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Knowing the ice thickness distribution of a glacier is of fundamental importance for a
number of applications, ranging from the planning of glaciological fieldwork to the
assessments of future sea-level change. Across spatial scales, however, this
knowledge is limited by the paucity and discrete character of available thickness
observations. To obtain a spatially coherent distribution of the glacier ice thickness,
interpolation or numerical models have to be used. Whilst the first phase of the Ice
Thickness Models Intercomparison eXperiment (ITMIX) focused on approaches that
estimate such spatial information from characteristics of the glacier surface alone,
ITMIX2 sought insights for the capability of the models to extract information from a
limited number of thickness observations. The analyses were designed around 23 test
cases comprising both real-world and synthetic glaciers, with each test case comprising a
set of 16 different experiments mimicking possible scenarios of data availability. A total of
13 models participated in the experiments. The results show that the inter-model variability
in the calculated local thickness is high, and that for unmeasured locations, deviations of
16% of the mean glacier thickness are typical (median estimate, three-quarters of the
deviations within 37% of the mean glacier thickness). This notwithstanding, limited sets of
ice thickness observations are shown to be effective in constraining the mean glacier
thickness, demonstrating the value of even partial surveys. Whilst the results are only
weakly affected by the spatial distribution of the observations, surveys that preferentially
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sample the lowest glacier elevations are found to cause a systematic underestimation of
the thickness in several models. Conversely, a preferential sampling of the thickest glacier
parts proves effective in reducing the deviations. The response to the availability of ice
thickness observations is characteristic to each approach and varies across models. On
average across models, the deviation between modeled and observed thickness increase
by 8.5% of the mean ice thickness every time the distance to the closest observation
increases by a factor of 10. No single best model emerges from the analyses, confirming
the added value of using model ensembles.

Keywords: glaciers, ice caps, ice thickness, modeling, intercomparison

1 INTRODUCTION

The ice thickness distribution of a glacier is one of its fundamental
properties. By defining the glacier’s morphology and total
volume, ice thickness controls the ice dynamics, defines the
amount of water stored, and determines the glacier’s lifetime
in a changing climate. Knowing the ice thickness distribution is,
thus, not only necessary for most glaciological investigations, but
is also paramount for assessing long-term glacier changes,
hydrological impacts, or contributions to sea-level change
(IPCC, 2020).

In the past decades, a number of initiatives have been ongoing
to better characterize the thickness of Earth’s ice masses. With
Bedmap (Lythe et al., 2001), Bedmap2 (Fretwell et al., 2013), the
datasets by Bamber et al. (2003) and Bamber et al. (2013) or
BedMachine (Morlighem et al., 2017, 2020), standard ice
thickness products had been established for Antarctica and
Greenland, and similar datasets now exist also for glaciers and
ice caps around the globe (Huss and Farinotti, 2012; Farinotti
et al., 2019). The advances have been spurred by both the
increased capability of measuring glacier ice thickness at large
scales and the development of models inferring thickness from
characteristics of the surface.

To be efficient, large-scale ice thickness mapping requires
airborne platforms. Whilst such platforms have been used for
surveying ice sheets and other large, cold ice masses for almost
70 years (for reviews, see, e.g., Plewes and Hubbard, 2001;
Schroeder et al., 2020), airborne systems capable of operating
in mountain environments have emerged only more recently
(Blindow et al., 2012; Rutishauser et al., 2016; Zamora et al., 2017;
Langhammer et al., 2019b; Pritchard et al., 2020). Data of such ice
thickness surveys outside the ice sheets have been collected in the
Glacier Thickness database (GlaThiDa) (Gärtner-Roer et al.,
2014), now at its third release (Welty et al., 2020). Hosted and
curated by the World Glacier Monitoring Service, the database
now collects a total of nearly four million airborne and ground-
based point observations. Still, GlaThiDa v3 only covers about
1,100 glaciers, corresponding to ∼6% of the glacierized surface
outside the ice sheets (RGI Consortium, 2017).

The relative data sparseness requires the use of model-based
interpolation approaches to derive glacier-wide ice thickness
distributions from discrete observations (e.g., Farinotti et al.,
2009a; Morlighem et al., 2011; Fürst et al., 2017; Langhammer
et al., 2019a). Such approaches are often based on considerations

of ice flow dynamics and mass conservation, and make use of
additional information observable at the glacier surface, such as
surface topography or ice flow speeds. Models that estimate the
ice thickness distribution of mountain glaciers and ice caps from
characteristics of the surface were recently compared in the frame
of ITMIX–the Ice Thickness Model Intercomparison eXperiment
(Farinotti et al., 2017). The experiment (ITMIX1 from now on),
however, only addressed the situation in which no ice thickness
observations are available at all, i.e., the typical situation for most
glaciers on Earth. Apart from showing that the performance of
individual models can be highly variable, ITMIX1 also left open
the question if some models are better capable of extracting
information from sparse ice thickness observations than other
models.

Here, we present the results of ITMIX2, the second phase of
ITMIX, which aimed at comparing the capability of individual
models to extract information from limited subsets of ice
thickness observations. With a set of dedicated experiments,
ITMIX2 also investigated whether the spatial distribution of
these observations has a discernible influence on the model
results, possibly leading to recommendations for the
configuration of future data acquisitions.

ITMIX2 was based on an updated set of both real-world and
synthetic test cases addressed in ITMIX1, and includes glaciers
and ice caps in different climatic regimes for which information
on both surface characteristics and ice thickness is available. The
general idea was to perform a set of experiments in which
different subsets of the thickness observations are available for
model calibration, and in which the ice thickness of the remaining
profiles had to be estimated. As in ITMIX1, ITMIX2 was an
experiment open to any published or unpublished model. In total,
ITMIX2 considered 23 test cases with 16 experiments each, and
attracted the participation of 13 different approaches that
submitted an ensemble of 2,544 solutions.

2 ITMIX2 SETUP

ITMIX2 built upon the dataset used in ITMIX1. Individual test
cases and specific additions to this dataset are described hereafter
(Section 2.1). The experimental design of ITMIX2 included 16
experiments per test case, aimed at mimicking different possible
layouts for the ice thickness data available for model calibration
(Section 2.2). A description on how ITMIX2 was organized from
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the practical side, including the terms for ITMIX2 admission, is
given in Section 2.3.

2.1 Considered Test Cases and Data
ITMIX2 considered a total of 23 test cases, comprising 20 real-
world glaciers and ice caps, and three synthetically generated
glacier geometries (Table 1). Eighteen of the 20 real-world cases
and all of the synthetic cases were identical to the ones used
within ITMIX1, whilst two additional test cases (Austre

Grønfjordbreen and Chhota Shigri) were explicitly added for
ITMIX2. In a nutshell, the real-world test cases were selected to
cover a wide range of morphological characteristics and climatic
regions, whilst the synthetic cases were included to ensure perfect
knowledge of any relevant quantity. The geographic distribution
of the real-world test cases is given in Figure 1.

For every test case, glacier outlines, a digital elevation model
(DEM) of the glacier surface, and a set of ice thickness
observations were available. These data were retrieved from a

TABLE 1 | Overview of the ITMIX2 test cases and data available for each glacier.

Glacier Type Pr. A (km2) cs (m) SMB dh/dt vel. Npts Nprf

ACD Academy of Sciences Ice cap 2 5,587.2 500 − − − 2,153 22
AQQ Aqqutikitsoq SB valley gl. 3 2.9 10 − − − 693 21
ASF Austfonna Ice cap 1 7,802.9 300 x x x 5,411 31
AGB Austre Grønfjordbreen SB mnt. gl. 2 8.4 20 x x − 1,692 47
BRW Brewster SB mnt. gl. 3 2.5 15 x − p 163 5
CHS Chhota Shigri CB valley gl. 2 15.5 20 − x − 141 6
CLB Columbia CB valley gl. 4 935.0 50 − − − 1,007 7
DVN Devon Ice cap 3 12,116.0 1,000 − − x 2,086 37
ELB Elbrus Crater mnt. gl. 3 120.7 30 x x – 3,806 28
FRY Freya SB valley gl. 2 5.3 10 x − − 1,155 25
HLS Hellstugubreen CB valley gl. 3 2.8 10 x x p 406 13
KWF Kesselwandferner SB mnt. gl. 3 4.1 10 x − − 164 9
MCH Mocho Crater mnt. gl. 4 15.2 30 x − − 925 15
NGL North Glacier SB valley gl. 3 7.0 20 − − p 1,119 30
SGL South Glacier SB valley gl. 2 5.3 20 x − p 1,454 55
STB Starbuck CB outlet gl. 2 259.2 100 − − − 712 39
TSM Tasman CB valley gl. 4 100.3 50 x − x 30 3
UAA Unteraar CB valley gl. 1 22.7 25 x x x 1,187 45
URQ Urumqi Glacier No. 1 SB mnt. gl. 2 1.6 5 x − − 856 16
WSM Washmawapta Cirque mnt. gl. 4 0.9 5 − − − 193 13
SY1 Synthetic 1 CB valley gl. 1 10.3 32 x x x 562 13
SY2 Synthetic 2 CB mnt. gl. 2 35.3 50 x x x 588 9
SY3 Synthetic 3 Ice cap 3 89.9 50 x x x 795 10

Glaciers are sorted alphabetically, with synthetic cases at the end of the list. “Pr.” is the priority by which each glacier was asked to be considered (cf. Section 2.3), with “1” indicating
compulsory cases. “Type” follows the GLIMS classification guidance by Rau et al. (2005) (SB, simple basin; CB, compound basin; mtn.: mountain). “A” and “cs” are the glacier area and
horizontal resolution of the provided gridded datasets, respectively. “SMB,” “dh/dt,” and “vel.” indicate whether gridded information on surface mass balance, rate of ice thickness change,
and ice flow velocity at the surface were provided (x) or not (−). For velocity, “p” indicates that only punctual information from repeated stake positions was available. Npts is the number of
available point ice thickness measurements after gridding. Nprf is the number of individual measurement profiles. The source of the individual datasets is provided in Supplementary
Table S1.

