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Abstract. This paper proposes a model for incomplete games where
the knowledge of the players is represented by a Dempster-Shafer belief
function. Beyond an extension of the classical definitions, it shows such
a game can be transformed into an equivalent hypergraphical complete
game (without uncertainty), thus generalizing Howson and Rosenthal’s
theorem to the framework of belief functions and to any number of play-
ers. The complexity of this transformation is finally studied and shown
to be polynomial in the degree of k-additivity of the mass function.
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1 Introduction

Game theory [21,25] proposes a powerful framework to capture decision prob-
lems involving several agents. In non-cooperative games of complete information,
the players do not coordinate their actions but each of them knows everything
about the game: the players, their available actions and all their utilities. This
assumption of complete knowledge cannot always be satisfied. In the real world
indeed, players are not so well informed and have only limited knowledge about
the game. This is why Bayesian games of incomplete information have been pro-
posed [16]. Nevertheless, the Bayesian hypothesis is strong, and requires a good
knowledge of the environment. For instance, in case of ignorance, the Bayesian
way is to suppose equiprobability, but this can lead to a model that does not fit
with the agents’ behavior (e.g. see Ellsberg’s paradox [9]).

In the present paper, we propose a new kind of game of incomplete informa-
tion, which we call credal game. Agents have a partial knowledge, represented by
a Dempster-Shafer belief function [5,30], and cardinal utilities, but do not neces-
sarily make the equiprobability assumption. The underlying decision rule is the
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Choquet integral based on the Bel measure [4], in order to capture the agents’
aversion for ambiguity [13,12,22]. We then follow the line defined by Howson and
Rosenthal [17] who have shown that any 2-player Bayesian game can be trans-
formed into a complete knowledge polymatrix game [33]. In this paper, we show
that such a transformation is possible for credal games, and for any number of
agents, producing a hypergraphical game [26]. An important consequence of this
result is that the algorithmics developed for hypergraphical games [32,3] can be
reused for the search of Nash equilibria in credal games.

2 Background and motivations

To illustrate and motivate our work, we will use the following example inspired
by the murder of Mr. Jones [31], where the suspects are Peter, Paul and Mary.

Example 1 (Peter, Quentin and Rose). Two agents, named Agent 1 and Agent 2,
are independently looking for a business association, with either Peter (P ),
Quentin (Q), or Rose (R). The point is that a crime has been committed, for
which these three people are suspected. Several testimonies, not very reliable,
allowed to estimate that there is 50% of chance that the culprit is a man (P or
Q), and 50% of chance that it is a woman (R).
As to the interest of the associations, making the deal with an innocent leads
to a payoff of $6k (to be shared between the people making the deal), while
associating with a guilty person produces no payoff ($0k). Moreover, Agent 1
is investigating about P and will knows whether he is guilty or not. Similarly,
Agent 2 will knows whether R is guilty before making the decision.

The Bayesian approach is not relevant here. Indeed, if Agent 1 learns that
P is innocent, the probability of guilt should become 1/2 for Q and 1/2 for
R. However, in a purely Bayesian view, equiprobability would be applied and
the prior probability of guilt would be 1/4 for P and 1/4 for Q. Then, after
conditioning, Agent 1 would get a probability of 1/3 for Q and 2/3 for R.

2.1 Dempster-Shafer’s theory of evidence

Let us first look at the epistemic aspect of the problem. The prior knowlege is
simply that P ({P,Q}) = P ({M}) = 1

2 , and nothing more. The kind of knowl-
edge at work here is well captured in Dempster-Shafer’s theory of evidence, that
does not restrict probability assignments to elements of the frame of discernment:

Definition 1 (Mass function). A mass function for a frame of discernment
Ω (or “bpa” for basic probability assignment) is a function m : 2Ω → [0, 1] such
that m(∅) = 0 and

∑
A⊆Ω m(A) = 1.

A set with a nonzero mass is called a focal element and the set of focal
elements is denoted Sm. Two dual measures on 2Ω derive from m:

Bel(A) =
∑

B∈Sm,B⊆A

m(B) and Pl(A) =
∑

B∈Sm,B∩A̸=∅

m(B).
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Bel(A) (resp. Pl(A)) estimates to what extent A is implied by (resp. is compat-
ible with) the knowledge captured by m.

Probabilities are belief functions where the focal elements are then singletons
– where m is ”1-additive”. k-additivity is more generally defined as follows:

Definition 2 (k-additivity). A mass function is k-additive if all its focal ele-
ments are at most of size k, i.e., ∀B ∈ Sm, |B| ≤ k.

Even if the agents share the same prior knowledge, as in our example, they
may acquire different pieces of information and thus have a different posterior
knowledge. In the example, Agent 1 eventually learns whether P is guilty or not
while Agent 2 will acquire information about R. Each agent thus revises his/her
knowledge on the basis on the information C she learns (e.g. R for Agent 2).
States where C is false are considered as impossible by the agent, so she modifies
the initial belief function in such a way that Pl(C̄) = 0: the conditioning at work
here is Dempster’s rule [5] (see also [7,1] for more details about the conditioning).

Definition 3 (Dempster conditioning). For any nonempty A,C ⊆ Ω,

m|C(A) := KC ·
∑

B∈Sm,C∩B=A

m(B),

where KC = 1/
∑

B∈Sm,B∩C ̸=∅ m(B) is a normalization factor.

