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Abstract. Probabilistic and possibilistic models of sequential decision
problems are known to possess good behavioral and algorithmic proper-
ties. In this paper, the range of models of problems of sequential decision
under uncertainty that are dynamically consistent, consequentialist and
allow for tree reduction is enlarged by considering a representation of
uncertainty that is both probabilistic and possibilistic. The correspond-
ing utility functional is expected utility for highly likely states, and an
optimistic or pessimistic possibility-based criterion for unlikely states.
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1 Introduction

In sequential decision making a strategy is a conditional plan that assigns a
(possibly non deterministic) action to each state where a decision has to be
made (also called “decision node”). Each strategy leads to a compound lottery,
following Von Neuman and Morgenstern’s terminology [12] - roughly, it is a tree
representing the different possible scenarios, and thus the different possible final
states that the plan/strategy may reach. The optimal strategy is then the one
that minimizes a criterion whose value depends on utilities of final states and
the resulting compound lottery.

Three assumptions are desirable in order to accept an optimal strategy with-
out questioning its meaning. Those assumptions are:

– Dynamic Consistency: when reaching a decision node, following an optimal 
strategy, the best decision at this node is the one that had been considered 
so when computing this strategy, i.e. prior to applying it.

– Consequentialism: the best decision at each step of the problem only depends 
on potential consequences at this point.

– Tree Reduction: a compound lottery is equivalent to a simple one, assigning 
probabilities to final states.
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Those three assumptions are instrumental to enable an optimal strategy to be
computed using dynamic programming [10].

When the decision maker is able to provide a probability distribution on the
possible states and considers that the utilities are additive, a classical approach
is the one based on expected utility. Under this strong assumption, the above
three assumptions are satisfied.

When the problem is pervaded with possibilistic uncertainty, two families
of criteria make sense: a Sugeno integral-based criterion [5] and the Choquet
integral [6]. The criterion based on Choquet integral turns out to be incompatible
with the above assumptions: it may happen that none of the optimal strategies
is dynamically consistent nor consequentialist The possibilistic criteria based on
Sugeno integral do not meet such difficulties. Nor does the generalization of both
optimistic and pessimistic possibilistic Sugeno proposed by [7]. It aggregates
optimistic and pessimistic criteria by means of a uninorm [13], a semi-group
operation whose identity plays the role of a degree of optimism. Contrary to
other criteria that account for a degree of optimism, like the Hurwicz criterion,
the criterion proposed in [7] satisfies the three assumptions governing a good
behavior of the decision tree.

In the present paper, we are looking for new decision criteria, beyond
expected utility and possibilistic integrals, that can apply to decision trees and
respect the three properties recalled above (Dynamic Consistency, Consequen-
tialism and Tree Reduction).

2 Decision Trees

A convenient language to introduce sequential decision problems is the one of
decision trees [10]. This framework proposes an explicit graphical model, repre-
senting each possible scenario by a path from the root to the leaves of a tree.
Formally, a decision tree T = (N , E) is such that N contains three kinds of
nodes (see Fig. 1 for an example):

– D is the set of decision nodes (depicted by rectangles).
– LN is the set of leaves, that represent final states in S; such states can be

evaluated by a utility function: ∀si ∈ S, u(si) is the degree of satisfaction of
eventually being in state si (of reaching the corresponding node in LN ). For
the sake of simplicity we assume, without loss of generality, that only leaf
nodes are attached utilities.

– X is the set of chance nodes (depicted by circles).

For any node ni ∈ N , Succ(ni) ⊆ N denotes the set of its children. In a decision
tree, for any decision node di, Succ(di) ⊆ X : Succ(di) is the set of actions that
can be chosen when di is reached. For any chance node xi, Succ(xi) ⊆ LN ∪ D:
Succ(xi) is the set of possible outcomes of action xi - either a leaf node is
observed, or a decision node is reached (and then a new action should be chosen).

Solving a decision tree amounts to building a strategy, i.e. a function δ that
associates to each decision node di an action (i.e. a chance node) in Succ(di):
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Fig. 1. A possibilistic decision tree.

δ(di) is the action to be executed when decision node di is reached. Let Δ be the
set of strategies that can be built for T . We shall also consider the subtree Tn of
T rooted at node n ∈ T , and denote by Δn its strategies: they are subtrategies
of the strategies of Δ.

