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Probabilistic and possibilistic models of sequential decision problems are known to possess good behavioral and algorithmic properties. In this paper, the range of models of problems of sequential decision under uncertainty that are dynamically consistent, consequentialist and allow for tree reduction is enlarged by considering a representation of uncertainty that is both probabilistic and possibilistic. The corresponding utility functional is expected utility for highly likely states, and an optimistic or pessimistic possibility-based criterion for unlikely states.

Introduction

In sequential decision making a strategy is a conditional plan that assigns a (possibly non deterministic) action to each state where a decision has to be made (also called "decision node"). Each strategy leads to a compound lottery, following Von Neuman and Morgenstern's terminology [START_REF] Von Neumann | Theory of Games and Economic Behavior[END_REF] -roughly, it is a tree representing the different possible scenarios, and thus the different possible final states that the plan/strategy may reach. The optimal strategy is then the one that minimizes a criterion whose value depends on utilities of final states and the resulting compound lottery.

Three assumptions are desirable in order to accept an optimal strategy without questioning its meaning. Those assumptions are:

-Dynamic Consistency: when reaching a decision node, following an optimal strategy, the best decision at this node is the one that had been considered so when computing this strategy, i.e. prior to applying it. -Consequentialism: the best decision at each step of the problem only depends on potential consequences at this point. -Tree Reduction: a compound lottery is equivalent to a simple one, assigning probabilities to final states.
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Those three assumptions are instrumental to enable an optimal strategy to be computed using dynamic programming [START_REF] Raiffa | Decision Analysis: Introductory Lectures on Choices Under Uncertainty[END_REF].

When the decision maker is able to provide a probability distribution on the possible states and considers that the utilities are additive, a classical approach is the one based on expected utility. Under this strong assumption, the above three assumptions are satisfied.

When the problem is pervaded with possibilistic uncertainty, two families of criteria make sense: a Sugeno integral-based criterion [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF] and the Choquet integral [START_REF] Dubois | New axiomatisations of discrete quantitative and qualitative possibilistic integrals[END_REF]. The criterion based on Choquet integral turns out to be incompatible with the above assumptions: it may happen that none of the optimal strategies is dynamically consistent nor consequentialist The possibilistic criteria based on Sugeno integral do not meet such difficulties. Nor does the generalization of both optimistic and pessimistic possibilistic Sugeno proposed by [START_REF] Fargier | Sequential decision making under ordinal uncertainty: a qualitative alternative to the Hurwicz criterion[END_REF]. It aggregates optimistic and pessimistic criteria by means of a uninorm [START_REF] Yager | Uninorm aggregation operators[END_REF], a semi-group operation whose identity plays the role of a degree of optimism. Contrary to other criteria that account for a degree of optimism, like the Hurwicz criterion, the criterion proposed in [START_REF] Fargier | Sequential decision making under ordinal uncertainty: a qualitative alternative to the Hurwicz criterion[END_REF] satisfies the three assumptions governing a good behavior of the decision tree.

In the present paper, we are looking for new decision criteria, beyond expected utility and possibilistic integrals, that can apply to decision trees and respect the three properties recalled above (Dynamic Consistency, Consequentialism and Tree Reduction).

Decision Trees

A convenient language to introduce sequential decision problems is the one of decision trees [START_REF] Raiffa | Decision Analysis: Introductory Lectures on Choices Under Uncertainty[END_REF]. This framework proposes an explicit graphical model, representing each possible scenario by a path from the root to the leaves of a tree. Formally, a decision tree T = (N , E) is such that N contains three kinds of nodes (see Fig. 1 for an example):

-D is the set of decision nodes (depicted by rectangles).

-LN is the set of leaves, that represent final states in S; such states can be evaluated by a utility function: ∀s i ∈ S, u(s i ) is the degree of satisfaction of eventually being in state s i (of reaching the corresponding node in LN ). For the sake of simplicity we assume, without loss of generality, that only leaf nodes are attached utilities. -X is the set of chance nodes (depicted by circles).