2.2 Decision making with belief functions

Let us now consider belief functions in a (single-agent) decision making context.
Following Savage’s modelling of decision making under uncertainty [28], a deci-
sion (or “action”) is a function a : Ω → X where Ω is the set of possible states,
as previously, and X is the set of possible outcomes. The preferences of an agent
are represented by an utility function u : X → R. When the knowledge about Ω
is captured by a belief function, the discrete Choquet integral [4] based on the
Bel measure is classically advocated because of its ability to capture the agents’
aversion for ambiguity [13,12,22]:

Definition 4 (Discrete Choquet integral).
Let Λ(a) = {λ1 ≤ · · · ≤ λ|Λ(a)|} be the set of utility values reached by an

action a, labelled by increasing order, and Eλi
(a) = {ω | u(a(ω)) ≥ λi} denote

the set of worlds for which the utility of action a is at least λi. The discrete
Choquet utility value (or CEU) of a is :

CEU(a) = λ1 +

|Λ(a)|∑
i=2

(λi − λi−1)×Bel(Eλi(a)).

The CEU has a simple expression based on the mass function:

CEU(a) =
∑

B∈Sm

m(B)×min
ω∈B

u(a(ω)).
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2.3 Game theory

A simultaneous game of complete information models a situation where several
agents make a decision (the term “action” is rather used in game theory) without
coordination with the other agents – the final utility of each agent depending on
the actions chosen by all agents.

Definition 5 (Complete game). A simultaneous game of complete informa-
tion (also called complete game) is a tuple G =

(
N, (Ai)i∈N , (ui)i∈N

)
where:

– N = {1, . . . , n} is a finite set of agents (or ”players”),
– Ai is the set of actions of Agent i; A :=

∏
i∈N Ai contains all the possible

combinations of actions or ”profiles”,
– ui : A → R is the utility function of Agent i.

A mixed strategy for player i is a probability distribution on Ai. The strategy is
said to be pure when only one action receives a non-zero probability.
A pure (resp. mixed) joint strategy (or strategy profile) is a vector p = (p1, . . . , pn)
which specifies a pure (resp. mixed) strategy for each player.

A mixed strategy is classically interpreted as distributions the players use to
randomly choose among available actions in order to avoid being predictable –
this is especially useful in repeated games. An alternative view is to consider that
each pi represents the knowledge that the other agents have about i’s decision.

In the following, we will use the following notations: for any vector v =
(v1, . . . , vn) in some product domain V =

∏
i∈N Vi and for any e ⊆ N , ve is the

restriction of v to e and Ve =
∏

i∈e Vi. By abuse of notation, we write vi for v{i}.
For any i, −i denotes the set N \ {i}, i.e. v−i = (v1, . . . , vi−1, vi+1, . . . , vn) ∈
V−i =

∏
j ̸=i Vj . Thus, v−i is the restriction of v to all players but i. Finally, “.”

denotes the concatenation, e.g., v′i.v−i = (v1, . . . , vi−1, v
′
i, vi+1, . . . , vn). Hence

a = ai.a−i belongs to A and given two profiles a, a′ ∈ A, a′i.a−i denotes the
profile a where ai is replaced with a′i.

Because the strategies can be randomized, the global utility for a player of
a joint mixed strategy p is defined as the expected utility of ui according to the
probability distribution it induces over A (Obviously, when the strategy is pure,
EUi is equal to the utility value given by ui):

Definition 6 (Utility of a strategy). Given a joint strategy p in a complete
game

(
N, (Ai)i∈N , (ui)i∈N

)
, the expected utility of player i is defined by:

EUi(p) =
∑
a∈A

(∏
i∈N

pi(ai)

)
× ui(a).

Among the profiles of interest, Nash equilibria are emphasized, i.e., profiles in
which no player can increase his/her utility by changing his/her own strategy.

Definition 7 (Nash equilibrium [25]). A strategy profile p is a Nash equi-
librium iff for all i ∈ N , there exists no p′i such that ui(p

′
i.p−i) > ui(p).

A pure strategy profile p is a Nash equilibrium iff for all i ∈ N , there exists
no pure strategy p′i such that ui(p

′
i.p−i) > ui(p).
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When the utility functions are described explicitly, G is said to be in stan-
dard normal form (SNF). SNF representations become spatially costly when the
number of players increases (O(nαn) for a game with n players and α actions
per player). More succinct forms have been proposed, that suit cases where util-
ity functions can be decomposed as a sum of smaller utility functions – namely
hypergraphical games [26] and polymatrix games [33].

Definition 8 (Hypergraphical game). A hypergraphical game is a tuple
G =

(
N,E, (Ai)i∈N , (ue

i )e∈E,i∈e

)
where N is a set of players, E = {e1, . . . em}

is a multiset of subsets of N ((N,E) is an hypergraph) and for each e ∈ E,(
e, (Ai)i∈e, (u

e
i )i∈e

)
is a classical standard normal form game. The global utility

of Agent i is the sum of i’s local utilities: ui(a) =
∑

e∈E ue
i (ae).

Polymatrix games are hypergraphical games with 2-player local games.

This framework assumes that each player knows everything about the game:
the players, the actions available to each player, all their utilities for each combi-
nation of actions, etc. The assumption of complete knowledge cannot always be
satisfied. In the real world indeed, players have only a limited knowledge about
the outcomes of their strategies – the final outcomes may depend on an ill-known
event (in our example, the payoff for making the deal with one of P , Q, or R
depends on whether they are guilty or innocent).

Harsanyi [16] proposed games of incomplete information as a way to capture
such situations (see also [24], for more details). A game of incomplete informa-
tion can be first understood as a set of possible classical games (of complete
information) – one for each possible world ω ∈ Ω. Players don’t know exactly
which world is the real one, but may have some knowledge about it. Just before
playing, each player i will receive some information τi(ω

∗) about the real world
ω∗. τi maps any world to an element θi of a set Θi called the set of “types” of
Agent i. After having observed τi(ω

∗), Agent i knows more about the real game,
but several games may still be plausible. The player then conditions his/her
knowledge on τi(ω

∗) and decides which action to play. Notice that the different
agents may receive different pieces of information and thus have a different pos-
terior knowledge. The question is then, for each player, to determine a strategy
(either an action, or a probabilistic strategy) for each of his/her possible types.

