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Investment games in Crowdfunding platforms - Extended version

V. S. Varma, L. Salahaldin and S.E Elayoubi

Abstract— We analyze the behavior of investors who have
to decide on which projects to support in a crowdfunding
platform. We model the behaviour of different sets of funders,
as reported by crowdfunding literature, and also the behavior of
utility-maximizing funders as a stochastic game. The founders’
behaviour is also modeled as a Stackelberg game. Our results
are illustrated by a numerical performance analysis which
provides several insights into the choice of investment strategies.

Keywords: Game theory, Crowdfunding.

I. INTRODUCTION

Crowdfunding allows entrepreneurs who are willing to
overcome classical funding channels such as venture capital
and credit loans to address directly the crowd via Internet-
based Crowdfunding platforms (CFP) for collecting financial
resources either in the form of donation or in exchange for
the future product or some form of reward [1].

The literature on crowdfunding is already rich and covers
wide aspects, from the profile of funders and their behav-
ior to the characteristics of projects that make them more
successful. [1] compares two forms of CF, reward-based
and equity-based and shows that the choice made by the
entrepreneur to select between these two forms depends
essentially on the amount of required capital and that equity-
based CF is more suitable for large projects. [2] models
investors choices when facing asymmetric information about
the projects quality (good or bad) and showed that higher
proportions of informed investors do not always lead to
more good projects being funded, while higher proportion of
bad projects can paradoxically increase the number of good
projects that end up funded. Other literature works give an
overview on the key factors that contribute to the success
of the project. For instance, [3] shows that the size of the
network of the project holder is positively correlated with the
success and that the quality signals are also success factors.
These signals have been identified as the advertisement
videos, the update frequency and even the absence of typos,
for reward-based crowdfunding [3], [4], and the clarity of
the financial roadmap, the transparency with respect to the
risks, the professional experience and the education level of
the funders for equity-based crowdfunding [5].

Most of the crowdfunding literature is based on empirical
observation from data collected on different crowdfunding
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platform, and these observations lead sometimes to contra-
dictory conclusions. For example, concerning the impact of
the duration of the funding campaign, [3] shows that a longer
duration of the campaign reduces the probability of success,
while [4] observes a positive correlation between duration
and success.

This illustrates the need for a theoretical model that is
able to give insights on the impact of different parameters
on the funders’ choices and our aim in this paper is to fill
this gap by developing a theoretical model for the choice
of funders among several projects of interest. In order to be
realistic, we base our model on the empirical observations
about funders’ behavior that have been reported in several
papers. For instance [4] observes that CF has reinforcement
characteristic in the sense that contributions generate addi-
tional contributions.

[6] studies the choice of donors toward funding a project
early or wait until the end of the funding window and shows
that if the donor decides to fund immediately, he can signal
to the crowd the potential of the project; he can also decide
to wait in order to see whether other donors fund the project.
[7] show that donors mostly fund projects at the beginning
or the end of a campaign. This tendency can be explained
by the observations of other empirical works such as [8]
who have identified friend and family (F&F) as a source
of early funding for projects that account for 15 to 20%
of raised funds for equity-based campaigns and 30 to 40%
for reward-based campaigns. Other potential funders tend
to procrastinate and the late funding peak can be explained
by the well-known deadline effect [9] that pushes them to
support the project near the campaign end.

The contribution of this work resides in its game theo-
retical formulation of the funder’s strategies that includes
the behavioral observations. We conduct the equilibrium
analysis of the proposed game, which includes solving the
issues of existence, uniqueness, and determination of a Nash
equilibrium (NE).

The rest of the paper is organized as follows. Sec. II
formulates the problem under study and introduces the main
notation and concepts necessary for the model description.
The game-theoretic analysis of the resulting model for two
projects is presented in Sec. III and closed-form expressions
for the Nash Equilibrium are derived. The general case of
K projects is analyzed in section IV as a stochastic game
and subgame perfect equilibria are derived using dynamic
programming. Section V models the behaviour of founders
who see their projects threatened by other projects on the
platform and try to influence their campaign by injecting
some money in it. The paper ends with some concluding



remarks.