For any node n i ∈ N , Succ(n i ) ⊆ N denotes the set of its children. In a decision tree, for any decision node d i , Succ(d i ) ⊆ X : Succ(d i ) is the set of actions that can be chosen when d i is reached. For any chance node x i , Succ(x i ) ⊆ LN ∪ D: Succ(x i ) is the set of possible outcomes of action x i -either a leaf node is observed, or a decision node is reached (and then a new action should be chosen).

Solving a decision tree amounts to building a strategy, i.e. a function δ that associates to each decision node d i an action (i.e. a chance node) in Succ(d i ): δ(d i ) is the action to be executed when decision node d i is reached. Let Δ be the set of strategies that can be built for T . We shall also consider the subtree T n of T rooted at node n ∈ T , and denote by Δ n its strategies: they are subtrategies of the strategies of Δ.

The satisfaction of the decision maker for a consequence (on a leaf of the tree) is captured by a utility degree on a totally ordered scale. The scale [0, 1] is generally chosen for these degrees, but any ordered set can be used.

Here, we focus on the case where the information at each chance node is fully captured by a distribution over outcomes of the chance nodes, namely a possibility distribution π and/or a probability distribution p. When bearing on the leaf nodes, such distributions define simple lotteries on the utility degrees. More formally:

-A simple probabilistic lottery L p [START_REF] Von Neumann | Theory of Games and Economic Behavior[END_REF]: is a probability distribution p on a set of utility degrees, Λ = {λ 1 , ..., λ n }. The probabilistic lotteries will be written as L p = <p 1 /λ 1 , ..., p n /λ n > with p i ∈ [0, 1], n i=1 p i = 1. -A simple possibilistic lottery L π [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF] is a normalized possibility distribution π on a set of utility degrees, Λ, both being expressed in the same ordered scale.

The possibilistic lotteries will be written as L p = <π 1 /λ 1 , ..., π n /λ n > with π i ∈ [0, 1], max n i=1 π i = 1. In a lottery L π (resp. L p ), the value π i (resp. p i ) is the possibility (resp. probability) degree of getting utility λ i according to the decision strategy captured by the lottery. For the sake of brevity, the λ i 's such that π i = 0 (resp. p i = 0) are often omitted in the notation of a lottery (e.g., (<1/0.8>) denotes the lottery that provides utility 0.8 for sure, all the other utility degrees being impossible).

The expected utility of probabilistic simple lotteries was proposed by Von Neuman and Morgernstern [START_REF] Von Neumann | Theory of Games and Economic Behavior[END_REF] as a decision criterion under risk: E(L p ) = λ i ∈Λ λi • pi. Dubois and Prade [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF] proposed to use optimistic and pessimistic possibilistic criteria, denoted by U P es and U Opt in this paper, to evaluate the global utility of a possibilistic lottery using U P es (L π ) = min λ i ∈Λ max(1 -πi, λi), and U Opt (L π ) = max λ i ∈Λ min(πi, λi).

Let us now consider full-fledged strategies. A strategy in Δ can be viewed as a connected subtree of T where there is exactly one edge (and thus one chance node) left at each decision node -skipping the decision nodes, we get a chance tree or, using von Neuwman and Morgernstern's terminology, a compound lottery: like simple lotteries, which are distributions over utilities, compound lotteries are distributions over (simple or compound) lotteries.

The idea is to define a simple lottery equivalent to the original, compound one and to apply the decision criterion to this simple lottery.

Definition 1 (Reduction p ). For any probabilistic compound lottery of the form

L p = <p 1 /L p 1 , . . . , p m /L p m >, Red p (L p
) is the simple lottery that associates to each λ i the probability degree p i = j=1,...,m p j • p j i , where p j i denotes the probability of getting λ i though lottery L p j and p j the probability of getting L p j .