Harsanyi has shown that such games can be described on the space of types
Θ = Θ1×· · ·×Θn (the underlying worlds are omitted). The idea of Harsanyi when
defining types is that this concept can encapsulate every piece of information
agents may have access to. It includes the agent-observable world status, but
also their beliefs on other agents and their introspective mental states.

3 Credal Games

Bayesian games are games of incomplete information where prior knowledge is
captured by a probability measure. To capture problems where the Bayesian
assumption is not obeyed (as in our motivating example), we propose in this
paper the framework of credal games:
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Definition 9 (Credal game). A credal game G is defined as a tuple composed
of
(
N, (Ai)i∈N , (Θi)i∈N , (ui)i∈N ,m

)
where:

– N = {1, . . . , n} is a finite set of players,
– Ai is the set of actions of player i; A =

∏
i∈N Ai denotes the set of all action

profiles,
– Θi is the set of types of player i; let Θ =

∏
i∈N θi,

– m : 2Θ → [0, 1] is the mass function describing the common prior knowledge,
– ui : A×Θ → R is the utility function of Agent i.

G is said to be in standard normal form iff the utility functions ui and the
mass function m are given in extenso.

Following Harsyani’s approach of incomplete games, we consider the “ex
interim” setting where each player plans a strategy for each of the types he/she
can receive, ideally a strategy which is a best response to that of the other
players. We thus adopt the definition of strategy proposed by Harsyani’s in the
general context of incomplete games:

Definition 10 (Pure and mixed strategies [16]). A pure (resp. mixed)
strategy for player i in a credal game is a function ρi which maps each “type”
θi ∈ Θi to an action of (resp. a probability over) Ai.

A pure (resp. mixed) joint strategy is a vector p = (p1, . . . , pn) which specifies
a pure (resp. mixed) strategy for each player.

ρ(θ) =
(
ρ1(θ1), . . . , ρn(θn)

)
denotes the profile which will be played if the

configuration of types is θ.

Let us first consider pure strategies. In the ex interim approach of incomplete
games, Agent i may consider the strategy ρ−i planned by the other players for
each of their types. When receiving her type θi, he/she revises his/her knowledge
– in a credal game, his/her posterior knowledge over the joint type configuration
is m|θi . According to the definition of the Choquet expected utility, the utility
of a pure strategy profile for Agent i of type θi, shall thus be defined as:

Definition 11 (Choquet Expected Utility of a pure strategy profile).
The utility of a pure strategy profile ρ = (ρ1, . . . , ρn), for Agent i of type θi, is:
CEU(i,θi)(ρ) =

∑
B∈Sm|θi

m|θi(B)×minθ′∈B ui(ρ(θ
′), θ′).

Let us now consider mixed strategies. For each configuration θ, ρ(θ) defines
a probability distribution over A: the probability that a is played when agents
have types θ is equal to

∏
i∈N ρi(θi)(ai). If we now consider all the θ’s, we get

a bpa mρ over A × Θ. To any focal element B ∈ Sm and any pure strategy
profile σ : Θ → A corresponds an element σ.B := {(σ(θ), θ) | θ ∈ B} of mass
mρ(σ.B) = m(B)×

∏
θ∈B

∏
i∈N ρi(θi)(σi(θi)) – σ.B is focal iff B is focal and σ

is possible according to ρ. Finally, Agent i recieving type θi conditions his/her
knowledge which becomes mρ

|θi . Hence the following definition of the utility of a

mixed strategy profile:
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Definition 12 (Choquet Expected Utility of a mixed strategy profile).
The utility of a mixed strategy profile ρ = (ρ1, . . . , ρn), for player i of type θi, is:

CEU(i,θi)(ρ) =
∑

σ.B∈Sm
ρ
|θi

m|θi(B)×
∏
θ′∈B

∏
j∈N

ρj(θ
′
j)(σj(θ

′
j))

×min
θ′∈B

ui(σ(θ
′), θ′)

Obviously, Definition 12 leads to Definition 11 when ρ is a pure strategy pro-
file. Now, recall that a strategy profile is a Nash equilibrium if no player can
improve unilaterally his/her utility. This concept straightforwardly extends to
credal games:

Definition 13 (Nash equilibrium). A mixed (resp. pure) strategy profile ρ is
a Nash equilibrium for CEU iff, whatever i, there exists no mixed (resp. pure)
strategy ρ′i such that for any θi, CEU(i,θi)(ρ

′
i.ρ−i) > CEU(i,θi)(ρ).

Example Our running example (see Example 1) is captured by the credal game
G =

(
N, (Ai)i∈N (Θi)i∈N , (ui)i∈N ,m

)
where:

– N = {1, 2};
– A1 = {P1, Q1, R1}, A2 = {P2, Q2, R2} (each agent chooses an associate).
– Θ1 = {P, P̄}, Θ2 = {R, R̄} (Agent 1 investigates on Peter, Agent 2 investigates

on Rose).
– m : 2Θ → [0, 1] has two focal elements: m

(
{(P̄, R)}

)
= 1/2 (the murderer is a

woman, thus necessarily Rose – in this case Agent 1 will learn P̄ and Agent 2
will learn R) and m

(
{(P, R̄), (P̄, R̄)}

)
= 1/2 (the murderer is a man: Agent 2

necessarily learns R̄ but Agent 1 can learn either P̄ – which happens when
Quentin is the murderer – or P – Peter is the murderer).