The satisfaction of the decision maker for a consequence (on a leaf of the
tree) is captured by a utility degree on a totally ordered scale. The scale [0, 1] is
generally chosen for these degrees, but any ordered set can be used.

Here, we focus on the case where the information at each chance node is
fully captured by a distribution over outcomes of the chance nodes, namely a
possibility distribution π and/or a probability distribution p. When bearing on
the leaf nodes, such distributions define simple lotteries on the utility degrees.
More formally:

– A simple probabilistic lottery Lp [12]: is a probability distribution p on a set
of utility degrees, Λ = {λ1, ..., λn}. The probabilistic lotteries will be written
as Lp = <p1/λ1, ..., pn/λn> with pi ∈ [0, 1],

∑n
i=1 pi = 1.

– A simple possibilistic lottery Lπ [5] is a normalized possibility distribution π
on a set of utility degrees, Λ, both being expressed in the same ordered scale.
The possibilistic lotteries will be written as Lp = <π1/λ1, ..., πn/λn> with
πi ∈ [0, 1],maxn

i=1 πi = 1.

In a lottery Lπ (resp. Lp), the value πi (resp. pi) is the possibility (resp. proba-
bility) degree of getting utility λi according to the decision strategy captured by
the lottery. For the sake of brevity, the λi’s such that πi = 0 (resp. pi = 0) are
often omitted in the notation of a lottery (e.g., (<1/0.8>) denotes the lottery
that provides utility 0.8 for sure, all the other utility degrees being impossible).

The expected utility of probabilistic simple lotteries was proposed by Von
Neuman and Morgernstern [12] as a decision criterion under risk: E(Lp) =
∑

λi∈Λ λi · pi. Dubois and Prade [5] proposed to use optimistic and pessimistic
possibilistic criteria, denoted by UPes and UOpt in this paper, to evaluate the
global utility of a possibilistic lottery using UPes(Lπ) = minλi∈Λ max(1 − πi, λi),

and UOpt(Lπ) = maxλi∈Λ min(πi, λi).
Let us now consider full-fledged strategies. A strategy in Δ can be viewed as

a connected subtree of T where there is exactly one edge (and thus one chance
node) left at each decision node - skipping the decision nodes, we get a chance tree
or, using von Neuwman and Morgernstern’s terminology, a compound lottery:



like simple lotteries, which are distributions over utilities, compound lotteries
are distributions over (simple or compound) lotteries.

The idea is to define a simple lottery equivalent to the original, compound
one and to apply the decision criterion to this simple lottery.

Definition 1 (Reductionp). For any probabilistic compound lottery of the form
Lp = <p1/Lp

1, . . . , pm/Lp
m>, Redp(Lp) is the simple lottery that associates to

each λi the probability degree pi =
∑

j=1,...,m pj · pj
i , where pj

i denotes the prob-
ability of getting λi though lottery Lp

j and pj the probability of getting Lp
j .

Definition 2 (Reductionπ). For any possibilistic compound lottery of the form
Lπ = <π1/Lπ

1 , . . . , πm/Lπ
m>, Redπ(Lπ) is the simple lottery that associates to

each λi the possibility degree πi = maxj=1,...,m min(πj , π
j
i ), where πj

i denotes the
possibility of getting λi though lottery Lπ

j and πj the possibility of getting Lπ
j .

The principle of lottery reduction allows the comparison of compound lot-
teries: L is preferred to L′ iff its reduction is preferred to the one of L′ and
optimality can then be soundly defined:

– δ ∈ Δ is optimal for a decision tree T iff ∀δ′ ∈ Δ,C(Red(Lδ)) � C(Red(Lδ′)),

for a criterion C. The principle of monotonicity and the one of decomposition
[12] are valid for expected utility, and also for UPes and UOpt in a weak form:

Definition 3 (Weak monotonicity). A preference criterion C over possi-
bilistic/probabilistic lotteries is said to be weakly monotonic iff whatever L, L′

and L′′, whatever a normalized possibility/probability distribution w, v:

C(L) ≤ C(L′) ⇒ C(<w/L, v/L′′>) ≤ C(<w/L′, v/L′′>). (1)

Importanty, all approaches that satisfy weak monotonicity, and in particular
in the approach considered in this paper, also satisfy Dynamic Consistency, Con-
sequentialism and Tree Reduction. This guarantees coherence with the intuition
of rationality; this is also important from the algorithmic point of view, since it
allows to find an optimal strategy by dynamic programming.