Definition 2 (Reduction π ). For any possibilistic compound lottery of the form

L π = <π 1 /L π 1 , . . . , π m /L π m >, Red π (L π
) is the simple lottery that associates to each λ i the possibility degree π i = max j=1,...,m min(π j , π j i ), where π j i denotes the possibility of getting λ i though lottery L π j and π j the possibility of getting L π j .

The principle of lottery reduction allows the comparison of compound lotteries: L is preferred to L iff its reduction is preferred to the one of L and optimality can then be soundly defined:

-δ ∈ Δ is optimal for a decision tree T iff ∀δ ∈ Δ, C(Red(L δ )) C(Red(L δ )),
for a criterion C. The principle of monotonicity and the one of decomposition [START_REF] Von Neumann | Theory of Games and Economic Behavior[END_REF] are valid for expected utility, and also for U P es and U Opt in a weak form:

Definition 3 (Weak monotonicity).

A preference criterion C over possibilistic/probabilistic lotteries is said to be weakly monotonic iff whatever L, L and L , whatever a normalized possibility/probability distribution w, v:

C(L) ≤ C(L ) ⇒ C(<w/L, v/L >) ≤ C(<w/L , v/L >).
(

Importanty, all approaches that satisfy weak monotonicity, and in particular in the approach considered in this paper, also satisfy Dynamic Consistency, Consequentialism and Tree Reduction. This guarantees coherence with the intuition of rationality; this is also important from the algorithmic point of view, since it allows to find an optimal strategy by dynamic programming.

In the following we consider decision trees where uncertainty is captured by set functions that are more general than probability and possibility measures, while taking into account a degree of optimism of the decision maker, although without giving up the monotonicity principle.

Hybrid Possibility-Probability Measures

The three previous criteria (expected utility, pessimistic and optimistic possibilistic utility functionals) are particular instances of generalized integrals (Choquet integral for expected utility, Sugeno integral for the other ones) based on fuzzy measures. Definition 4. A fuzzy measure is a set function μ : 2 S → [0, 1], satisfying the following axioms:

-μ(∅) = 0; μ(S) = 1 (limit conditions) -μ(A ∪ B) ≥ μ(A) (monotony)
Fuzzy measures include, among others, probability measures, necessity measures and possibility measures. 1However, we look for special fuzzy measures representable by means of lotteries (or, equivalently, by distributions on utility values). Hence they must be decomposable:

Definition 5 [4].
A decomposable fuzzy measure is a fuzzy measure μ for which there is a t-conorm2 S such that μ(A ∪ B) = S(μ(A), μ(B)) whenever A and B are disjoint.

Possibility measures are max-decomposable (for the t-conorm max), while probability measures are additively decomposable using the Lukasiewicz t-conorm min(a + b, 1). To define lottery reduction, we also need a generalization of the notion of independence between events.

Definition 6. Let T be a triangular norm. Two events A and B are said to be T -separable with respect to a fuzzy measure μ if and only if

μ(A ∩ B) = T (μ(A), μ(B)) for a t-norm T .
If A and B are disjoint events T -separable from another event C, then, since

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), a decomposable fuzzy measure should satisfy T (S(μ(A), μ(B)), μ(C)) = S(T (μ(A), μ(C)), T (μ(B), μ(C)),
which requires a property called Conditional Distributivity of T over S. This property is essential for enabling the reduction of generalised lotteries. Definition 7. A t-norm T is conditionally distributive over a t-conorm S if for all x, y, z ∈ [0, 1] we have (CD) T (x, S(y, z)) = S(T (x, y), T (x, z)), whenever S(y, z) < 1.