– Making a deal with a murderer has a utility value of 0, making a deal with
an innocent leads to a utility of 6

2 = 3, unless the other agent approaches the
same associate, in which case each agent receives 6

3 = 2. The utility functions
are summarized below (Table 1). Null values (in gray) are given for the case
where θ = (P, R) (both R and P are guilty) which is not a possible world.

Let ρ be the pure strategy where Agent 1 makes the deal withR when learning
that P is guilty and with P otherwise, and Agent 2 joins Q when learning that R
is guilty and R otherwise: ρ1(P) = R1, ρ1(P̄) = P1, ρ2(R) = Q2 and ρ2(R̄) = R2.

– Consider Agent 1 receiving type P: the conditioned bpa, m|P, has only one

focal element {(P, R̄)}, KP = 1/ 1
2 and m|P({(P, R̄)}) = 1. In short, Agent 1

knows that P is guilty and R is not. In the only possible configuration,
(P, R̄), ρ prescribes ρ1(P) = R1 for Agent 1 and ρ2(R̄) = R2 for Agent 2.
Then CEU(1,P)(ρ) = m|P

(
{(P, R̄)}

)
× u1

(
(R1, R2), (P, R̄)

)
= 1× 2 = 2.

– Consider now Agent 1 receiving P̄: his/her revised knowledge, m|P̄, has two

focal elements, {(P̄, R)} and {(P̄.R̄)} (each with probability 1
2 , thus KP̄ = 1).

The strategy prescribes ρ(P̄) = P1 for Agent 1, who doesn’t know whether
Agent 2 learns R (and plays ρ(R) = Q2) or R̄ (and plays ρ(R̄) = R2). Hence
CEU(1,P̄)(ρ) =

1
2 × u1

(
(P1, R2), (P̄, R̄)

)
+ 1

2 × u1

(
(P1, Q2), (P̄, R)

)
= 3.
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θ2 = R̄ θ2 = R

P2 Q2 R2 P2 Q2 R2

θ1 = P

P1 (0, 0) (0, 3) (0, 3) P1 (0, 0) (0, 0) (0, 0)
Q1 (3, 0) (2, 2) (3, 3) Q1 (0, 0) (0, 0) (0, 0)
R1 (3, 0) (3, 3) (2, 2) R1 (0, 0) (0, 0) (0, 0)

P2 Q2 R2 P2 Q2 R2

θ1 = P̄

P1 (2, 2) (3, 0) (3, 3) P1 (2, 2) (3, 3) (3, 0)
Q1 (0, 3) (0, 0) (0, 3) Q1 (3, 3) (2, 2) (3, 0)
R1 (3, 3) (3, 0) (2, 2) R1 (0, 3) (0, 3) (0, 0)

Table 1. Example 1: Utility matrices for each configuration of the types

– Similarly, the bpa of Agent 2 receiving R, m|R, has only one focal element,

{(P̄, R)} (thus KR = 1/ 1
2 ) in which ρ prescribes P1 for Agent 1 and Q2 for

Agent 2. Then CEU(2,R)(ρ) = 1× u2

(
(P1, Q2), (P̄, R)

)
= 1× 3 = 3.

– Finally, the bpa of Agent 2 receiving R̄,m|R̄, has one focal element, {(P̄.R̄), (P.R̄)}
and KR̄ = 1/ 1

2 . Agent 2 does not know whether Agent 1 receives P̄ or
P. Since ρ prescribes Agent 1 to play P1 in the first case, R1 in the sec-
ond one, and prescribes Agent 2 to play R2 in both cases, CEU(2,R̄)(ρ) =

1×min
[
u2

(
(P1, R2), (P̄, R̄)

)
, u2

(
(R1, R2), (P, R̄)

)]
= 1×min(3, 2) = 2.

In this strategy, Agent 1 does not give the best possible response to Agent 2’s
strategy: when learning that P is guilty, he/she plays R1 while knowing that in
this case Agent 2 learns R̄ and thus plays R2. Let Agent 1 modify his/her strategy
and play Q1 when learning P – hence the strategy ρ′:
ρ′1(P) = Q1, ρ

′
1(P̄) = P1, ρ

′
2(R) = Q2, ρ

′
2(R̄) = R2

– CEU(1,P)(ρ
′) = KP × u1

(
(Q1, R1), (P, R̄)

)
= 1× 3 = 3,

– CEU(1,P̄)(ρ
′) = KP̄ × u1

(
(P1, R2), (P̄, R̄)

)
+KP̄ × u1

(
(P1, Q2), (P̄, R)

)
= 3,

– CEU(2,R)(ρ
′) = KR × u2

(
(P1, R2), (P̄, R)

)
= 1× 3 = 3,

– CEU(2,R̄)(ρ
′) = KR̄ ×min

(
u2

(
(P1, R2), (P̄, R̄)

)
, u2

(
(Q1, R2), (P, R̄)

))
= 3.

It can be checked in ρ′ each player has his/her maximal possible utility ($3k)
– no player has an incentive to change: ρ′ is a pure Nash equilibrium.