FIGURE 1 | Overview of the real-world test cases considered in the frame of ITMIX2. Abbreviation keys as well as basic information for each glacier and data
avialability are given in Table 1.
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variety of sources (see Supplementary Table S1). For 15 of the
real-world cases, additional data were available for characterizing
the glaciers. Depending on the case, these included information of
the surface mass balance, rate of ice thickness change, or surface
ice flow speed and direction. Where available, the information
was provided as a gridded product, with a horizontal resolution
ranging between 5 m (e.g., Washmawapta Glacier) and 1 km
(Devon Ice Cap) depending on the test case. An overview of
the main characteristics and of the information available for each
test case is given in Table 1.

Of particular relevance for ITMIX2 were the available ice
thickness observations. As is virtually always the case when
acquiring such observations in the field, these data were
aligned along a series of individual transects. For ITMIX2,
these transects were segmented into individual profiles and
numbered, giving rise to between 3 (Tasman Glacier) and 55
(South Glacier) individual profiles per test case. To ensure
compatibility with the provided gridded products, and to
avoid over-weighting of very densely sampled profiles in
particular, the data along these profiles were spatially re-
sampled. This was done by moving along the defined profiles
at incremental steps of one cell size (e.g., 5 m in the case of
Washmawapta Glacier, or 1 km in the case of Devon Ice Cap),
and averaging any ice thickness observation within a radius of
half the cell size. The averaging was performed for both the
observed thickness and the observed coordinates. This procedure
resulted in a thinning of the available observation, with between
30 (Tasman Glacier) and 5,411 (Austfonna Ice Cap) point
observations per test case (see Table 1). The thinned profiles
were at the basis of the IMTIX2 experiments described hereafter.

2.2 Experimental Design
For every ITMIX2 test case, 16 experiments were defined. In each
of these experiments, the available profiles were split into two
different subsets; one was made available for model calibration
(“calibration profiles”), and the other was used for validation of
the results (“test profiles”). The 16 experiments aimed at
investigating both the effect of some peculiar layouts for the
spatial distribution of the calibration profiles (experiments
01–04), as well as the effect of the amount of data available
for calibration (experiments 05–16). Figure 2 visualizes the
different layouts for the example of Freya Glacier.

Experiment 01 (“low-elevation bias”) mimics the situation in
which the available profiles are clustered toward the glacier’s
lowermost elevations. Such a configuration is sometimes
encountered for ground-based ice thickness surveys (e.g., Hagg
et al., 2013; Feiger et al., 2018) when the access to higher elevations
is hampered by logistics or safety constraints. For any glacier, the
experiment was produced by selecting those profiles that are
located in the lowest quarter of the glacier’s elevation range.

Experiment 02 (“thickest-parts bias”) represents the situation
in which the available profiles preferentially capture the thickest
parts of the glacier. To do so, all profiles were ranked according to
the maximal ice thickness measured within each profile, and the
first quarter of the profiles was chosen. The longitudinal profile
was excluded to avoid producing results similar to experiment 04
(see below).

Experiment 03 (“flat-part bias”) is a configuration in which the
available profiles are preferentially located in the flat parts of the
glacier. Logistics and accessibility make such a situation common
for ground-based ice thickness surveys. The experiment was
constructed by using the available DEMs to determine the
local surface slope at every measurement point of a given
profile, calculating an average slope per profile, ranking the
profiles with respect to this average slope, and selecting the
quarter of profiles with the lowest slopes. As for experiment
02, the longitudinal profile was excluded.

Experiment 04 (“longitudinal profile only”) only provided the
longitudinal profile for calibration. This configuration is
sometimes encountered for airborne surveys of valley glaciers
(e.g., Conway et al., 2009; Gourlet et al., 2016), when aircraft
manoeuvrability prevents across-flow profiles to be acquired.

Experiments 05–08 (“80% of profiles retained”) are four
different layouts in which 80% of the available profiles are
retained for calibration. The four realizations are generated by
randomly selecting a corresponding number of profiles. Similarly,
Experiments 09–12 (“50% of profiles retained”) and 13–16 (“20%
of profiles retained”) are, each, four random realizations of
layouts including 50% and 20% of the available profiles,
respectively.

2.3 Call for Participation and Provided
Instructions
An open call for participation to ITMIX2 was posted on “cryolist”
(http://cryolist.org/) on May 07, 2018. Modellers that had
participated in ITMIX1 (see Section 4 in Farinotti et al., 2017)
were additionally contacted on a bilateral basis and encouraged to
participate. ITMIX2 instructions were provided on a dedicated
web-page and data access was granted upon email-registration.
Participants were asked to use the provided data to produce an
estimate of the ice thickness distribution for as many test cases as
possible and for each of the 16 experiments. Any approach
capable of estimating glacier ice thickness from the provided
input data was admitted to participation, independently of
whether the approach was previously published in the
literature or not.

Registered participants were provided access to all available
data at once, notably including all available ice thickness
measurements as well. The requirement of only using a given
subset of the measurements for model calibration during the
individual experiments was, thus, not controlled further but relied
on the honesty of each participant.

To gauge the participants’ efforts and to ensure that a given
subset of test cases would be considered by all participants, a
priority was assigned to every test case (cf. Table 1). Three cases
(Austfonna, Unteraar, Synthetic1) were defined as “compulsory”
(priority “1”), meaning that a given approach had to provide
results for at least these three cases for being considered within
ITMIX2. The other test cases were assigned priorities “2” (high
priority), “3” (to be considered if possible), or “4” (low priority).
The three test cases with priority “1” include a mountain glacier,
an ice cap, and a synthetic glacier. “Priority 4”was assigned to test
cases with comparatively sparse data availability. Priorities “2”
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and “3” roughly follow data availability (higher priority for better
data coverage) and aimed at having a mixture of test-case types
(mountain glaciers, ice caps, synthetic cases). A test case was

considered to be completed if results for all 16 experiments were
submitted.

FIGURE 2 | Profile layout for the 16 experiments considered within ITMIX2. Profiles indicate locations for which measured ice thickness is available. For each
experiment (exp01 to exp16), a given subset of profiles was available for model calibration (red) whilst the remaining subset was used for validation (gray). Experiments
01–04 refer to peculiar configurations (see note within each panel) whilst experiments 05–16 consist of random selections of a given subset of profiles. The example
refers to Freya Glacier, which is the non-compulsory test case considered by the largest number of modellers (cf. Table 2). Note the scalebar in the bottom
right panel.
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3 PARTICIPATING MODELS AND
SUBMITTED RESULTS

A total of 13 models participated in the experiment, providing an
ensemble of 2,544 individual solutions (159 test cases with 16
experiments each) in total (Table 2). The individual models are
briefly described hereafter, whilst an overview of the submitted
results is given in Section 3.2. Within the set of models, three
clusters can be discerned—the clusters being defined by the
similarity between individual approaches and their origin.
Providing a quantitative metric for the degree of similarity
between approaches would be difficult but Figure 3 visualizes
the genealogy of the individual models. In principle, most models
descend from the approaches presented by (1) Linsbauer et al.
(2009), which applies the shallow ice approximation and an
empirical relation between glacier elevation range and basal
shear stress (Haeberli and Hoelzle, 1995) at the local scale, (2)
Farinotti et al. (2009b), which is a flowline-based approach
considering mass conservation and Glen’s ice flow law (Glen,
1955), or (3) Morlighem et al. (2011), which is based on a two-
dimensional consideration of the continuity equation. The
ensemble-approach GilletChaulet is of different nature, as it
uses the composite result that emerged from ITMIX1 as a
prior for estimating the ice thickness at locations far away
from measurements (see Section 3.1.5 for details). To provide
context to the performance of individual models, a trivial estimate
based on the average thickness of the thickness measurements
available during calibration is considered as well (Section 3.1.14).

3.1 Description of Individual Models and
Calibration Strategy
Nine of the 13 models participating to ITMIX2 already
participated in ITMIX1, whilst four (the ensemble-approach
GilletChaulet, and the models Maurer, TamreBraun, and
Werder) joined anew. Hereafter, the models are briefly
described in alphabetical order, with an emphasis on the
calibration strategy chosen in the frame of ITMIX2. For
further details, the reader is referred to the original publications.