In the following we consider decision trees where uncertainty is captured by
set functions that are more general than probability and possibility measures,
while taking into account a degree of optimism of the decision maker, although
without giving up the monotonicity principle.

3 Hybrid Possibility-Probability Measures

The three previous criteria (expected utility, pessimistic and optimistic possi-
bilistic utility functionals) are particular instances of generalized integrals (Cho-
quet integral for expected utility, Sugeno integral for the other ones) based on
fuzzy measures.



Definition 4. A fuzzy measure is a set function μ : 2S → [0, 1], satisfying the
following axioms:

– μ(∅) = 0; μ(S) = 1 (limit conditions)
– μ(A ∪ B) ≥ μ(A) (monotony)

Fuzzy measures include, among others, probability measures, necessity mea-
sures and possibility measures.1

However, we look for special fuzzy measures representable by means of lot-
teries (or, equivalently, by distributions on utility values). Hence they must be
decomposable:

Definition 5 [4]. A decomposable fuzzy measure is a fuzzy measure μ for which
there is a t-conorm2 S such that μ(A ∪ B) = S(μ(A), μ(B)) whenever A and B
are disjoint.

Possibility measures are max-decomposable (for the t-conorm max), while prob-
ability measures are additively decomposable using the �Lukasiewicz t-conorm
min(a + b, 1). To define lottery reduction, we also need a generalization of the
notion of independence between events.

Definition 6. Let T be a triangular norm. Two events A and B are said to
be T -separable with respect to a fuzzy measure μ if and only if μ(A ∩ B) =
T (μ(A), μ(B)) for a t-norm T .

If A and B are disjoint events T -separable from another event C, then, since
(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), a decomposable fuzzy measure should satisfy

T (S(μ(A), μ(B)), μ(C)) = S(T (μ(A), μ(C)), T (μ(B), μ(C)),

which requires a property called Conditional Distributivity of T over S. This
property is essential for enabling the reduction of generalised lotteries.

Definition 7. A t-norm T is conditionally distributive over a t-conorm S if for
all x, y, z ∈ [0, 1] we have

(CD)T (x, S(y, z)) = S(T (x, y), T (x, z)), whenever S(y, z) < 1.

In [3], it has been proved that the only family of pairs (t-conorm, t-norm) that
satisfy the condition (CD) are built from the pairs (max, T ) and (min(a+b, 1),×)
[3,9], where T is an arbitrary continuous t-norm. It is a parametric family of pairs
denoted by (Sα, Tα), with parameter α, where Sα (resp. Tα) is the ordinal sum [9]
of max and min(x+y, 1) (resp. T and product) represented on Fig. 2 for T = min.

1 Given from a possibility distribution π over a set S, the possibility and the necessity
of any event A ⊆ S are defined by Π(A) = maxs∈A π(s), N(A) = 1 − Π(Ā) =
1 − maxs/∈A π(s).

2 A t-conorm is a non-decreasing semi-group operation on [0, 1] with identity 0 and
absorbing element 1. A t-norm is a non-decreasing semi-group operation on [0, 1] with
identity 1 and absorbing element 0. T-norms and t-conorms are gradual models of
conjunction and disjunction. See [9] for more details.



Fig. 2. Sα and T α

The pairs (Sα, Tα) where Tα is distributive on Sα are thus of the form

Sα(x, y) =

{
x + y − α if x > α, y > α

max(x, y)
(2)

Tα(x, y) =

{
α + (x−α)(y−α)

1−α if x > α, y > α

min(x, y) otherwise.
(3)

An Sα-decomposable fuzzy measure, denoted by ρα, is a hybrid function between
possibility and probability measures defined as follows:

Definition 1 (Hybrid π-p measure [3]). A hybrid possibility-probability mea-
sure ρα is a fuzzy measure such that, for disjoint sets A and B:

ρα(A ∪ B) = Sα(ρα(A), ρα(B)) (4)

The fuzzy measure ρα is clearly a probability measure (rescaled on [α, 1]) for
likely events, and a possibility measure if one of the events is unlikely. The
hybrid π-p measure is an example of level-dependent capacity [8]. For events
that can be considered independent A,B, we have

ρα(A ∩ B) = Tα(ρα(A), ρα(B)) (5)

The limit condition ρα(Ω) = 1 comes down to enforcing, for any event A
and its complement Ac, the duality condition ρα(A) + ρα(Ac) = 1 + α, when
min(ρα(A), ρα(Ac)) > α and max(ρα(A), ρα(Ac)) = 1 otherwise.