4 From credal games to complete games

One of the most prominent results about Bayesian games is Howson’s and Rosen-
thal’s theorem [17]: any 2-player Bayesian game can be transformed into a (com-
plete information) polymatrix game equivalent to the original one. This result
is important from the computational point of view since it provides 2-player
Bayesian games with practical resolution tools: to solve a 2-player Bayesian
games, it is enough to use this theorem and to solve the resulting polymatrix
game by one of algorithms proposed for such games [32,3]. In the sequel, we
generalize this theorem to credal games and extend it to any number of players.
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4.1 The direct transform

A first idea is to define from a credal game G, an hypergraphical game G̃, the
vertices (players) of which are pairs (i, θi) with action set Ai – to each pure
strategy ρ of G corresponds a unique pure strategy ρ̃ of G̃ and conversely – we
call ρ̃ the Selten transform of ρ:12

Definition 14 (Selten transform of a pure strategy). For any pure strategy
ρ of G, the Selten transform of ρ is the vector ρ̃ defined by ρ̃(i,θi) = ρi(θi).

The local games correspond to the focal elements of m. Roughly, (i, θi) plays
in the local game corresponding to the focal element B if the type θi is plausible
for B – technically, if there exists θ′ ∈ B such that θ′i = θi. In this local game,
(i, θi) obtains a local utility K|θi ·m(B) ·minθ′∈B,θ′

i=θi ui(ρ(θ
′), θ′).

Given a profile of actions ρ̃, and a player (i, θi), the hypergraphical game
sums these local utilities over all the focal elements for which θi is plausible.
Hence the global utility for (i, θi) is equal to the CEU of the joint ρ.

One may note that two pairs (i, θi) and (i, θ′i) may play in the same local
game – this happens when θ and θ′ belong to the same focal set. In this case, the
utility of (i, θ′i) does not depend on the action played by (i, θi) and conversely.

For any focal element B of m, let Players(B) := {(i, θi) | θ ∈ B, i ∈ N} –
Players(B) denotes the future players involved in the local game corresponding
to B. Let Ẽ be the multiset Ẽ := [Players(B) | B ∈ Sm]. The elements e of
Ẽ and the focal elements in Sm are in bijection and we denote Be the focal
element of m which leads to e. These notations allow us to propose a first, direct
generalization to credal games of the Howson’s and Rosenthal’s transform:

Definition 15 (Direct transform of a credal game). The direct trans-
formof a credal game G =

(
N, (Ai, Θi, ui)i∈N ,m

)
is the hypergraphical game

G̃ =
(
Ñ , Ẽ, (Ã(i,θi))(i,θi)∈Ñ , (ũe

(i,θi)
)e∈Ẽ,(i,θi)∈e

)
where:

– Ñ = {(i, θi) | i ∈ N, θi ∈ Θi},
– For each i ∈ N , θi ∈ Θi, Ã(i,θi) = Ai,

Ã =
∏

i∈N,θi∈Θi
Ã(i,θi) denotes the set of all the pure strategy profiles in G̃.

– Ẽ = [Players(B) | B ∈ Sm],
– For each e ∈ Ẽ, (i, θi) ∈ e and ρ̃ ∈ Ã,

ũe
(i,θi)

(ρ̃e) = K|θi ·m(Be) ·minθ′∈Be,θ′
i=θi ui

(
ρ(θ′), θ′

)
.

It is easy to show that the CEU value of a pure strategy ρ in G and the
global utility of ρ̃ in G̃ are equal, whatever is the couple (i, θi) considered.

Proposition 1. 3 Let G be a credal game and G̃ its direct transform. For any
pure strategy ρ of G, it holds that CEU(i,θi)(ρ) = ũ(i,θ)(ρ̃).

1 Named after Selten, who proposed a similar definition for Bayesian games [16].
2 We could use the notation ρ for both, but the pure strategy profiles of the credal
game are vectors of functions ρi : Θi 7→ Ai while the pure strategy profiles of G̃ are
vectors in

∏
i∈N,θi∈Θi

Ai. So, we keep the two notations ρ̃ and ρ.
3 The proofs can be found in the appendix of the present document [11], page 15
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Let us extend the Selten transform to mixed strategy profiles ρ of G: each
ρ̃(i,θi) = ρi(θi) is then a probability distribution over Ai, and ρ̃ is then a vector
of such distributions.

Corollary 1. Let G be a credal game and G̃ its direct transform. For any mixed
strategy profile ρ of G, it holds that CEU(i,θi)(ρ) = ũ(i,θ)(ρ̃).

Whenm is a probability distribution and G is a 2-player game, we get at most
|Θ| local games, each involving two players (i, θi) and (j, θj): G̃ is a polymatrix
game, and Howson and Rosenthal’s Theorem is recovered. More generally, we
get:

Theorem 1 (Generalized Howson-Rosenthal Theorem). For any credal
game G, there exists an hypergraphical game G̃ such that ρ is a pure (resp. mixed)
Nash equilibrium of G iff ρ̃ is a pure (resp. mixed) Nash equilibrium of G̃.

Example 2. Let us define the direct transform of the credal game G correspond-
ing to our running example. The set of players is: Ñ = {(1, P), (1, P̄), (2, R), (2, R̄)}.
The set of actions are Ã(i,θi) = {Pi, Qi, Ri}.

Becausem has two focal elements B1 = {(P̄, R)} and B2 = {(P, R̄), (P̄, R̄)} each
with probability 1

2 , G̃ involves two local games. The set of players involved are

respectively e1 = {(1, P̄), (2, R)} and e2 = {(1, P̄), (1, P), (2, R̄)}. G̃’s hypergraph
is drawn on Figure 1.

Fig. 1. G’s direct transform. Gray circles denote vertices (players; one shade per agent),
white boxes denote hyperedges (local games; linked to the players involved).

Player (2, R̄) plays only in e2, we have for instance:

ũe2
(2,R̄)(R1, P1, R2) = KR̄·m(B2)×min

[
u2

(
(R1, R2), (P, R̄)

)
, u2

(
(P1, R2), (P̄, R̄)

)]
= 2.