3.1.1 Brinkerhoff
This model was labeled Brinkerhoff-v2 in ITMIX1 and is a further
development of the approach described in Brinkerhoff et al.
(2016). In brief, the approach consists of a forward model
based on the Blatter-Pattyn approximation to the Stokes
equations (Pattyn, 2003), and minimizes a cost-function
including three terms penalizing i) differences between
modeled and observed surface elevations, ii) strong spatial
variations in bedrock elevations, and iii) non-zero ice
thickness outside the glacier margin with respect to bedrock
elevation and effective surface mass balance. As an optional
additional step, a spatially-varying basal traction and/or ice
hardness field is adjusted such that the misfit between
modeled and observed velocity is minimized. Further details
are found in Supplementary Section S1.2 of Farinotti et al. (2017).

For the different ITMIX2 experiments, calibration was
performed as for ITMIX1, but with the addition of an

additional term in the cost function that penalizes the misfit
between modeled and observed bedrock elevation. Thus, the
procedure iteratively adjusts bedrock elevation, effective mass
balance, ice hardness, and basal traction such that both mass and
momentum are conserved while adjusting free parameters to
most closely match observations of bedrock elevation, surface
elevation, and surface velocity. This minimization is performed
using a simple gradient-descent procedure, with gradients
computed through the adjoint method.

3.1.2 Farinotti
Sometimes referred to as Ice Thickness Estimation Method
(ITEM), this model is fully described in Farinotti et al.
(2009b). In it, the considered glacier is subdivided into
individual ice-flow catchments, and an estimate of the ice
volume flux across transects aligned along manually-defined
flow lines is solved for ice thickness by using a rearranged
form of Glen’s flow law (Glen, 1955). The ice volume flux is
obtained by integrating the glacier’s surface mass balance
distribution, which itself is derived from the glacier’s the
surface topography.

For calibration, the procedure described in Farinotti et al.
(2009a) was used. In a nutshell, the correction factor C (see Eq. 7
in Farinotti et al., 2009b) was adjusted to minimize the misfit
between observed and modeled ice thickness at every profile with
observations. The factor C accounts for a number of assumptions,
including i) the linear shear stress distribution, ii) the
approximation of the ice volume flux at the center of the
profile with the average volume flux, and iii) the linear
relation between basal sliding and surface flow speed. In any
ITMIX2 experiment, C was adjusted independently for every
profile available for calibration. Between profiles, the values were
linearly interpolated, whilst the average value was used at the start
and end of each flow line. Since C was adjusted on a profile-by-
profile basis, deviations between measured and observed point
thicknesses still occurred. These deviations were bi-linearly
interpolated in space, and the so-obtained field of differences
was subtracted from the estimated ice thickness distribution. This
ensured a close match between modeled an observed thickness at
every observational point.

3.1.3 Fuerst
This model was presented in Fürst et al. (2017), and consists of a
two-step inverse approach solving for mass conservation. In the
first step, a geometrically controlled, non-local flux solution is
converted into ice thickness by relying on the shallow ice
approximation (Hutter, 1983). When available, observations of
ice flow velocities are then used in a second step to adjust the ice
thickness distribution. To solve for mass conservation, the model
uses Elmer/Ice, an open source finite element software (Gillet-
Chaulet et al., 2012; Gagliardini et al., 2013).

For the individual ITMIX2 experiments, the model’s standard
iterative inversion procedure was used. In the first step, ice
velocities were ignored and the flux solution was directly
translated into thickness values via the shallow ice
approximation. In this case, the unconstrained viscosity
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TABLE 2 | Overview of the submitted model results.

Glacier h
(m)

Brinkerhoff Farinotti Fuerst Gantayat GilletChaulet Huss Maurer Morlighem Rabatel Ramsankaran TamreBraun VanPeltLeclercq Werder Total

ASF Austfonna 372.9 x x x x x x x x x x x x x 13
UAA Unteraar 142.5 x x x x x x x x x x x x x 13
SY1 Synthetic 1 96.3 x x x x x x x x x x x x x 13
SY2 Synthetic 2 125.3 x x x − x x x x − − x x x 10
SY3 Synthetic 3 126.4 x x x − x x x − − − x x x 9
FRY Freya 93.2 x x x − x x x − − x − − x 8
KWF Kesselwandferner 82.3 x x x − − x x − − x − x x 8
BRW Brewster 74.5 x x x − − x x − − − − x x 7
HLS Hellstugubreen 75.5 x x x − − x x − − − − x x 7
SGL South Glacier 60.9 x x x − x x x − − − − − x 7
ACD Academy of Sciences 395.0 − x − − x x x − − − − x x 6
MCH Mocho 79.6 − x x − − x x − − − − x x 6
TSM Tasman 163.1 − x − x − x x − − x − − x 6
URQ Urumqi Glacier No. 1 45.2 x x x − x x − − − − − − x 6
AGB Austre Grønfjordbreen 86.2 x x x − − x x − − − − − − 5
CHS Chhota Shigri 102.7 − x − − − x x − − x − − x 5
ELB Elbrus 52.1 x x x − − x x − − − − − − 5
STB Starbuck 328.4 − x − − x x x − − − − − x 5
AQQ Aqqutikitsoq 59.4 − x − − − x x − − − − − x 4
CLB Columbia 195.2 − x − − − x x − − − − − x 4
DVN Devon 329.8 − x − − − x x − − − − − x 4
NGL North Glacier 78.0 − x − − − x x − − − − − x 4
WSM Washmawapta 72.7 − x − − − x x − − − − − x 4
Total 13 23 14 4 10 23 22 4 3 7 5 10 21 159

Glaciers are sorted according to the number of models by which they were considered. For any glacier, “x” indicates that all 16 experiments were performed by the corresponding model (columns). h is the mean ice thickness as obtained by
averaging all model results submitted for a given glacier.
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parameter was directly calibrated to reproduce each point
measurement of ice thickness. After inserting the average
viscosity as inferred from all available measurements, the
sparse viscosity information was linearly interpolated over the
drainage basin. If 2D information on ice velocity was available,
the inversion directly solved for the ice thickness field. In this
second step, the resulting thickness mismatch was an additional
term in the cost function that is iteratively minimized.

3.1.4 Gantayat
This model, described in Gantayat et al. (2014), relies on the
equation of laminar flow (Cuffey and Paterson, 2010) and
requires distributed information of the ice flow velocity at the
glacier surface. A constant relation is assumed between surface ice
flow velocity and basal sliding, whilst the basal shear stress is
computed on the basis of surface slope (Haeberli and Hoelzle,
1995). For ITMIX2, discrete points along manually digitized
branchlines were considered, and the resulting ice thickness
was spatially interpolated by using the ANUDEM algorithm
Hutchinson (1989) and assuming zero ice thickness at the
glacier margin. The branchlines were generated requiring i) a
lateral spacing of ca. 200 m between adjacent lines, ii) a minimal
distance of 100 m from the glacier margin, and (iii branchlines
from individual glacier tributaries gradually merging into the
main tributary.

Model calibration for individual ITMIX2 experiments was
performed by determining a specific shape factor f (see Eq. 2 in
Gantayat et al., 2014) at the points of intersection between
branchlines and profiles with ice thickness observations. For
any of these points (step 1), the value of f was chosen as to
minimize the difference between modeled and observed ice
thickness. For branchline-points in the vicinity of available
profiles (step 2), the average f-value of these profiles was
assigned. For branchline-points farther apart, f was taken as
the average of all values determined in the previous two steps.

3.1.5 GilletChaulet (Ensemble-Approach)
This approach differs from the other models as it relies on the
results that were submitted to ITMIX1. In a nutshell, an optimal
interpolation scheme is used to combine the multi-model
ensemble from ITMIX1 with the observations available for
calibration. Close to the observations, the measured ice
thickness is returned; in the far field (i.e., ca. 10 times the
maximal thickness away), the approach returns the ensemble-
mean thickness of ITMIX1.

More specifically, the approach is based on the Best Linear
Unbiased Estimator (BLUE) (e.g., Goldberger, 1962). Assuming a
linear relation between a prior estimate hb (referred to as to the
background) and the observations ho, the BLUE estimator ha is
the one that minimises the error variances, and is given by

FIGURE 3 | Overview of the models participating to ITMIX and their genealogy. Models are organized by their main setup (given to the left) and descendances are
indicated by solid lines. The setup distinguishes between i) local, point-based methods, ii) methods that are based on ice flowlines, elevation bands, or cross-sections,
and iii) methods based on two-dimensional considerations. The method GilletChaulet is a special case, as it is based on an ensemble of methods that have any of the
three setups. The color of each box indicates whether a given model participated in ITMIX1, ITMIX2, or both (see legend). The “velocity flag” indicates whether an
approach strictly requires ice flow velocities (asterisk) or whether it is able to use them when available (asterisk in brackets).
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ha � hb + K (ho −Hhb) (1)

where H is the observation operator, and K is a function of the
background error covariance matrix B and the observation error
covariance matrix R:

K � BHT(HBHT + R)− 1. (2)

The assumptions are that the background and the
observations are unbiased, and that both have independent
errors. HT is the matrix transpose of H.