II. PROBLEM STATEMENT

A. Platform and funders

We consider a crowdfunding platform based on the thresh-
old pledge model (or the all-or-nothing principle(AON)) [10],
meaning that if the project is not 100% funded, the funding
will be returned to investors without penalty. This platform
proposes a set of projects K = {1, 2, . . . ,K} that are of
interest to a set of potential investors, henceforth referred to
as agents, A = {1, 2, . . . , N}, with N ∈ Z≥0. We assume
that each investor desires to invest in one project at most.
At any discrete-time instant t ∈ Z≥0, each project has an
accumulated promised investment denoted by xk(t) ∈ R≥0
for all k ∈ K, which starts the crowdfunding campaign an
initialization time tk ∈ Z≥0 and ends at some Tk ∈ Z≥0,
with tk < Tk. Without any loss in generality, we order the
projects based on the end times, i.e., we consider T1 ≤ T2 ≤
· · · ≤ TP .

Each project k ∈ K requires a certain threshold of
investors τk ∈ Z≥0 in order to succeed by the end time, i.e.
project k succeeds if and only if xk(Tk) ≥ τk. Additionally,
each agent makes an investment of δk while investing in
the project. For the ease of reading and without any loss
of generality, we normalize δk’s to 1. When successful, each
agent that invested in k has a net gain denoted by Rk ∈ R>0.
If an agent invests in project k at time tk ≤ t ≤ Tk and the
project fails, the agents the amount he invested is returned
to him, but the agent still loses due to the discount factor
γ < 1.

We use yn(t) ∈ K ∪ {0} to denote the investment choice
of agent n ∈ A at time t ∈ R≥0. yn(t) = 0 indicates that
the agent has not invested in any project at time t and we
initialize this variable with yn(0) = 0 for all n ∈ A. At any
time t, if yn(t) = 0, the agent is free to change is choice
to any k ∈ K such that t ≤ Tk. However, once a project
is chosen, this choice can not be changed unless the project
fails. We can therefore describe the constraints on investment
choices as follows

yn(t+1) ∈


{0} ∪ {k ∈ K|Tk ≥ t+ 1} if yn(t) = 0
{yn(t)} if yn(t) = k ∈ K & t < Tk
{0} if yn(t) = k ∈ K, t = Tk, xk(Tk) < τk
{yn(t)} if yn(t) = k ∈ K & xk(Tk) ≥ τk

(1)
and any investment profile must satisfy (1).

The population of agents is divided into several classes,
as indicated by the empirical literature [11], denoted by the
following sets

1) A set C ⊂ A of casual investors who aim at maxi-
mizing their utility and observe the states of funding
xk(t), but are not well informed on {Rk, k ∈ K}.

2) A set of agents P ⊂ A who comprise the players
set, they are aware of all the project parameters and
therefore can estimate the net gain Rk they generate in
case of success. They try to maximize their expected
gain based on the current state of investments x(t).

3) Sets Fk ⊂ A of Friends and Family (F&F) who have
personal interest in specific projects k. While the first
two sets of agents make rational decisions in order to
maximize their gain, the funders in Fk set invest only
in project k. They will invest in the project as soon as
possible to encourage further investment [7].

4) SetN of naive investors, also known in the literature as
fools to complete the 3F group, i.e., Friends, Family
and Fools [12]. They randomly invest in projects at
random times.