Because it is decomposable, ρα is completely defined by a distribution of
weights ρα on the singletons of the referential S. Applying (4) to the union of
singletons yields the normalization condition suggested in [3]:

Proposition 1. A distribution ρα on S defines a normalised Sα-decomposable
fuzzy measure if and only if∑

s:ρα(s)>α

ρα(s) = 1 + (card(C+
α ) − 1) × α (6)

where C+
α = {s, ρα(s) > α}.



Proof (not given in [3]). Let C+
α = {s, ρα(s) > α}. Then, by associativ-

ity and commutativity we have ρα(S) = Sα
s (ρα(s)) = max(maxs�∈C+

α
ρα(s),

Sα
s∈C+

α
(ρα(s)), and the latter term is Sα

s∈C+
α
(ρα(s)) =

∑
s∈C+

α
ρα(s)−(card(C+

α )−
1)α > α ≥ maxs�∈C+

α
ρα(s). Clearly Sα

s (ρα(s)) = Sα
s∈C+

α
(ρα(s)) = 1 yields condi-

tion (6).

Note that C+
α 
= ∅. For otherwise, ρα(S) < 1. If card(C+

α ) = 1, then ρα(S) =
maxs ρα(s) = 1, i.e. ρα is a possibility measure. If card(C+

α ) = n, then ρα(S) = 1
reads

∑
s ρα(s) − (n − 1)α = 1, hence

∑n
s ρα(s) = 1 + (n − 1)α and the fuzzy

measure ρα is additive.

Example 1. Consider the S0.7-decomposable fuzzy measure ρ0.7 on the
set {sa, sb, sc, sd}, defined by the distribution ρ0.7(sa) = 0.5 ρ0.7(sb) = 0.5
ρ0.7(sc) = 0.8 ρ0.7(sd) = 0.9. Here, C+

α = {sc, sd}. One can check that
ρ0.7(Ω) = 0.8 + 0.9 − 0.7 = 1. It is normalized.

More generally it is easy to express the value of ρα on general events:

ρα(A) =

⎧⎪⎨
⎪⎩

∑
s∈A ρα(s) − α(card(A) − 1) if A ⊆ C+

α ,

maxs∈A ρα(s) if A ⊆ C+
α ,∑

s∈A∩C+
α

ρα(s) − α(card(A ∩ C+
α ) − 1) otherwise.

Note that the third case (C+
α ∩ A 
= ∅) covers the first. We can moreover prove

that any measure ρα is a plausibility measure in the sense of Shafer [11] obtained
as a probabilistic mixture between a possibility measure and a probability
measure.

Proposition 2. For any hybrid possibility-probability function ρα, there exists
a possibility measure Π with possibility distribution π and a probability measure
P with distribution p such that ρα(s) = απ(s) + (1 − α)p(s) where ∀s, π(s) < 1
implies p(s) = 0. Moreover ∀A, ρα(A) = α maxs∈A π(s) + (1 − α)

∑
s∈A p(s).

Proof. For events, if A∩C+
α = ∅, ρα(A) = α maxs∈A π(w) = αΠ(A)+(1−α)P (A)

since P (A) = 0. Otherwise, if A ∩ C+
α 
= ∅:

ρα(A) =
∑

s∈A∩C+
α

ρα(s) − α(card(A ∩ C+
α ) − 1)

=
∑

s∈A∩C+
α

(α(1 − p(s)) + p(s)) − α(card(A ∩ C+
α ) − 1)

= αcard(A ∩ C+
α ) − αP (A ∩ C+

α ) + P (A ∩ C+
α ) − α(card(A ∩ C+

α ) − 1)

= α + (1 − α)P (A ∩ C+
α ) = αΠ(A) + (1 − α)P (A)

since Π(A) = 1 and p(w) = 0 for s 
∈ C+
α . �

Note that the dual of ρα (ρα(A) = 1 − ρα(A)) is a convex combination of
a necessity measure and a probability measure. Indeed, we have ρα(A) = 1 −



αΠ(A)−(1−α)P (A) = α(1−Π(A))+(1−α)(1−P (A)) = αN(A)+(1−α)P (A).
When the possibility distribution is vacuous (C+

α = S), it is a special case
of Shafer discounting scheme [11], and is known in the imprecise probability
literature as the linear-vacuous model [1]. In particular, ρα = απ + (1 − α)p is a
normalized ρα distribution.

