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Abstract

In this paper, we propose new asymptotic confidence intervals for extreme

quantiles i.e., for quantiles located outside the range of the available data.

We restrict ourselves to the situation where the underlying distribution is

heavy-tailed. While asymptotic confidence intervals are mostly constructed

around a pivotal quantity, we consider here an alternative approach based

on the distribution of order statistics sampled from a uniform distribution.

The convergence of the coverage probability to the nominal one is established

under a classical second-order condition. The finite sample behavior is also

examined and our methodology is applied to a real dataset.

Keywords: Extreme quantiles; confidence interval; heavy-tailed distribution.

1 Introduction

Let X be a random variable defined on a probability space (Ω,A,P). The

distribution of X is entirely characterized by its cumulative distribution func-

tion F (·) := P(X ≤ ·) or equivalently by its quantile function given by
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F←(·) = inf{x ∈ S | F (x) ≥ ·}, where S is the support of the distribution. In

what follows, we assume that F is a continuous and strictly increasing func-

tion so that F← = F−1 is the inverse function of F .

The question of the estimation of a large quantile F←(1 − β) =: Q(β) for a

level β close to 0 is crucial in actuarial science or in finance in order to be able

to compute risk measures such as the Value-at-Risk or the Tail-Value-at-Risk,

see Embrechts et al. [10] and Konstantinides [21]. Large quantiles are also

useful in climate science to calculate return levels of extreme precipitation or

temperature, see for instance Katz et al. [19] and Naveau et al. [22].

There is a large literature dedicated to quantile estimation when n indepen-

dent copies X1, . . . , Xn of X are observed. When the level β = βn is not too

small in the sense that βn → 0 with nβn → c ∈ [1,∞], the quantile Q(βn) is

usually estimated by inverting the empirical cumulative distribution function

that is to say by Q̂
(E)
n (βn) := Xn−bnβnc,n where X1,n ≤ . . . ≤ Xn,n is the

sample arranged in ascending order. When the level βn is eventually smaller

than 1/n, i.e., when nβn → c ∈ [0, 1), the quantile Q(βn) is located outside

the range of the sample {X1, . . . , Xn}. This kind of quantile is referred to as

extreme quantile and its estimation requires a priori knowledge of the shape

of the tail-distribution. For instance, one can assume that the distribution is

heavy-tailed or equivalently that the quantile function Q is a regularly varying

function at 0 with index −ξ < 0 that is to say that for all t > 0,

lim
α→0

Q(tα)
Q(α) = t−ξ.

Under this assumption, Weissman [26] proposed to estimate the quantile

Q(βn) by the statistic

Q̂(W)
n (βn) = Q̂(E)

n (αn)
(
αn
βn

)ξ̂n
,

where αn is a sequence converging to 0 and such that nαn → ∞ and ξ̂n is a

consistent estimator of the tail-index ξ.

Despite its practical interest, little attention has been paid to the construction

of asymptotic confidence intervals for Q(βn) when βn → 0. Recall that for a

preselected probability γ ∈ (0, 1), an asymptotic confidence interval for Q(βn)
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is a random interval [An,γ , Bn,γ ] such that,

lim
n→∞

P {[An,γ , Bn,γ ] 3 Q(βn)} = γ.

The common approach to construct asymptotic confidence intervals is to use

an asymptotic pivot. This approach was adopted, in the situation where the

level β is fixed, by many authors such as Fan and Liu [11], Kocherginsky

et al. [20], Parzen et al. [23] among others. For the extreme scenario where

nβn → c ∈ [0, 1), Buitendag et al. [6] propose a new pivotal quantity leading

to various confidence intervals for extreme heavy-tailed quantiles.

