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The buoyancy-driven motion of two identical gas bubbles released in line in a liquid
at rest is examined with the help of highly resolved simulations, focusing on moderately
inertial regimes in which the path of an isolated bubble is vertical. Assuming first an
axisymmetric evolution, equilibrium configurations of the bubble pair are determined
as a function of the buoyancy-to-viscous and buoyancy-to-capillary force ratios which
define the Galilei (Ga) and Bond (Bo) numbers of the system, respectively. The three-
dimensional solutions reveal that this axisymmetric equilibrium is actually never reached.
Instead, provided Bo stands below a critical Ga-dependent threshold determining the
onset of coalescence, two markedly different evolutions are observed. At the lower end of
the explored (Ga, Bo)-range, the tandem follows a Drafting-Kissing-Tumbling scenario
which eventually yields a planar side-by-side motion. For larger Ga, the trailing bubble
drifts laterally and gets out of the wake of the leading bubble, barely altering the
path of the latter. In this second scenario, the late configuration is characterized by a
significant inclination of the tandem ranging from 30◦ to 40◦ with respect to the vertical.
Bubble deformation has a major influence on the evolution of the system. It controls the
magnitude of vortical effects in the wake of the leading bubble, hence the strength of
the attractive force acting on the trailing bubble. It also governs the strength and even
the sign of the lateral force acting on this bubble, a mechanism of particular importance
when the tandem is released with a small angular deviation.

Key words: Bubble dynamics; hydrodynamic interaction; multiphase flow

1. Introduction

Buoyancy-driven bubbly flows are widely encountered in natural environments (e.g.
breaking waves, bubbly plumes released from the floor of lakes and oceans) and engi-
neering devices (e.g. bubble columns, ladle steel making, boiling flows in power plants).
Such applications have driven fundamental studies of fluid-bubble interactions in bubbly
suspensions for a long time. Early computational investigations (Smereka 1993; Sangani &
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Didwania 1993) assumed spherical bubble shapes and neglected any possible influence of
vorticity in the liquid. The corresponding potential flow simulations predict the formation
of large horizontal bubble clusters. However, subsequent laboratory experiments and
simulations based on the full Navier-Stokes equations revealed a less clear-cut picture.
When bubbles remain nearly spherical and viscous effects, while smaller than inertial
effects, remain significant in the bulk, experiments (Cartellier & Riviere 2001) and three-
dimensional simulations (Esmaeeli & Tryggvason 1998; Bunner & Tryggvason 2002; Yin
& Koch 2008; Loisy et al. 2017) show that the microstucture is governed by the pair
interaction mechanism known as Drafting-Kissing-Tumbling (hereinafter abbreviated as
DKT) for sedimenting solid particles (Joseph et al. 1986; Fortes et al. 1987). This is
primarily a wake effect by which two particles or bubbles initially aligned vertically
are first attracted toward each other, then repel in the horizontal direction when they
get very close to each other, until they reach an equilibrium separation and fall/rise
side by side. The process is self-repeating, since at some point each of the two bodies
enters unavoidably in the wake of one of its neighbours. In more inertial regimes,
experiments (Cartellier & Riviere 2001; Zenit et al. 2001; Figueroa-Espinoza & Zenit
2005) and simulations (Esmaeeli & Tryggvason 1999; Yin & Koch 2008) with nearly-
spherical bubbles reveal a clear tendency of bubbles to align horizontally. However, the
corresponding clusters are less strong, i.e. the bubble distribution is less anisotropic,
than predicted by potential flow theory. Simulations also considered effects of bubble
deformation. In moderately inertial regimes, the results show that pairs of significantly
oblate bubbles tend to align vertically, forming vertical streams (Bunner & Tryggvason
2003). However this ‘ chimney’ effect disappears in strongly inertial regimes in which
bubbles tend to follow zigzagging or spiralling paths (Esmaeeli & Tryggvason 2005).

This brief review highlights the fact that the microstructure of buoyancy-driven bubbly
suspensions is to a large extent governed by pair interactions. In particular, the two
canonical configurations in which two bubbles are released either in line or side by side
are of particular relevance to obtain a better understanding of the local mechanisms at
stake in freely-rising suspensions. Configurations corresponding to intermediate initial
inclinations connect these two extreme geometries and were considered in the nearly-
inviscid limit, both theoretically (assuming a spherical bubble shape) and experimentally,
by Kok (1993a,b). Detailed experiments were carried out with bubble pairs rising side
by side (Duineveld 1998; Sanada et al. 2009; Kong et al. 2019), varying the liquid
properties, bubble sizes and initial separation. Depending on flow conditions, the two
bubbles were found to repel or attract each other. In the latter case, they may reach an
equilibrium separation or collide, in which case they subsequently bounce or coalesce.
The respective roles of irrotational and vortical effects on the sign and magnitude of the
transverse interaction force were examined in the simulations of Legendre et al. (2003)
assuming spherical bubbles. In particular, a regime map predicting the characteristics of
the final configuration as a function of the initial separation was obtained. Influence of
bubble deformation, which beyond a critical oblateness makes the wake unstable, was
considered numerically by Zhang et al. (2019). The resulting double-threaded wakes and
their interactions were found to be critically important during the collision stages. Indeed,
in most cases this interaction is responsible for an extra repulsive transverse force which
makes the two bubbles bounce.

Not surprisingly, the in-line configuration was first considered assuming spherical
bubbles and an axisymmetric flow at all time. With an irrotational flow in the bulk
supplemented with a weak boundary layer and wake past each bubble, Harper (1970)
established the existence of a finite equilibrium separation of the two bubbles. He showed
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that this equilibrium stems from the balance between a repulsive force corresponding
to the irrotational flow past the two bodies and an attractive force resulting from
the influence of the boundary layer past the leading bubble on the boundary layer of
the trailing bubble. His conclusions were qualitatively confirmed and extended toward
lower Reynolds numbers through axisymmetric computations by Yuan & Prosperetti
(1994) (and later by Hallez & Legendre (2011) who considered arbitrary orientations
of the bubble pair). This investigation prompted Harper to improve his theory by
accounting for viscous diffusion in the wake of the leading bubble, allowing him to
reach a better agreement with the numerical results for large Reynolds numbers (Harper
1997). Early experiments with nearly spherical bubbles were performed in weaker inertial
regimes corresponding to Reynolds numbers lower than those considered by Yuan &
Prosperetti (1994). Using distilled water, Katz & Meneveau (1996) observed that under
such conditions the two bubbles always collide and coalesce. Experiments performed
in silicone oils by Watanabe & Sanada (2006) in the same regime confirmed that the
bubbles collide but revealed no coalescence. In moderately inertial regimes, these authors
did not observe any head-on collision, in line with the numerical findings of Yuan &
Prosperetti (1994). However, they found the equilibrium axisymmetric configuration to be
unstable, confirming Harper’s theoretical analysis (Harper 1970). The three-dimensional
evolution of the bubble pair in moderately inertial regimes was explored in more detail by
Kusuno & Sanada (2015) and Kusuno et al. (2019), using ultrapure water and silicone oil,
respectively. Several interaction scenarios were reported, including the DKT process and
a distinct evolution (also noticed in the computations of Gumulya et al. (2017)) in which
the trailing bubble drifts laterally without significantly modifying the path of the leading
bubble. In this case, the separation between the two bubbles remained significantly larger
than their radius throughout the rise.

Focusing on the initial in-line configuration, possibly with some small angular devia-
tion, the present investigation aims at providing a more detailed understanding of the
interaction processes reviewed above. For this purpose, we carried out high-resolution
three-dimensional time-dependent computations allowing a complete interplay of inertial,
viscous and capillary effects over a wide range of flow regimes. The present paper reports
on the first half of this investigation. It focuses on moderately inertial regimes in which
each bubble, taken isolated, would follow a straight vertical path. High-inertia regimes
in which isolated bubbles follow a non-straight path will be examined in the companion
paper (Zhang et al. (2021)). The entire work is based on the open source code Basilisk
(Popinet 2015) which employs the volume of fluid (VOF) approach. This method enables
the bubbles to deform freely in the liquid as they rise and interact. Moreover, the adaptive
mesh refinement (AMR) technique embedded in this code, supplemented with a specific
refinement (Zhang et al. 2019), makes it possible to properly capture the flow in the
vicinity of the bubble surface, in the near wake, as well as within the film that forms
between the two bubbles when they get very close to each other. The paper is organized
as follows. The problem and the dimensionless parameters are introduced in § 2, while
§ 3 summarizes the numerical method. Before embarking on the discussion of numerical
results, the fundamental mechanisms involved in the interaction process for spherical and
deformed bubbles are reviewed in § 4. Predictions obtained by constraining the flow to
remain axisymmetric are discussed in § 5. Then, fully three-dimensional evolutions are
examined in § 6. Influence of bubble deformation and initial conditions on the evolution
of the bubble pair is discussed in § 7. The main findings and some open issues are
summarized in § 8.
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(a) (b)

Figure 1. Sketch of the problem. (a) initial configuration; (b) definition of some geometric
parameters used to characterize the relative position of the two bubbles.

2. Problem statement

We consider a pair of deformable gas bubbles rising in line in a large expanse of
liquid. The bubbles are assumed to have the same volume V, hence the same equivalent

radius R = (3V/4π)
1/3

. Initially spherical, they are released from rest near the bottom
of the numerical tank, with their line of centres vertical (Y− direction) and their centres
separated by a distance S0. The initial configuration is illustrated in figure 1(a). The
three-dimensional computational domain is cubic, with a size of (240R)3, which makes
it large enough for minimizing artificial confinement effects. The two bubbles start to
rise simultaneously under the effect of buoyancy, which is somewhat different from
experimental studies in which they are usually released in sequence. During the rise,
deviations of the line of centres of the bubble pair from the vertical is characterized by
the angle θ(t) (figure 1(b)).

The liquid and bubble motions are governed by the incompressible one-fluid Navier-
Stokes equations

∇ · u = 0 , ρ(∂tu + u · ∇u) = (ρ− ρ)g −∇p+∇ ·Σ + F s . (2.1)

In (2.1), F s = γκδsn stands for the capillary force, with γ the surface tension, n the
unit normal to the interface, κ = −∇ · n the interface mean curvature, and δs the Dirac
function identifying the interface position. The suspending liquid and the gas within the
bubbles being assumed Newtonian, the viscous stress tensor reads Σ = µ(∇u +∇uT ),
with µ the dynamic viscosity and the superscript T standing for the transpose operator.
The density ρ and viscosity µ are uniform in both the liquid and the gas and experience
a jump at the interface. A free-slip condition is imposed on all four lateral boundaries,
while a periodic condition is assumed to hold on the top and bottom boundaries. In order
to ensure that the net momentum flux through the bottom and top planes is constant,
and to prevent gravity from accelerating the flow in the vertical direction, the gravity
force ρg is supplemented by a body force −ρg with ρ = fρg + (1− f)ρl, f denoting the
global volume fraction of gas in the computational domain, and ρl and ρg the liquid and
gas densities, respectively (Bunner & Tryggvason 2002).

In addition to the gas/liquid density and viscosity ratios, usually very small, the
dynamics of the system is governed by three independent dimensionless numbers, among
which the dimensionless initial separation S0 = S0/R. The other two control parameters
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Name Abbreviation Expression

Reynolds number Re ρluTR/µl

Weber number We ρlu
2
TR/γ

Galilei number Ga ρlg
1/2R3/2/µl

Bond number Bo ρlgR
2/γ

Morton number Mo gµ4
l /ρlγ

3

Table 1. Dimensionless parameters characterizing the system. uT is the terminal rise speed of
the bubble, and the subscript l refers to the properties of the liquid.

may be chosen among those listed in table 1. The Reynolds (Re) and Weber (We)
numbers are generally preferred in theoretical studies. In contrast, in experiments and
computations like those discussed here, the terminal rise speed uT is unknown a priori.
This is why the Galilei (or Archimedes) number (Ga) and the Bond number (Bo) are
usually selected and are used throughout the present study. The Morton number (Mo)
is frequently used in place of the Bond number, since Mo = Bo3/Ga4. In what follows,
we vary Ga and Bo in the range 10 < Ga < 30 and 0.02 < Bo < 2.0, respectively. In this
parameter range, an isolated bubble follows a rectilinear path, i.e. path instability which
is commonly observed for millimeter-size bubbles rising in water does not take place.
For such an isolated bubble, selecting Ga and Bo in the above range leads to terminal
Reynolds numbers in the range 10 . Re . 120, depending on bubble deformation. In
most of the present work, the initial separation between the two bubble centres is set to
S0 = 8, hence the initial gap between the two bubbles is 6R. In what follows, all variables
are normalized using R and

√
R/g as characteristic length and time scales, respectively.

The bubble deformation will often be characterized using the aspect ratio χ = b/a, where
b and a denote the length of the major and minor axes, respectively. Note that in most
available studies, especially the computational works of Yuan & Prosperetti (1994) and
Hallez & Legendre (2011), the Reynolds number is based on the bubble diameter rather
than the radius. When used for comparison, the corresponding results were converted
accordingly.

3. Numerical approach

3.1. General features

The results to be discussed below are obtained by solving (2.1) with the open source
flow solver Basilisk developed by Popinet (Popinet 2009, 2015). Basilisk (see basilisk.fr)
is the successor of Gerris (http://gfs.sourceforge.net) which has been widely employed
over the last fifteen years in detailed explorations of interfacial flows. It makes use of
Cartesian grids with a collocated discretization of the velocity and scalar fields. The
temporal discretization is based on a second-order fractional step method. In particular,
the Godunov-type unsplitted upwind scheme developed by Bell et al. (1989) is used
to discretize the advection term, and a fully implicit scheme is used to compute the
viscous term. A second-order projection method is employed to ensure that the computed
velocity field is divergence-free at the end of each time step. Interfaces are tracked and
geometrically reconstructed by a VOF approach in which an accurate well-balanced
height function method is used to calculate the interface curvature (Popinet 2009, 2018).
An AMR technique allows to locally refine the grid close to interfaces and high-vorticity
regions, based on a wavelet decomposition of the gas volume fraction and velocity fields,
respectively (Van Hooft et al. 2018). This strategy greatly enhances the computational
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(a) (b)

Figure 2. Detail of a typical grid for a bubble pair with Ga = 30 and Bo = 0.3 at t = 8. (a):
grid refinement in the wake and boundary layer regions; four refinement levels are shown, from
dark blue (∆ = R/8.5) to yellow (∆ = ∆min = R/68). (b): grid detail within the leading bubble
and in the neighbourhood of its surface. The gas-liquid interface is marked with a black (resp.
red) line in (a) (resp. (b)).

efficiency while guaranteeing a high numerical accuracy in flow regions where subtle
physical phenomena are likely to take place. In the present study, the spatial resolution
is refined down to ∆min = R/68 close to the bubble interface. Hence, at the highest
Reynolds number considered here (Re ≈ 120), approximately 6 grid points lie within the
boundary layer whose thickness is estimated to δb ∼ Re−1/2. Figure 2 shows how a typical
grid is refined in the vicinity of the two bubbles. In addition to the near-interface zones
where ∆ = ∆min = R/68, refined regions include the boundary layer and wake of each
bubble, where the local cell size is ∆ = R/17. The grid coarsens drastically beyond the
region displayed in the figure, the largest cells in the far field corresponding to ∆ ≈ 7.5R.
Hence the ratio between the largest and smallest cells in the whole domain is 29 = 512.

