′∈R

1

2
‖w′‖22 − ρ′ +

1

nν2

n∑
i=1

ξ′i (B.6a)

s.t. w′TΦ(xi) ≥ ρ′ − ξ′i, i = 1, . . . , n (B.6b)

ξ′i ≥ 0 (B.6c)

which is (11).

Appendix C. Feasibility of ν-SSVM

If Problem (14) has a solution, (14b) implies that it exists α ∈ Rn such that∑n
i=1 yiαi = n − r ≥ 0. Moreover, the constraint (14c) implies

∑n
i=r+1 yiαi =∑n

i=r+1 αi ≥ n− r as yi = 1 for unlabeled data. These two constraints imply

r∑
i=1

yiαi ≤ 0, hence
∑

i≤r,yi=1

αi ≤
∑

i≤r,yi=−1

αi. (C.1)

Moreover, because of (14e), one has
∑
i≤r,yi=1 αi ≤

#{i≤r|yi=+1}
ν1

and
∑
i≤r,yi=−1 αi ≤

#{i|yi=−1}
ν1

. Using (C.1), these two quantities are both upper bounds of
∑
i≤r,yi=1 αi,

and therefore the tightest one is the minimum, i.e.,∑
i≤r,yi=1

αi ≤
min (#{i ≤ r|yi = +1},#{i ≤ r|yi = −1})

ν1
. (C.2)

As a consequence

r∑
i=1

αi =
∑

i≤r,yi=1

αi +
∑

i≤r,yi=−1

αi

≤ min (#{i ≤ r|yi = +1},#{i ≤ r|yi = −1})
ν1

+
#{i ≤ r|yi = −1}

ν1
.

(C.3)

Using (14d) and (C.3) leads to

ν1 ≤
min (#{i ≤ r|yi = +1},#{i ≤ r|yi = −1})

r
+

#{i ≤ r|yi = −1}
r

= ν1,max.

(C.4)
The condition for ν2 is obtained similarly. If Problem (14) admits a solution,
because of (14c), it exists α ∈ Rn such that

∑n
i=r+1 αi ≥ n−r, with 0 ≤ αi ≤ 1

ν2
due to (14f). Therefore

n− r ≤
n∑

i=r+1

αi ≤
n− r
ν2

,hence 0 < ν2 ≤ 1.
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On the other hand, we assume 0 < ν1 ≤ ν1,max and 0 < ν2 ≤ 1. Denoting

ky = min (#{i ≤ r|yi = +1},#{i ≤ r|yi = −1}) (C.5)

and defining α as follows

αj =


r

ky + #{i, yi = −1} for the first ky components such as yj = 1

0 for the other components such that yj = 1
r

ky + #{i, yi = −1} if yj = −1

, j = 1, . . . , r

αj = 1, j = r + 1, . . . , n.

This value is well defined: if ky = #{i ≤ r|yi = +1}, there is no component
equal to 0 in α, and if ky = #{i ≤ r|yi = −1}, the first ky occurences of α
corresponding to yi = 1 are non zero. The following result is obtained

r∑
i=1

αi =
r∑

i,yi=1

αi +
r∑

i,yi=−1
αi = r

ky
ky + #{i, yi = −1} + r

#{i, yi = −1}
ky + #{i, yi = −1} = r

r∑
i=1

yiαi = r
ky

ky + #{i, yi = −1} − r
#{i, yi = −1}

ky + #{i, yi = −1}

=
r

ky + #{i, yi = −1} (ky −#{i, yi = −1}) ≤ 0 (by definition of ky)

n∑
i=r+1

αi = n− r

Moreover, since ν1 ≤ ν1,max, we obtain

r

ky + #{i, yi = −1} ≤
1

ν1

hence

αi ≤
1

ν1

and for i = r + 1, . . . , n

ν2 ≤ 1⇒ αi ≤
1

ν2
. (C.6)

Consequently, the vector α satisfies all the constraints of Problem (14), which
then admits at least one solution.

Appendix D. Properties of the ν-SSVM hyperparameters

This appendix derives some properties of ν1 and ν2 appearing in Eq. (13a).
To prove the first property, we can consider (14d). The extreme case with the
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fewest support vectors corresponds to the case where all support vectors have
their value equal to the maximum allowed, i.e., 1

ν1
, with a sum equal to r. If k

is the minimum number of support vectors, in the extreme case one has k
ν1

= r

thus ν1 = k
r , i.e., ν1 is a lower bound on the fraction of support vectors for the

labeled data.
Using the condition ρ1 > 0 with the KKT condition (A.15) yields δ = 0.

Thus (A.6) leads to
∑r
i=1 αi = r. The labeled data that are in the wrong side

of the boundary are those for which ξi > 0, i.e., using KKT condition (A.14)
those for which βi = 0. Equation (A.3) shows that these vectors satisfy the
condition αi = 1

ν1
. In the extreme case where all the support vectors for labeled

data are outside the boundary, these vectors are such that αi = 1
ν1

. Since their
sum must be r, due to condition (A.6) with δ = 0, there are ν1r of them among
r labeled data. Therefore, ν1 is an upper bound of the fraction of training data
outside the boundary. The same reasoning can be applied to ν2.

Note that if we would use a single parameter ρ instead of ρ1 and ρ2, condi-
tions (A.6) and (A.7) would merge into a single condition

n∑
i=1

αi = n+ δ. (D.1)

If the previous reasoning is applied for δ = 0, denoting as m1 the number
of misclassified labeled vectors and m2 as the number of unlabeled data with
predicted label −1, one has

m1

ν1
+
m2

ν2
= n, (D.2)

and we cannot conclude. The two parameters ρ1 and ρ2 are the theoretical
distances from the support vectors (associated with ξi = 0) to the classifi-
cation hyperplane, for labeled and unlabeled data respectively. They can be
determined using Eq. (15) from the hyperparameters ν1 and ν2 (controlling the
maximum proportions of data from the normal and abnormal classes located in
the wrong side of the margin).
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