The individual ITMIX2 experiments were addressed by taking
ho as the set of observations available for calibration. Observation
errors were assumed to be uncorrelated and to have a standard
deviation of 5 m (note that no information was provided on the
actual accuracy of these observations within ITMIX2). H was
chosen to be an operator that interpolates the ice thickness from
the uniform grids used in ITMIX1 to the locations of the available
thickness observations. For the background, the ITMIX1 average
composite solution (cf. Farinotti et al., 2017) was used, with the
covariance matrix B being estimated from the ITMIX1 ensemble.
The ITMIX1 ensemble comprises between 4 (Starbuck) and 16
(Synthetic1) individual model members, with an average of 10
members. Since covariance matrices estimated from small
ensembles can exhibit spurious long-range correlations, a
domain localization technique was used. This technique
ensured that the thickness at a given location was updated
using only observations that are within 10 times the maximum
ice thickness of the background field. For locations farther apart,
the ITMIX1 composite solution remains unchanged. The
procedure was implemented by using the Localized Ensemble
Transform Kalman Filter (Hunt et al., 2007) as provided in the
Parallel Data Assimilation Framework by Nerger et al. (2005). For
further details and an application of the ensemble Kalman Filter
in the context of ice flow modeling, see Gillet-Chaulet (2020).

3.1.6 Huss
Sometimes referred to as HF-model, the approach was originally
presented for a global-scale ice thickness reconstruction in Huss
and Farinotti (2012). The model is based on the concepts of
Farinotti et al. (2009b) but avoids the necessity of defining ice flow
lines and catchments by performing all computations for 10 m
elevation bands. Variations in the valley shape and basal shear
stress along the glacier’s longitudinal profile are taken into
account, as are the temperature-dependence of Glen’s flow
rate factor (Glen, 1955) and the variability in basal sliding.
Average elevation-band ice thickness is extrapolated on a
regular grid by considering both local surface slope and
distance from the glacier margin.

For ITMIX2, calibration of individual experiments was
performed by a three-step procedure including (i model
optimization, (ii longitudinal bias correction, and (iii spatial
interpolation. First, the apparent mass balance gradient (Huss
and Farinotti, 2012) was calibrated to minimize the average misfit
with the available ice thickness observations. Second, the relative
deviation of the modeled thickness was evaluated in 50 m
elevation bands, and superimposed over the computed ice

thickness distribution after smoothing. Finally, the thickness
distribution was spatially interpolated based on the available
thickness observations, the adjusted model results in
unmeasured regions, and the condition of zero thickness on
the glacier margin.

3.1.7 Maurer
This model was presented as the Glacier Thickness Estimation
(GlaTE) framework in Langhammer et al. (2019a). It was
specifically designed for combining the modeling results with
measured ice thickness in an inversion procedure. This inversion
follows the bed-stress approach by Clarke et al. (2013), which
subdivides a glacier into individual ice flow sheds and uses an
estimate of the glacier ice volume flux to invert for ice thickness
based on Glen’s flow law. The strength of the GlaTE framework is
the capability of both modularly adding further observational
constraints—such as observed ice flow velocities or rates of ice
thickness change for example—and accounting for observational
uncertainties when available. GlaTE is open-access software and
it is available at https://gitlab.com/hmaurer/glate.

The calibration procedure used for ITMIX2 followed the
original approach (Langhammer et al., 2019a). In a nutshell,
GlaTE sets up a system of equations comprising 1) constraints
that force observed and predicted ice thickness data to match
within a prescribed accuracy, 2) glaciological modeling
constraints that force the ice thicknesses to comply with the
model of Clarke et al. (2013), supplemented by longitudinal
averaging as proposed by Kamb and Echelmeyer (1986), 3)
boundary constraints that force the ice thickness to be zero
outside of the glacier outlines, and 4) smoothness constraints
that force the ice thickness distribution to vary smoothly. The
contributions of the individual constraints can be controlled by
weighting factors. Since the smoothness constraints are the least
physical ones, GlaTE attempts to minimize the corresponding
weighting factor. More specifically, a relatively high factor is
chosen at the start and then gradually decreased until the
observed and predicted thicknesses match within the
prescribed error bounds. For ITMIX2, the consistency of the
individual inversion runs was maximized by using the same
control parameters for all experiments. This also allowed the
computations to be performed in an automated fashion.

3.1.8 Morlighem
This model was originally presented in Morlighem et al. (2011)
and is now also known as BedMachine (Morlighem et al., 2017;
Morlighem et al., 2020). It is specifically designed to provide
estimates of ice thickness between transects surveyed by radio-
echo soundings, and was developed for applications over ice
sheets, rather than mountain glaciers. The model is cast as an
optimization problem minimizing the misfit between observed
and modeled thicknesses. Being based on mass conservation, the
ice thickness is computed by requiring the ice flux divergence to
be balanced by the rate of thickness change and the net mass
balances. When surface ice velocities were not provided, the
shallow ice approximation was applied by assuming that
internal deformation was about half of the total surface speed.
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The ice thickness was then determined by solving the resulting
polynomial.

The ITMIX2 experiments were addressed by using the model’s
standard framework (Morlighem et al., 2011) and did not require
any specific amendment.

3.1.9 Rabatel
This model was first presented in the frame of ITMIX1, and is
now fully described in Rabatel et al. (2018). In brief, the ice
volume flux across individual cross-sections is quantified from
information of the glacier’s surface mass balance and observed
surface flow velocities. Using Glen’s flow law, this information is
translated in an average ice thickness for each cross-section. This
thickness is then first distributed along each cross-section by
assuming a constant relation between local thickness and surface
velocity, and then interpolated between cross-section by using
universal Kriging with anisotropy in the main glacier flow
direction. Note that the model requires information about
surface ice flow speeds, thus reducing the set of test cases that
can considered.

Model calibration for individual ITMIX2 experiments
followed the procedure described in Rabatel et al. (2018). For
each experiment, the ratio between local ice thickness h and local
surface ice flow speed v is quantified for every grid cell. This ratio
is then plotted against the surface elevation z, and a regression of
the form h/v � f (z) is performed. The type of regression (linear
or polynomial) is chosen using the profiles available for
calibration in order to minimize the difference between
observed and modeled thickness when computing h � v · f (z).
This inverse relation is then applied to the entire glacier by
making use of the distributed information of both z (from the
DEM) and v (from the maps of ice flow speed). Note that the form
of the relation between h and v could be extended to include
additional morphologic variables (such as surface slope or
distance to the glacier margin, for example) or to be non-
linear (Bolibar et al., 2020).

3.1.10 Ramsankaran
This model was labeled RAAJglabtop2 in ITMIX1, is known as
GlabTop2_IITB version (Ramsankaran et al., 2018; Pandit and
Ramsankaran, 2020), and is an independent re-implementation
of the approach described in Frey et al. (2014). The approach itself
is based on the concepts presented in Linsbauer et al. (2012) with
the difference of being entirely grid-based. The local ice thickness
is first calculated for a set of randomly selected grid cells, which is
done from an estimate of both the basal shear stress and the
surface slope. This thickness is then spatially interpolated by
assigning a minimum, non-zero thickness to grid cells directly
adjacent to the glacier margin.

For the individual ITMIX2 experiments, the model was
calibrated by varying the dimensionless shape factor f (see
Eq. 1 in Ramsankaran et al., 2018) over four levels,
i.e., f � 0.6, 0.7, 0.8, and 0.9. By doing so, f was assumed to
be identical for all profiles, and the value resulting in the lowest
root mean square error between modeled and observed ice
thickness was chosen.

3.1.11 TamreBraun
This model has not been published so far. It is based on mass
conservation, requiring ice flux divergence to be matched by mass
balance and rate of ice thickness change. Ice thickness at any
point on the glacier is directly computed by integration of mass
balance over its catchment area. The latter is determined by
repurposing the FastScape algorithm (Braun and Willett, 2013)
from its use in geomorphology. Ice flow parameters in the model
are optimized for the smallest misfit between modeled and
observed ice thicknesses where such observations are available.
A more comprehensive description of the model is found in
Supplementary Section S1.

For ITMIX 2, the model parameters fd (i.e., the pre-factor for
the deformation velocity) and fs (i.e., the pre-factor for the sliding
velocity) were optimized to minimize the misfit∑ (hmod − hobs)2.
Here, hmod and hobs are the modeled and observed ice thickness at
a give location, respectively. The sum was computed over all
thickness data points available in a given experiment, and the
results of the run with the lowest misfit were submitted. The
parameter space was explored using the neighborhood algorithm
(Sambridge, 1999a; Sambridge, 1999b). Note that the algorithm is
versatile enough to deal with larger parameter spaces—such as
when mass balance data is not available and needs to be inferred
as well—although such cases were not considered.

3.1.12 VanPeltLeclercq
This model is an adaptation of the approach by van Pelt et al.
(2013), as described in Supplementary Section S1.17 of Farinotti
et al. (2017). Following the concepts laid out in Leclercq et al.
(2012), the model derives an ice thickness distribution by
iteratively minimizing the misfit between modeled and
observed elevations of the glacier surface. SIADYN—an ice
dynamics model relying on the vertically integrated shallow ice
approximation—is used as a forward model (SIADYN is part of
the ICEDYN package; for more details, see Section 3.3 in Reerink
et al., 2010) whilst basal sliding is included through a Weertman-
type formulation (Huybrechts, 1991). In absence of time-
dependent mass balance information, every forward model run
uses a fixed surface forcing, and continues until a steady state is
reached.