In [START_REF] Dubois | Hybrid probabilistic-possibilistic mixtures and utility functions[END_REF], it has been proved that the only family of pairs (t-conorm, t-norm) that satisfy the condition (CD) are built from the pairs (max, T ) and (min(a + b, 1), ×) [START_REF] Dubois | Hybrid probabilistic-possibilistic mixtures and utility functions[END_REF][START_REF] Klement | Triangular Norms[END_REF], where T is an arbitrary continuous t-norm. It is a parametric family of pairs denoted by (S α , T α ), with parameter α, where S α (resp. T α ) is the ordinal sum [START_REF] Klement | Triangular Norms[END_REF] of max and min(x + y, 1) (resp. T and product) represented on Fig. 2 for T = min. The pairs (S α , T α ) where T α is distributive on S α are thus of the form

S α (x, y) = x + y -α if x > α, y > α max(x, y) (2) T α (x, y) = α + (x-α)(y-α) 1-α if x > α, y > α min(x, y) otherwise. (3) 
An S α -decomposable fuzzy measure, denoted by ρ α , is a hybrid function between possibility and probability measures defined as follows:

Definition 1 (Hybrid π-p measure [START_REF] Dubois | Hybrid probabilistic-possibilistic mixtures and utility functions[END_REF]). A hybrid possibility-probability measure ρ α is a fuzzy measure such that, for disjoint sets A and B:

ρ α (A ∪ B) = S α (ρ α (A), ρ α (B)) (4) 
The fuzzy measure ρ α is clearly a probability measure (rescaled on [α, 1]) for likely events, and a possibility measure if one of the events is unlikely. The hybrid π-p measure is an example of level-dependent capacity [START_REF] Greco | The Choquet integral with respect to a level dependent capacity[END_REF]. For events that can be considered independent A, B, we have

ρ α (A ∩ B) = T α (ρ α (A), ρ α (B)) (5) 
The limit condition ρ α (Ω) = 1 comes down to enforcing, for any event A and its complement A c , the duality condition

ρ α (A) + ρ α (A c ) = 1 + α, when min(ρ α (A), ρ α (A c )) > α and max(ρ α (A), ρ α (A c )) = 1 otherwise.
Because it is decomposable, ρ α is completely defined by a distribution of weights ρ α on the singletons of the referential S. Applying (4) to the union of singletons yields the normalization condition suggested in [START_REF] Dubois | Hybrid probabilistic-possibilistic mixtures and utility functions[END_REF]: Proposition 1. A distribution ρ α on S defines a normalised S α -decomposable fuzzy measure if and only if

s:ρ α (s)>α ρ α (s) = 1 + (card(C + α ) -1) × α ( 6 
)
where

C + α = {s, ρ α (s) > α}.
Proof (not given in [START_REF] Dubois | Hybrid probabilistic-possibilistic mixtures and utility functions[END_REF]). Let C + α = {s, ρ α (s) > α}. Then, by associativity and commutativity we have ρ α (S) = S α s (ρ α (s)) = max(max s ∈C + α ρ α (s), S α s∈C + α (ρ α (s)), and the latter term is

S α s∈C + α (ρ α (s)) = s∈C + α ρ α (s)-(card(C + α )- 1)α > α ≥ max s ∈C + α ρ α (s). Clearly S α s (ρ α (s)) = S α s∈C + α (ρ α (s)) = 1 yields condi- tion (6). Note that C + α = ∅. For otherwise, ρ α (S) < 1. If card(C + α ) = 1, then ρ α (S) = max s ρ α (s) = 1, i.e. ρ α is a possibility measure. If card(C + α ) = n, then ρ α (S) = 1 reads s ρ α (s) -(n -1)α = 1, hence n s ρ α (s) = 1 + (n -1)
α and the fuzzy measure ρ α is additive.

Example 1. Consider the S 0.7 -decomposable fuzzy measure ρ 0.7 on the set {s a , s b , s c , s d }, defined by the distribution ρ 0.7 (s a ) = 0.5 ρ 0.7 (s b ) = 0.5 ρ 0.7 (s c ) = 0.8 ρ 0.7 (s d ) = 0.9. Here, C + α = {s c , s d }. One can check that ρ 0.7 (Ω) = 0.8 + 0.9 -0.7 = 1. It is normalized.