Recently, Gardes [13] has adapted a procedure initially introduced by Thom-

son [25] to construct an asymptotic confidence interval of Q(βn) when βn is

a sequence converging to 0 with nβn →∞. To be self contained, let us recall

the definition of this confidence interval. First, for u ∈ (0, 1), m ∈ N\{0} and

δ ∈ (0, 1), let us introduce the sets

Sinf(u,m, δ) := {j ∈ {1, . . . ,m} | Fbeta(u;m− j + 1, j) ≤ δ} and

Ssup(u,m, δ) := {j ∈ {1, . . . ,m} | Fbeta(u;m− j + 1, j) ≥ 1− δ} ,

where Fbeta(·; a, b) is the distribution function of a Beta distribution with

parameters a > 0 and b > 0. Since βn ∈ (0, 1) is a sequence converging to 0

with nβn →∞, the sets Sinf(βn, n, δ) and Ssup(βn, n, δ) are non empty for all

δ ∈ (0, 1) (see Lemma 1, i)) allowing us to introduce the integers

Lγ(βn) := maxSinf

(
βn, n,

1− γ
2

)
and Rγ(βn) := minSsup

(
βn, n,

1− γ
2

)
.

The confidence interval proposed in Gardes [13] is given by

[XLγ(βn),n, XRγ(βn),n] and we have the following result.

Proposition 1 Let βn ∈ (0, 1) be a sequence converging to 0 with nβn →∞.

If, as n→∞,

τn := ln(n)
(nβn)1/2 → 0,

one has P
(
[XLγ(βn),n, XRγ(βn),n] 3 Q(βn)

)
= γ + o(τn).

Unfortunately, this confidence interval cannot be used for an extreme quantile.

Indeed, if nβn → c ∈ [0, 1),

lim
n→∞

ln(n)
(nβn)1/2 =∞,
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and thus Proposition 1 does not hold for the extreme quantile Q(βn). More-

over, for n large enough, Ssup (βn, n, (1− γ)/2) =∞ for all γ > 1−2 exp(−c),

see Lemma 1, ii). It thus appears that an extrapolation of the confidence

interval bounds beyond the range of the data is required to deal with extreme

quantiles.

The aim of this paper is to adapt the construction procedure of quan-

tile confidence intervals introduced in Gardes [13] to the extreme case

nβn → c ∈ [0, 1). The distribution is assumed to be heavy-tailed and the

extrapolation method is inspired by the construction of Weissman’s estimator.

The rest of the paper is organized as follows. The new confidence in-

terval for an extreme quantile is given in Section 2 and the convergence

of its coverage probability to γ is established. A procedure to reduce the

bias of the coverage probability is described in Section 3. The finite sample

performance is examined in Section 4 and an application to a real dataset is

presented in Section 5. All the proofs are gathered in Appendix.

2 Construction of the confidence interval

The following model is considered for the distribution of the random vari-

able X of interest.

(A.1) There exist positive constants d and ξ such that αξQ(α)→ d as α→ 0.

Under (A.1), the quantile function Q is a regularly varying function at 0 with

index −ξ < 0. More specificaly, Q(α) = α−ξ`(α−1) where the function `

converges to d at infinity. Note that ` is a slowly varying function at infinity

i.e., such that for all t > 0,

lim
x→∞

`(tx)
`(x) = 1. (1)

Condition (A.1) holds for a large number of heavy-tailed distributions such

as Fréchet, Burr, student, among others.

Given an estimator ξ̂n of the tail-index ξ, the proposed confidence interval for

the extreme quantile Q(βn) is defined below.
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Definition 1 Let X1, . . . , Xn be n independent random variables with com-

mon quantile function Q satisfying (A.1). For a preselected probability γ ∈

(0, 1), a sequence βn such that nβn → c ∈ [0, 1) and a sequence αn converging

to 0 with nαn →∞, the two-sided confidence interval for the extreme quantile

Q(βn) is

I(γ, βn, ξ̂n) :=
[
Xn−bnαnc,n (tn,L(γ))ξ̂n , Xn−bnαnc,n (tn,R(γ))ξ̂n

]
,

where, denoting by F←beta(·; a, b) the quantile function of a Beta distribution of

parameters a > 0 and b > 0,

tn,L(γ) = β−1
n F←beta

(1− γ
2 , bnαnc+ 1, n− bnαnc

)
and tn,R(γ) = β−1

n F←beta

(1 + γ

2 , bnαnc+ 1, n− bnαnc
)
.