For the ITMIX2 experiments, an extensive 2D parameter
exploration was performed. In particular, the model was set
up for every test case with a varying number of iterations
(that is the number of iterative steps in which the subglacial
topography is adjusted) and a range of flow enhancement factors.
All combinations were run, and the combination that minimized
the root mean square error between observed and modeled ice
thicknesses was selected. Typically, a few hundred combinations
were tested before selecting the optimal ones. Within ITMIX2, 16
different combinations were chosen for every test case, depending
on the configuration of the ice thickness data available for
calibration within each experiment.

3.1.13 Werder
This approach was presented as the Bayesian Ice Thickness
Estimation (BITE) model in Werder et al. (2020), where it is
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described in full detail. In brief, the approach consists of a forward
model based on the approach by Huss (cf. Section 3.1.6)
augmented with the capability of calculating surface flow
speeds consistent with mass conservation. The mass
conservation and shallow ice calculations are first conduced on
elevation bands, with the resulting ice thicknesses and flow speeds
being then extrapolated to the map plane. The model is fitted to
ice thickness and flow speed observations (when available) using
a Bayesian approach. When observational uncertainties are
known, the Bayesian formulation allows for this information
to be taken into account.

The individual ITMIX2 experiments were addressed by using
a calibration procedure similar to the one described in Werder
et al. (2020): for each experiment, the model is fitted to the
available profiles with ice thickness observations and to the
distributed surface flow speeds; unlike in the original
procedure, however, the glacier length is not used for fitting.
The error between observations and model predictions—used in
the likelihood calculation—are assumed to be normally
distributed with a standard deviation of 15 m for ice thickness
and 30 m a−1 for flow speed. Fitted model parameters include the
apparent mass balance, the sliding factor, the ice temperature, and
two parameters affecting the extrapolation from elevation bands
to the map plane. The prior distributions of the parameters are
determined by the available data or, if unavailable, by expert
guesses. The fitting procedure is implemented with a Markov
chain Monte Carlo method with 105 steps.

3.1.14 The Simplest Model as a Benchmark
To provide context to the performance of the above models, an
additional, trivial estimate of the ice thickness distribution was
computed. For any test case and experiment, this estimate simply
consisted of the average ice thickness of the profiles available for
calibration. The estimate is assumed to be valid at any location
(homogeneous thickness). We refer to this simplest possible
estimate as to the benchmark, indicating that any model with
a performance lower than this can be considered as virtually skill-
free.

3.2 Overview of Model Submissions
The 13 models considered between 3 (compulsory only) and 23
(all) test cases (Table 2). Four models considered more than 20
cases, four models considered between 10 and 14 cases, and the
remaining models considered 7 cases or less. Whilst the definition
of compulsory test cases ensured that the corresponding cases
were considered by all models, the definition of other categories
had little effect on the choice of considered cases. Austre
Grønfjordbreen, Chhota Shigri or Starbuck, for example, were
all assigned priority “2” but were only considered by five models.
In contrast, the “priority 3” cases Synthetic 3, Kesselwandferner,
Brewster or Hellstugubreen, were all considered by seven models
or more. Rather than the assigned priority, the choice seems to
have been directed by data availability, with test cases with more
comprehensive datasets (cf. Section 2.1) attracting or enabling
more models to deliver results. It is important to note that some
models strictly require information on surface ice velocity (cf.
Figure 3), thus precluding the possibility of considering all test

cases. In some instances, the time required for model set up was a
deterrent for considering more cases (note that both ITMIX1 and
ITMIX2 were community efforts run without funding and purely
based on voluntary commitment). In the end, every test case was
considered by at least four different models, and ten test cases
were considered by more than half of the models.

4 EVALUATION PROCEDURE

4.1 Consistency Checks and Adjustments
Prior to further evaluation, the submitted results were checked for
consistency and adjusted if necessary. First, any non-zero ice
thickness outside of the provided glacier margins was discarded,
meaning that all further evaluations refer to the area within that
margins; negative or missing thicknesses within the margin
(which affect roughly 1% of all submitted grid cells and arise
for some models when the velocity input fields have data gaps)
were set to a no-data value and were discarded from further
analysis. Second, the extent and resolution of the results were
adjusted as to match the originally-provided gridded data (cf.
Section 2.1). Trimming of the spatial extent was necessary for
some submissions of Gantayat and Fuerst, whilst a re-sampling of
the resolution from 50 m grid spacing to 300 m spacing was
necessary for GilletChaulet’s Austfonna results. The trimming of
the extents did not require any interaction with the provided ice
thickness estimates (since only the far, non-glacierized margins
were affected), whilst the re-sampling in the case of Austfonna
was performed by computing averages of the 36 cells with 50 m
resolution contained within each 300-m cell. The cause of these
discrepancies can be traced back to the affected models using the
topography-data distributed within ITMIX1, rather than
ITMIX2. We stress that both the trimming and the re-
sampling do not alter the ice thickness estimates, and note
that the no-data values introduced through the first
adjustment step only potentially affect the results when they
concern grid-cells that are intersected by measurement profiles
(i.e., <<1% of all cells).

4.2 Evaluation of Model Performance
In all analyses that follow, the model performance for any given
experiment is evaluated against those ice thickness observations
that were not available for calibration during that particular
experiment. Deviations are always expressed as “model minus
observation,” negative values thus indicating that a given model
underestimates the ice thickness.

Since no consistent information on the accuracy of the ice
thickness observations was available for the combination of data-
sources used within ITMIX2 (Supplementary Table S1), the
observations are all considered to be error-free for the
calculations that follow. Whilst average deviations over
multiple points remain unaffected as long as stochastic errors
are assumed, we acknowledge that error-free observations are not
realistic. We also note that the assumption of stochastic errors
might hold over the ensemble of all measurements, but might be
questionable for individual glaciers. This is because the
observations of a given test case often stem from an individual
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field campaign, and systematic interpretation errors are thus
difficult to exclude.

To enable direct comparison between modeled thicknesses
(which are gridded) and observed thicknesses (which refer to
multiple profiles and can be available at any location), the
observed thicknesses are first rasterized on the modeling grid.
For every grid-cell, this is done by computing the arithmetic
average of all observations that fall within that cell. To allow for
comparability between test cases of different size and thickness,
deviations are further expressed as percent-deviations from the
mean ice thickness of the corresponding test case. Since the “true”
mean ice thickness is unknown, it is computed by averaging all
model results submitted for a given test case; that is, the average
thickness is the result of averaging over all models, all
experiments, and all grid-cells of that particular case (the
resulting values are given in Table 2). This evaluation strategy
follows the one used during ITMIX1, and ensures that average
percent-deviations are not skewed by large relative deviations that
may occur when local thickness is small. For a hypothetical
glacier that is 50 m thick on average, for example,
overestimating the thickness of a 1 m-thick marginal grid-cell
by say, 10 m, results in a deviation of +20%, and not +1, 000% as if
point-thickness were considered.

5 RESULTS AND DISCUSSION

5.1 Characteristics of Results Submitted by
Individual Models
The results submitted by individual models can be characterized
by three indicators: 1) the standard deviation σn between
individual solutions at profiles that were not used for
calibration (“test profiles”), 2) the deviation Δhn between
modeled and observed ice thickness at the test profiles, and 3)
the deviation Δhc between modeled and observed ice thickness for
profiles that were available for calibration.

The first indicator, σn, quantifies the degree to which similar
solutions are produced when different calibration data are
provided. High values suggest that a given model is very
sensitive to these data, with very different results being
provided depending on which subset of profiles was used for
calibration. Extremely low values, instead, indicate that the
calibration procedure is insensitive to the input. Moderate
values might thus be preferential as they hint at a compromise
between model robustness and sensitivity. To compute σn for a
given location, we determine the difference between modeled hm
and observed ho ice thickness for all experiments during which
that point was part of the test profiles (that is a set of up to 16
values), divide by the mean ice thickness h of the considered
glacier, and compute the standard deviation of the so-obtained
differences (that is one value per location):
σn � stdev((hm − ho)/h). Figure 4A shows the distribution of
σn when the quantity is pooled across all test cases and is stratified
by model. Large values of σn are found for the models Morlighem
and Farinotti, which show median σn values of ∼ 30% the mean
ice thickness. For comparison, the benchmark model shows a

median σn of 17.2%. Low values, instead, are found for
Brinkerhoff, Gantayat, the ensemble-approach GilletChaulet,
Rabatel, VanPeltLeclerq and Werder, which all have σn

medians below 13%. A remarkable exception is the model
Ramsankaran, for which the median σn is close to zero. This
means that the model provides the same solution independently
of the profiles used for model calibration, and indicates that the
chosen calibration procedure (cf. Section 3.1.9) tended to select
the same shape factor for all experiments. We note that this could
be resolved by following a calibration procedure such as the one
adopted in Ramsankaran et al. (2018), who defined a variable
shape factor depending on elevation and other topographical
properties.