Hybrid π-p distributions combine models of two extreme behaviors in uncer-
tain contexts, namely when the knowledge can be expressed through a possibility
distribution and when it is can be expressed through a probability distribution.
Hybrid distributions behave like probabilities only on the states with maxi-
mum possibility. As seen above the hybrid model must satisfy the constraint
P (s) = 0 if π(s) < 1,∀s. It is clear that C+

α is the core of π. Then from both
distributions and a given threshold α, we can build the hybrid one ρα using a
weighted average ρα(s) = απ(s)+(1−α)p(s). The idea is that the decision-maker
provides a standard probability distribution (e.g., frequencies) on normal states.
Then she considers that there is a subjective probability α that the actual state
has not been observed, and defines a possibility measure on the states of zero
probability, an idea in agreement with the handling of zero probability events in
De Finetti approach to subjective probability (see [2]).

4 Decision Making on Hybrid π-p Decision Trees

Back to our problematics of decision making under uncertainty, let us consider
hybrid π-p simple lotteries L = <ρ/λ1, ..., ρn/λn>. We define two utility func-
tionals ESOpt and ESPes based on such hybrid π-p distributions:

ESOpt(L) = Sα
i=1,...,n(Tα(ρα,L

i , λi)) (7)

ESPes(L) = 1 − Sα
i=1,...,n(Tα(ρα,L

i , 1 − λi)) (8)

Considering a lottery Lρ = <ρ1/λ1, ..., ρn/λn> we define a lottery (1 − L)ρ

by (1−L)ρ = <ρ1/(1−λ1), ..., ρn/(1−λn)>. We have the following semi-duality
relation

ESPes(Lρ) = 1 − ESOpt((1 − L)ρ). (9)

This property will be useful for some proofs in the following. For the sake of
brevity, we will drop α from Sα and Tα in the sequel.

4.1 Hybrid Utility Functional and Decision Maker Behavior

Let us rewrite ESOpt(L) and ESPes(L) more explicitly so as to lay bare its
meaning.

Proposition 3

ESOpt(L) =

{
UOpt(L) if �i s.t. λi > α with ρα

i > α

EOpt(L) = α +
∑

i|λiρα
i

>α(λi−α)(ρα
i −α)

1−α otherwise
(10)



ESPes(L) =

{
UPes(L) if �i s.t. λi < 1 − α with ρα

i > α

EPes(L) = 1 − α −
∑

i|1−λi,ρα
i

>α(1−λi−α)(ρα
i −α)

1−α otherwise
(11)

Proof. If �i s.t. λi > α with ρα
i > α then ∀i, T = min is used and S = max too.

So we are back to the UOpt(L) criterion. If there is only one i s.t. λi > α with
ρα

i > α, then ESOpt(L) = Tα(ρα
i , λi) = α + (λi−α)(ρα

i −α)
1−α . For the general case

where there are several i such that min(ρα,L
i , λi) > α, say a set I+ of indices

then T (ρα,L
i , λi) > α, i ∈ I+ only. Then ESOpt(L) =

∑
i∈I+(α+ (λi−α)(ρα

i −α)
1−α )−

(card(I+)−1)α = α+
∑

i∈I+( (λi−α)(ρα
i −α)

1−α ). Using semi-duality between ESPes

and ESOpt we get the expression of the former. �
From Proposition 3 it is easy to check that:

Proposition 4. ESOpt(L) ≤ α iff ESOpt(L) = UOpt(L).
Likewise, ESPes(L) ≥ 1 − α iff ESPes(L) = UPes(L).

Fig. 3. ESOpt(L) and ESPes(L)

In other words, the criterion ESOpt(L) is possibilistic optimistic (= UOpt(L))
so long as entries (utilities or plausibilities) are below the threshold α (distribu-
tion included in blue area on Fig. 3). Otherwise, we get an expected value over
states with plausibilities and utilities greater than α (see green area in Fig. 3,
left). Likewise, with ESPes(L), we get an expected value over states with utility
less than 1−α and with high enough plausibility i.e. greater than α. We get the
pessimistic possibilistic criterion UPes(L) otherwise (with either high utilities or
low plausibilities); see green area in Fig. 3 right side.