The idea leading to this confidence interval is given hereafter. We start by

remarking that 1−F (Xn−bnαnc,n) follows a Beta distribution with parameters

bnαnc+ 1 and n− bnαnc. Consequently,

P
(
Xn−bnαnc,n(tn,L(γ))ξ > Q(βn)

)
= Fbeta (zn(γ), bnαnc+ 1, n− bnαnc) ,

(2)

where zn(γ) = 1− F ((tn,L(γ))−ξQ(βn)). Under (A.1), x1/ξ(1− F (x))→ d1/ξ

as x→∞. Replacing x by Q(u), we obtain that uξQ(u)→ d as u→ 0. Since

tn,L(γ) ∼ αn/βn (see equation (16) in the proof of Theorem 1), one has that

(tn,L(γ))−ξQ(βn) ∼ dα−ξn →∞. Hence, as n→∞,

zn(γ) ∼ d1/ξtn,L(γ)[Q(βn)]−1/ξ ∼ tn,L(γ)βn

= F←beta

(1− γ
2 , bnαnc+ 1, n− bnαnc

)
.

Replacing zn(γ) in (2) by F←beta

(
1−γ

2 , bnαnc+ 1, n− bnαnc
)
, we finally obtain

P
(
Xn−bnαnc,n(tn,L(γ))ξ ≤ Q(βn)

)
≈ 1− 1− γ

2 = 1 + γ

2 . (3)

A similar approximation can be obtained for tn,R(γ). Replacing ξ by a

consistent estimator conducts us to the definition of the confidence inter-

val I(γ, βn, ξ̂n). It is worth noting that even if zn(γ) ∼ αn, the sequence

Fbeta (zn(γ), bnαnc+ 1, n− bnαnc) still depends on γ when n goes to infinity.
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We will prove hereafter that the approximation (3) is theoretically justified

and more specifically that the coverage probability of the random interval

I(γ, βn, ξ̂n) converges to γ. To establish this result, one needs to control the

rate of convergence in (A.1).

(A.2) There exist a function A converging to 0 at infinity and ρ < 0 such that

lim
α→0

1
A(α−1)

(
Q(tα)
Q(α) − t

−ξ
)

= t−ξ
∫ t−1

1
uρ−1du.

Condition (A.2) is a standard second order condition. For a detailed discus-

sion on this condition, see for instance the monographs of Beirlant et al. [4,

Section 3.3] and de Haan and Ferreira [16, Section 2.3]. The function |A| is

a regularly varying function at infinity with index ρ < 0. The second order

parameter ρ controls the rate of convergence of ` to d. The larger the ρ, the

slower the convergence. Note that in (A.2), the worst situation where ρ = 0

is not considered. This is not a strong restriction since a large range of distri-

butions have a negative second-order parameter. This is for instance the case

for the Hall class of heavy-tailed distributions introduced by Hall [17].

The asymptotic coverage probability of the confidence interval I(γ, βn, ξ̂n) is

established in the following result.

Theorem 1 Assume that conditions (A.1) and (A.2) hold. Let αn ∈ (0, 1)

be a sequence converging to 0 with nαn →∞ and βn ∈ (0, 1) a sequence such

that nβn → c ∈ [0, 1). Let also ξ̂n be an estimator of the tail-index ξ for which

there exist a non-degenerate distribution D and a sequence σn → 0 as n→∞

such that

σ−1
n

(
ξ̂n − ξ
ξ

)
d−→ D.

If (nαn)1/2 max
(
A(α−1

n );σn ln(αn/βn)
)
→ 0, then

lim
n→∞

P(I(γ, βn, ξ̂n) 3 Q(βn)) = γ.

Note that under the conditions of Theorem 1,

P
(
Xn−bnαnc,n(tn,L(γ))ξ̂n ≤ Q(βn)

)
→ 1 + γ

2 .

6



Hence, as a by-product of Theorem 1, we obtain a one-sided confidence interval

for Q(βn) given by [
Xn−bnαnc,n(tn,L(2γ − 1))ξ̂n , ∞

)
.