Previous works have established the capability of Basilisk to accurately simulate
the dynamics of isolated rising bubbles. Moreover, since Basilisk succeeded Gerris and
essentially makes use of the same algorithms, the numerous validations performed with
Gerris over the years also hold for Basilisk. For instance, Popinet (2017) reproduced
successfully with Basilisk the results obtained with Gerris by Cano-Lozano et al. (2016a)
concerning the transition from rectilinear to zigzagging or spiralling paths of air bubbles
rising in various liquids. In § 5 we shall compare present predictions for the equilibrium
distance of two nearly-spherical bubbles (Bo� 1) rising in line with the findings of Yuan
& Prosperetti (1994) and Hallez & Legendre (2011). This comparison will establish the
relevance and accuracy of the present approach in the axisymmetric case. Nevertheless,
this configuration will be proved to be unstable in § 6. Therefore, it is necessary to
determine to which extent the fate of the three-dimensional system depends on numerical
details driving the onset of this instability. This is the purpose of appendix A in which
several specific tests are reported.

Most of the computations were run on a personal computer with 24 Intel R© Xeon R© E5-
2630 v3 processors. The Intel-MPI library was used to exchange informations between the
processors. A typical run extending over 50 time units took approximately 50 days (e.g.
the case Ga = 30, Bo = 0.3 discussed in § 6.3). Note that, since capillary effects impose
a specific time step constraint, low-Bo cases require longer computational times. For
instance, to reach a given physical time, the case Ga = 30, Bo = 0.05 was 1.5 more time
consuming than the previous case. Due to the AMR procedure, the grid evolves over time.
For Ga = 30, Bo = 0.3, its size stabilizes at approximately 2.5 million cells during the
second half of the run. When additional levels of grid refinement are introduced because
the bubbles get very close to each other (see below), this size increases significantly. In
such cases, e.g. Ga = 20, Bo = 0.5 discussed in § 6.4, the complete grid involves up to
4.2 million cells.



Deformable bubbles rising initially in line 7

3.2. Treatment of thin films: numerical vs. physical coalescence

In the present problem it is likely that under certain conditions the two bubbles get
very close to each other. When this happens in a real flow, coalescence may or may not
take place, depending on the mobility of the interfaces involved and on the strength
and duration of the forces that drive the two bubbles toward each other (Chesters 1991;
Chan et al. 2011). Dealing numerically with such situations is particularly challenging,
owing to the very small scales involved. Some numerical approaches, especially the Front
Tracking technique (Unverdi & Tryggvason (1992); Tryggvason et al. (2001)), totally
prevent coalescence. The same may be achieved in VOF approaches by identifying the
two bubbles with separate markers, each of them representing the local volume fraction
of the corresponding body. However, this numerical option is not fully appropriate here.
Indeed, for the reasons mentioned below, bubbles rising in line in a pure liquid offer one of
the physical situations with the highest coalescence probability. If coalescence takes place
under real conditions, it is of course desirable to track numerically the post-coalescence
dynamics, i.e. the shape and path evolution of the resulting bubble, which the above
option would not allow.

That bubbles rising in line in a pure liquid are prone to coalesce in a number of cases is
due to the combination of two factors. First, as will be discussed in the next section, the
wake of the leading bubble provides a permanent attractive force to the trailing bubble.
Under a number of flow conditions, this force is strong enough to make the two bubbles
come virtually in contact in the head-on configuration. Second, the mobility of the gas-
liquid interfaces when the bubbles are free of any contamination makes the drainage
of the interstitial film several orders of magnitude faster than that of liquid-liquid or
contaminated gas-liquid interfaces (Vakarelski et al. 2018). The coalescence process may
take several distinct forms, depending on the fluid characteristics and bubble size. After
the two bubbles collide, the interstitial film may rupture quickly, or the bubbles may stay
almost in contact during a long time before eventually coalescing. If viscous effects are
small enough, bubbles larger than a critical size bounce after the film has been drained
partially and coalesce only after one or several bounces. Energetic considerations and
detailed experimental data may be employed to determine which of these scenarios takes
place. This issue, together with the specificities of the coalescence of ‘clean’ bubbles are
discussed in appendix B.

In situations potentially leading to coalescence, one would ideally like to track numeri-
cally all steps of the drainage, until non-hydrodynamic effects such as the London-van der
Waals force come into play and rupture the film. This typically occurs when the minimum
gap between the two interfaces is of the order of 10 nm. For millimeter-size bubbles, this
would require approximately ten additional grid levels beyond the one corresponding
to ∆min. Since the largest scales to be resolved in the present context are of the order
of 10 cm, i.e. seven orders of magnitude larger, the corresponding computational cost
would be prohibitive. At least, it is possible to track the first stages of the drainage
based on a suitable grid refinement technique. Then, referring to the available knowledge
summarized in appendix B, one can reasonably predict which coalescence scenario is
taking place in the real system, although the grid resolution does not allow all its details
to be captured. The main shortcoming of this approach is that bubbles usually merge too
early in the computations, i.e. they would merge at a higher vertical position in a real flow.
Nevertheless, as we discuss in appendix B, the theoretical and experimental knowledge
available on the coalescence of nearly-spherical clean bubbles allows the corresponding
temporal shift to be estimated in a number of cases.

To track the first steps of the drainage, we developed a specific topology-based AMR
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(a) (b) (c)

Figure 3. Topology-based AMR strategy employed to refine the grid from time t = t1 in (a)
to t = t1 +∆t in (b) and (c), as the liquid film separating the two bubbles gets squeezed.

scheme to refine the grid within the gap (Zhang et al. 2019). The corresponding algorithm
checks whether or not any cell crossed by the gas-liquid interface has at least one
neighbouring cell filled with only liquid or gas. If not, the cell crossed by the interface is
automatically refined. This adaptive strategy is illustrated in figure 3. At t = t1 (panel
(a)), the two interfaces are separated by a ‘pure’ liquid cell, but this is no longer the case
in (b) where the cells standing in the yellow region all contain a nonzero gas fraction.
Therefore, these cells are refined by a factor of 2 in each direction, as shown in (c).
Ultimately, for the reasons discussed above, we let the two interfaces merge numerically
if the number N of successive refinements required to satisfy the above ‘pure liquid
neighbouring cell’ criteria exceeds a prescribed value. In practice, this is achieved by
merging the two markers which identify each bubble in all previous steps. The three-
dimensional results to be discussed later were all obtained with N = 2, so that the
minimum cell size in the gap was δmin = ∆min/2

N = R/272. For a 0.25 mm-radius
bubble, this implies δmin ≈ 1µm, which is still one hundred times larger than the typical
thickness at which the interstitial film actually ruptures.

4. Fundamental mechanisms: role of fluid inertia, wake effects and
bubble deformation

Before analyzing the computational results, a brief review of the main physical mecha-
nisms involved in the problem is in order. First of all, it is key to keep in mind that finite-
Reynolds-number interactions between two bubbles are controlled by two antagonistic
effects. The first of them is due to the outer flow past the bubble pair, in which irrotational
mechanisms prevail. In the potential flow approximation, exact results for the fluid kinetic
energy have been established for two spherical bubbles having identical radii, from which
the interaction force may be obtained (Voinov 1969; Voinov et al. 1973; Van Wijngaarden
1976; Miloh 1977; Bentwich & Miloh 1978; Biesheuvel & Van Wijngaarden 1982; Kok
1993a). These predictions indicate that the interaction is repulsive when the two bubbles
rise in line because the fluid velocity reaches a minimum in the gap, inducing a pressure
maximum there (Harper 1970). Conversely, the interaction is attractive when the bubbles
rise side by side, owing to the flow acceleration (hence the pressure minimum) in the gap.
The critical angle at which the interaction force changes sign depends on the separation
between the two bubbles, ranging from 35◦ when they are in contact to a value close to
54◦ when they are far away from each other (Kok 1993a).

Finite-Reynolds-number effects manifest themselves in the generation of vorticity at
the bubble surface, owing to the shear-free condition obeyed by the carrying liquid when
the gas-to-liquid viscosity ratio is negligibly small and the interface is uncontaminated by
surfactants. Diffusion and advection of this vorticity in the surrounding fluid results in a
boundary layer and a wake past each bubble. Vortical effects at the bubble surface lower
the pressure at the rear stagnation point compared to that at the front (Kang & Leal
1988), so that the pressure at a given position along the wake axis is lower than it would
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be in the potential flow limit. When the bubbles rise in line, this pressure drop makes
the trailing bubble (hereinafter abbreviated as TB) sucked toward the leading bubble
(hereinafter abbreviated as LB). In contrast, when they rise side by side, the interaction
of the two wakes results in a pressure maximum in the gap, hence a force tending to
move the two bubbles away from each other.

In a given geometrical configuration of the tandem, the relative magnitude of the above
two antagonistic effects depends on the Reynolds number, assuming the bubbles to keep
a spherical shape. Vortical effects dominate when Re is low enough, while the interaction
is expected to become close to potential flow predictions for large enough Re. For this
reason, keeping the Reynolds number and the inclination of the line of centres fixed, the
overall interaction force vanishes when the separation between the two bubbles takes a
specific value, Se(Re, θ). The smaller Re is, the shorter (resp. larger) this equilibrium
separation is for θ = 0◦ (resp. θ = 90◦). The two bubbles collide if Se is small enough, i.e
Se 6 2 for spherical bubbles. Then, assuming that the interface is uncontaminated, they
may either coalesce, bounce or stay in contact for a very long time, depending on whether
or not the net attractive force is large enough to achieve the drainage of the interstitial
film. Approximate models have been proposed to predict Se in the in-line configuration
for spherical bubbles. These models consider that the wake of the LB, taken into account
by using Oseen or high-Re far-wake velocity distributions, decreases the fluid vertical
velocity ‘felt’ by the TB at a given position by an amount equal to the cross-sectional
average of the velocity defect at that position (Katz & Meneveau 1996; Ramı́rez-Muñoz
et al. 2011, 2013).

When the TB moves behind the LB with some offset from the wake axis it faces a non-
uniform, asymmetric flow which may locally be considered as a shear flow. A spherical
bubble rising in a linear shear flow is known to experience a shear-induced lift force
(Auton 1987; Legendre & Magnaudet 1998). If the bubble moves faster than the fluid
along the streamlines of the base flow, this sideways force deviates it toward the direction
of the descending fluid. In the in-line configuration, the relative flow faced by the TB
moves downwards and its velocity grows with the distance to the wake axis. Therefore
the sideways force tends to move the TB out of the wake of the LB, making the in-line
configuration unstable with respect to an infinitesimal lateral deviation (Harper 1970).
As will be seen later, this instability plays a crucial role in the evolution of a bubble pair.

The mechanisms reviewed so far subsist of course when bubble deformation becomes
significant. However their magnitude is deeply influenced by the bubble shape. In par-
ticular, a key feature of vorticity generation on a curved shear-free interface is that the
resulting tangential vorticity, say ωs, is proportional to the product of the local surface
curvature and tangential velocity of the fluid (Batchelor 1967). This makes the magnitude
of ωs increase with bubble deformation. In contrast, for a given interface shape, ωs does
not depend on Re when the Reynolds number is large, unlike the more familiar case of a
no-slip surface. In the limit Re� 1, the maximum of ωs (normalized by the rise velocity
and equivalent bubble radius) at the surface of an oblate bubble with an aspect ratio χ
increases by a factor of 4 from χ = 1 (spherical bubble) to χ = 2, eventually growing as
χ8/3 when χ� 1 (Magnaudet & Mougin 2007). In the in-line configuration, this dramatic
increase implies that the attraction of the TB toward the LB becomes increasingly
strong as the latter deforms. Consequently, bubble deformation is expected to reduce
significantly the equilibrium separation, favouring coalescence. Another consequence of
deformation is its influence on the magnitude and even the sign of the sideways force
acting on the TB when the axial symmetry of the in-line configuration is broken by some
lateral disturbance. The corresponding mechanisms are discussed in appendix C.
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Figure 4. Final bubble shapes and separations observed in the axisymmetric configuration.
Red bubbles maintain a finite separation, while blue bubbles are about to coalesce.

5. Axisymmetric configuration

Numerical simulations of the in-line configuration based on boundary-fitted grids were
reported by Yuan & Prosperetti (1994) and Hallez & Legendre (2011) for spherical
bubbles. Here in contrast, the bubbles deform freely and continuously while rising, which
allows us to investigate the influence of their deformation on the interaction process.
In this section, we restrict the generality of the problem by constraining the bubbles to
follow a straight vertical path. For this purpose, instead of the cubic domain described
earlier, we use an axisymmetric domain whose radius and height are both 240R. Bubbles
are released on the symmetry axis are rise along it. Computations are carried out with
gas/liquid density and viscosity ratios set to 10−3 and 10−2, respectively.