Example 2. let D1, D2 and D3 be decisions with ρ0.70 distribution on {a, b, c, d}
with λa = 0.2, λb = 0.6, λc = 0.8, λd = 1, D1 = <0.7/λa, 0.9/λb, 0.6/λc,
0.5/λd>, D2 = <0.75/λa, 0.90/λb, 0.75/λc, 0.5/λd> and D3 = <0.75/λa,
0.85/λb, 0.75/λc, 0.75/λd>. If the DM is optimistic, we can see that the D1

is in the possibility area since ρ0.7
D1

(c) and ρ0.7
D1

(c) are ≤ 0.7 while D2 and D3 are
in EU area ESOpt. We have D3 � D2 � D1. Note that D3 is preferred to D2

since the expected utility to be in the green square Fig. 3 is greater. If the DM
is pessimistic, D1 is in possibility area while D2 and D3 are in EU area since
ρ0.7

D2
(a) = ρ0.7

D2
(a) < 1 − λ and the preference relation is D1 � D2 ∼ D3.



4.2 Decision Trees with Hybrid π-p Distributions

Consider now decisions tree. We now know how to compare simple lotteries.
In order to compare strategies, i.e. compound lotteries, we define a principle of
reduction of hybrid π-p compound lotteries:

Definition 8 (Reductionρ). For any compound lottery of the form L =
<ρα

1 /Lρα

1 , · · · , ρα
m/Lρα

m >, Redρ(L) is the simple lottery that associates to each
λi the weight ∀λi, ρ

α
i = Sm

j=1T (ρα
j , ρα,j

i ), where ρα,j
i denotes the confidence value

of getting λi though lottery Lρα

j and ρα
j the confidence value of getting Lρα

j .

It is easy to get the following result:

Proposition 5

ρα
i =

⎧⎨
⎩

maxj=1,...,m min(ρα
j , ρα,j

i ) if �j s.t. ρα
j > α, ρα,j

i > α

α +

∑

j|ρα
j

,ρ
α,i
j

>α
(ρα

j −α)(ρα,i
j −α)

1−α otherwise
(12)

The following proposition states the main result of this paper:

Proposition 6. Given a decision tree with ρα measure, the hybrid criteria
ESOpt and ESPes satisfy the weak monotonicity property.

Proof. We propose a proof for ESOpt, the proof is similar for ESPes. For each
lottery L, we have two cases: (a) �i such that ρi > α and λi > α and (b) ∃i such
that ρi > α and λi > α. Let us explore all possible configurations.

1. L, L′ and L′′ are in (a): ∀i the t-norm min and t-conorm max are used so we
are in possibility case and the weak monotonicity property holds.

2. L and L′ in (a) and L′′ in (b), we need to distinguish two cases:
i) if v ≤ α then we are again in the case with t-norm min and t-conorm

max so the weak monotonicity property holds.
ii) if v > α then <u/L, v/L′′> and <u/L′, v/L′′> are in (b) so

ESOpt(<u/L, v/L′′>) = ESOpt(<u/L′, v/L′′>) so the weak monotonic-
ity is satisfied.

3. L, L′ and L′′ in (b), we need to distinguish three cases:
i) if v ≤ α and u > α then <u/L, v/L′′> and <u/L′, v/L′′> are in (b)

so ESOpt(<u/L, v/L′′>) = α +
∑

i|λi,T P (ρ
α,L
i

,u)>α
(λi−α)×(T P (ρα,L

i ,u)−α)

1−α

= α + (u − α)
∑

i|λi,ρ
α,L
i

>α
(λi−α)×(ρα,L

i −α)

(1−α)2 ≤ ESOpt(<u/L′, v/L′′>)

= α + (u − α)

∑

i|λi,ρ
α,L′
i

>α
(λi−α)×(ρα,L′

i −α)

(1−α)2 so the weak monotonicity is
satisfied.

ii) if v > α and u ≤ α we are in a similar situation as in 2) ii)
iii) if v > α and u > α then we have

ESOpt(<u/L, v/L′′>) = (u − α)ESOpt(L)
(1−α) + (v − α)ESOpt(L′′)

(1−α) − α ≤
ESOpt(<u/L′, v/L′′>) = (u − α)ESOpt(L′)

(1−α) + (v − α)ESOpt(L′′)
(1−α) − α



4. L′′ in (a) and L, L′ in (b), we need to distinguish two cases: if u > α the
proof is similar to the one in 3) i) and if u ≤ α similar to the one in 2) i).