For player (1, P̄), which plays in both local games, we have for instance:

ũe1
(1,P̄)(P1, P2) = KP̄ ·m(B1)× u1

(
(P1, P2), (P̄, R)

)
= 0.5× 2 = 1

ũe2
(1,P̄)( , P1, Q2) = KP̄ ·m(B2)× u1

(
(P1, Q2), (P̄, R̄)

)
= 0.5× 3 = 1.5.

The Selten transform of the Nash equilibrium ρ′ described in the previous section
is ρ̃′((1, P̄)) = P1, ρ̃′((1, P)) = Q1, ρ̃′((2, R̄)) = R1, ρ̃′((2, R)) = Q2. It is easy to
check that: ũ(1,P̄)(ρ̃′) = ũe1

(1,P̄)

(
(P1, Q2)

)
+ ũe2

(1,P̄)

(
(Q1, P1, R2)

)
= CEU(1,P̄)(ρ

′).

Notice that in the sum, one part of the utility of (1, P̄) comes from the local
game e1 (i.e., from B1) and the other part comes from e2 (i.e., from B2).
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As to the complexity of the transform, let α (resp. β) be the maximum
number of actions (resp. types) per player in G and k the degree of additivity
of m. G contains n utility tables of size (αβ)n and the size of the description of
m is bounded by k · n · |Sm|. So, Size(G) is in O

(
n(αβ)n + kn · |Sm|

)
.

G̃ contains |Sm| local games. Each of them involves at most kn players (i, θi) –
the size of their SNF representation is thus at most knαkn – hence a spatial cost
for the representation of G̃ in O(|Sm| · knαkn). Notice now that since m is k-
additive, |Sm| < βkn. So, Size(G̃) is bounded by kn(αβ)kn. In short, we get:

Proposition 2. The direct transform of a credal game G has a temporal com-
plexity in O

(
|Sm| · kn2αknβ

)
, also bounded by k2 · Size(G)k+1 and a spatial

complexity in O
(
|Sm| · knαkn

)
, also bounded by k · Size(G)k.

So, the degree of additivity of the bpa is the main factor of complexity.
Hopefully, low degrees of additivity can be assumed – it has indeed been shown
[19,15] that such low values (typically, k ≤ 3) allow the description of many cases
of interest. In such situations, the transform is quadratic or, at worst, cubic.

4.2 The conditioned transform

Now, when for each focal element B and each θi, only a few types are compat-
ible for the other players, one shall use a more sophisticated transform. In the
following, we propose to condition each focal element B for which θi is plausible
– we thus get a subset of B for which a local game is created. This transform
leads to smaller local games as soon as this subset involves less players than B.

Formally, for any B ∈ Sm, i ∈ N and θi ∈ Θi, let B|θi = {θ′ ∈ B | θ′i = θi}.
We thus define the conditioned transform of G as follows:

Definition 16 (The conditioned transform of a credal game). The con-
ditioned transform of a credal game

(
N, (Ai)i∈N , (Θi)i∈N , (ui)i∈N ,m

)
is the hy-

pergraphical game G̃ =
(
Ñ , Ẽ, (Ã(i,θi))(i,θi)∈Ñ , (ũe

(i,θi)
)e∈Ẽ,(i,θi)∈e

)
where:

– Ñ = {(i, θi) | i ∈ N, θi ∈ Θi}.
– For each i ∈ N, θi ∈ Θi, Ã(i,θi) = Ai.

Ã =
∏

i∈N,θi∈Θi
Ã(i,θi) denotes the set of all the pure strategy profiles in G̃.

– Ẽ = [Players(B|θi) | B ∈ Sm, i ∈ N, θi ∈ Θi].

– For each e ∈ Ẽ, (i, θi) ∈ e, ρ̃e ∈ Ãe, ũ
e
(i,θi)

(ρ̃e) = m|θi(Be) · min
θ′∈Be

ui(ρe(θ), θ).

The hypergraph of the conditioned transform our running example is drawn
on Figure 2. And finally, we can show that:

Proposition 3. Let G be a credal game and G̃ its conditioned transform. For
any pure or mixed strategy ρ of G, it holds that (i) CEU(i,θi)(ρ) = ũ(i,θ)(ρ̃) and

(ii) ρ is a Nash equilibrium of G iff ρ̃ is a Nash equilibrium of G̃.

Proposition 4. The conditioned transform of a credal game G has a temporal
complexity in O

(
|Sm| · kn2αknβ

)
which is bounded by O

(
k2 · Size(G)k+1

)
and a

spatial complexity in O
(
|
⋃
Sm|θi

| · knαkn
)
which is bounded by O

(
k ·Size(G)k

)
.
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Fig. 2. G’s conditioned transform. Gray circles are vertices (players; one color per
agent), white boxes are hyperedges (local games; linked to the involved players).

So, the conditioned transform has the same worst case spatial complexity
than the direct one. In practice, the size of the transform depends on the struc-
ture of the mass function. Typically, if a focal element B involves only one θi for
Agent i, both transforms contain the same local game Players(B) (as B = B|θi),
but the conditioned one may produce many more local games. If on the contrary
many types are compatible with a focal B for any agent, the local game produced
by the direct transform is needlessly large. For instance, from a 2-player credal
game where both agents have types a, b, . . . and considering the focal element
{(a, a), (b, b), . . . }, the conditioned transform produces several 2-player games
while the direct one has one single local game linked to all vertices (i, θi).