The presence of the last two sets results in xk(t) > 0 for
all k ∈ K and for all t. The latter results in an increment of
the project investment at each stage modeled by a Gaussian
variable at each step with mean λ and variance σ2

0 (which
can be interpreted as the sum of a large number of Bernoulli
variables). Finally, we can write the accumulated investment
for any project k ∈ K as

xk(t) ∼ xk(0)+
∑

n∈C∪P
1{k}(yn(t))+N(λ(t−tk), σ2

0(t−tk))

(2)
where 1S(y) is the indicator function which takes the value
1 when y ∈ S and 0 otherwise, and N(µ, σ2) denotes the
normal distribution with mean µ and variance σ2.

The primary objective of this work is to characterize the
behavior of the agents in classes C and P using Game theory.

B. Temporal strategy

We denote by un ∈ R, the net utility or gain of agent
n ∈ A.

We first study the behavior of the agents in C. Indeed the
casual set agents only need to decide on when to invest in a
project and not on which project since they are not aware/not
interested in the precise values of Rk. We assume that any
agent n ∈ C invests in project k with some probability πk,
i.e. Pr(yn(Tk) = k) = πk. If the agent n ∈ C decides to
invest in project k at time t′ ≤ Tk, then its net utility is

un(t′) = Rk Pr(xk(Tk) ≥ τk)γTk−t′

−δk(1− γTk−t′) Pr(xk(Tk) < τk)
(3)

with Rk > 0 and Pr(xk(Tk) < τk) ∈ [0, 1] unknown to the
casual agent. However, it is clear that for any value of these
parameters, the utility is maximized by picking t′ = Tk as the
loss term will vanish due to the discount factor. Therefore,
we can predict that the set of casual investors invest in this
project at Tk:

1k(yn(t)) = 0, (4)

for all t < Tk, n ∈ C. At Tk, each casual player decision
can be modeled as a Bernoulli variable (invest in project k
with probability πk and wait otherwise). We can therefore
use the central limit theorem when |C| is large to write∑

n∈C
1k(yn(Tk))→d N(πk|C|, σ2

k

√
|C|) (5)

where →d indicates convergence in distribution and σ2
k =

(1−πk)
2+π2

k

2 .



The agents n ∈ P are aware of the behavior of casual
users, i.e., (5), and also of the project parameters. They make
their decision at t based on x(t). Due to the lack of signaling
or communication channel between the players, there is no
way that player n ∈ P can observe the specific action of
another player m ∈ P . In fact, the players must base their
decision solely on the state vector x(t). However, the actions
of the players affect the transition probability of x(t), with
the actions constrained based on (1).

In general, the interaction can be seen as a stochastic game
if we quantize x(t) and consider a discrete process instead
of a Gaussian distribution to model the random investments.
From (3) and the condition xk(Tk) ≥ τk, we can model the
state and utility as a stochastic process depending on the
investment profile y(t). Indeed, in this case, the existence
of a Nash equilibrium (mixed or pure) can be shown as the
set of actions and states are both finite [13]. However, it
is very hard to obtain useful insights in this case due to
the complexity of the problem and this case is left as an
extension.

Each player at time t will make a decision solely based on
x(t) due to the lack of signaling. As a first simplification,
using the same reasoning as in (3), we suppose that these
players will only invest in project k at Tk (if it picks project
k) formally stated in the following assumption, inspired by
the behavior of the agents in the set C.

Assumption 1: Any player n ∈ P , will invest in a project
k only at Tk, i.e. yn(t) 6= k,∀t < Tk.

III. PLAYER BEHAVIOR WHEN K = 2

A. Static game formulation

Under Assumption 1, when K = 2, each player n ∈ P
only needs to decide if they invest project 1 or wait for
2, at time T1. This problem can be seen as a static one-
shot game. There are exactly two investment strategies (or
actions) an ∈ {0, 1} available for n ∈ P ,

1 : Invest in project 1 at T1. If it succeeds, all future
opportunity in project 2 is lost and if it fails, invest
in project 2 at T2.

0 : Ignore project 1 and invest only in project 2 at T2.