The above model behavior is confirmed by the indicator Δhc,
i.e., by the deviation of the modeled ice thickness at the
calibration profiles (again, the quantity is first computed
individually for every location and model, and then pooled
across test cases and experiments). Whilst most models show
a distribution of Δhc centered around zero (Figure 4C),
Ramsankaran shows median deviations in the order of +50%,
thus indicating a systematic overestimation of the actual
thickness. Slight biases are also found for Gantayat and
TamreBraun, with median Δhc in the order of −15%. The
distribution of Δhc also reveals that some models aim at
matching the calibration data exactly (e.g., Farinotti, Fuerst,
the ensemble-approach GilletChaulet and Maurer have
interquartile ranges below 10%) whilst other approaches allow
themodeled thickness to fluctuate around themeasured thickness
(the interquartile range for Brinkerhoff, TamreBraun and
VanPeltLeclerq, for example, is in the order of 30–40%). The
latter is the expression of a compromise between agreement with
observations—which can be affected by unknown uncertainties
and biases—and internal model consistency—which is governed
by the conservation of mass and/or momentum in the mentioned
models. Again for comparison, the benchmark model shows an
interquartile range of 60% whilst it is unbiased (Δhc ≈ 0%) by
design.

The indicator Δhn, finally, quantifies the models’ capabilities of
correctly predicting the ice thickness at unmeasured locations.
The distribution of Δhn is shown in Figure 4B, and reveals that
whilst the median deviations remain virtually unaltered and
centered around zero in most cases, the difference between
modeled and observed thickness increases significantly when
compared to locations with thickness observations (cf.
indicator Δhc). The first observation can be interpreted as a
confirmation that the implemented calibration procedures are
unbiased (pooled across models but excluding the results by
Ramsankaran, the median deviation is −2.3% and −1.3% of
the mean ice thickness for the compulsory and all cases,
respectively). The second observation is expected, and is
expressed in a change of the interquartile ranges and
confidence intervals, for example. On average over the 13
considered models, the two quantities increase by 10% and
30% of the mean ice thickness, respectively. Of particular
notice are the models that displayed a bias in Δhc. In those
cases, the distribution of Δhn is skewed. Such skewness is
particularly prominent in the model Ramsankaran (biased
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toward an overestimation of the thickness) and, to a lesser degree,
Morlighem and TamreBraun.

The increased difference between modeled and observed
thickness when comparing the deviations for the test profiles
against the calibration profiles, is also noticeable in a general shift
of the absolute values of the deviations toward higher values
(Figure 4D). Of notice is that the shift is minor for several models
(< 1.5% for Gantayat, Rabatel, Ramsankaran, and
VanPeltLeclercq, for instance), indicating that these models

provide similar results independently of the spatial distribution
of the calibration profiles (in line with the indicator σn). The
results also show that, apart from Ramsankaran, the median
deviation to point measurements is within 16% of the mean ice
thickness on average, and within 31% of the mean thickness for
three-quarters of the cases. Particularly good performances are
found for the ensemble-approach GilletChaulet and the models
Rabatel and VanPeltLeclercq, where three quarters of the point
deviations remain within 26.1% of the mean ice thickness. The

FIGURE 4 | Overview characteristics for the results provided by each model. (A) Standard deviation (stdev) of the difference between modeled and observed ice
thickness at the locations of profiles that were not used for model calibration (here referred to as “test profiles”). The number of test cases considered by each model is
given above the panel. (B)Deviations (dev) betweenmodeled and observed ice thickness at the same locations. (C) Same as (B) but for profiles that were available during
model calibration. (D) Absolute deviations for all test cases. In (A–C), gray and green boxplots refer to the compulsory test cases and all test cases, respectively (see
Table 1). In (D), blue and orange boxplots refer to test and calibration profiles, respectively. The set of boxplots labeled with “POOLED” combine the deviations across
models but excludes the results of both the Ramsankaran-model (due to the large bias) and the benchmark. Boxplots show the 95% confidence interval (whiskers), the
interquartile range (box), and the median (lines within box). All values are expressed relatively to the mean ice thickness of the corresponding glacier.
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benchmark model shows median deviations of 38.9% and three
quarters of the deviations contained within 66.4%.

An example for how the characteristics discussed above
express themselves in the actual ice thickness distribution is
given in Figure 5: two profiles are shown for the compulsory
test case Unteraar and the ensemble-approach GilletChaulet
(featuring medium σn, and small Δhc and Δhn), as well as the
models Morlighem (large σn, skewed Δhc and Δhn), and
VanPeltLeclerq (small σn, medium Δhc and Δhn). An
equivalent representation comprising all models is given in
Supplementary Figures S1, S2, whilst examples for other test
cases are found in Supplementary Figures S3–S6 and the digital
materials (see URL in the Data Availability Statement).

Of further notice in Figures 4A–C is that the characteristics of
individual models remains very similar if only compulsory test
cases are considered (cf. gray and green boxplots for models that
considered more than three cases). The results and Figures of the
next sections thus refer to all submissions of each model, and do
not further discern the compulsory cases separately. Figures that
only consider the compulsory test cases are given in
Supplementary Figures S7–S9.

5.2 Influence of the Availability of Ice
Thickness Observations
Since ice thickness observations are generally sparse, an
important question is how the performance of individual
models reacts to the amount of ice thickness data available for
calibration. Figure 6A shows how the absolute deviation between

modeled and observed ice thickness evolves for experiments 05 to
16, i.e., during the experiments in which the availability of
calibration profiles is reduced.

As expected, the deviations increase when fewer observations
are available. Pooled across models and excluding both the
benchmark and the visibly biased Ramsankaran, the results
show that the median absolute deviations increase from 8.4%
of the mean ice thickness when 80% of the measured profiles are
retained for calibration (experiments 05–08), to 11.0% when 50%
of the profiles are retained (experiments 09–12), and to 17.6%
when only 20% are retained (experiments 13–16). Three quarters
of the deviations are within 21.8%, 27.4%, and 39.0% of the mean
ice thickness when 80%, 50%, and 20% of the profiles are retained,
respectively. For the benchmark model, the median deviations
remain unaltered at about 38% for all three experimental sets
(three quarters of the deviations within 45%), indicating that the
four random realizations within each set were sufficient for
avoiding any bias (such a bias would be conceivable if one
realization had preferentially sampled profiles with, say,
shallower thicknesses).

A set of three models (Farinotti, Fuerst, and the ensemble-
approach GilletChaulet) displays very good agreement with the
ice thickness observations not used for calibration when 80% of
the profiles are retained (80%-retained experiments from now
on), with median deviations within 3.5% the mean thickness and
with three quarters of the deviations below 9%. Together with
Huss, Maurer, and Morlighem, however, these models also show
a relatively pronounced decrease in performance when fewer data

FIGURE 5 | Examples of the results provided by individual models. (A–F) Results of individual experiments (gray lines), shown for two selected profiles of the
compulsory test case “Unteraar.” Experiments in which the given profile was available for calibration (dark gray lines) are distinguished from those in which the profile was
not available (light gray). The location of the profiles is given in the map inset (G). The glacier surface (solid blue line) and direct ice thickness observations [blue and red
dots for the (A–C) across-glacier and (D–F) along-glacier profile, respectively] are shown. The ensemble-approach GilletChaulet illustrates a case with medium
spread between solutions of different experiments (i.e., medium σn), and a relatively close match between modeled and observed ice thickness at both profiles used and
not used during model calibration (i.e., small Δhc and small Δhn). Morlighem is a case in which σn is large, and both Δhc and Δhn are skewed toward low ice thicknesses.
VanPeltLeclercq displays small σn, andmedium Δhc and Δhn. The thick, dark gray vertical bar to the left of each panel visualizes the mean glacier thickness. The results of
all models are shown in Supplementary Figures S1, S2. Examples profiles for the other compulsory cases are shown in Supplementary Figures S3–S6. An
equivalent representation for all test cases and all profiles (499 figures in total) is provided at the URL given in the Data Availability Statement.
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are available. On average over the six models, for example, the
average level below which three quarters of the deviations are
contained rises from 13.0% of the mean ice thickness for the 80%-
retained experiments to 39.3% for the 20%-retained experiments.
This is in contrast to other models, which display less sensitivity
to the availability of observations. The standard deviation of the
same metric across the 80%-retained, 50%-retained, and 20%-
retained experiments, for instance, is below 4% the mean ice
thickness for all of Brinkerhoff, Gantayat, Rabatel, TamreBraun,
VanPeltLeclerq, and Werder (note, however, that Werder
displays a substantial increase in outliers when reducing the
data availability from 50% of profiles retained to 20%; in these
two cases, the 95% confidence interval increases from 87.8% the
mean ice thickness to 161.3%).