To estimate ξ, the natural way is to use the classic Hill estimator [18] defined

for a sequence kn ∈ {1, . . . , , n} with kn →∞ and kn/n→ 0, by

ξ̂(H)
n (kn) := 1

kn

kn∑
i=1

log
(
Xn−i+1,n
Xn−kn,n

)
. (4)

According to [16, Theorem 3.2.5], under (A.2) and if k1/2
n A(n/kn)→ 0,

k1/2
n

(
ξ̂

(H)
n (kn)− ξ

ξ

)
d−→ N (0, 1) . (5)

We thus have the following result which is a direct consequence of Theorem 1.

Corollary 1 Assume that conditions (A.1) and (A.2) hold. Let αn ∈

(0, 1), kn ∈ {1, . . . , n} and βn ∈ (0, 1) be sequences such that

αn, kn/n → 0, kn, nαn → ∞ and nβn → c ∈ [0, 1). If

(nαn)1/2 max
(
A(α−1

n ); (kn)−1/2 ln(αn/βn)
)
→ 0 and k1/2

n A(n/kn)→ 0 then

lim
n→∞

P(I(γ, βn, ξ̂(H)
n (kn)) 3 Q(βn)) = γ.

The choice of the sample fraction kn in the Hill estimator is a difficult task

and remains an open problem. Several procedures of selection can be found in

the literature. Dekkers et de Haan [9] propose to minimize the mean squared-

error of ξ̂(H)
n (kn) − ξ. Adaptation of boostrap methods are investigated by

Danielsson et al. [8] and Gomes and Oliveira [15]. Graphical based methods

are considered by Sousa and Michailids [24] and Beirlant et al. [2, 3]. In the

simulation study (see Section 4), we propose an ad-hoc procedure to select

the optimal number kn of order statistics.

Finally, note that we can obtain similar results to Corollary 1 by using other

tail index estimators such as for instance the bias-reduced Hill estimator pro-

posed by Cairo et al. [7]. Because of its simplicity, we choose to focus on the

classical Hill estimator which provides good finite sample performances (see

Section 4).
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3 A bias reduction procedure

We propose a heuristic method to reduce the bias in the coverage probability

of the confidence interval I(γ, βn, ξ̂n). For i ∈ {1, . . . , n}, let Ui = 1− F (Xi).

Since F is a continuous and strictly increasing function, U1, . . . , Un are inde-

pendent uniform random variables and for all k ∈ {1, . . . , n} the order statistic

Uk,n follows a beta distribution with parameters k and n−k+ 1. In the proof

of Theorem 1, it is shown that

P
(
Xn−bnαnc,n (tn,L(γ))ξ̂n ≤ Q(βn)

)
= P

(
Ubnαnc+1,n ≥ βntn,L(γ)Wn,L(γ)

)
,

and

P
(
Xn−bnαnc,n (tn,R(γ))ξ̂n ≥ Q(βn)

)
= P

(
Ubnαnc+1,n ≤ βntn,R(γ)Wn,R(γ)

)
,

with

Wn,•(γ) = exp
(
ξ̂n − ξ
ξ

ln tn,•(γ)
)
×

1− F
(
Q(βn)(tn,•(γ))−ξ̂n

)
βn(tn,•(γ))ξ̂n/ξ

 .
The construction of the confidence interval is based on the fact that, for n

large enough, Wn,•(γ) ≈ 1. Indeed, since

βntn,L(γ) = F←beta

(1− γ
2 , bnαnc+ 1, n− bnαnc

)
,

we obtain the approximation

P
(
Xn−bnαnc,n (tn,L(γ))ξ̂n ≤ Q(βn)

)
≈ P

(
Ubnαnc+1,n ≥ βntn,L(γ)

)
= 1 + γ

2 ,

and similarly for the right-bound of the interval.

To reduce the bias in the coverage probability of the confidence interval,

we propose to find a more accurate approximation ŵn,•(γ) of Wn,•(γ). In

Lemma 4, we show that under the conditions of Theorem 1,

Wn,•(γ) = 1 + ξ̂n − ξ
ξ

ln tn,•(γ)(1 + oP(1)), (6)

where oP(1) is a notation for a random variable converging to 0 in probability.