Therefore, the strategy of any player for the game in the
case of K = 2 is decided once and for all at T1 because
if it invests in 1, an = 1 and an = 0 otherwise. This
simplifies the stochastic game structure and the interactions
can therefore be modeled as a static game. We can write the
strategic form of the resulting static game as

GS := (P, {0, 1}|P |, {un}n∈P ),

where {0, 1}|P | is the set of strategies for all players, and
un(an, a−n) is the expected gain for n ∈ P calculated as

ui(ai, a−i|x(T1 − 1)) =

R1 if x1(T1) ≥ τ1 & ai = 1,

γT2−T1R2 Pr(x2(T2) ≥ τ2|x2(T1 − 1), a−i) otherwise.
(6)

Here, a−n is a vector of the strategies by all players other
than n, i.e., for all i ∈ P \{n}. In the following, we explicitly
find the Nash equilibrium when K = 2.

As a first step, we will define the concept of a pure Nash
equilibrium (NE).

Definition 1: A profile of actions a∗ is a pure NE if

∀ai ∈ Ai, ui(a
∗
i , a
∗
−i) ≥ ui(ai, a∗−i) (7)

for all i ∈ P .

Before looking at the NE of the game G1, let us define
the function

Φ(f) = Erf
(√
|C|σ2(x2(T1 − 1) + f + π2|C| − τ2)

)
.

(8)
for f ∈ Z≥0, where Erf is the Gaussian error function. This
function is increasing in f and is sigmoidal. We also define
the two thresholds on the values of collected funds by project
2:

x2 =
1√
|C|

Erf−1(
R1

R2
γT1−T2)− 1− π2|C|+ τ2 (9)

and

x2 =
1√
|C|

Erf−1(
R1

R2
γT1−T2)− |P | − π2|C|+ τ2 (10)

Theorem 1: The game GS has at least one and at most 2
pure Nash equilibria, specifically,

• If R2Φ(1)γT2−T1 > R1, i.e. if x2(T1 − 1) > x2, the
only pure NE is when a∗n = 0 for all n ∈ P , i.e. all
follower agents will wait for the second project.

• If R2Φ(|P |))γT2−T1 < R1, i.e. if x2(T1− 1) < x2, the
only pure NE is when a∗n = 1 for all n ∈ P , i.e. all
follower agents will invest in the first project at T1.

• Otherwise, i.e., if x2 ≤ x2(T1 − 1) ≤ x2, there are two
pure NE at a∗n = 1∀n ∈ F and a∗n = 0∀n ∈ F .

Proof: At time T1, for a given a, a player i ∈ P will
estimate the probability that project 2 will succeed, given
project 1 succeeded, as

Pr (x2(T2) ≥ τ2|x1(T1) > τ1, x2(T1 − 1))

= Erf
(√
|C|σ2(x2(T1 − 1) + |P |

−
∑
n∈P\{i} an + π2|C| − τ2)

)
= Φ(f)

(11)

where f = |P | −
∑
n∈F\{i} an.

Let us call α(a) to denote the probability that project 1
succeeds and β to denote the probability that project 2 will
succeed given project 1 failed (with all players investing
and therefore independent of a). We can now calculate the
expected utility for player i corresponding to actions 0 and
1 if project 1 succeeded as

ui(1, a−i|x1(T1) ≥ τ1) = R1 (12)



and

ui(0, a−i|x1(T1) ≥ τ1) =R2γ
T2−T1Φ

|P | − ∑
n∈P\{i}

a−i


(13)

On the other hand, if project 1 failed, both actions will lead
to the same payoff as all players will invest in project 2.
Therefore, we can calculate the gain by picking action 0
over action 1 as (

R2γ
T2−T1Φ(f)−R1

)
,

where f is as before. Since α(0, a−i) > 0 as the probability
of project 1 succeeding is never 0, this gain is positive
when R2γ

T2−T1φ(f) ≥ R1 and negative otherwise. Now,
we observe that

1) This gain is always strictly positive if
R2γ

T2−T1Φ(1) > R1 as φ(f) is monotonically
increasing. Therefore, the action ai = 0 for all i ∈ P
is a pure NE. Additionally, for any player i ∈ P ,
ui(1, a−i) < ui(0, a−i). Therefore, this is also the
only pure NE.