Figure 4 displays the final bubble shapes and relative positions obtained through 32
computational runs covering the domain (10 6 Ga 6 30, 0.02 6 Bo 6 1.0), all with
S0 = 8. Red bubbles maintain an equilibrium distance which is finite in the computational
sense, i.e. the gap that separates them at steady state exceeds the minimum cell size δmin
allowed by the specific topology-based AMR treatment described in § 3.2. Conversely,
blue bubbles are such that the ‘final’ gap is thinner than δmin, implying that coalescence
is about to take place numerically. Consider a given row in the figure, i.e. a given Ga.
Increasing Bo increases the ability of the bubbles to deform. Hence it reduces the final
equilibrium separation distance Se between their centroids, which makes coalescence
more likely to occur. For Ga = 10, increasing the Bond number from Bo = 0.02 to
Bo = 0.1 makes the Weber number increase from We = 0.18 to We = 0.90. As a
consequence, the final deformation of the LB and that of the TB rise from χ = 1.02
to χ = 1.1 and from χ = 1.01 to χ = 1.04, respectively. Although still modest, this
deformation makes the bottom region of the LB significantly flatter than the top region
of the TB, allowing a thin-gap region with a finite area to develop. However, this
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Figure 5. Variation of the final equilibrium distance Se against: (a) the Reynolds number; and
(b) the Weber number. Both Re and We are based on the final rise velocity of the bubble pair.
Each series identified with a given color corresponds to the same Ga and different Bo (increasing
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open triangles refer to the prediction (5.1) and the numerical results of Hallez & Legendre (2011)
for spherical bubbles, respectively. The dotted lines in (a) and (b) correspond to the prediction
(5.2), while the dash-dotted line in (a) represents this prediction evaluated for We = 0.

deformation is small enough for the rise speed to remain virtually unaffected, which
leaves the terminal Reynolds number unchanged throughout this range of Bo (Re ≈ 21).
That the LB deforms more than the TB becomes clearer as Ga increases. This is directly
due to the fact that the wake of the former reduces the pressure at the front stagnation
point of the latter, a mechanism often referred to as the ‘sheltering’ effect. Hence the
pressure difference between the front stagnation point and the bubble equatorial plane,
which drives the deformation (Moore 1959, 1965), is smaller on the TB. For Ga = 30, the
final separation distance decreases from Se = 5.72 to Se = 3.63 when the Bond number
increases from 0.05 to 0.15. The Weber number is now of O(1), increasing from 0.65 to
1.44. At the same time, the Reynolds number decreases from 108 to 91, due to the drag
increase associated with the increasing oblateness of the two bubbles.

The variation of Se with Re and We may be obtained by considering the bubble pairs
of figure 4 once they have reached their final configuration. The result is displayed in
figure 5. Specific runs were carried out with Bo = 0.005 (hollow circles in figure 5(a))
to maintain the interface shape very close to a sphere, in order to compare present
predictions with results available for spherical bubbles. For (Ga,Bo) = (30, 0.005), the
final aspect ratio of the LB (TB) is χ = 1.023 (χ = 1.017), and the deformation is even
less for lower Ga. Therefore, the corresponding equilibrium distance is expected to agree
well with the correlation proposed by Yuan & Prosperetti (1994), namely

Se(Re) = 4.40 log10 Re− 3.06 (5.1)

As figure 5(a) reveals, present low-Bo predictions are in excellent agreement with (5.1)
for Ga > 20. For lower Ga, the numerical values of Se(Ga,Bo = 0.005) are found to lie
slightly below the prediction (5.1). This is in line with the results of Hallez & Legendre
(2011) which indicate for instance that Se(Re = 20) is approximately 5% less than
predicted by (5.1). Figure 5(a) shows that present results for Bo = 0.005 (open circles)
are in excellent agreement with those of the latter authors (open triangles) throughout
the range of Reynolds number considered here. This establishes the accuracy of present
computations in the in-line configuration.

As Bo increases, the equilibrium separation quickly falls below that predicted by (5.1)
and a correlation in the form Se = f(Re,We) must be sought. A first attempt aimed at
recovering (5.1) in the limit We → 0 was not successful. After several trials, we found
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that the entire set of present results is best approached by the fit

Se(Re,We) = 2.025 logRe− 3.56− 0.98We− 0.36We2 . (5.2)

Figure 5(a) indicates that, once the Weber number has been properly eliminated (We =
(Re/Ga)2Bo), all numerical data collapse onto the corresponding curves (dotted lines).
Similarly, figure 5(b) in which Re has been eliminated for the benefit of Ga and Bo
confirms that numerical data all follow the We-dependence defined by (5.2). Therefore
(5.2) is seen to provide a valid prediction of the equilibrium separation distance at least
in the range 20 . Re . 120 and 0 < We . 1.5. Actually, we also performed some
computations for Ga = 40 and Ga = 50 and found that the equilibrium separation
obtained in the range 0.02 6 Bo 6 0.2 is still correctly predicted by (5.2). Note that,
although (5.2) does not reduce to (5.1) in the limit We → 0, the corresponding fit (red
dash-dotted line in figure 5(a)) achieves a better agreement than (5.1) with present low-
Bo predictions, as well as with the results of Hallez & Legendre (2011). Nevertheless,
it must be kept in mind that neither (5.1) nor the low-We limit of (5.2) remains valid
for Re . 15, since both expressions predict Se < 2 at lower Re. In the low-but-finite
Reynolds number range, asymptotic results for rigid spheres (Happel & Brenner 1963)
may readily be transposed to bubbles using the scaling argument developed by Legendre
& Magnaudet (1997). By doing so, it is concluded that the two bubbles always collide
for Re . 1, since the LB experiences a larger drag than the TB. Actually, there are
computational indications that collision takes place as soon as Re 6 15.5 (Watanabe &
Sanada 2006), which corresponds well to the threshold predicted by (5.2) (Se(Re,We =
0) = 2 for Re = 15.55).

6. Three-dimensional configurations

6.1. Overview of the results

As mentioned earlier, it is known since Harper (1970) that the in-line configuration
of two clean spherical bubbles is unstable with respect to side disturbances when the
Reynolds number is large. Experimental investigations carried out under surfactant-free
conditions (silicone oils) in the range 10 . Re . 150 confirm this prediction (Kusuno &
Sanada 2015; Kusuno et al. 2019). We performed fully three-dimensional time-dependent
simulations to assess this stability issue and explore its consequences. Similar to the
axisymmetric case, the gas/liquid density and viscosity ratios were set to 10−3 and
10−2, respectively. In agreement with the above experimental and theoretical findings,
we observed that the bubble pair never maintains a straight vertical path except when
the Bond number is large enough for coalescence to eventually happen. We actually
identified three drastically different evolutions, depending on the value of the Galilei and
Bond numbers. Beyond a critical Bond number, Boc(Ga) which increases approximately
from 0.2 for Ga = 10 to 0.5 for Ga = 30, the two bubbles collide and eventually coalesce,
this ‘coalescence’ having to be interpreted in the light of the discussion of § 3.2 (see
below). Predictions of the three-dimensional and axisymmetric simulations superimpose
for Bo & 0.5 when Ga 6 20 (and for Bo & 1 when Ga = 30), indicating that the in-line
configuration is stable with respect to azimuthal disturbances for sufficiently deformed
bubbles. In contrast, for Bo < Boc(Ga), the TB escapes from the wake of the LB at
some point, and the two go on rising with their line of centres more or less inclined with
respect to the vertical and their centroids widely separated. In such cases, we found that
the interplay of the two bubbles after the three-dimensional effects set in may follow
two markedly different scenarios. One is clearly a DKT-type mechanism. In this case,
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both bubbles deviate from their initial trajectory and eventually rise almost side by side
along two straight vertical lines distinct from the initial path. In contrast, in the other
scenario, which we refer to as Asymmetric Side Escape (hereinafter abbreviated as ASE),
the lateral drift of the TB leaves the path of the LB almost unaffected. Hence this bubble
goes on rising virtually along its initial path, while after the system has reorganized itself,
the TB follows a markedly distinct vertical path. The structural differences between the
configurations corresponding to the DKT and ASE scenarios are well visible in the recent
observations of Kusuno et al. (2019); see especially their figures 4 and 5.

Figure 6 displays the phase diagrams and typical paths corresponding to the above
three evolutions, still for S0 = 8. The influence of initial conditions, i.e. angular incli-
nation and separation, on the borders of the different subdomains will be discussed in
§§ 7.3 and 7.4, respectively. The influence of numerical parameters, among which the
grid resolution, on the coalescence threshold, i.e. on Boc(Ga), is estimated in appendix
A. These technical aspects are found to barely change Boc(Ga) by a few percent. As
the thin black lines indicate, coalescence only takes place in the present configuration
in liquids with a sufficiently high Morton number, from Mo ≈ 8 × 10−7 for Ga = 10
to Mo ≈ 1.5 × 10−7 for Ga = 30. This means in particular that bubbles rising in pure
water (Mo ≈ 2.6× 10−11) never coalesce in the Ga-range considered here. Interestingly,
figures 6(a) − (b) also reveal that under some conditions such as (Ga,Bo) = (20, 0.2)
or (30, 0.2), bubbles that would coalesce if the system were constrained to remain
axisymmetric actually escape from coalescence through the ASE scenario. From figure



14 J. Zhang, M. J. Ni, J. Magnaudet

Figure 7. Snapshots of the bubble shapes and relative positions observed during the lateral
escape of the TB or the pre-coalescence process. Red, green and blue pairs correspond to the
ASE, DKT, and coalescence scenarios, respectively. In the red and green regions, the snapshots
are taken by the time the horizontal distance between the two centroids is approximately equal
to one bubble initial radius; in the blue region, each snapshot is the last in a run before
numerical coalescence occurs. Since successive snapshots are separated by a finite time interval,
the remaining time until coalescence may differ among the various blue pairs.

6(b), it may also be concluded that for Re ≈ 15, even an 8% departure from sphericity is
sufficient to lead to coalescence. Actually, the discussion of appendix B indicates that, for
such modest Reynolds numbers, viscous effects tremendously delay the drainage of the
interstitial film. This is why experiments performed in this regime (Sanada et al. 2006;
Watanabe & Sanada 2006) reveal that, after the two bubbles collide, they merely stay
‘glued’ to each other and rise as a single ‘dumbbell’ bubble without coalescing during
the time window of the observations. However, since all forces involved in the physical
system, including the London-van der Waals force, are attractive, there is no doubt that
such bubbles eventually coalesce. Unfortunately, the spatial resolution of the present
simulations is clearly insufficient to reproduce this slow coalescence process. That is, the
computations correctly predict the final state of the physical system but this state is
reached too early. This underestimate of the coalescence time subsists at larger Reynolds
number (see § 6.4) but, for reasons discussed in appendix B, reduces as Re increases.
In figure 6(b), the maximum deformation below which the two bubbles do not coalesce
is seen to increase significantly with Re. For instance, bubbles with χ ≈ 1.5 follow an
ASE scenario for Re ≈ 70, but coalesce for Re ≈ 35 (in these estimates, χ and Re are
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evaluated from the steady-state properties of the isolated bubble corresponding to the
same (Ga,Bo) set).

Figure 7 depicts the bubble shapes and relative positions during the lateral escape of
the TB or the coalescence process. Considering the DKT (green) and ASE (red) regimes
at a fixed Ga, the figure indicates that the larger Bo the shorter the separation during
the escape stage. This may be interpreted as a stabilizing effect of the deformation, since
the bubble pair is able to maintain a vertical path during a longer time (i.e. down to
a shorter separation) when the Bond number increases. Then, coalescence takes place
when Bo exceeds the critical threshold Boc(Ga) which is seen to increase significantly
with Ga, as already noticed in figure 6(a). In most cases, coalescence is reached through
a head-on approach, i.e. without any prior escape of the TB, the axisymmetric film in
the gap being gradually squeezed. However, for Ga = 30 and Bo = 0.5, an intermediate
configuration corresponding to an oblique approach is noticed. These different regimes
are examined in more detail in the rest of this section.

6.2. Drafting-Kissing-Tumbling

The DKT scenario followed by sedimenting particle pairs has been widely described
for spheres (Joseph et al. 1986; Fortes et al. 1987; Feng et al. 1994), thick disks (Brosse
& Ern 2014), and under certain conditions prolate spheroids (Ardekani et al. 2016). In
short, owing to the sheltering effect induced by the wake of the leading body, the trailing
body first catches up with it (drafting) until the two collide (kissing). Then the resulting
prolate compound body becomes unstable to transverse disturbances, which makes it
rotate (tumbling) in such a way that the line joining the centroids of the two individual
bodies tends to become horizontal, letting them eventually fall/rise separately in a side-
by-side configuration. A similar behaviour of bubbles rising in line has been reported
experimentally by Kusuno et al. (2019) in the range 10 . Re . 25, 0.3 . We . 1.1.
Here we identified it for bubble pairs corresponding to Ga . 12 and Bo . 0.2. With
(Ga,Bo) = (10, 0.02), i.e. Mo = 8 × 10−10, the final state corresponds to Re ≈ 16
and χ ≈ 1.02, which indicates that the bubbles shape remains close to a sphere. The
corresponding evolution is displayed in figure 8.

As revealed in panel (a), the tumbling process starts at t & 37 when the two bubbles
reach the same rise velocity (see figure 9(a)). After this process is completed (say at
t = 54 in figure 8(a)), both paths have experienced large lateral deviations. Their lateral
separation is about 2.3, the LB having been slightly more deviated. They stand virtually
side by side and keep on rising in this configuration, although the rise velocity of the
(formerly) TB is barely larger than that of the LB, inducing a tiny difference in the final
altitude reached by the two bubbles. During the side-by-side rise, the lateral separation Sr
evolves significantly, until an equilibrium value Sre ' 2.55 is reached. This is consistent
with the findings of Legendre et al. (2003) which indicate that in this configuration, the
transverse force acting on a pair of spherical bubbles almost vanishes for Sr = 2.5 when
Re = 25 (their figure 13). For Y > 175, the centre of inertia of the bubble tandem is
seen to drift slightly towards the left, a consequence of the tiny inclination of its line of
centres. The sign of this drift is consistent with the conclusions of Hallez & Legendre
(2011) who found (their figure 9(b)) that in the range 10 6 Re 6 25, the centre of inertia
drifts laterally toward the position of the higher bubble, provided 40◦ . θ < 90◦. The
horizontal trace of the TB and LB paths in figure 8(a) indicates that the entire motion
remains planar and takes place within a vertical plane. Hence, by breaking the initial
axial symmetry of the flow, the DKT mechanism changes the initial one-dimensional
path into a two-dimensional path, but the latter keeps track of the former since the
preferential direction of the bubble motion remains unchanged.
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Figure 8. Path of a bubble pair following a DKT scenario (Ga = 10, Bo = 0.02). (a) Side
and top views, with r the radial distance to the initial path and numbers referring to the
dimensionless time at the corresponding position; (b) three-dimensional streamlines past the
bubbles at different instants of time, in the reference frame of the leading bubble. A zoom of
the flow field in the gap is provided for t = 30 and t = 38, to highlight the inception of the
non-axisymmetric fluid motion.