5 Conclusion

This article provides two main contributions. On the one hand, we define a model
for games of incomplete information based of belief functions. On the other hand,
we introduce two transformations that make it possible to build an hypergraphi-
cal game (of complete information) equivalent to the initial credal game, general-
izing Howson–Rosenthal’s theorem. As a result, the algorithmic tools developed
for hypergraphical games [3,32] can be used to solve credal games.

This work opens several research directions. First, we shall let the model
use other decision rules, e.g. Jaffray’s [18,6], which generalize Hurwicz’s ap-
proach to belief functions, or Gilboa and Schmeider’s multiple prior expected
utility [29,14]4. Beyond belief functions, we aim at extending the model to other
Choquet capacities and encompass other decision principles, based e.g. on rank-
dependent utility [27], probability intervals [2] or on some neighborhood models
such as the PPM model [20]. Finally, we shall also study how belief function
based extensions of mixed strategies [23,8] extend to credal games. In this ex-
tended framework, the power of representation belief functions will be used not
only to capture the uncertainty about the game, but also as a way to describe the
agents’ knowledge about the others’ strategies. Finally, we like to formalize those
results with the Coq proof assistant in order to build, with other in-progress
results, a modular formal library on incomplete games and decision theory.

4 Notice that in the latter approach, the belief function is understood as the lower
bound of an imprecise probability – under this interpretation, the conditioning at
work must rather be Fagin-Halpern’s [10]
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A Proofs

Proof (Spatial complexity of a credal game). The size of a credal game G is the
size of its utility functions – given in tables. Each ui : A × Θ → R requires
a table of size |A| × |Θ|. Since |A| is bounded by αn and |Θ| by βn, we have
Size(G) ∈ O

(
n(αβ)n

)
Proof (Proposition 1 – Direct transform – Pure strategy profiles utility equality).
Let us rewrite Dempster-conditioning’s definition into CEU ’s one. For any pure
strategy profile ρ, we have:

CEU(i,θi)(ρ) =
∑

B′∈Sm|θi

Kθi ×
∑

B∈Sm

B∩{θ′|θ′
i=θi}=B′

m(B)

× min
θ′∈B′

ui(ρi(θ
′), θ′)

Any mass m(B) is transferred to 0 or 1 focal element of m|θi , so, since multipli-
cation distributes over addition, one can write:

CEU(i,θi)(ρ) =
∑

B∈Sm

∃θ′∈B,θ′
i=θi

Kθi ×m(B)× min
θ′∈B
θ′
i=θi

ui(ρ(θ
′), θ′)

Having definitions Players(B) = {(i, θi) | θ ∈ B, i ∈ N} and Ẽ = [Players(B) |
B ∈ Sm], one can write:

CEU(i,θi) =
∑
e∈Ẽ

(i,θi)∈e

Kθi ×m(B)× min
θ′∈B
θ′
i=θi

ui(ρ(θ
′), θ′) = ũ(i,θi)(ρ̃)

Proof (Corollary 1 – Direct transform – Mixed stragey profiles utility equality).
Let G be a credal game and ρ be one of its mixed strategy.

First, note that given a focal element B of m, there may be several pure
strategy profile σ, σ′, . . . which correspond to the same focal element σ.B =
σ′.B of mρ – they are such as ∀θ ∈ B, σ(θ) = σ′(θ) and ∃θ /∈ B, σ(θ) ̸=
σ′(θ). However, ρ defines a probability over pure strategy profiles, by Prρ(σ) =∏

i∈N,θi∈Θi
ρi(θi)(σi(θi)). Thus, we have:

mρ(σ.B) = m(B)×
∏
θ∈B

∏
i∈N

ρi(θi)(σi(θi)) = m(B)×
∑

σ′:Θ→A

Prρ(σ′)
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Then, let rewrite this equation into the definition of ρ’s CEU :

CEU(i,θi)(ρ) =
∑

σ.B∈Sm
ρ
|θi

(
m|θi(B)×

∑
σ′:Θ→A

Prρ(σ′)

)
×min

θ∈B
ui(σ(θ), θ)

=
∑

σ′:Θ→A

Prρ(σ′)×

 ∑
B∈Sm|θi

m|θi(B)×min
θ∈B

ui(σ
′(θ), θ)


=

∑
σ′:Θ→A

Prρ(σ′)× CEU(i,θi)(σ
′)

In the previous equation, we can write σ′ instead of σ (inside the CEU ’s min).
Indeed, Prρ(σ′) ̸= 0 ⇐⇒ ∀θ ∈ B, σ′(θ) = σ(θ). Thus, we have expressed the
CEU of ρ as an expectation over pure strategy profiles’ CEU values.

Finally, let G̃ be the direct transform of G and ρ̃ the Selten transform of ρ,
which is a mixed strategy profile of G̃. We already show utility equality for pure
strategy profiles. So, since the Selten transform is a one-to-one correspondence
(both for pure and mixed strategy profiles), we have:

EU(i,θi)(ρ̃) =
∑
ã∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(ã)

× ũ(i,θi)(ã)

=
∑

σ′:Θ→A

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ
′
i(θi))

× CEU(i,θi)(σ
′)

=
∑

σ′:Θ→A

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σ
′
i(θi))

)
× CEU(i,θi)(σ

′)

=
∑

σ′:Θ→A

Prρ(σ′)× CEU(i,θi)(σ
′)

That is, it means CEU(i,θi)(ρ) = EU(i,θi)(ρ̃).