More generally it is easy to express the value of ρ α on general events:

ρ α (A) = ⎧ ⎪ ⎨ ⎪ ⎩ s∈A ρ α (s) -α(card(A) -1) if A ⊆ C + α , max s∈A ρ α (s) if A ⊆ C + α , s∈A∩C + α ρ α (s) -α(card(A ∩ C + α ) -1) otherwise.
Note that the third case (C + α ∩ A = ∅) covers the first. We can moreover prove that any measure ρ α is a plausibility measure in the sense of Shafer [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] obtained as a probabilistic mixture between a possibility measure and a probability measure.

Proposition 2. For any hybrid possibility-probability function ρ α , there exists a possibility measure Π with possibility distribution π and a probability measure P with distribution p such that ρ α (s) = απ(s) + (1α)p(s) where ∀s, π(s) < 1 implies p(s) = 0. Moreover ∀A, ρ α (A) = α max s∈A π(s) + (1α) s∈A p(s).

Proof. For events, if A∩C

+ α = ∅, ρ α (A) = α max s∈A π(w) = αΠ(A)+(1-α)P (A) since P (A) = 0. Otherwise, if A ∩ C + α = ∅: ρ α (A) = s∈A∩C + α ρ α (s) -α(card(A ∩ C + α ) -1) = s∈A∩C + α (α(1 -p(s)) + p(s)) -α(card(A ∩ C + α ) -1) = αcard(A ∩ C + α ) -αP (A ∩ C + α ) + P (A ∩ C + α ) -α(card(A ∩ C + α ) -1) = α + (1 -α)P (A ∩ C + α ) = αΠ(A) + (1 -α)P (A) since Π(A) = 1 and p(w) = 0 for s ∈ C + α .
Note that the dual of ρ α (ρ α (A) = 1ρ α (A)) is a convex combination of a necessity measure and a probability measure. Indeed, we have ρ α (A) = 1 -

αΠ(A)-(1-α)P (A) = α(1-Π(A))+(1-α)(1-P (A)) = αN (A)+(1-α)P (A).
When the possibility distribution is vacuous (C + α = S), it is a special case of Shafer discounting scheme [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], and is known in the imprecise probability literature as the linear-vacuous model [START_REF] Augustin | Introduction to Imprecise Probabilities[END_REF]. In particular,

ρ α = απ + (1 -α)p is a normalized ρ α distribution.
Hybrid π-p distributions combine models of two extreme behaviors in uncertain contexts, namely when the knowledge can be expressed through a possibility distribution and when it is can be expressed through a probability distribution. Hybrid distributions behave like probabilities only on the states with maximum possibility. As seen above the hybrid model must satisfy the constraint

P (s) = 0 if π(s) < 1, ∀s. It is clear that C +
α is the core of π. Then from both distributions and a given threshold α, we can build the hybrid one ρ α using a weighted average ρ α (s) = απ(s)+(1-α)p(s). The idea is that the decision-maker provides a standard probability distribution (e.g., frequencies) on normal states. Then she considers that there is a subjective probability α that the actual state has not been observed, and defines a possibility measure on the states of zero probability, an idea in agreement with the handling of zero probability events in De Finetti approach to subjective probability (see [START_REF] Coletti | Probabilistic Logic in a Coherent Setting[END_REF]).

Decision Making on Hybrid π-p Decision Trees

Back to our problematics of decision making under uncertainty, let us consider hybrid π-p simple lotteries L = <ρ/λ 1 , ..., ρ n /λ n >. We define two utility functionals ES Opt and ES P es based on such hybrid π-p distributions:

ES Opt (L) = S α i=1,...,n (T α (ρ α,L i , λ i )) ( 7 
)
ES P es (L) = 1 -S α i=1,...,n (T α (ρ α,L i , 1 -λ i )) (8) 
Considering a lottery L ρ = <ρ 1 /λ 1 , ..., ρ n /λ n > we define a lottery (1 -L) ρ by (1 -L) ρ = <ρ 1 /(1λ 1 ), ..., ρ n /(1λ n )>. We have the following semi-duality relation

ES P es (L ρ ) = 1 -ES Opt ((1 -L) ρ ). ( 9 
)
This property will be useful for some proofs in the following. For the sake of brevity, we will drop α from S α and T α in the sequel.