Some three-dimensional streamlines past the two bubbles are displayed in figure 8(b).
No standing eddy is observed at the back of the bubbles. This is in line with the
generating mechanism of vorticity on a curved shear-free surface discussed in § 4, which
maintains the flow past a shear-free sphere unseparated whatever the Reynolds number
(Blanco & Magnaudet 1995; Magnaudet & Mougin 2007). At t = 38, the separation has
almost reached its minimum (S ≈ 2.3) and the flow is still almost axisymmetric, except
within the gap where a small left-right asymmetry is discernible in the enlarged view.
In the present case, the origin of the axial symmetry breaking stands in tiny numerical
asymmetries, in the first place those resulting from the pressure field returned by the
multilevel Poisson solver (see appendix A). Tumbling then starts. At t = 44 and t = 48,
the flow field exhibits strong left-right asymmetries which result in transverse forces that
act to move the two bubbles in opposite directions. Later, say for t > 54, the flow field
gradually rearranges towards a left-right symmetric configuration corresponding to a side-
by-side motion of the two bubbles, with an equilibrium horizontal separation Sre ≈ 2.55.

The evolution of the rise speed of the two bubbles is plotted in figure 9(a). The three-
dimensional prediction is seen to coincide with its axisymmetric counterpart up to t ≈ 45,
i.e. throughout the time period during which the bubble pair moves in straight line and
even during the early stage of the tumbling process. That the three-dimensional and
axisymmetric predictions virtually superimpose up to t = 37 proves the reliability of the
former. Note that the red and blue curves superimpose up to t = 4, which corresponds
to the very early stage during which the two bubbles rise independently. During the
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Figure 9. Evolution of several characteristics of a bubble pair with (Ga,Bo) = (10, 0.02)
undergoing a DKT interaction. (a): vertical velocity component of the LB (solid red line) and
TB (dashed blue line); (b) same for the horizontal component; (c): vertical (red line, left axis)
and horizontal (blue line, right axis) separations; (d) inclination of the line of centres with respect
to the vertical. Open squares and circles in (a) and (c): axisymmetric prediction.

next stage, say 4 < t < 20, the TB goes on accelerating while the rise speed of the
LB (hereinafter denoted as VLB) stays almost constant. This corresponds to the early
stage of the interaction during which the trailing bubble is sucked in the wake of the
LB while the latter remains unaffected. Then, from t = 20 to t = 37, the two bubbles
get close enough for the TB to modify the wake of the LB, the rise speed of which
increases sharply until the two bubbles rise with the same speed. Tumbling starts at
t ≈ 38, without any real ‘kiss’ since figure 9(c) indicates that S never fell below 2.3 at
previous times. Up to t = 46, no change is noticed in the rise speed of the two bubbles,
nor in their vertical separation, although the tumbling process is going on, as the sharp
rise of their lateral velocities (figure 9(b)) and that of the inclination of their line of
centres (figure 9(d)) confirm. The situation significantly changes within the next short
stage 46 6 t 6 50, during which VLB and VTB (the rise speed of the TB) drop sharply
and the line of centres rotates by more than 30◦. Not surprisingly, this rotation forces
the lateral separation to increase dramatically, from Sr ≈ 1 at t = 46 to Sr ≈ 2.5 at
t = 50. Conversely, the vertical separation is reduced to S ≈ 2 at t = 50. The tumbling
motion is also responsible for the slowing down of the two bubbles, as it makes the flow
around them fully three-dimensional, which enhances the dissipation in the liquid, hence
the drag on each bubble. Tumbling goes on more slowly until t ≈ 85, when the side-by-
side configuration (θ = 90◦) and the equilibrium horizontal separation (Sre ≈ 2.55) are
reached. Ultimately, θ slightly exceeds 90◦, in line with the tiny difference between the
final positions of the two bubbles noticed in figure 8(a).

6.3. Asymmetric Side Escape

Computations carried out with somewhat larger values of the Galilei number (15 6
Ga 6 30) but still fairly low Bond numbers reveal a drastically different evolution of
the bubble pair. In what follows, we select the case (Ga, Bo) = (30, 0.3), i.e. Mo =
3.3× 10−8, as typical of this regime to discuss the corresponding dynamics. With these
parameters, an isolated bubble follows a rectilinear path (Cano-Lozano et al. 2016a,b)
and its characteristic rise Reynolds number and aspect ratio at steady state are Re = 66
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Figure 10. Path of a bubble pair following an ASE scenario (Ga = 30, Bo = 0.3). (a) Side and
top views of the path with numbers referring to the dimensionless time at the corresponding
position of the TB; (b) three-dimensional streamlines past the bubbles at different instants of
time, in the reference frame of the leading bubble.

and χ = 1.62, respectively. The corresponding paths, together with the streamlines past
the two bubbles, are shown in figure 10. No standing eddy is observed at the back of the
bubbles, in line with the flow structure past an isolated bubble with the same parameters
(Blanco & Magnaudet 1995). In panel (b), only streamlines emanating from the right half-
plane ahead of the LB are shown for 10 6 t 6 16 in order to help identify the onset of
the non-axisymmetric motion. While all streamlines get around the TB within the right
half-plane at t = 10, one of them deviates to the left half-plane at t = 11, indicating that
axial symmetry has just broken. At this stage, the separation between the two bubbles
is still large (S ≈ 6.8), in contrast with the situation observed in the DKT scenario.
According to panel (a), the TB also departs from its original vertical path at t ≈ 11,
but the LB is left virtually unaffected by this departure until t ≈ 15. At this point,
the TB still stands in the wake of the LB but its equatorial plane has tilted clockwise,
which distorts the flow in the gap and makes it significantly asymmetric at the back of
the LB. This asymmetry induces a slight anticlockwise tilt of the LB path until t ≈ 20,
whereas the TB goes on drifting laterally and escapes completely from the wake of the
LB. Then the TB rotates anticlockwise in such a way that its equatorial plane becomes
again horizontal, and its drift stops at t ≈ 23, when the lateral separation between the
two bubbles is approximately Sr ≈ 4. Due to this temporary anticlockwise rotation, the
TB slightly drifts back until t ≈ 28. The motion of the bubble pair has remained planar
up to this point. However, at t ≈ 28, they both start to drift slightly out of their previous
plane of rise. Then, each bubble goes on rising along a straight but slightly inclined path.
Both paths being tilted in the same direction but the angle being larger in the case of
the LB, the lateral separation weakly but consistently increases over time. As the TB
spent part of its potential energy to move out from the wake of the LB during the time
period 11 . t . 23, it never catches up, and the LB remains significantly ahead of the
TB in the final configuration.

Figure 11 describes the evolution of the same four characteristics as in figure 9 for
the above bubble pair. According to the axisymmetric prediction reported in panel (c),
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Figure 11. Evolution of several characteristics of a bubble pair with (Ga,Bo) = (30, 0.3)
undergoing an ASE interaction. (a): vertical velocity component of the LB (solid red line) and
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and horizontal (blue line, right axis) separations; (d) inclination of the line of centres with respect
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the vertical separation decreases monotonically and the two bubbles enter the initial
stage of coalescence at t ≈ 23. However, the three-dimensional evolution reveals a totally
different evolution beyond t ≈ 11, although the rise speed of both bubbles and their
vertical separation do not exhibit discernible differences with the axisymmetric results
up to t ≈ 16. At this time, VTB starts to drop sharply and equals VLB at t ≈ 18. In the
meantime, the horizontal velocity of the TB has grown tremendously. Its maximum value,
about 40% of VTB , is reached at t ≈ 19. The horizontal velocity of the LB reaches its
maximum at the same time. However the ratio of the two maxima is less than 4%, which
confirms that the LB is only marginally disturbed by the lateral drift of the TB. This
situation dramatically differs from that depicted in figure 9(b), where the two Vr maxima
have almost the same magnitude. Moreover, in the present ASE scenario, the maximum
of Vr for the TB is typically three times larger than the maxima encountered during the
DKT-type interaction. As figure 11(c) indicates, the horizontal separation has already
grown up to Sr ≈ 2 by the time Vr reaches its maximum (i.e. the TB has left the wake of
the LB), and doubles during the next four time units at the end of which the horizontal
velocity of the TB vanishes (t ≈ 23). From t ≈ 18 to t ≈ 23, VTB has dropped below
VLB , which makes the vertical separation re-increase, from S ≈ 4.5 at t = 17.5 to S ≈ 5.3
at t = 23. The 25% drop of VTB from t ≈ 16 to t ≈ 19.5 emphasizes the fact that a
substantial fraction of the kinetic energy of the liquid displaced by the TB has been spent
in the meantime to move it laterally and balance the rate of work of the corresponding
sideways force. In the next stage (23 6 t 6 28), the horizontal velocity of the TB changes
sign and reaches a minimum of about −0.06VTB . This negative Vr results in the reversed
lateral drift already discussed in connection with figure 10. The horizontal velocity still
describes some damped oscillations before the vertical and horizontal separations stabilize
and reach values close to 5.6 and 4, respectively. Meanwhile, the inclination angle of the
bubble pair stabilizes at θ ≈ 36◦. As already pointed out, this configuration is not entirely
steady as the slight nonzero slopes of the curves in the right part of figure 11(c) confirm.
In other words, the vertical and transverse components of the interaction force driving
the relative position of the two bubbles have not completely vanished yet. However,
the remaining values of these components are very small, so that it takes an extremely
long time for the system to reach a true steady state. This slow final evolution may be
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t=10 t=15 t=20 t=24.4

Figure 12. Pre-coalescence dynamics of a bubble pair with Ga = 20, Bo = 0.5; the streamlines
in the cross-sectional plane are defined in the reference frame of the leading bubble.

connected to the findings of Hallez & Legendre (2011) for spherical bubbles. Their figure
9(c) indicates that, provided Re > 25, the two bubbles repel each other whatever their
separation distance when the inclination of their line of centres is less than a critical angle
θc ≈ 53◦. However, for 30◦ < θ < θc, this repulsive separation-dependent effect is very
weak for S & 5.0, which corresponds to the present situation. That the equilibrium angle
is close to 37◦ for Ga = 30, Bo = 0.3 instead of the above value for spherical bubbles is
likely an effect of the significant oblateness of the bubbles considered here.

6.4. Head-on collision and coalescence

As figures 6 and 7 revealed, increasing the Bond number beyond the Ga-dependent
threshold Boc(Ga) leads to the numerical coalescence of the two bubbles. Most of the
time, this coalescence is initiated by a head-on approach, but in some cases the bubbles
may also approach each other in an asymmetric manner; e.g. the case (Ga, Bo) =
(30, 0.5) in figure 7, which corresponds to near-threshold conditions. Actually, the ap-
proach configuration depends on the time elapsed since the bubble pair was released.
As discussed in § 4, the attractive effect of the LB wake increases with the bubble
deformation, owing to the direct relation between the interface curvature and the strength
of the surface vorticity. This is why, for a given Ga, the time at which the two bubbles
collide decreases as Bo increases. This leaves less time for non-axisymmetric disturbances
to grow before the collision if Bo is significantly larger than Boc(Ga), favouring the head-
on configuration. In the case of strongly deformed bubbles, the lift reversal mechanisms
discussed in appendix C also act to increase the stability of the in-line configuration.
Here we select conditions (Ga, Bo) = (20, 0.5), i.e. Mo = 7.8 × 10−7, as an archetype
of the head-on coalescence scenario observed in the moderate-Reynolds-number range
(Re ≈ 35). As expected from the previous discussion, figure 12 shows that the two bubbles
rise almost in a straight line before they numerically coalesce (a tiny lateral deviation
of the LB actually takes place in the late stage of the approach, see figure 13(b)). As
far as the bubbles evolve independently, their deformation is quite large, characterized
by aspect ratios χ ≈ 1.55 and χ ≈ 1.48 for the LB and TB, respectively. In both cases,
the aspect ratio is smaller than the critical value χc = 1.65 beyond which a standing
eddy develops at the back of an isolated bubble (Blanco & Magnaudet 1995). This is
why no such structure is present in figure 12(a). Beyond t ≈ 15, the shape of the two
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Figure 13. Evolution of some characteristics of a bubble pair with Ga = 20, Bo = 0.5
undergoing coalescence. (a): vertical (solid lines, left axis) and horizontal (dash-dotted lines,
right axis) components of the bubble velocity, with the red, blue and black lines corresponding
to the LB, TB and final bubble, respectively; (b): vertical (red line, left axis) and horizontal
(blue line, right axis) components of the separation. Open squares and circles: axisymmetric
prediction. In (a), the shape of the resulting bubble is shown at several successive time instants
during the transient 24.5 6 t 6 30 following coalescence.

(a) (b)

Figure 14. Numerical coalescence process. (a): cross-sectional bubble shapes; (b): zoom on the
dashed rectangle in the left panel of (a), showing the successive grid refinements and the grid
distribution in the near-contact region just before coalescence (t = 24.4). In the first three panels
of (b), the thin black line indicates the interface and the colour scale spans six grid levels, from
∆ = R/8.5 (dark blue) to ∆ = R/272 (brown).

(a)

t= 24.2 24.3 24.4 24.45 24.5

(b)

bubbles changes significantly. On the one hand, the front part of the LB flattens, due
to the proximity of the TB which makes its rise speed increase (see figure 13(a)). On
the other hand, the front part of the TB becomes more rounded, owing to the suction
induced by the wake of the LB. Finally, the TB catches up with the LB, leaving only
a thin liquid film in the gap and making the two bubbles behave essentially as a bluff
compound body.

After coalescence takes place (see below), figure 13(a) indicates that the resulting
bubble first undergoes a series of large-amplitude oscillations until it relaxes to an oblate
shape with an aspect ratio close to 2.0 and a significant fore-aft asymmetry. Due to volume
conservation, the radius of this bubble is 21/3 ≈ 1.26 times that of the initial bubbles, so
that its characteristic parameters are Ga = 21/2 × 20 ≈ 28.3 and Bo = 22/3 × 0.5 ≈ 0.8,
respectively. Under such conditions, the computations of Cano-Lozano et al. (2016a)
predict that an isolated bubble still rises vertically, although it is close to the transition
to a non-straight path. Present observations are in line with these earlier conclusions,
since figure 13(a) indicates that the small horizontal velocity component present at the
time of coalescence subsequently decreases over time.