2) Using similar arguments, if R2γ
T2−T1Φ(|P |) < R1,

then the action 1 is always dominant implying that
a∗i = 1 is the only pure NE.

3) In the final case, when R2Φ(0)γT2−T1 ≤ R1 ≤
R2Φ(|P | − 1), we can easily verify that both a∗i = 0
and a∗i = 1 are pure NE as when

∑
n∈P\{i} an = 0 or∑

n∈P\{i} = |P | − 1, the strategy of ai = 0 or ai = 1
satisfies (7).
Moreover, no other pure NE exists. This can be proven
by contradiction by assuming that there exists a NE a∗

such that
∑
n∈P\{i} a

∗
i = f , with f ∈ {1, . . . , |P | −

2}. In this case, there is at least one player i ∈ P
such that a∗i = 1 which implies R2γ

T2−T1Φ(f) ≤
R1. There also exists at least one player j such that
a∗j = 0, which implies that R2γ

T2−T1Φ(f − 1) ≥ R1.
However Φ(·) is a strictly increasing function, leading
to a contradiction.

Theorem 1 characterizes the possible NE for the static
game GS . Note that in the third case of the theorem, both
equilibria of waiting for project 2 or not are possible. In
this case, the equilibrium where all players wait for the
second project offers a higher expected payoff, but unless
the players can cooperate and communicate with each other,
there is no way of guaranteeing that this equilibrium will
be reached. Player behavior in games with multiple NE
are in general unpredictable and depends on the existence
of communication channels. In practice, investors who are
particularly interested in project 2 might encourage others
to join them using public forums or other methods of
communication.

B. Numerical illustrations

To illustrate how R2 and x2(T1 − 1) impact the NE
profiles, we provide Figure 1 which marks the regions where

there are unique pure NE and the region with two pure
NE as stated in the three cases of Theorem 1. The other
parameters are held constant with values R1 = 1, γ = 0.999,
T2 − T1 = 50, |C| = 100, π2 = 0.20, σ2

2 = 10, λ = 1,
σ2
0 = 0.2 and |P | = 50.

Fig. 1. Regions corresponding to the three cases mentioned in Theorem 1
formed by varying R2 and x2(T1 − 1).

We now turn to the evaluation of the NE for different sets
of parameters of project 2, namely the amount of funds to
be collected τ2 and the amount of funds already collected
at decision time T1 − 1, while fixing R2 to 1.5 ∗R1. It can
be observed in Figure 2 that the only possible NE when
the amount of remaining funds to be collected is low is
to wait for project 2. When the requested funds increases
with respect to the already collected amount, there are two
possible Nash equilibria (wait or invest in 1). When the
objective is too ambitious, all users invest in project 1 without
waiting. Figure 3 illustrates the impact of the remaining
duration and the discount factor on the equilibrium. We
can observe that a high γ (a low discount rate) encourages
waiting. For a fixed discount factor, a longer remaining
campaign duration increases the probability that project 2
succeeds to collect its required amount and pushes agents
to wait. This ambiguity about the role of the campaign
duration matches empirical observations. For instance, while
[3] reports a negative correlation between the campaign
duration and its success, [4] describes the inverse tendency
with a positive correlation. The game theoretical results
indicate that the design of the campaign duration is not an
easy task, as a too short duration prevents from collecting
sufficient funds and a too long one may lead to negative
impacts due to funders’ impatience.