Hybrid Utility Functional and Decision Maker Behavior

Let us rewrite ES Opt (L) and ES P es (L) more explicitly so as to lay bare its meaning.

Proposition 3

ES Opt (L) = U Opt (L) if i s.t. λ i > α with ρ α i > α E Opt (L) = α + i|λ i ρ α i >α (λi-α)(ρ α i -α) 1-α otherwise (10) ES P es (L) = U P es (L) if i s.t. λ i < 1 -α with ρ α i > α E P es (L) = 1 -α - i|1-λ i ,ρ α i >α (1-λi-α)(ρ α i -α) 1-α otherwise (11)
Proof. If i s.t. λ i > α with ρ α i > α then ∀i, T = min is used and S = max too. So we are back to the U Opt (L) criterion. If there is only one i s.t.

λ i > α with ρ α i > α, then ES Opt (L) = T α (ρ α i , λ i ) = α + (λi-α)(ρ α i -α) 1-α
. For the general case where there are several i such that min(ρ α,L i

, λ i ) > α, say a set I + of indices then T (ρ α,L i , λ i ) > α, i ∈ I + only. Then ES Opt (L) = i∈I + (α + (λi-α)(ρ α i -α) 1-α ) - (card(I + ) -1)α = α + i∈I + ( (λi-α)(ρ α i -α) 1-α
). Using semi-duality between ES P es and ES Opt we get the expression of the former.

From Proposition 3 it is easy to check that:

Proposition 4. ES Opt (L) ≤ α iff ES Opt (L) = U Opt (L).
Likewise, ES P es (L) ≥ 1α iff ES P es (L) = U P es (L). In other words, the criterion ES Opt (L) is possibilistic optimistic (= U Opt (L)) so long as entries (utilities or plausibilities) are below the threshold α (distribution included in blue area on Fig. 3). Otherwise, we get an expected value over states with plausibilities and utilities greater than α (see green area in Fig. 3, left). Likewise, with ES P es (L), we get an expected value over states with utility less than 1α and with high enough plausibility i.e. greater than α. We get the pessimistic possibilistic criterion U P es (L) otherwise (with either high utilities or low plausibilities); see green area in Fig. 3 

Decision Trees with Hybrid π-p Distributions

Consider now decisions tree. We now know how to compare simple lotteries.

In order to compare strategies, i.e. compound lotteries, we define a principle of reduction of hybrid π-p compound lotteries:

Definition 8 (Reduction ρ ). For any compound lottery of the form

L = <ρ α 1 /L ρ α 1 , • • • , ρ α m /L ρ α m >, Red ρ (L)
is the simple lottery that associates to each λ i the weight ∀λ i , ρ α i = S m j=1 T (ρ α j , ρ α,j i ), where ρ α,j i denotes the confidence value of getting λ i though lottery L ρ α j and ρ α j the confidence value of getting L ρ α j . It is easy to get the following result: Proposition 5

ρ α i = ⎧ ⎨ ⎩ max j=1,...,m min(ρ α j , ρ α,j i ) if j s.t. ρ α j > α, ρ α,j i > α α + j|ρ α j ,ρ α,i j >α (ρ α j -α)(ρ α,i j -α) 1-α otherwise (12)
The following proposition states the main result of this paper: Proposition 6. Given a decision tree with ρ α measure, the hybrid criteria ES Opt and ES P es satisfy the weak monotonicity property.