Returning to the near-coalescence stage, figure 14 shows how the interface topology
evolves in the stages that just precede and follow numerical coalescence. In its late stage,
the film is almost flat. No dimple has formed at its periphery, unlike what is customarily
observed with coalescing drops (Hartland 1968, 1969; Jones & Wilson 1978). This is
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because, for low-to-moderate Bo and fully mobile interfaces, a dimple forms only when
the film has thinned down by several orders of magnitude (Yiantsios & Davis 1990).
Indeed, with the same grid resolution, we observed a clear dimple for Bond numbers
& 1. Numerical coalescence takes place at t ≈ 24.44. Considering that the film starts
to form when the gap is 0.5R-thick on the symmetry axis, one can estimate that the
computation tracks the drainage process during approximately 1.15 time units. The
arguments discussed in appendix B may then be used to estimate the time by which
the film would actually rupture under real conditions. Figure 13(a) indicates that the
dimensionless approach velocity V a = VTB − VLB of the two bubbles is approximately
0.5 during the early stage of the drainage. From this, the approach Weber number,

Wea = V
2

aBo, and the approach capillary number, Caa = V aBo/Ga = µVa/γ, are found
to be 0.125 and 0.0125, respectively. Then, for nearly-spherical bubbles, the estimate
(B 1) predicts a dimensionless inertial drainage time T di ≈ 0.27, while (B 2) (once
properly transposed to the case of two identical bubbles) predicts a viscous drainage time
T dv ≈ 2.5. Hence, the drainage is controlled by viscous effects and the limited resolution
would shorten it by ≈ 1.35 time units, would the initial bubble oblateness be small. Given
that the tandem rises with the average velocity V m = 1

2 (VTB + VLB) ≈ 2.4, this implies
that the vertical position at which coalescence actually happens would be underestimated
by 3.25 bubble radii in this limit. The non-negligible bubble oblateness certainly increases
the actual drainage time. For instance, the actual value of the parameter ki in (B 1) is
2.05 for χ = 1.5 (Duineveld 1994), so that the correct estimate for the inertial drainage
time is T di ≈ 0.5. The quantitative influence of the bubble oblateness on the viscous
drainage time is unknown but presumably increases also significantly T dv.

As the last two snapshots in figure 14(a) show, the neck radius of the resulting bubble
grows very fast after coalescence happens. More specifically, the growth law (not shown)
is found to be (t−tcoal)0.36 over the very first stage following the coalescence time instant
tcoal. This is somewhat slower than the (t − tcoal)1/2 self-similar behaviour observed in
the experiments of Paulsen et al. (2014) and confirmed theoretically and numerically
by Munro et al. (2015) and Anthony et al. (2017), respectively. However Paulsen et al.
(2014) noticed that the growth rate reduces gradually once the neck radius is larger than
0.3R. Here, due to the limitations inherent to minimum cell size δmin = R/272 and to
the numerical procedure used to let the initial two interfaces merge, we barely observe
the neck before it reaches this radius, which is certainly the reason for the above slower
growth rate.

7. Influence of deformation and initial conditions

7.1. Influence of bubble deformation in the DKT and ASE regimes

Figure 15 shows how several characteristics of the path of bubble pairs with Ga = 10
vary with the Bond number in the range 0.02 6 Bo 6 0.2, i.e. 8 × 10−10 6 Mo 6
8× 10−7. The DKT scenario is observed for the lower three values of Bo, while the pair
with Bo = 0.2 eventually experiences head-on coalescence. For lower Bo, the interaction
always leads to the side-by-side configuration and the lateral separation stabilizes at a
value close to 2.5. While the Bond number does not have any noticeable influence on the
final path in this regime, it affects the critical time by which the tumbling process sets
in. Owing to the connection between the bubble oblateness and the amount of vorticity
produced at its surface, the more oblate the LB is the stronger the attractive wake effect
is. Therefore, at a given time, the larger Bo the shorter the separation between the two
bubbles. From figures 15(b) − (d), it may be inferred that the axial symmetry of the
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Figure 15. Variations with the Bond number of some path characteristics for Ga = 10. (a) front
view of the path (the solid and dashed lines correspond to the LB and TB, respectively); (b)
vertical separation; (c) horizontal separation; (d) inclination of the line of centres. The square
symbol denotes the position/time at which coalescence takes place for Bo = 0.2.

(b)

(c)

(d)

(a)

flow breaks down when S = Sc ≈ 2.6, a critical value reached in a shorter time as Bo
increases.

Figure 16 shows the same path characteristics for Ga = 30 and Bond numbers ranging
from 0.02 to 0.5, i.e. 9.9 × 10−12 6 Mo 6 1.5 × 10−7. Here, all cases with Bo 6 0.45
correspond to the ASE scenario, whereas the two bubbles coalesce in an asymmetric way
for Bo = 0.5 (see figure 7). In all non-coalescing cases, it is found that the larger Bo the
smaller the long-term lateral deviation of the TB (figure 16(a)). Hence, the long-term
lateral separation decreases with Bo (figure 16(b)), since the LB hardly deviates from
its initial vertical path except for Bo = 0.45. The vertical separation S is also seen to
decrease with the Bond number. This is merely a geometrical consequence of the decrease
of Sr. Indeed, the shorter the time spent by the TB in its lateral motion, the shorter
the slowing down of its vertical motion, hence the smaller the increase of the vertical
separation during the lateral escape stage.

The long-term inclination of the bubble pair exhibits more complex variations. First, it
increases with the Bond number up to Bo = 0.2. Then it slightly decreases for Bo = 0.3
until it experiences a sharp increase for Bo = 0.45. In the whole range Bo 6 0.3, the
long-term inclination angle stands in the range 30◦ < θ < 40◦, in agreement with the
experimental findings of Kusuno & Sanada (2015) obtained under similar conditions
(Re < 150). The situation corresponding to Bo = 0.45 is specific. Indeed, the two
bubbles are close to coalescing asymmetrically at some point (S ≈ 2 at t = 22.5). This is
why the lateral motion of the TB significantly disturbs the subsequent motion of the LB
which is seen to experience a series of damped oscillations before rising along a rectilinear,
slightly inclined path. Moreover, since the vertical separation of the two bubbles is small
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Figure 16. Variations with Bo of some path characteristics for Ga = 30. (a) front view of
the path (the solid and dashed lines correspond to the LB and TB, respectively); (b) vertical
separation; (c) horizontal separation; (d) inclination of the line of centres. In (a), the square
symbol indicates the position/time at which coalescence takes place for Bo = 0.5.
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just before the TB starts to drift laterally (S ≈ 3.8 at t = 18), the inclination of tandem
after this drift has been completed is significantly larger (θ ≈ 60◦) than those found with
smaller Bo. We shall come back to the long-term evolution of this bubble pair later.

Beyond these geometric features, the main information provided by figure 16 is that
the smaller Bo is the earlier the side escape of the TB starts. This is in stark contrast with
the observations made on figure 15 for the DKT regime, where bubble deformation is
found to promote the tumbling process. Moreover, considering the critical time at which
Sr and θ depart from zero for the various Bo reveals that the corresponding vertical
separation does not keep a constant value (figures 16(b)− (d)). Rather it decreases from
Sc ≈ 8 for Bo = 0.02 to Sc ≈ 5.8 for Bo = 0.3. These values are significantly larger than
the equilibrium separation predicted in the axisymmetric configuration which, according
to figure 5, ranges from Se ≈ 6.1 for Bo = 0.02 to Se ≈ 4.3 for Bo = 0.3. Moreover,
in all cases, this critical separation is much larger than that at which tumbling is found
to start in the DKT regime. This finding indicates that, unlike the breakdown of the
axial symmetry in the DKT scenario, the ASE mechanism is driven by a long-range
interaction. This is in line with the conclusion of Yin & Koch (2008) who simulated the
motion of buoyancy-driven suspensions of spherical non-coalescing bubbles at Re ≈ 10.

To get additional insight into the long-term behaviour of the bubble pair, figure 17
shows the evolution of the separation and inclination angle over longer times for the two
sets (Ga, Bo) = (30, 0.3) and (Ga, Bo) = (30, 0.45) , i.e. Mo = 3.3 × 10−8 and Mo =
1.1×10−7, respectively. In the former case, the two components of the separation are seen
to slightly increase until the end of the computation but the inclination angle changes
by less than 1◦ over the last forty time units, reaching the ‘asymptotic’ value θ ≈ 36◦.
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Figure 17. Evolution of some characteristics of a bubble pair with (Ga,Bo) = (30, 0.45). (a):
vertical (red line) and horizontal (blue line) separation distances; (b) inclination of the line of
centres.

Conversely, in the latter case, the two components of the separation exhibit significant
variations throughout the computation. The vertical separation gradually tends to zero
while Sr goes on increasing even for t ≈ 100. At this final time, θ is close to 83◦ and is still
gently increasing, so that there is little doubt that the system eventually reaches a perfect
side-by-side configuration. To understand why the two bubble pairs behave so differently
on the long term, it must first be noticed that, at the end of the lateral drift of the TB

(t ≈ 40), the distance S = (S
2

+ S
2

r)
1/2 between the two centroids is approximately 6.8

for Bo = 0.3 and 4.5 for Bo = 0.45, the Reynolds numbers being approximately 66 and
60, respectively. For spherical bubbles, the results of Hallez & Legendre (2011) indicate
that, for Re = 100, the torque acting on the tandem is negligibly small for θ & 25◦

when S & 6 but keeps significant values whatever θ for S = 4.5. Although bubble
deformation is large in the two sets considered in figure 17, this is a strong indication
that, after the TB has drifted laterally, only the pair with Bo = 0.45 still experiences a
noticeable torque. Consequently only this pair may reach the side-by-side configuration
in a reasonable time. According to figure 16, S decreases with Bo. Hence, it may be
concluded that in the ASE scenario, the distance between the two centroids after the TB
has completed its drift is usually too large for the torque to remain significant. Therefore
the inclination of the tandem remains almost unchanged in the subsequent stages. Only
bubbles whose deformation is close to the coalescence threshold (here Bo ≈ 0.5) escape
this rule, since the vertical separation of the corresponding pairs is very small when the
side escape of the TB takes place.

Interestingly, for Bo = 0.45, Sr goes on increasing at the end of the computation,
suggesting that the interaction force is still nonzero and repels the two bubbles. At
the same Re and S , the computational results of Legendre et al. (2003) indicate that
the interaction force between two spherical bubbles rising side-by-side is attractive. The
difference between the two situations may be understood by noting once again that wake
effects are much stronger for Bo = 0.45 than for Bo = 0. Since these effects are repulsive
in the side-by-side configuration, the critical Reynolds number at which the interaction
force switches from repulsive to attractive is significantly larger in the present case, which
explains the observed behaviour.

7.2. Role of the TB shape in near-critical conditions for coalescence

The global geometric indicators reported in figure 16 reveal how the two bubbles get
closer to coalescence as the Bond number increases. Nevertheless it is of interest to
examine also how the bubble shapes vary with Bo close to the corresponding thresh-
old, especially with respect to the potential influence of the bubble distortion on the
magnitude and even the direction of the sideways force acting on the TB through the
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(a)

(b)

Figure 18. Evolution of the bubble shapes and relative positions for near-critical conditions.
(a): Ga = 30; (b): Ga = 15.

two mechanisms reviewed in appendix C. Figure 18 displays the evolution of the shapes
and relative positions of the two bubbles for near-critical conditions at Ga = 30 and
15, respectively. It is striking that, for both values, the TB shape exhibits almost no
left/right asymmetry until the late stage of the interaction. This is a strong indication
that the A-mechanism discussed in appendix C cannot reduce significantly the sideways
force. Similarly, the flow characteristics are such that the S-mechanism cannot take
place. For instance, with Ga = 30 and Bo = 0.4, the aspect ratio of the TB at t = 14
is approximately 1.6 and its Reynolds number is close to 80. For these parameters, the
path of an isolated bubble rising in a fluid at rest is stable and the numerical results of
Adoua et al. (2009) (their figure 5) indicate that finite-Reynolds-number effects decrease
the lift force by only 15% with respect to the inviscid prediction. So, it can be concluded
that within the parameter range considered in the present study, the lateral migration of
the TB is merely driven by the standard shear-induced mechanism. Hence, close to the
threshold, what makes the difference between non-coalescing and coalescing situations is
essentially the enhancement of the attractive wake effect as the TB becomes increasingly
oblate. For a sufficiently large Bo, this attractive effect becomes so strong that it delays
the occurrence of the lateral instability of the TB to such an extent that, although
this bubble subsequently migrates ‘normally’, its migration lasts for a too short time to
prevent it from hitting the LB.
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7.3. Influence of an initial angular deviation

Despite sophisticated bubble release systems, tiny initial lateral deviations can hardly
be avoided in laboratory experiments, yielding small-but-nonzero angular deviations
of the tandem with respect to the perfect in-line configuration. This calls for the
investigation of the influence of an initial nonzero inclination on the subsequent dynamics.
For this purpose, we systematically examined the impact of a nonzero initial inclination
0◦ < θ0 6 2◦ throughout the (Ga, Re)-range considered in §§ 5 and 6. Note that in all
configurations considered in this subsection, the initial horizontal separation between
the bubble centres is several times larger than the finest grid cells located on both
sides of the bubbles surface (4 times larger for the smallest inclination). This initial
configuration results in a ‘macroscopic’ asymmetry of the discretized solution, in which
the tiny numerical asymmetries of the pressure field returned by the Poisson solver (see
§ 6.2 and appendix A) play no role.

For Ga = 10, we observed that under such conditions, the DKT scenario no longer
takes place for Bo 6 0.1. Instead, the system follows a clear ASE evolution. For instance,
selecting (Ga, Bo) = (10, 0.1), the TB starts drifting laterally when S ≈ 4 (resp. S ≈ 5)
if θ0 is set to 1◦ (resp. 2◦), leaving the path of the LB almost unaffected in both cases.
Instead of ending up in the side-by-side configuration as it does when θ0 = 0◦, the
tandem then reaches an approximate final inclination of 50◦ (resp. 40◦). That θ0 has
such a dramatic influence on the existence of the DKT regime and the late geometry of
the tandem is at variance with observations reported for rigid bodies falling in tandem.
Indeed, experiments performed with short cylinders (Brosse & Ern 2014) indicate that the
DKT regime is still observed when a small initial lateral offset is imposed to the trailing
body. The key difference with a bubble pair is the relative magnitude of attractive effects
which is much stronger for rigid bodies, owing to the different vorticity generation mode
at the body surface. Moreover, for a given body shape, shear-induced lift effects are
significantly weaker for rigid bodies with Reynolds numbers of O(10) or larger, owing
to the presence of large separated regions (Kurose & Komori 1999). These two factors
make the DKT configuration much more sensitive to small lateral deviations in the case
of nearly-spherical bubbles.