5. L, L′′ in (a) and L′ in (b), we need to distinguish two cases:
i) if u > α, ESOpt(<u/L, v/L′′>) ≤ α and ESOpt(<u/L′, v/L′′>) > α.
ii) if u ≤ α then ESOpt(<u/L, v/L′′>) ≤ ESOpt(<u/L′, v/L′′>) the proof

is similar to the one in 2) i) since u/L′ is in (a).
6. L in (a) and L′, L′′ in (b), we need to distinguish three cases:

i) if u ≤ α and v > α then the proof is similar to the one in 2) ii).
ii) if u > α and v ≤ α then <u/L, v/L′′> in (a) and <u/L, v/L′′> in (b)

from Proposition 4 the weak monotonicity property holds.
iii) if u > α and v > α then ESOpt(<u/L, v/L′′>) = (v − α)ESOpt(L′′)

(1−α) ≤
ESOpt(<u/L′, v/L′′>) = (u − α)ESOpt(L′)

(1−α) + (v − α)ESOpt(L′′)
(1−α) − α so the

weak monotonicity property holds. �

From Proposition 6, when the decision maker provides a ρ-style decision tree,
ESOpt and ESPes satisfy the three basic properties required in the introduction:
consequentialism, dynamic consistency and lottery reduction.

4.3 Composing Possibilistic and Probabilistic Lotteries

According to Proposition 2, a (compound) lottery can be viewed as two (com-
pound) lotteries, a possibilistic one Lπ = <π1/Lπ

1 , . . . , ππ
m/Lm>, and a proba-

bilistic one Lp = <p1/Lp
1, . . . , pm/Lp

m>, both on the same decision tree. Assume
that πi < 1 implies pi = 0, i = 1, . . . m. We are interested in merging them into
a hybrid lottery, given the parameter α. Proposition 2 leads to define a fusion
operation:

F (π, p, α) =

{
ρα

i = απi if πi < 1,

ρα
i = α + (1 − α)pi otherwise.

(13)

Merging the possibility and probability distributions locally should be equiv-
alent to merging the reduced lotteries at the global level. Moreover, the fusion
operation must be distributive over the reduction operator.

Property 1 (Distributivity over reduction). Let L = (Lπ, Lp) be a
pair of possibilistic and probabilistic compound lotteries on the same decision
tree. Operator F is said to satisfy the distributivity property iff F (Redπ(Lπ),
Redp(Lp), α) = Redρ(<F (π1, p1, α)/F (Lπ

1 , Lp
1, α), . . . , F (πm, pm, α)/F (Lπ

m,
Lp

m, α)>).

Proposition 7. F (π, p, α), defined by Eq. (13), satisfies Property 1.

Proof. When applying reduction to the probability tree followed by F , we
obtain ρi = α + (1 − α)

∑
j pj × pi

j ,∀i s.t. ∃j with pi
j > 0, pj > 0 and

ρi = α maxj min(πj , π
i
j) otherwise. When applying F first: if ∃j with pi

j >

, pj > 0 then ρα,i
j > α, ρα

j > α. From Proposition 5, the ρα-reduction is ρα
i =

α + (1 − α)
∑

j pj × pi
j . Otherwise, the ρα-reduction is maxj=1,...,n min(ρα,i

j , ρα
j )

with min(ρα,i
j , ρα

j ) = απi
j or απj so we obtain ρi = α maxj min(πj , π

i
j). �



This result ensures the dynamic consistency of the hybrid π-p approach to
sequential decision-making under uncertainty.

5 Conclusion

In this paper, we try to improve the range of decision trees that can be solved
by dynamic programming and respect consequentialism as well as dynamic con-
sistency, beyond standard probabilistic decision trees, and possibilistic ones. We
have shown that everything relies on i) defining the uncertainty measure by
means of a generalized weight distribution on utility values; 2) the possibility
of reducing compound lotteries into simple ones; 3) the definition of a utility
functional by means of a generalized integral. This paper proposes a solution to
this problem, and shows that it leads to a very restricted family of decomposable
measures with respect to a specific family of t-conorms, due to the conditional
distributivity property required to ensure lottery reduction. The paper proves
that the obtained utility functionals satisfy the weak monotonicity property,
which ensures computability of optimal decisions via dynamic programming.
The kind of uncertainty function laid bare in this study turns out to be a Shafer
plausibility (resp. belief) function obtained as a convex mixture of probabil-
ity and possibility (resp.necessity) functions, which opens the way to a natural
interpretation of these uncertainty measures.
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