The interpretation of the different behaviors between the two
model clusters is not straightforward. Indeed, the consistency
between various experiments could be both an indication for
model stability (i.e., the models’ capability of extracting
information from limited subsets of ice thickness
observations) or an indication for the models’ calibration
strategy not being able to take various profile configurations
fully into account. A hint for this latter interpretation might be
seen in the fact that the more stable models display consistently
larger deviations than the other models in the 80%-retained
experiments. In these cases and on average, the models
Brinkerhoff, Gantayat, Rabatel, TamreBraun, VanPeltLeclerq,
Werder show a median absolute deviation of 17.7% the mean ice
thickness, whilst the same metric is as low as 5.0% for Farinotti,
Fuerst, Huss, Maurer, Morlighem, and the ensemble-approach
GilletChaulet. We note again that approaches emphasizing

internal model consistency might face difficulties in
accommodating all provided observational constraints,
i.e., might have difficulties in finding an estimate that is not
only consistent with the provided ice thickness observations but
is also compatible with the available surface mass balances, rates
of ice thickness change, and ice flow velocity fields (cf. Table 1).
Missing consistency could be the result either of a model that
does not correctly capture the physics of the glacier, or of a bias
in one or several of the input datasets.

For individual models, the response to a decrease in ice
thickness observations available for calibration is difficult to
interpret when considering larger outliers. For Rabatel and
TamreBraun in particular, the 95% confidence interval of the
deviations between modeled and observed ice thickness decreases
when comparing the 50%-retained experiments to the 20%-
retained ones. The decrease is of −14.9% and −12.6% for the
two models, respectively. Whilst the result might be spurious
since the models only considered a limited subset of test cases
(three and five, respectively; cf. Table 2), this observation might
need to be further investigated.

An important observation emerges when considering actual
deviations (Figure 6B), rather than their absolute values. Indeed,
the distribution of these deviations confirms the unbiasedness of
the model ensemble, particularly showing that the average
deviation does not drift toward more positive or more
negative values as data availability decreases. Pooled across
models (and again excluding Ramsankaran and the
benchmark), for example, the median deviation remains
within 2.1% of the mean ice thickness in all cases, and
fluctuates by less than 1.3% when passing from the 80%-

FIGURE 6 | Distributions of model deviations when only a given subset of ice thickness observations is provided for calibration. The color of the boxplots indicates
the share of profiles retained during calibration, with experiments retaining the same share being pooled across test cases. i.e., for every model, dark boxplots pool the
results of all glaciers for experiments 05 to 08, in which 80% of the available profiles were retained for model calibration; medium and light boxplots refer to the cases in
which 50% (experiments 09–12) and 20% (experiments 13–16) of the profiles were retained, respectively. Values are given relatively to the mean glacier thickness.
“POOLED” boxplots combine the deviations across models but exclude both Ramsankaran and benchmark. Boxplots are defined in Figure 4. Panel (A) is the same as
(B) but refers to the absolute values of the deviations. The number of test cases considered by each model is given above panel A. The equivalent representation for the
case in which only compulsory test cases are considered is given in Supplementary Figure S7.

Frontiers in Earth Science | www.frontiersin.org January 2021 | Volume 8 | Article 57192315

Farinotti et al. Results of ITMIX2

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


retained experiments to the 20%-retained ones. On the one hand,
this observation confirms the results of ITMIX1, in which the
advantages of using a model ensemble rather than an individual
model was shown. On the other hand, it shall be noted that the
observation of no drift also holds true when considering the
models individually. This indicates that even a limited subset of
ice thickness observations is effective in constraining the mean ice
thickness and glacier volume predicted by individual models. An
exception is given by Morlighem, where the 20%-retained
experiments show a lowering of the predicted thickness by
about 21% when compared to the 80%-retained experiments.
This seems to indicate that the method is more strongly
influenced by the condition of zero ice thickness at the glacier
margin than other models are, and could be addressed by
lowering the regularization term used to enforce smoothness
in the computed thickness fields.

A further quantitative indication for how the availability of ice
thickness observations typically influences model accuracy, can
be obtained by investigating the dependence between the model
accuracy at the point scale and the distance to the closest ice
thickness observation available during model calibration
(Figure 7). Pooled across all models and all experiments, this
relation indicates that the accuracy decays almost linearly with
the logarithm of the distance to the next observation. The median
absolute deviation is 7.7%, 15.7%, 21.4%, and 33.2% of the mean
ice thickness when the closest observation is at a distance of 0.1, 1,
10, and 100 times the mean ice thickness, respectively (on
average, results change by less than 2.5% when only
compulsory test cases are considered although deviations as
high as 5.6% occur for the largest distances considered). The
relation is specific to every model (Supplementary Figure S3),
with the differences between them echoing the characteristics
highlighted above. Some models, for example, show a less
prominent decrease in accuracy with increasing distance to the

available observations, hinting at their capability of extracting
information of thickness measurements further apart. Models
that have a particularly slow increase in deviations with distance
include Gantayat, Rabatel, VanPeltLeclercq, Werder, and the
ensemble-approach GilletChaulet.

5.3 Influence of the Distribution of Ice
Thickness Observations
The effect that the spatial distribution of the ice thickness
observations has on the model performance is quantified
through experiments 01 to 04. Figure 8A shows the absolute
deviation between modeled and observed ice thickness at profile
locations not used during calibration.

Pooled across models (again excluding Ramsankaran and
benchmark), the experimental configurations mimicking a
low-elevation bias (exp01) and providing a longitudinal profile
only (exp04) show somewhat higher deviations than the
situations in which the available observations are biased
toward the thickest (exp02) and flattest (exp03) part of the
glaciers. Averaged over the first two cases (exp01 and 04),
three quarters of the deviations are contained within 50.7% of
the mean ice thickness, whilst the same metric decreases to 44.5%
on average over experiments 02 and 03.

The effect is particularly visible for Morlighem, Fuerst, and
Farinotti, where the median absolute deviation for experiments
01 and 04 is 32.7%, 15.5%, and 13.3% higher than on average for
experiments 02 and 03, respectively (percentages refer to the
mean ice thickness). The same pattern is visible to a lesser degree
in TamreBraun and Huss, with changes of 11.5% and 10.0%,
respectively. The concomitant changes in the experiments with a
bias in observations toward the thickest and flattest parts of the
glacier can be explained by these two conditions often
corresponding, i.e., by the fact that the flat glacier parts often
coincide with the thickest. With this in mind, it is not unexpected
that the model results are generally closer to the observations
when thickness information is available for the thickest parts of a
glacier: constraining the modeling results on these locations
provides less room for very large deviations to occur, which is
particularly beneficial when aiming at characterizing the total
glacier volume.

Despite the above, it shall again be noted that the bias
introduced by the individual measurement configurations is
small (Figure 8B). Brinkerhoff, Farinotti, Huss, Maurer,
VanPeltLeclerq, Werder, and the ensemble-approach
GilletChaulet, show particular robustness against the
individual configurations, with the median actual deviations of
the four experiments showing a standard deviation below 4.7% of
the mean ice thickness. At most, these models show a slight
tendency for an increase in outliers when only a longitudinal
profile is available for calibration. Note that the term “actual
deviations” is used here to distinguish these deviations from the
absolute values discussed above. The combination of small actual
deviations with large absolute deviations indicates that a model
correctly capture the mean ice thickness but that it does so by
overestimating the thickness in some areas and underestimating
it in some other.

FIGURE 7 | Difference between modeled and observed ice thickness as
a function of the closest ice thickness observation available for model
calibration. Both the difference and the distance are expressed in relation to
the mean ice thickness. The figure is based on a total of ca. 1.8 million
points, obtained by pooling all models, all test cases, and all experiments. The
shading in the background provides the number of points falling within each
area of the plot. The solid (dashed) red line is a fit through the median deviation
at each given distance when all (only compulsory) test cases are considered.
The dotted lines are an envelope containing the equivalent fits of all individual
models, apart from Ramsankaran and benchmark. The results for the
individual models are shown in Supplementary Figure S8.
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The only systematic deviations emerge for the situation in
which the observations are preferentially available for low
elevations. In such cases, several models underestimate the
actual ice thickness (and even the consistent overestimation by
Ramsankaran seems slightly reduced), with the most prominent
biases shown by Morlighem (median deviation corresponding to
−61.5% of the mean ice thickness), TamreBraun (−52.6%), and
Gantayat (−22.0%). The bias can be explained by i) the
lowermost elevations of glaciers often also being the thinnest,
and ii) the fact that various modeling approaches implicitly
assume the considered glaciers to be in steady state. The first
explanation is supported by the results of the benchmark model,
which shows a bias of −22.4% for the particular configuration.
The assumption of a steady state, instead, is clearly unsuitable
for most present-day glaciers, which show substantial thinning
rates especially at low elevations. For approaches based on mass
or momentum conservation, this causes the ice flux to be
underestimated, resulting in an ice thickness that is too thin
throughout the glacier. Together, the result indicates
that—although if convenient from the logistical point of
view—survey configurations in which low elevations are
sampled preferentially should be avoided, or at least
complemented with measurements selectively gathered on
thicker glacier parts.

5.4 Combined Model Performance
The results of the previous sections leave open the question
whether a single best model, or a subset of best performing
models, can be discerned. We tackle this question by defining a
relative score that combines the results shown in Figures 4, 6, 8:

for any of the boxplots within these figures, we use the i) median,
ii) interquartile range, and iii) 95% confidence interval as
separate indicators, and assign a given score. If
X � [X1,X2, . . . ,Xn] is a set of n indicator values (for
example the set 15 medians of the boxplots referring to the
compulsory cases in Figure 4A) with absolute values Y � |X|,
then the set of scores S is given by

S � Y −min(Y)
max(Y) −min(Y). (3)

The score thus assumes a value of Si � 1 for the best
performing model i (in the example, the model with
smallest median), and of Sj � 0 for the worst performing
model j (the model with the largest median). The overall
model score is then defined to be the average score for all
66 considered indicators (22 boxplots with three indicators
each). Due to the large biases discussed earlier, the model
Ramsankaran is not ranked.