Figure 19 provides the evolution of the tandem geometry in the case (Ga, Bo) =
(30, 0.3) for initial inclinations θ0 ranging from 0◦ to 2◦. The system is found to follow
the ASE scenario in all cases. However its final geometry strongly depends on θ0. In
particular, as figure 19(d) shows, the final inclination of the line of centres decreases
from 36◦ for θ0 = 0◦ to 22◦ for θ0 = 2◦. This is because when θ0 is nonzero, the
TB starts drifting laterally soon after it is released from rest, which is not the case for
θ0 = 0◦. Indeed, with θ0 6= 0◦, the initial flow configuration is no longer axisymmetric and
the TB faces an asymmetric wake as soon as vorticity generated at the LB surface has
been advected downstream over an O(S)-distance. Consequently, the TB experiences
a nonzero sideways force much earlier than in the perfect in-line configuration, where
this force occurs only after the system has become unstable. A nonzero θ0 shortens the
initial time period after which Sr starts to grow, as is made clear in figure 19(c). A direct
consequence of this shortening is the fact that the vertical separation at which the lateral
drift starts is larger for θ0 6= 0◦ (S ≈ 8 for θ0 = 2◦ instead of S ≈ 6.8 for θ0 = 0◦). For this
reason, weaker velocity gradients across the LB wake subsist for θ0 6= 0◦ at the position
of the TB when it starts drifting, resulting in a weaker sideways force. This makes the
maximum of Vr smaller (figure 19(b)), yielding a shorter final lateral position, hence a
smaller final inclination of the tandem.

Figure 20 displays the influence of the Bond number on the evolution of bubble pairs
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Figure 19. Evolution of several characteristics of a bubble pair with (Ga,Bo) = (30, 0.3)
undergoing initial angular deviations θ0 from 0◦ to 2◦. (a): vertical velocity of the LB (solid
line) and TB (dashed line); (b) horizontal velocity of the TB; (c): vertical (solid line, left axis)
and horizontal (dashed line, right axis) separations; (d) inclination of the line of centres. In (b),

the bullets on the Sr-curve indicate the location where the maxima of Vr are reached.
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with Ga = 30 when θ0 is set to 2◦. This figure is the counterpart of figure 16 discussed
above for θ0 = 0◦. All pairs with Bo < 0.7, i.e. Mo < 4.2×10−7, are seen to follow a clear
ASE scenario. For the aforementioned reason, the final inclinations reported in figure 20
are significantly smaller than those observed in figure 16. In addition, they exhibit a
marked and consistent decrease with the Bond number, a trend which is absent from
figure 16. For pairs with Bo > 0.8, θ is found to decrease over time until the two bubbles
perfectly align vertically, which eventually forces them to coalesce. The near-critical case
Bo = 0.7 is quite specific, and in many instances similar to the situation encountered
for Bo = 0.45 in figure 16. In this case, the two bubbles are very close to coalescing at
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Figure 21. Phase diagram showing whether a bubble pair released with an angular deviation
θ0 = 2◦ evolves in the ASE regime (squares) or eventually coalesces (triangles). (a) (Ga,Bo)
map; (b) (Re, χ) representation based on the steady-state values corresponding to the rise of the
corresponding isolated bubble.

Y ≈ 58 in figure 21(a). The corresponding gap is so thin that the flow at the back of the
LB is strongly disturbed, forcing the latter to deviate abruptly from its vertical path.
This allows the lateral separation to increase beyond the critical value Src & 2 within a
short time lapse (not visible in figure 21(b) which is limited to shorter times), allowing
the tandem to avoid coalescence. Similar to the evolution displayed in figure 17(b), but
through a sharper transition, the inclination of the tandem grows until the side-by-side
configuration is reached. Given the small gap at which the transition takes place and the
quite symmetric final lateral positions of the two bubbles, this specific evolution is closer
to the DKT scenario than to a standard ASE evolution.

The critical Bond number beyond which the two bubbles coalesce stands in the range
0.45 − 0.5 in figure 16 (θ0 = 0◦), but is slightly larger than 0.7 for θ0 = 2◦. In line
with the discussion on figure 19, the reason for this marked increase stems directly
from the longer vertical distance over which the shear-induced lift force acts on the TB
when θ0 6= 0◦, and the slightly shorter lateral distance this bubble has to drift to avoid
hitting the LB. These two factors imply that, compared to the reference case, a weaker
positive lift force is sufficient to avoid coalescence when θ0 is nonzero. The two lift reversal
mechanisms discussed in appendix C being directly linked to the ability of the TB to
deform, increasing the Bond number makes the lift force decrease and eventually change
sign, other things being equal. Hence, in the presence of an initial angular deviation,
coalescence can be avoided over a broader range of distortion of the TB, i.e. up to a
larger Bond number.

The fate of all bubble pairs released with an initial inclination θ0 = 2◦ over the range
10 6 Ga 6 30, 0 < Bo 6 2.0 is summarized in figure 21. This figure is the counterpart
of figure 6 obtained with θ0 = 0◦. In line with the above discussion, the ASE regime
observed when θ0 = 2◦ exists over a significantly broader range of Bo, hence for bubbles
with a larger oblateness. For instance, bubbles with aspect ratios χ & 1.3 (resp. 1.7) are
found to coalesce for Ga = 15 (resp. 30) in the absence of any initial deviation. With
θ0 = 2◦, the corresponding critical aspect ratios raise beyond 1.5 (resp. 2.0) and the
critical Reynolds numbers are close to 50 and 120, respectively.

Figure 22 shows how the bubble shapes and relative positions evolve close to the
transition to coalescence for Ga = 30. Unlike those reported in figure 18, the TB shapes
now exhibit a marked left/right asymmetry (although less pronounced, this trend subsists
for lower Ga). The difference with the strict in-line configuration is that here the TB is
fully immersed in an asymmetric flow as soon as the wake of the LB has developed within
the gap. Consequently, its shape has to adapt to this asymmetric environment throughout
the interaction process. While the TB is seen to migrate toward the right for Bo = 0.7,
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Figure 22. Evolution of the bubble shapes and relative positions at Ga = 30 under
near-critical Bo-conditions in the presence of an initial angular deviation θ0 = 2◦.
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Figure 23. Evolution of some characteristics of a bubble pair with (Ga,Bo) = (10, 0.02) for
different initial separations. (a): rise speed of the LB (solid lines) and TB (dashed lines); (b)
vertical (solid lines, left axis) and horizontal (dashed lines, right axis) separations. Red, blue

and green lines refer to S0 = 8, 10 and 12, respectively. A time shift t0 = 11 (resp. t0 = 22) is

applied for S0 = 10 (resp. S0 = 12) and evolutions are plotted vs. the modified time t∗ = t− t0.

a tiny migration toward the left may be identified for Bo = 0.8, leading unavoidably
to coalescence. The discussion in appendix C allows the origin of this reverse migration
to be readily identified. The aspect ratio of the TB being only 1.85 for Bo = 0.8, the
S-mechanism is not present, since it only takes place beyond a threshold χcS ≈ 2.2 (
we observed a reversed migration due to this mechanism by increasing the Bond number
beyond unity). In contrast, the egg-like shapes of the TB point to the A-mechanism.
The capillary number based on the rise velocity of this bubble at t = 14 only increases
from 0.051 for Bo = 0.7 to 0.058 for Bo = 0.8. However this modest increase turns
out to be sufficient for the deformation-induced force directed to the left to exceed the
shear-induced lift directed to the right, preventing the lateral escape of the TB.

7.4. Influence of initial separation

All simulations considered up to now are based on an initial separation distance S0 = 8.
It is relevant to examine how this choice influences the upcoming evolution of the bubble
pair. Since the in-line configuration is stable in the head-on coalescence regime, S0 is not
expected to have an influence in this regime. This is why we consider the influence of S0

only in the DKT and ASE regimes.
Figure 23 displays the evolution of some characteristics of the bubble pair obtained

by increasing S0 from 8 to 12 in the case Ga = 10, Bo = 0.02. With S0 = 8, this set
of parameters yields the DKT configuration described in figures 8 and 9. Introducing



Deformable bubbles rising initially in line 31

1.6

1.8

2

2.2

2.4

2.6

2.8

3

V

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

θ

t

S

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Vr

_

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40t
-1

0

1

2

3

4

5

S

_

r

(a) (b)

Figure 24. Influence of the initial separation S0 on several characteristics of a bubble pair with
(Ga,Bo) = (30, 0.3). (a): vertical velocity component of the LB (solid line) and TB (dashed
line); (b) same for the horizontal component; (c): vertical (solid line) and horizontal (dashed line)
separations; (d) inclination of the line of centres. Red, blue, green and orange lines correspond

to S0 = 6, 8, 10 and 12, respectively.
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an appropriate S0-dependent time shift t0 and setting t∗ = t − t0(S0) allows the t∗-
evolutions of all quantities for the three initial separations to collapse on a single curve
beyond t∗ ≈ 10. Hence a DKT scenario yielding the same final configuration is observed
whatever the initial separation. This is no real surprise since, for this set of parameters,
the in-line configuration becomes unstable only when the two bubbles get very close,
which happens only for t∗ ≈ 40.

Figure 24 shows how the evolution of the same parameters vary with S0 for Ga =
30, Bo = 0.3. In this case, the interaction process yields an ASE scenario whatever S0.
However the final configuration now depends on the initial separation. In particular, the
shorter S0 the larger the final inclination of the tandem, with θ ≈ 47◦ and θ ≈ 22◦ for
S0 = 6 and S0 = 12, respectively. Not unlikely, the larger S0 is the longer it takes for the
path of the TB to start bending. Examining the evolutions of the vertical separation and
those of the rise speed of each bubble reveals that none of these three quantities exhibits
a constant value by the time the TB starts drifting laterally. In contrast, it turns out
that the difference VTB − VLB is close to 0.35 whatever S0 when this lateral motion
sets in. Therefore we conclude that the in-line configuration becomes unstable when the
velocity difference between the two bubbles exceeds the above threshold, irrespective of
the separation distance at which this threshold is reached.

Closely related to the influence of the initial separation is that of the sequential release
of the two bubbles in actual laboratory experiments. Still with Ga = 30, Bo = 0.3, we
ran a computation in which the TB was allowed to start rising only after the LB reached
a dimensionless height S(t0) = 8 above the point of release. Figure 25(a) displays the
corresponding evolution of the vertical separation. Due to the time lapse the TB needs
to reach its final rise speed, S reaches a maximum close to 10.2 before the attractive
interaction sets in and the separation starts to decrease. This is why we compare the
subsequent evolution with that obtained for S0 = 10 when the two bubbles released
simultaneously. For this purpose, we introduce an appropriate time shift t0 and define a
modified time t∗ = t + t0 to make the two evolutions coincide in the early stage of the
interaction. With this time shift, the two further evolutions of S almost superimpose, as
do those of the lateral velocity of the TB (figure 25(b)) and the inclination angle (figure
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Figure 25. Influence of the sequential release of the two bubbles. (a) vertical separation; (b)

lateral velocity; (c) inclination angle. Solid line: bubbles are released simultaneously with S0 = 8;

blue dash-dotted line: same with S0 = 10 and a time shift t0 = 2.6; red dashed line: the TB is
released from rest after the LB has travelled a distance S(t0) = 8.

25(c)). Consequently it can be concluded that the time elapsed in between the release of
two successive bubbles merely increases their ‘initial’ separation, defined as the distance
that separates them before the wake of the LB starts to influence the rise of the TB.

8. Summary and concluding remarks

We carried out a series of three-dimensional simulations in order to dissect the physical
mechanisms involved in the evolution of a pair of clean, deformable rising bubbles initially
released in line. In this first part of the investigation, we focused on the parameter range
10 6 Ga 6 30, 0.02 6 Bo 6 2.0 which corresponds to inertia-dominated regimes in
which the path of an isolated bubble remains straight and vertical. We made use of
the Basilisk open source code and improved on the original version by implementing a
specific AMR improvement (Zhang et al. 2019) allowing an automatic grid refinement
in the gap left between the two bubbles when they come almost in contact. Previous
theoretical and computational investigations of this configuration essentially considered
spherical bubbles and steady or quasi-steady configurations. By allowing the bubbles to
move and deform freely, the present study provides a more realistic description of the
hydrodynamic interactions governing the fate of the bubble pair.

To build on a reference case, we first ran axisymmetric time-dependent simulations.
Similar to the predictions of Yuan & Prosperetti (1994) and Hallez & Legendre (2011) for
spherical bubbles, we found that the two bubbles stabilize a finite distance apart, provided
their deformation remains moderate. Since the strength of the inertia-induced repulsive
interaction force increases with Ga, so does the critical Bond number beyond which the
bubbles come in contact and eventually coalesce. For this reason, the equilibrium distance
depends on both Ga and Bo, or equivalently, on the Reynolds and Weber numbers. The
empirical correlation (5.2) summarizes the corresponding findings.

We then turned to fully three-dimensional evolutions. The simulations revealed that,
under conditions for which an equilibrium separation distance exists in the axisymmetric
case, this configuration is never reached in the three-dimensional case because the in-line
arrangement is unstable with respect to non-axisymmetric disturbances. As rationalized
long ago (Harper 1970), this is because, provided bubble deformation is moderate, any
deviation of the TB from the axis of the LB wake is amplified, owing to the shear-
induced lift force that tends to drive it out of the wake. This lateral drift takes two
markedly different forms, depending on the strength of inertial and deformation effects.
For Ga = O(10) and Bo . 0.1, a DKT mechanism takes place. In this regime, the
two bubbles deviate almost symmetrically from their initial paths and this deviation
happens while they get very close to each other, the remaining gap being of the order of
the bubble radius or even less. After the tumbling stage is completed, the two bubbles
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rise virtually side by side in a vertical plane, their horizontal centre-to-centre separation
being approximately 3 bubble radii. In more inertial regimes, say 12 . Ga 6 30, and
low-to-moderate Bond numbers, the bubble pair evolves in such a way that the TB
escapes laterally from the wake without significantly altering the path of the LB. In
this Asymmetric Side Escape scenario, the lateral drift of the TB takes place while the
two bubbles are still widely separated. In the subsequent stage, the tandem maintains
a significant and almost constant inclination in the range 30◦ . θ . 40◦, except for
near-coalescence conditions under which the side-by-side configuration may eventually
be reached. Whatever Ga, coalescence is avoided only up to a critical Bond number,
the value of which increases with Ga, from Boc ≈ 0.1 for Ga = 10 to Boc ≈ 0.5
for Ga = 30. Actually, bubble deformation influences the evolution of the system in a
number of ways. In particular, the fact that the vorticity generated on a bubble is directly
proportional to the curvature of its surface implies that the strength of the wake-induced
interaction acting on the TB increases sharply with the Bond number. This interaction
being attractive, deformation effects are found to promote the suction of the TB along
the centreline of the LB wake. This of course favours coalescence, but also tends to
stabilize the in-line configuration when Bo < Boc(Ga) by delaying the growth of non-
axisymmetric disturbances.