IV. GENERAL CASE OF K ≥ 2

Under Assumption 1, the general case of K projects can
be seen as a stochastic game of K − 1 stages. At each stage
k ∈ {1, . . . ,K − 1}, player n ∈ P must decide at Tk, if he
invests in project k or wait for a future project. This decision
is based on the last seen state of the vector of collected funds,
i.e. xk(Tk−1), xk+1(Tk−1), . . . , xK(Tk−1). The action at
each stage Tk is to invest in project k or to wait for a future
project. Indeed, some of these actions may not be possible
if a previous project succeeded or the player had invested
in an ongoing project. Nevertheless, at each stage, we can



Fig. 2. Impact of the parameters of project 2 on the NE.

Fig. 3. Impact of the discount factor and the remaining campaign duration.

denote the action set of a player as being represented by
an(k) ∈ {0, 1} for n ∈ P .

First, we use Pk to denote the set of remaining players at
stage k with P1 = P , following which, the set is updated as
per

Pk+1 =

{
{n ∈ P |an(k) = 0} if xk(Tk) ≥ τk

Pk otherwise (14)

Correspondingly, we can define the utility at stage k as

un,k(an(k), a−n(k), Pk|x(Tk − 1)) =

Rk if xk(Tk) ≥ τk & an(k) = 1,

γTk+1−TkE|x(Tk−1) [un,k+1(a(k + 1), Pk+1|x(Tk+1 − 1))]

otherwise.
(15)

for all n ∈ P and k < K − 1. Note that the utility at the
following stage depends on Pk+1 determined as a function of
a−n(k) and Pk. At the final stage, we can explicitly include

xK(TK−1 − 1) as a parameter of the function Φ:

un,K−1(an(K − 1)|x(TK−1 − 1)) =

RK−1 if xK−1(TK−1) ≥ τK−1 & an(K − 1) = 1,

γTK−TK−1RKΦ(|PK |, xK(TK−1 − 1) otherwise.

(16)

These set of utilities, transition probabilities of xk(t) and
actions an(k) define a stochastic game G. We can define a
sub-game Gk for G with the utility at stage k and the action
taken at that stage once the strategies of future stages are
fixed, as this will let us evaluate the expected utility of future
stages. This lets us define

Definition 2: A NE of G, denoted as a(1)∗, . . . , a(K−1)∗

is said to be sub-game perfect if a∗(k) is a NE of the sub-
game Gk for all k ∈ {1, . . . ,K − 1}.

At the last state, for a given xK(TK−1−1), the sub-game
GK−1 has at least one pure NE as shown in the previous
section as the sub-game GK−1 is mathematically equivalent
to the static game GS defined previously. We can therefore
find a sub-game perfect NE for the stochastic game G using a
dynamic programming based approach. This involves taking
the expectation over xk+1(Tk+1) given xk+1(Tk − 1) while
calculating the expected utility for k + 1 while at stage k,
and assuming that a pure NE is played when at stage k+ 1.
Since the NE at stage K−1 is known, we can find the NE at
stage K−2 by taking an expectation of future x(TK−1−1)
and assuming the NE is played at K − 1 for all of these
realizations.

Since the expectation of the future utility uk+1 will be
monotonically increasing w.r.t Pk+1, we can use similar
arguments as in Theorem 1 to conclude that the pure NE
of any subgame Gk will be that when all players either
invest in the project k or wait. However, this result is not
mathematically proven in this version of the paper and is
left for future extensions. This is nevertheless shown in
the following numerical examples illustrating the sub-game
perfect NE.

Fig. 4. NE profile based on x2(T1 − 1) and x3(T1 − 1) when K = 3.

We now take the parameters λ0 = 1, |C| = 100, σ2
0 = 0.2,

γ = 0.999, π2 = π3 = 20, σ2
2 = σ2

3 = 10, τ2 = τ3 = 100,
R1 = 1, R2 = 1.5, R3 = 2, Tk = 10k for all k ∈ {1, 2, 3}.