The results of the above scoring procedure are shown in
Figure 9, which differentiates between the case in which all test
cases (Figure 9A) or only compulsory test cases (Figure 9B) are
considered. The only model that consequently stands out is the
ensemble-approach GilletChaulet: in the score, the model
stands at least 0.11 points above any of the other models.
The other models are all within 0.28 score points, apart
from Morlighem, TamreBraun, and benchmark. This
indicates that the bulk of the models have comparable
performance and that, unfortunately, it is difficult to provide
a recommendation in favor of one or the other approach,
particularly given that the uncertainty in the various data

FIGURE 8 | Distributions of model deviations when the ice thickness observations provided for calibration show a peculiar spatial distribution. The colors of the
individual boxplots discern the situations in which the observations are biased toward low elevations (exp01), the thickest parts (exp02), or the flattest parts (exp03) of the
glacier. In exp04, only observations along a longitudinal profile are provided (cf. Figure 2). Values are given relatively to the mean glacier thickness. “POOLED” boxplots
combine the deviations across models and exclude Ramsankaran and benchmark. Boxplots are defined in Figure 4. Panel (A) (number of test cases considered
by each model given above the panel) is the same as (B) but refers to the absolute values of the deviations. The equivalent representation for the case in which only
compulsory test cases are considered is given in Supplementary Figure S9.
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products used to drive individual models is not robustly
quantified. Similar is true when attempting to group the
models with respect to, e.g., the “descendance” shown in
Figure 3 or the type of input data used by the individual
models. Indeed, no systematic picture emerges, with
members of different groups scattered across the ranking
(Figure 9).

We acknowledge that the relatively small number of test cases
available within ITMIX2, as well as the different number of test
cases considered by the different models, somewhat limit the
possibility of more robust statements in the above respect. The
sensitivity to these points becomes apparent, for example, when
comparing the ranking obtained for all experiments (Figure 9A)
with that obtained by only considering compulsory test cases
(Figure 9B): in the first case, VanPeltLeclercq and Rabatel obtain
above-average scores whilst in the second, Maurer and Werder
score better than VanPeltLeclercq, and Rabatel ranges mid-way.
A similar change in position is observable for Gantayat, whilst
Farinotti, Huss, and Brinkerhoff seem more stable in their
ranking positions.

6 SUMMARY AND CONCLUSIONS

ITMIX2 was the second phase of the Ice Thickness Models
Intercomparison eXperiment. Aiming at characterizing the
degree to which models inferring the ice thickness distribution
from characteristics of the glacier surface can benefit from sparse
in-situ thickness observations, it attracted the participation of 13
different modeling approaches. A set of 23 test cases including
both real-world and synthetically generated glaciers and ice caps
was considered, and 16 different experiments were conducted to
infer the effect that both availability and spatial distribution of ice
thickness observations have on model performance. The main
results of ITMIX2 can be summarized as follows:

• The characteristics of the participating models are highly
variable (Figures 4A,B). Whilst some models provide similar
results independently of the amount and spatial distribution
of ice thickness observations available for calibration, other
models show typical variabilities in the results of different
experiments in the order of 30% the mean ice thickness.
Whilst low variabilities are an indication for model
robustness in most instances, they seem to reflect a lack of
flexibility in the calibration procedure in individual cases. It is
reassuring that all but one approach consistently
outperformed a simple benchmark model based on the
average thickness at observed locations.

• Even for locations at which ice thickness observations exist, the
strategy for taking these into account varies between models
(Figures 4C,D, 5).Whilst somemodels aim at ensuring a close
match between observed and modeled ice thickness, some
others favor the internal model consistency prescribed by the
continuity equation. For the latter set of models, the deviations
at locations with ice thickness observations available during
model calibration can show interquartile ranges as high as
30–40% the mean ice thickness.

• For most models, a few observations are sufficient to
correctly capture the mean glacier thickness (Figure 6).
This follows from the observation that the bias of individual
models does not drift during the experiments in which the
amount of ice thickness observations available for model
calibration is artificially reduced. This is particularly
reassuring for applications that depend on estimates of
the glaciers’ total volume, rather than the complete ice
thickness distribution. Still, median deviations of around
16% the mean ice thickness are typical for locations that are
not covered by measurements, and one quarter of the
deviations even exceed 37% of the mean ice thickness
(Figure 4D).

• In general, the accuracy of local ice thickness estimates
decreases with the availability of ice thickness observations
(Figure 6) and with the distance to the next observation in
particular (Figure 7). On average over all models and all
experiments, the median deviation between model results
and observations increases by 8.5% the mean ice thickness
when the distance to the next observation is increased by a
factor of 10. That is: the median difference is about 8% when
the closest observation is within one 10th of the mean ice

B

FIGURE 9 | Average score of model performance in the case that (A) all
or (B) only compulsory test cases are considered. The number of test cases
considered by each model is given above the bars. The score is based on the
medians, interquartile ranges and 95% confidence intervals shown in
Figures 4, 6, 8 (66 indicators in total). A score of “1” (“0”) would indicate that
the corresponding model performs best (worst) in all of the 66 indicators. The
model Ramsankaran is not ranked for the reasons discussed in the text.
“POOLED” refers to the pool of models besides Ramsankaran and
benchmark.
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thickness, about 16% when it is one mean thickness away,
and about 21% when it is at a distance equivalent to ten
times the mean ice thicknesses. The latter value is close to
the ± 24% average deviation found in the frame of ITMIX1,
where no measured ice thickness was provided at all, thus
providing an indication for the typical distance at which the
information-content of the measurements is no longer
useful to inform the models. It must be noted, however,
that the relation is specific to each model, and can vary
significantly between the models (Supplementary
Figure S7).

• With the exception of a few models, the spatial distribution
of the ice thickness observations has only a weak effect on
the modeled thickness distribution (Figure 8). The only
configuration to be avoided is the one in which observations
preferentially sample the lowest elevations of a glacier.
Although convenient from the logistical point of view,
this configuration can over-sample thin glacier parts thus
resulting in a bias toward underestimated ice thickness. On
the contrary, a preferential sampling of the thickest glacier
parts prevents large deviations, successfully constraining the
total glacier volume.

• The applicability of individual models is highly variable.
Whilst some models are readily applicable also to larger sets
of glaciers and even when input data are constrained to a
minimum, other models strictly require additional
information, such as distributed ice flow velocities of the
glacier surface (Figure 3), or require a considerable time
investment for model setup. The latter two points limit the
applicability of some models to small sets of glaciers. A
special case is given by the ensemble-approach of
GilletChaulet: the necessity of having a prior-estimate
based on the results of several models, clearly increases
the workload of its application.

In light of the above, a recommendation for a single best model
cannot be made. On the one hand, the models by Farinotti and
Fuerst as well as the ensemble-approach GilletChaulet are
noticeable as they ensure a close match of the available
thickness observations (Figures 4C). On the other hand, the
combination of performed experiments and considered metrics
(Figures 4, 6, 8, 9, as well as Supplementary Figures S7, S9)
suggest that the models Brinkerhoff, Farinotti, Fuerst, Gantayat,
Huss, Maurer, Rabatel, VanPeltLeclercq, and Werder all have
similar performance, with Maurer, Werder, and VanPeltLeclercq
showing above-average performance when only compulsory test
cases are considered, and VanPeltLeclercq and Rabatel showing
above-average performance when considering all test cases (note
that in this latter case, models that considered only few cases, such
as Rabatel for instance, are somewhat advantaged). Only the
ensemble-approach GilletChaulet consistently stands out for its
enhanced robustness toward varying configurations of available
observational thickness—including configurations in which data
availability is particularly limited. ITMIX2 thus confirms the result
of the first phase of the intercomparison experiment (Farinotti
et al., 2017), which already pointed at the added value of using a
model ensemble instead of an individual approach.

ITMIX2 also highlights the limitations that the present
generation of models still have in predicting the ice thickness
distribution of individual glaciers. Whilst it shows that even sparse
sets of ice thickness observations are effective in preventing model
biases, it also cautions against the relatively large uncertainties that
can exist at the local scale. The latter are often linked to the
uncertainties that affect observational data other than ice thickness,
such as the elevation of the glacier surface, the ice velocity, the
surface mass balance or the rate of ice thickness change. Indeed,
models that include such auxiliary information face the need of
prioritizing the matching of one or another dataset. For this to
happen in ameaningful way, information about the accuracy of the
individual datasets, as well as model capabilities to cope with
observational uncertainty, are essential.

The considerations above highlight the value and importance of
ongoing initiatives aiming at mapping the ice thickness and other
essential glaciological parameters at the global scale. Together with
ongoing efforts of centralizing and making publicly available the
corresponding observations, such endeavors will help in both the
continued development of the necessary models, and the better
characterization of the ice reserves locked in today’s ice masses.
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