We performed a detailed examination of the influence of initial conditions, especially
of a possible misalignment of the two bubbles. Even a minimal initial deviation (θ0 6 2◦)
was found to have a dramatic influence on the evolution of the bubble pair. In particular,
the DKT regime previously observed for Ga = O(10) and Bo . 0.1 no longer takes place.
Instead the system follows an ASE evolution. A nonzero initial inclination also promotes
the ASE configuration toward larger bubble deformations, making the critical Bond
number increase up to 0.8. The reason is that for θ0 6= 0◦ the TB faces an asymmetric
flow from the very beginning of its rise, which makes it able to drift laterally over a longer
time than in the canonical θ0 = 0◦ case. This scenario is efficient to avoid coalescence
as far as the sideways force is dominated by the classical shear-induced lift mechanism.
However, mechanisms leading to a weakening or even a reversal of the overall transverse
force exist for non-spherical bubbles. In particular, bubbles rising in a shear flow exhibit a
non-axisymmetric shape, a feature known to produce a deformation-induced component
of the transverse force with opposite sign compared to that of the shear-induced inertial
lift. As the Bond number approaches its critical value, we observed that the asymmetry
of the carrying flow in which the TB is immersed for θ0 6= 0◦ yields a pronounced egg-like
shape of the latter. This goes hand in hand with a reduction of the transverse force which
eventually changes sign for Bo > Boc, forcing the two bubbles to coalesce.

The present study clarifies the respective roles of inertial, viscous and capillary effects,
as well as that of initial conditions, in the three-dimensional dynamics of the considered
system. From the standpoint of the microstructure of bubbly suspensions, the main
outcome is presumably the final geometry of the arrangement that emerges from the
evolution of bubble pairs initially released in line, possibly with some small angular
deviation. As we saw, only pairs made of nearly-spherical bubbles with O(10)-Galilei
numbers end up in a side-by-side configuration and thereby tend to favour the formation
of horizontal clusters. However, in most non-coalescing situations, the interaction process
follows the ASE scenario, yielding final inclinations in the range 15◦−40◦ and horizontal
separations ranging from 2 to 5 radii, depending on Ga,Bo and θ0. Given the unavoidable
variations of initial bubble positions in real bubbly flows, this significant range of near-
equilibrium inclinations and separations guarantees a much more homogeneous spatial
bubble distribution on the long term than what can be expected from simplified models
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assuming potential flow and/or spherical bubble shapes.
This study did not examine the influence of slight differences in the size of the two

bubbles. Nevertheless the main consequences of such a difference may be inferred from
present findings. Suppose that the LB is slightly larger than the TB. In the (Ga, Bo)-
range considered here, the corresponding increase in the buoyancy force makes the rise
speed of the LB increase, lowering the positive velocity difference VTB − VLB during
the axisymmetric stages of the interaction process. Therefore, compared to the reference
case, the two bubbles maintain a larger separation at a given time, which favours the
occurrence of an ASE-type scenario. Consequently, this size difference tends to broaden
the subdomain corresponding to the ASE regime in the phase diagram of figure 6.
Conversely, if the TB is slightly larger than the LB, the two bubbles are more prone
to getting close to each other before the axial symmetry of the flow breaks down. Hence,
if Ga and Bo are such that the system stands close to the DKT-ASE transition, this
configuration favours the DKT scenario. Similarly, it lowers the critical Bond number
Boc(Ga) if the system is close to the coalescence threshold. The above predictions
may be corroborated with the experimental observations of Kusuno et al. (2019) who
considered two bubble pairs close to the DKT-ASE transition, with a LB corresponding
to Ga = 13.5, Bo = 0.27 in both cases. With a TB 3.5% larger than the LB, they found
the system to follow a DKT transition (their figures 4(c) and 5(c)). Conversely, they
observed a clear ASE scenario when the TB was 3.5% smaller than the LB (figures 4(d)
and 5(d)).

Another aspect that the present study leaves untouched is the fundamental question
of the mathematical nature of the bifurcation that takes place when the axisymmetric
configuration becomes unstable. Similarly, although the DKT and ASE regimes exhibit
markedly different physical characteristics, whether or not they correspond to truly dis-
tinct unstable modes of the system remains unknown at this stage. Tackling these issues
requires the development of an appropriate global linear stability approach. Numerical
tools allowing the threshold and nature of bifurcations involved in the wake of fixed
(Tchoufag et al. 2013; Cano-Lozano et al. 2016b) or freely-moving (Tchoufag et al. 2014)
clean isolated bubbles with a prescribed shape have become available during the past
decade. More recently, the same approach was extended to fully deformable isolated
bubbles (Bonnefis 2019). Further extending this approach to systems involving bubble
pairs is certainly feasible and seems the natural next step capable of bringing new insight
into these fundamental issues.
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Appendix A. Numerical tests

To assess the accuracy of the three-dimensional computations, two series of tests were
performed, both with the parameters (Ga = 30, Bo = 0.3) corresponding to the ASE
configuration discussed in § 6.3. To properly interpret these tests, it must be kept in mind
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Figure 26. Influence of the tolerance imposed to the Poisson solver on the evolution of a bubble
pair with Ga = 30, Bo = 0.3. (a): vertical velocity component of the LB (red line) and TB (blue
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separation. Dotted, solid and dash-dotted lines refer to simulations performed with a tolerance
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Figure 27. Influence of grid resolution on the evolution of a bubble pair withGa = 30, Bo = 0.3.
(a): vertical velocity component of the LB (red line) and TB (blue line); (b) vertical (red line,
left axis) and horizontal (blue line, right axis) components of the separation. Dotted, solid
and dash-dotted lines refer to simulations performed with ∆min = R/34, R/68 and R/136,
respectively.

that the initial configuration being axisymmetric, the transition to a non-axisymmetric
state is governed by the asymmetry of numerical disturbances. Two possibilities exist to
assess the influence of these disturbances. If one looks for a rigorous grid convergence
study, imposing a well-defined small asymmetry to the initial conditions and examining
how it changes the results as the grid is varied is the appropriate choice. However, a code
user has no other control on the disturbances unavoidably present in the discretization
procedure and the time-advancement algorithm than changing the user-defined numerical
parameters, which in Basilisk are the grid refinement level and the tolerance on the
Poisson solver (see below). Therefore, from a user point of view, it is more relevant to
examine how the ‘natural’ disturbances that arise in the numerical solution influence the
results, while the above two parameters are varied separately. This is the choice adopted
in the tests reported below.

The Poisson solver is the only part of the time-advancement algorithm used in Basilisk
that does not preserve spatial symmetry up to machine accuracy (Popinet 2003). For this
reason, we first examined how much the user-specified tolerance Tε applied to this solver
influences the evolution of the bubble pair. This tolerance is defined as the maximum
relative change during one time step of the fluid volume enclosed in a cell, i.e. the
maximum of |∇ · u |∆t over the computational domain. The standard tolerance used
throughout the computations is Tε = 1 × 10−4. In this test, we ran two additional
simulations, with Tε = 1 × 10−2 and 1 × 10−6, respectively. Figure 26 reveals that the
smaller Tε is, the longer it takes for the axial symmetry of the system to be broken (see
the evolution of Sr in figure 26(b)). This was to be expected since reducing the tolerance
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reduces the asymmetry of the solution, delaying the transition to three-dimensionality.
This of course has some impact on the final vertical separation of the two bubbles, hence
on the inclination of their line of centres. In contrast, the bubble velocities before and
after the lateral escape of the TB are left unchanged by the change in Tε, together with
the final horizontal separation.

Then we carried out a grid convergence study, setting Tε = 1 × 10−4 in all cases.
Starting from the reference grid with ∆min = R/68 used throughout the study, we ran
the same case on a grid twice coarser (∆min = R/34) and another grid twice finer
(∆min = R/136). Note that, since the time step decreases with ∆min, the computation
with ∆min = R/136 was extremely time consuming. This is why it was stopped at t = 25,
beyond which the dynamics of the flow is not expected to reveal any supplementary
influence of the grid resolution. The results of these tests are presented in figure 27.
Again, these results show that the only significant change in the velocities evolution is
the time by which the TB starts to escape laterally, and consequently the final vertical
separation of the two bubbles (although only evolutions for t 6 25 are displayed in the
figure, the horizontal separation was found to relax to the same value with the two grids
on which the runs were carried out over larger times). It is noticeable that the onset of
three-dimensionality is reached earlier on the reference grid than on both the finer and
coarser ones. To understand this surprising feature, it must be kept in mind that the

time step limitation arises from capillary effects, implying ∆t ∝ ∆
3/2
min. Therefore, the

maximum error on |∇ · u | resulting from the Poisson solver is proportional to ∆
−3/2
min .

Assuming that the cell size at the location where this maximum is reached is ∆, the

corresponding error on u is proportional to ∆
−3/2
min ∆. Since the local cell volume is ∆3,

the contribution of the error to the local fluid momentum is proportional to ∆
−3/2
min ∆

4.
Indeed, what determines the influence of the error on the onset of the lateral motion
is the asymmetric component of the momentum over a cell rather than that of the
local velocity u itself. The position of the maximum error within the computational
domain is unknown a priori. It may vary from one grid to another, and this variation is
responsible for the non-monotonic behaviour observed in figure 27. For instance, if the
maximum is reached in the most refined subregion (i.e. very close to one interface) on
the coarsest grid (∆ = ∆min = R/34) while it is reached in the near wake on the other
two grids (∆ = 4∆min = R/17 and R/34, respectively), the asymmetric contribution to
the momentum (normalized with (R/34)5/2) is of O(1) on the coarsest grid, while it is
of O(211/2) and O(23) on the intermediate and finest grids, respectively. In such a case,
the onset of the TB lateral escape is expected to happen first on the intermediate grid,
then on the finest one, and finally on the coarsest one, just as observed in the figure.

In summary, the above tests revealed that, as expected, the minimum cell size and
tolerance on the Poisson solver influence the time by which the axial symmetry of the
initial configuration breaks down. The smaller the tolerance Tε, the longer it takes for
the bifurcation to take place on a given grid. The influence of the grid resolution is more
complex, owing to the variability of the position at which the maximum asymmetry on
the velocity field takes place. Because of this, the time by which the solution develops
a significant three-dimensional component depends on both ∆min and the local cell size
∆ at the location of this maximum. Obviously, a longer transition time being equivalent
to as shorter separation between the two bubbles, the sensitivity of the system to these
numerical parameters implies that the value of the critical Bond number Boc(Ga) has
a nonzero numerical ‘error bar’. For instance, although the bubble pair with (Ga =
30, Bo = 0.45) is found to escape coalescence with ∆min = R/64 and Tε = 1× 10−4, it is
very likely that it coalesces with a smaller Tε. The numerical uncertainty on Boc(Ga) may
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be estimated by considering the time lag for the onset of the TB lateral escape resulting
from the sensitivity of the system to Tε and ∆min. Given the difference in the rise speed
of the two bubbles by the time this escape starts, figures 26 and 27 indicate that the
vertical separation between the two bubbles is approximately reduced by ∆S = 0.3 when
Tε is reduced by two orders of magnitude or when the grid resolution is increased from
∆min = R/68 to ∆min = R/136. Then, figure 16(b) indicates that the minimum vertical
separation reached during the lateral escape varies from 4.55 for Bo = 0.3 to 2.0 for
Bo = 0.45, from which a rule of three suggests that a reduction of the vertical separation
by ∆S = 0.3 implies a reduction of the critical Bond number by 1.8%.

Appendix B. Bubble coalescence in pure liquids

Coalescence of drops and bubbles in a suspending liquid has received considerable
attention in the literature owing to its many applications. From the fluid mechanics
viewpoint, most of the studies carried out during the second half of the past century
attempted to determine the characteristics of the drainage of the film that forms in
between two drops or bubbles when they approach each other (see Chesters (1991) and
Chan et al. (2011) for reviews). Assuming an axisymmetric geometry, asymptotic studies
based on the lubrication approximation and numerical studies based on the boundary
integral method (e.g. Chi & Leal (1989)) revealed the critical role of the drop/bubble-
to-external fluid viscosity ratio in the drainage dynamics. Depending on how this ratio,
λ say, compares with the film aspect ratio ε (the typical radius-to-thickness ratio of the
near-contact region), four possible situations arise, corresponding to nearly immobile
(λ � ε1/2), partially mobile (λ ∼ ε1/2), mobile (ε−1/2 � λ � ε1/2) and fully mobile
(λ� ε−1/2) interfaces, respectively (Davis et al. 1989; Chesters 1991). In the first three
cases, provided the drainage takes place under the action of a constant external force
and the drops are nearly spherical except in the near-contact region, the minimum film
thickness obeys a power law evolution (Hartland 1968; Jones & Wilson 1978; Yiantsios
& Davis 1990; Nemer et al. 2013). The corresponding exponent depends on the flow and
boundary conditions, but stands in between 0 and−1 in all cases. A crucial consequence of
this algebraic thinning rate is that the drainage requires an infinite time to be completed.
Hence, non-hydrodynamic effects, in the first place the long-range London-van der Waals
force, are required for coalescence to be achieved in a finite amount of time.