Proof. We propose a proof for ES Opt , the proof is similar for ES P es . For each lottery L, we have two cases: (a) i such that ρ i > α and λ i > α and (b) ∃i such that ρ i > α and λ i > α. Let us explore all possible configurations. 1. L, L and L are in (a): ∀i the t-norm min and t-conorm max are used so we are in possibility case and the weak monotonicity property holds. 2. L and L in (a) and L in (b), we need to distinguish two cases: i) if v ≤ α then we are again in the case with t-norm min and t-conorm max so the weak monotonicity property holds. ii) if v > α then <u/L, v/L > and <u/L , v/L > are in (b) so ES Opt (<u/L, v/L >) = ES Opt (<u/L , v/L >) so the weak monotonicity is satisfied. 3. L, L and L in (b), we need to distinguish three cases: i) if v ≤ α and u > α then <u/L, v/L > and <u/L , v/L > are in (b)

so ES Opt (<u/L, v/L >) = α + i|λ i ,T P (ρ α,L i ,u)>α (λi-α)×(T P (ρ α,L i ,u)-α) 1-α = α + (u -α) i|λ i ,ρ α,L i >α (λi-α)×(ρ α,L i -α) (1-α) 2 ≤ ES Opt (<u/L , v/L >) = α + (u -α) i|λ i ,ρ α,L i >α (λi-α)×(ρ α,L i -α) (1-α) 2
so the weak monotonicity is satisfied. ii) if v > α and u ≤ α we are in a similar situation as in 2) ii) iii) if v > α and u > α then we have

ES Opt (<u/L, v/L >) = (u -α) ES Opt (L) (1-α) + (v -α) ES Opt (L ) (1-α) -α ≤ ES Opt (<u/L , v/L >) = (u -α) ES Opt (L ) (1-α) + (v -α) ES Opt (L ) (1-α) -α 4.
L in (a) and L, L in (b), we need to distinguish two cases: if u > α the proof is similar to the one in 3) i) and if u ≤ α similar to the one in 2) i). 5. L, L in (a) and L in (b), we need to distinguish two cases:

i) if u > α, ES Opt (<u/L, v/L >) ≤ α and ES Opt (<u/L , v/L >) > α. ii) if u ≤ α then ES Opt (<u/L, v/L >) ≤ ES Opt (<u/L , v/L >) the proof
is similar to the one in 2) i) since u/L is in (a). 6. L in (a) and L , L in (b), we need to distinguish three cases: i) if u ≤ α and v > α then the proof is similar to the one in 2) ii).

ii) if u > α and v ≤ α then <u/L, v/L > in (a) and <u/L, v/L > in (b) from Proposition 4 the weak monotonicity property holds.

iii) if u > α and v > α then ES Opt (<u/L, v/L >) = (v -α) ES Opt (L ) (1-α) ≤ ES Opt (<u/L , v/L >) = (u -α) ES Opt (L ) (1-α) + (v -α) ES Opt (L ) (1-α)
α so the weak monotonicity property holds.

From Proposition 6, when the decision maker provides a ρ-style decision tree, ES Opt and ES P es satisfy the three basic properties required in the introduction: consequentialism, dynamic consistency and lottery reduction.

Composing Possibilistic and Probabilistic Lotteries

According to Proposition 2, a (compound) lottery can be viewed as two (compound) lotteries, a possibilistic one L π = <π 1 /L π 1 , . . . , π π m /L m >, and a probabilistic one L p = <p 1 /L p 1 , . . . , p m /L p m >, both on the same decision tree. Assume that π i < 1 implies p i = 0, i = 1, . . . m. We are interested in merging them into a hybrid lottery, given the parameter α. Proposition 2 leads to define a fusion operation:

F (π, p, α) = ρ α i = απ i if π i < 1, ρ α i = α + (1 -α)p i otherwise. (13) 
Merging the possibility and probability distributions locally should be equivalent to merging the reduced lotteries at the global level. Moreover, the fusion operation must be distributive over the reduction operator.