In Figure 4, we plot the possible NE compared to x2(T1−
1) and x3(T1 − 1) when K = 3. These equilibria were
calculated using Monte-Carlo simulations for realizing the
value of x3(T2 − 1) in the future for all possible values



of P2, which is used to calculate the NE of the sub-game
G2 using Theorem 1. These equilibria and a realization of
x2(T2) are then plugged in to obtain the future decisions
and the utility of not picking project 1. By repeating this
evaluation over 105 realizations of x2(T2) and x3(T2 − 1),
we are able to compute the pure NE of the sub-game G1.
For any realization, playing this NE for G1 and the NE for
G1 constitutes a sub-game perfect equilibrium of G.

V. FOUNDER GAME

In the previous section, the funders in P set were playing a
game between in order to choose the project that maximizes
their utilities. While the project founders (holders) were con-
sidered as passive, they have been reported in the literature
as taking some actions that aim at influencing the funders
or to change the issue of the funding campaign. In practice,
some founders inject some amount of money in their project,
especially when it is close to success, using other classical
sources of funding. As this practice is forbidden on most of
platforms [5], they may activate their network of funders,
or may coordinate amount founders of projects in other
platforms in order to exchange support [14]. Let ymax be
the maximum amount of funding the project older is able to
place urgently. ymax is usually limited to a small amount. At
Tk−1, in order to incite funders to skip project k, founders of
project k+ 1, ...,K may place an amount of money, limited
to ymax, in their respective project. This corresponds to a
Stackelberg game that we detail in the following for the case
K = 2.

Let the expected utility of founder of project k be Uk > 0
if he gets its project fully funded on the platform. If the
founder has to complement the funding by an amount y, we
assume that his utility become Uk − y. We also assume the
Uk − ymax > 0. We have the following result:

Theorem 2: The Stackelberg equilibrium for founder of
project 2 that corresponds to a subgame perfect equilibrium
with respect to subsequent funders actions is the following:

1) if x2 − ymax < x2 < x2, invest an amount y = x2 −
x2(T1 − 1) + 1

2) otherwise, if x2 − ymax < x2 < x2, invest an amount
y = x2 − x2(T1 − 1) + 1.

3) if any of the above conditions is not verified, do not
invest any amount.

Proof:
We do not provide a complete proof due to lack of space

but only some hints. For proving item 1, consider the case
where the threshold x2 is not reached. There is either one NE
for funders to invest in project 1 or two NE that consist in
funding project 1 or waiting. The expected utility of project
1 founder is thus either equal to 0 or to an unpredictable
value. If he invests an amount of money equal to y so that
x2(T1 − 1) > x2 and as he makes the first move, funders
in P who take their decisions at T1 will observe an amount
of collected funds larger than x2 and their NE will be to
wait for project 2. The utility of project 2 becomes equal to
(Uk−y)Φ(y+ |P |) > 0. Any positive value of y that makes
x2+y > x2 increases the utility of the founder compared to a

situation where he does not intervene. To complete the proof,
we can show that the resulting utility is decreasing with y,
for small value of y. Item 2 is proven similarly, having in
mind that an unpredictable utility (0 or (Uk− y)Φ(y+ |P |))
is better than 0.

Note that the founder of project 1 may also invest at T1−1
in his project in order to increase its probability of success
1, but this does not change the outcome of the game as the
NE does not depend on x1.

VI. CONCLUSION

In this paper, we introduced a novel game theoretical
framework to model investor behavior in crowdfunding plat-
forms. We considered a series of K projects that are of
interest to common audience sets that aim at maximizing
their utilities. We modeled the behaviour of well-informed
agents using game theory. We defined a stochastic game in
the general case and provide explicit expressions for the Nash
equilibria in the special case of 2 projects of interest. For
more than 2 projects, we define sub-game perfect equilibria
and compute them using dynamic programming. We then
considered a Stackelberg equilibrium where project founders
try to influence funders decisions.
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