Things differ drastically with fully mobile interfaces, which is the relevant situation
for bubbles in pure liquids (contamination by surfactants yields immobile or at least
partially mobile interfaces; e.g. Vakarelski et al. (2019, 2020)). In this case, the flow in
the gap is merely a plug flow (Davis et al. 1989), as interfaces offer no resistance to
the squeezing of the film. Under such conditions, standard lubrication approximations
do not hold unless the gap has become extremely thin (Davis et al. 1989; Yiantsios
& Davis 1990; Nemer et al. 2013). The film thickness decreases exponentially over
time during most of the drainage process, the decay rate depending on whether the
Reynolds number Rea = ρVaR/µ based on the relative approach velocity Va of the
bubbles is large or small (Chesters 1991). This exponential thinning law was confirmed
experimentally (Debrégeas et al. 1998) and numerically (Pigeonneau & Sellier 2011) by
considering buoyancy-driven bubbles reaching a free surface. This law holds as far as the
film thickness can be considered uniform. However, similar to the case of immobile or
partially mobile interfaces, the minimum film thickness initially located on the line of
centres shifts gradually to the film periphery, giving rise to a ‘dimple’ corresponding to
the transition region between the film and the outer flow. To take the influence of this
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dimple into account, Chesters & Hofman (1982) solved numerically the set of thinning
equations with appropriate boundary conditions for initially spherical bubbles, assuming
Rea � 1, i.e. considering that inertial and capillary effects are in balance. They observed
that, when the minimum film thickness has reduced sufficiently, the thinning velocity at
the dimple position levels off at a value close to 0.1Va. Under constant-force conditions,
the crucial consequence of this thinning evolution is that drainage is completed in a finite
time without the need for a non-hydrodynamic force to intervene. Defining the approach
Weber number Wea = ρV 2

a R/γ, the dimensionless inertial drainage time is then

T di = kiWea/V a , (B 1)

with ki ≈ 1.0 and V a = Va/(gR)1/2 in the buoyancy-driven case of interest here. The
value of ki was later slightly re-evaluated to ki ≈ 1.08 by Duineveld (1994, 1998). Within
a liquid film bounded by two clean gas-liquid interfaces, the London-van der Waals force
is attractive, thus shortening the coalescence time. However this force is known to be
significant only when the distance between the two interfaces is less than 100 nm, which
made Chesters & Hofman conclude that it barely shortens the coalescence process.

Obviously, coalescence occurs only if the relative approach velocity remains positive
throughout the drainage. For this to be the case, only part of the kinetic energy resulting
from the relative motion of the two bubbles (moving with velocities ±Va/2) must be
converted into surface energy through the deformation of the bubble-fluid interface
in the near-contact region. Still in the limit Rea � 1, this criterion yields a critical
Weber number Weac beyond which the two bubbles bounce once or several times, until
eventually coalescing when the approach Weber number has decreased sufficiently. Under
potential flow assumptions, the kinetic energy associated with the bubble relative motion
is proportional to the virtual mass (or added-mass) coefficient CMa in the corresponding
direction, making Weac vary linearly with CMa. For nearly-spherical bubbles, Chesters
& Hofman (1982) established that the relative increase of the surface energy is at leading
order (kiWea/4)2, which yields Weac = 2

3k
−2
i CMa. For two spheres in contact after

having moved toward each other , CMa ≈ 0.80 (Voinov 1969; Miloh 1977), so that
Weac ≈ 0.45 (Duineveld 1994, 1998).

In addition, Chesters & Hofman pointed out that previous results also apply to a
single bubble reaching a free surface, up to a simple geometric transformation. The
outcome is that in this configuration (B 1) transforms into T di = 4kiWea/V a, while
the above criterion for the onset of bouncing becomes Weac = 1

3k
−2
i CMa. Assuming

the bubble to be spherical and the Froude number of the free surface, V
2

a, to be large,
the relevant virtual mass coefficient is CMa ≈ 0.42 (Miloh 1977), so that Weac ≈ 0.12
(Duineveld 1994). By tracking sub-millimeter size bubbles rising up to a free surface in
ultrapure water, the same author determined the experimental threshold asWeac ≈ 0.105
(corresponding to a rise Reynolds number Re ≈ 50). This agreement with the theoretical
prediction is supported by more recent experiments (Vakarelski et al. 2020) and provides
an important support to the approach of Chesters & Hofman (1982), although some of
its aspects have been questioned (Chan et al. 2011).

The above conclusions hold for nearly-spherical bubbles provided effects of the liquid
viscosity are negligible. However, despite the uniform velocity profile in the film, viscous
effects arise through normal stresses. For a given film thickness, these effects tend
to increase the film radius, i.e. the area of the near-contact region. This results in
a significant decrease of the film thinning rate as soon as Rea . 10 (Chesters &
Hofman 1982). In this Rea-range, this thinning rate decreases continually as the drainage
proceeds, making the London-van der Waals force inescapable for coalescence to occur.
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For low enough Rea, the film evolution is governed by a viscous-capillary balance, hence
by the capillary number Caa = Wea/Rea = µVa/γ. To the best of our knowledge, no
theoretical model is available to predict the drainage time in this viscosity-dominated
regime for fully mobile interfaces. However, recent experimental data may be used to
obtain an empirical scaling law from which realistic estimates may be inferred. The
case of air bubbles coalescing at a clean free surface after rising in a liquid 20 times
more viscous than water was considered in detail by Vakarelski et al. (2018). Small
bubbles (R . 0.1 mm) were observed to coalesce almost immediately on their arrival
at the surface, while larger bubbles remained ‘glued’ there during some time without
bouncing, until coalescence eventually occurred. A single tiny bounce was detected for
bubbles larger than R ≈ 0.45 mm, corresponding to Wea & 0.135. Overall, they found
the residence (i.e. drainage) time Tdv of the bubble at the surface, to be proportional
to R2. Their results may be used as a basis to derive a generic empirical expression for
the viscous drainage time, Tdv. Considering that T dv = (g/R)1/2Tdv is primarily driven
by the capillary number in this O(1)-Reynolds number range and keeping in mind that
the rise speed also grows like R2 in this regime, it turns out that the simplest admissible
scaling law for T dv is

T dv = kvCa
3/2
a /V a , (B 2)

with kv = 1.8× 103 according to the above experimental data. It is then a simple matter
to compare the inertial and viscous estimates for the drainage time in a given fluid
and for a given bubble size. For instance, in ultrapure water (Mo = 2.6 × 10−11), the
bounce/no bounce threshold for a bubble reaching a free surface is known to correspond
to 0.335 mm-radius bubbles (Duineveld 1994). Under such conditions, (B 1) (with the
appropriate transformation) and (B 2) yield T di ≈ 0.32 and T dv ≈ 0.064, respectively.
Hence the drainage is controlled by inertial effects and coalescence takes place very soon
after the bubble collides with the free surface. Similarly, in the viscous liquid used by
Vakarelski et al. (2018) (Mo = 6.6× 10−5), the same two predictions for a bubble with
R = 0.45 mm (i.e. just below the bounce/no bounce threshold) yield T di ≈ 0.68 and
T dv ≈ 23.8, respectively. In this case, the drainage time estimated through the viscous
law (B 2) is 35 times larger than that predicted by the inviscid approach, implying that
the latter is irrelevant. This corresponds to a situation in which the bubble stays ‘glued’
to the free surface during a long time before coalescing. For a pair of bubbles rising
in line under similar conditions, the two bubbles form a compound ‘dumbbell’ bubble
during the drainage process, as observed by Sanada et al. (2006) and Watanabe & Sanada
(2006). To estimate Tdv in this case, (B 2) must be modified according to the geometric

transformation of Chesters & Hofman, which yields T dv = 1
2kvCa

3/2
a /V a.

Most results reviewed above were obtained with nearly-spherical bubbles (Bo � 1,
in practice Bo . 0.2). Influence of a significant distortion of the bubble shape on the
coalescence process is complex because it involves antagonistic effects. On the one hand,
the curvature of the near-pole region of an oblate bubble is smaller than that of a spherical
bubble, making the area of the near-contact region larger. Thus the radial position of
the dimple shifts outward, and a longer time is required to squeeze the film with a
given approach velocity. Duineveld (1994) solved the set of inviscid thinning equations
for oblate bubbles with various aspect ratios. Compared to the reference case, his results
show that the pre-factor ki involved in the prediction (B 1) for the drainage time is
increased approximately by a factor of 2 (resp. 3) for χ = 1.5 (resp. χ = 2). On the other
hand, an oblate body moving along its short axis displaces more fluid than a sphere, which
translates into a larger virtual mass coefficient, hence a larger kinetic energy available
for the drainage. Moreover, as explained in § 4, the bubble oblateness enhances wake
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effects, increasing the amount of fluid displaced by the bubble through the entrainment
process in the wake. Therefore, for a given approach velocity, the kinetic energy of the
fluid displaced by oblate bubbles may be significantly larger than the estimate based on
the simple irrotational added-mass concept. Unfortunately, no drainage time prediction
incorporating wake entrainment and/or viscous effects seems available for such bubbles.

Appendix C. Lift reversal mechanisms on distorted bubbles

As is well known, the shear-induced lift mechanism mentioned in § 4, hereinafter called
L-mechanism, stems from the bending of the vorticity of the carrying shear flow past the
bubble, a process that results in the formation of a pair of counter-rotating streamwise
vortices in its wake (Legendre & Magnaudet 1998). The vorticity produced at the bubble
surface plays no role in this mechanism which is inviscid by nature (Lighthill 1956;
Auton 1987). However, for reasons discussed in § 4, the strength of the surface vorticity
resulting from finite-Re effects increases sharply with the bubble oblateness. When an
oblate bubble rises in a fluid at rest, the amount of vorticity produced at its surface
becomes large enough for the axisymmetric wake to become unstable within a finite
range of Reynolds number, ReS−(χ) 6 Re 6 ReS+(χ), provided the bubble aspect ratio
exceeds a critical value χcS ≈ 2.2 (Magnaudet & Mougin 2007). This mechanism is at
the root of the path instability of millimeter-size bubbles rising in water (Mougin &
Magnaudet 2002). Similar to the above L-mechanism, it gives rise to a wake dominated
by a pair of counter-rotating streamwise vortices, the sign of which is selected by some
initial disturbance. This wake instability mechanism, hereinafter called S-mechanism,
subsists when a strongly oblate bubble rises in a weak shear flow. The only difference
is that the initial disturbance is now provided by the outer shear, so that the sign of
the streamwise vorticity in each trailing vortex is no longer random. Rather, a detailed
analysis reveals that the contributions of the L- and S-mechanisms to the vortex tilting
term involved in the streamwise vorticity balance have opposite signs (Adoua et al. 2009).
For this reason, the sign of the overall sideways force depends on the relative strength
of the two mechanisms. If the outer shear is strong enough, the L-mechanism dominates
even for χ > χcS and the lift force keeps the sign it would have for a spherical bubble.
In contrast, if the shear is weak enough and Re and χ fall in the range where the S-
mechanism is active, the latter becomes dominant, yielding a reversed lift force. The lower
Reynolds number beyond which lift reversal governed by the S-mechanism takes place
in a weak shear flow is a sharply decreasing function of χ − χcS , with ReS− ≈ 155 for
χ = χcS and ReS− ≈ 55 for χ = 2.5 for instance. Conversely, the upper Reynolds number
beyond which the lift force recovers the sign predicted by the L-mechanism dramatically
increases with χ − χcS , from ReS+ = ReS− ≈ 155 for χ = χcS to ReS+ ≈ 680 for
χ = 2.5 for instance (Adoua et al. 2009). Because of this mechanism, one can suspect
that bubbles experiencing a sufficient deformation may render the in-line configuration
stable. Indeed, if the S-mechanism dominates, any deviation of the TB from the wake
axis is expected to be counteracted by the reversed lift force.

A distinct mechanism may also lead to the same effect on a non-axisymmetric bubble
(more generally a drop). This mechanism, hereinafter called A-mechanism, is a conse-
quence of the asymmetric deformation experienced by a drop immersed in a shear flow.
In the zero-Re limit, the drop is known to deform in such a way that its major and minor
axes align with the eigen-directions of the associated strain rate (Taylor 1932). In the
case the drop has an additional translation with respect to the fluid, this deformation
induces a nonzero sideways force, even at Re = 0. When the Reynolds number is finite,
this deformation-induced transverse force combines with the inertial shear-induced lift.
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However, theoretical predictions indicate that the two mechanisms result in sideways
forces of opposite signs, except for drops whose viscosity is close to that of the suspending
fluid (see equation (49) in Magnaudet et al. (2003)). The deformation-induced (resp.
inertia-induced) force being proportional to the Weber (resp. Reynolds) number, the
direction of the total lift force is governed by the capillary number Ca = We/Re. This
force changes sign for a critical value Ca = Cac which, for a bubble with negligible
internal viscosity, depends only on the relative shear rate βR/uT , β denoting the ambient
shear rate. While the total lift force keeps the sign corresponding to the inertial shear-
induced mechanism if Ca < Cac, it acts in the opposite direction for larger Ca. In the
case of a bubble, this mechanism results from the fact that the non-penetration condition
and the normal stress balance have to be jointly satisfied at the gas-liquid interface. This
requirement obviously subsists for Reynolds numbers larger than unity and so does the
above mechanism, although inertial effects tending to make the bubble oblate combine
with those of the outer shear to produce more complex asymmetric shapes compared
to the low-Re configuration. Lift reversal due to the A-mechanism has been observed
in computations (Ervin & Tryggvason 1997; Sankaranarayanan & Sundaresan 2002) and
experiments performed with isolated bubbles rising in viscous liquids sheared in a Couette
device (Tomiyama et al. 2002; Aoyama et al. 2017).

REFERENCES

Adoua, R., Legendre, D. & Magnaudet, J. 2009 Reversal of the lift force on an oblate
bubble in a weakly viscous linear shear flow. J. Fluid Mech. 628, 23–41.

Anthony, C. R., Kamat, P. M., Thete, S. S., Munro, J. P., Lister, J. R., Harris, M. T.
& Basaran, O. A. 2017 Scaling laws and dynamics of bubble coalescence. Phys. Rev.
Fluids 2, 083601.

Aoyama, S., Hayashi, K., Hosokawa, S., Lucas, D. & Tomiyama, A. 2017 Lift force acting
on single bubbles in linear shear flows. Int. J. Multiphase Flow 96, 113–122.

Ardekani, M. N., Costa, P., Breugem, W. P. & Brandt, L. 2016 Numerical study of the
sedimentation of spheroidal particles. Int. J. Multiphase Flow 87, 16–34.

Auton, T. R. 1987 The lift force on a spherical body in a rotational flow. J. Fluid Mech. 183,
199–218.

Batchelor, G. K. 1967 An introduction to Fluid Dynamics. Cambridge Univ. Press.
Bell, J. B., Colella, P. & Glaz, H. M. 1989 A second-order projection method for the

incompressible navier-stokes equations. J. Comput. Phys. 85, 257–283.
Bentwich, M. & Miloh, T. 1978 On the exact solution for the two-sphere problem in

axisymmetrical potential flow. J. Appl. Mech.-Trans. ASME 45, 463–468.
Biesheuvel, A. & Van Wijngaarden, L. 1982 The motion of pairs of gas bubbles in a perfect

liquid. J. Eng. Math. 16, 349–365.
Blanco, A. & Magnaudet, J. 1995 The structure of the axisymmetric high-reynolds number

flow around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 1265–1274.
Bonnefis, P. 2019 Etude des instabilités de sillage, de forme et de trajectoire de bulles par une
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