Property 1 (Distributivity over reduction). Let L = (L π , L p ) be a pair of possibilistic and probabilistic compound lotteries on the same decision tree. Operator F is said to satisfy the distributivity property iff F (Red π (L π ), Red p (L p ), α) = Red ρ (<F (π 1 , p 1 , α)/F (L π 1 , L p 1 , α), . . . , F (π m , p m , α)/F (L π m , L p m , α)>). Proposition 7. F (π, p, α), defined by Eq. ( 13), satisfies Property 1.

Proof. When applying reduction to the probability tree followed by F , we obtain ρ i = α + (1α) j p j × p i j , ∀i s.t. ∃j with p i j > 0, p j > 0 and ρ i = α max j min(π j , π i j ) otherwise. When applying F first: if ∃j with p i j > , p j > 0 then ρ α,i j > α, ρ α j > α. From Proposition 5, the ρ α -reduction is ρ α i = α + (1α) j p j × p i j . Otherwise, the ρ α -reduction is max j=1,...,n min(ρ α,i j , ρ α j ) with min(ρ α,i j , ρ α j ) = απ i j or απ j so we obtain ρ i = α max j min(π j , π i j ).

This result ensures the dynamic consistency of the hybrid π-p approach to sequential decision-making under uncertainty.

Conclusion

In this paper, we try to improve the range of decision trees that can be solved by dynamic programming and respect consequentialism as well as dynamic consistency, beyond standard probabilistic decision trees, and possibilistic ones. We have shown that everything relies on i) defining the uncertainty measure by means of a generalized weight distribution on utility values; 2) the possibility of reducing compound lotteries into simple ones; 3) the definition of a utility functional by means of a generalized integral. This paper proposes a solution to this problem, and shows that it leads to a very restricted family of decomposable measures with respect to a specific family of t-conorms, due to the conditional distributivity property required to ensure lottery reduction. The paper proves that the obtained utility functionals satisfy the weak monotonicity property, which ensures computability of optimal decisions via dynamic programming. The kind of uncertainty function laid bare in this study turns out to be a Shafer plausibility (resp. belief) function obtained as a convex mixture of probability and possibility (resp.necessity) functions, which opens the way to a natural interpretation of these uncertainty measures.
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 21 right side. Example 2. let D 1 , D 2 and D 3 be decisions with ρ 0.70 distribution on {a, b, c, d} with λ a = 0.2, λ b = 0.6, λ c = 0.8, λ d = 1, D 1 = <0.7/λ a , 0.9/λ b , 0.6/λ c , 0.5/λ d >, D 2 = <0.75/λ a , 0.90/λ b , 0.75/λ c , 0.5/λ d > and D 3 = <0.75/λ a , 0.85/λ b , 0.75/λ c , 0.75/λ d >. If the DM is optimistic, we can see that the D 1 is in the possibility area since ρ 0.7 D 1 (c) and ρ 0.7 D 1 (c) are ≤ 0.7 while D 2 and D 3 are in EU area ES Opt . We have D 3 D Note that D 3 is preferred to D 2 since the expected utility to be in the green square Fig. 3 is greater. If the DM is pessimistic, D 1 is in possibility area while D 2 and D 3 are in EU area since ρ 0.7 D2 (a) = ρ 0.7 D2 (a) < 1λ and the preference relation is D 1 D 2 ∼ D 3 .

Given from a possibility distribution π over a set S, the possibility and the necessity of any event A ⊆ S are defined byΠ(A) = maxs∈A π(s), N(A) = 1 -Π( Ā) = 1max s / ∈A π(s).

A t-conorm is a non-decreasing semi-group operation on [0, 1] with identity 0 and absorbing element 1. A t-norm is a non-decreasing semi-group operation on [0, 1] with identity 1 and absorbing element 0. T-norms and t-conorms are gradual models of conjunction and disjunction. See[START_REF] Klement | Triangular Norms[END_REF] for more details.