Proof (Theorem 1 – Generalized Howson and Rosenthal’s Theorem). Let G be a
credal game and G̃ its direct transform.5 We already prove the equality of utility
values of any (pure or mixed) strategy profile ρ of G and of its Selten transform
ρ̃ of G̃. Thus, for any player i of any type θi and for any of her strategies ρ′i, it
holds that:(

CEU(i,θi)(ρ
′
i.ρ−i) > CEU(i,θi)(ρ)

)
⇐⇒

(
ũ(i,θi)(ρ̃

′
i.ρ̃−i) > ũ(i,θi)(ρ̃)

)
That is, ρ is a Nash equilibrium of G iff ρ̃ is a Nash equilibrium of G̃

5 We may also prove the Generalized Howson and Rosenthal’s Theorem using the
conditioned transform. The proof is exactly the same.
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Proof (Proposition 2 – Direct transform – Spatial complexity). The size of an
hypergraphical game is bounded by the size of its local utility functions given
in tables. Each local game e has a size |Ae| ≤ α|e|. Let G be a credal game and
G̃ its direct transform. G̃ is an hypergraphical game, local games of which are
build for each focal element B ∈ Sm – one player (i, θi) for each component of
vectors θ ∈ B – so local games have at most kn players, thus a size bounded by
knαkn. Since |Sm| ≤ βkn, it holds that:

Size(G̃) ≤ |Sm| × knαkn ≤ kn(αβ)kn

Furthermore Size(G) ∈ O
(
n(αβ)n

)
, so we have:

Size(G̃) ≤ kn1−k × Size(G)k ∈ O
(
k × Size(G)k

)
Proof (Proposition 2 – Direct transform – Temporal complexity). Let us study
this naive algorithm:

1 for i in N :
2 for θi in Θi :
3 Kθi := 1/

∑
B∈Sm,B∩θi ̸=∅ m(B)

4 for B in Sm :
5 e := Players(B)
6 i f (i, θi) in e :
7 for ae in Ae :
8 u [ e ] [ ( i, θi) ] [ ae ] := Kθi ∗ m(B) ∗ minθ′∈B,θ′

i=θi ui(ae(θ
′), θ′)

– Line 3 computes K|θi . The
∑

operation walks over Sm and for each focal
element B it checks the i-th component of θ ∈ B vectors. It requires TK ∈
O(k × |Sm|) operations.

– Line 5 computes Players(B) = {(i, θi) | i ∈ N, θ ∈ B}, thus in Te = O(kn)
operations.

– Line 8 computes the local utility of a vector ae of size |e| ≤ kn. The min
operation walks over B and for each vector θ ∈ B it may need to project
ae over its |e| relevant components (the components given by θ). It requires
Tu = O(k2n) operations.

Lines 1, 2, 4 and 7 are loops of length bounded by n, β, |Sm| and αkn respectively.
Thus:

T = nβ ×
(
Tk + |Sm| × (Te + αkn × Tu)

)
∈ O

(
|Sm| × k2n2αknβ

)
Since |Sm| ≤ βkn, it holds that T ∈ O

(
k2n2αknβkn+1

)
⊂ O

(
k2 × Size(G)k+1

)
Proof (Proposition 3 – Conditioned transform – Pure strategy profiles utility
equality). Direct from the definition.

Proof (Proposition 3 – Conditioned transform – Mixed strategy profiles utility
equality). Let G be a credal game, ρ one of its mixed strategy profiles, G̃ the
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conditioned transform of G and ρ̃ the Selten transform of ρ, which is a mixed
strategy profile of G̃. As for the direct transform’s proof of utility equality, we
can rewrite the expected utility of ρ̃ with EU(i,θi)(ρ̃) =

∑
σ′:Θ→A Prρ(σ′) ×

CEU(i,θi)(σ
′). Similarly, we conclude that CEU(i,θi)(ρ) = EU(i,θi)(ρ̃).

Proof (Proposition 4 – Conditioned transform – Spatial complexity). Let G be
a credal game and G̃ its conditioned transform. G̃’s local games are build for each
focal element of conditioned mass functions, that is, for anyB ∈

⋃
i∈N,θi∈Θi

Sm|θi
.

Those focal elements are subsets of the original ones, thus their sizes are also
bounded by k. With the same arguments as for the direct transform’s proof of
spatial complexity, it holds that G̃’s local games size is bounded by kn(α)kn,
thus:

Size(G̃) ≤
∣∣∣⋃Sm|θi

∣∣∣× knαkn ≤ kn(αβ)kn ∈ O
(
k × Size(G)k

)
Proof (Proposition 4 – Conditioned transform – Temporal complexity). Let us
study this naive algorithm:

1 for i in N :
2 for θi in Θi :
3 m|θi := cond i t i on (m ,θi )
4 for B in Sm|θi

:

5 e := Players(B)
6 for ae in Ae :
7 u [ e ] [ ( i, θi) ] [ ae ] := m|θi(B) ∗ minθ∈B ui(ae(θ), θ)

– Line 3 computes the conditioned mass function given θi. It requires walking
over all focal elements of m. For each B ∈ Sm, it checks the i-th component
of every vector θ ∈ B (in k operations), then updates m|θi(B|θi) if needed
(in 1 operation). The normalization factor Kθi can be computed on the fly,
thus the full conditioning requires Tcond = k × |Sm| operations.

– Line 5 computes Players(B) is Te ∈ O(kn) operations – see Proof (A).
– Line 7 computes the local utility of a vector ae for a given player (i, θi) ∈ e

in Tu ∈ O(k2n) operation – also see Proof (A).

Lines 1, 2, 4 and 6 are loops of length bounded by n, β, |Sm| and αkn respectively.
Thus:

T = nβ
(
Tcond + |Sm| ×

(
Te + αkn × Tu

))
∈ O

(
|Sm| × k2n2αknβ

)
Since |Sm| ≤ βkn, it holds that T ∈ O(k2n2αknβkn+1

)
⊂ O

(
k2 × Size(G)k+1

)
.
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