It appears that the error in the approximation of Wn,•(γ) by 1 is mainly due

to the estimation of the tail index. In view of (6), we decide to approximate
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Wn,•(γ) by taking into account the bias of the estimator ξ̂n. A first solution

could consists in replacing ξ̂n by a bias-corrected estimator of the tail index,

see e.g., Cairo et al. [7]. This requires the estimation of the second order

parameter which is a quite difficult task in practice. In this paper, we propose

an alternative solution.

From (6), we have Wn,•(γ) ≈ 1 + sgn(ξ̂n − ξ)|ξ̂n − ξ|/ξ ln tn,•(γ) where sgn is

the sign function. Using the fact that σ−1
n |ξ̂n−ξ|/ξ

d−→ |D| for some sequence

σn → 0, we propose to replace |ξ̂n−ξ|/ξ by rσn where r > 0 is any constant in

the support of the distribution of |D|. For instance, r can be the expectation

of |D| or a random value generated from |D|. To approximate Wn,•(γ), we

also need to estimate sgn(ξ̂n − ξ). An estimator ŝn is proposed in the next

result.

Proposition 2 Let ξ̂n and ξ̌n be two estimators of ξ such that

σ−1
n

(
ξ̂n − ξ
ξ

)
d−→ D and ς−1

n

(
ξ̌n − ξ
ξ

)
d−→ D̃,

for some non-degenerate distributions D and D̃ and where σn and ςn are two

sequences converging to 0 and such that σn/ςn → ∞. Then, the estimator

ŝn := (ξ̂n − ξ̌n)/|ξ̂n − ξ̌n| is such that

lim
n→∞

P
[
ŝn = sgn(ξ̂n − ξ)

]
= 1.

We finally propose the following bias-corrected confidence interval.

Definition 2 Let X1, . . . , Xn be n independent random variables with quan-

tile function Q satisfying (A.1). For a preselected probability γ ∈ (0, 1), a

sequence βn such that nβn → c ∈ [0, 1) and a sequence αn converging to 0

with nαn → ∞, the bias-reduced confidence interval for the extreme quantile

Q(βn) is

IBR(γ, βn, ξ̂n) :=
[
Xn−bnαnc,n (tn,L(γ̂n,L))ξ̂n , Xn−bnαnc,n (tn,R(γ̂n,R))ξ̂n

]
,

where γ̂n,• is the solution (if it exists) of the equation in u ∈ (0, 1)

tn,•(u) (1 + rŝnσn ln tn,•(u)) = tn,•(γ). (7)
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Conditions for the existence and the uniqueness of the solution of (7) are

provided in the particular case where the Hill estimator is used to estimate

the tail index, see hereafter.

Application with the Hill estimator Let us give the expression of

the bias-reduced confidence interval when the Hill estimator ξ̂(H)
n (kn) is used

for the estimation of the tail-index ξ. Recall that under the second-order

condition (A.2) and for sequences kn and k̃n converging to infinity such that

k
1/2
n A(n/kn)→ 0 and k̃1/2

n A(n/k̃n)→ 0, one has

k1/2
n

(
ξ̂

(H)
n (kn)− ξ

ξ

)
d−→ N (0, 1) and k̃1/2

n

(
ξ̂

(H)
n (k̃n)− ξ

ξ

)
d−→ N (0, 1).

If the sequence k̃n is such that kn/k̃n → 0, one can use the result of Proposi-

tion 2 to estimate the sign of ξ̂(H)
n (kn)− ξ. This estimator is given by

ŝ(H)
n := ξ̂

(H)
n (kn)− ξ̂(H)

n (k̃n)
|ξ̂(H)
n (kn)− ξ̂(H)

n (k̃n)|
. (8)

An example of sequences kn and k̃n satisfying the above conditions is given

by kn = d(ln(n))2 for some positive constant d and k̃n = kn ln(ln(n)). If,

for instance, we take for r the expectation of the folded normal distribution

|N (0, 1)|, we obtain the bias-reduced confidence interval[
Xn−bnαnc,n

(
tn,L(γ̂(H)

n,L)
)ξ̂(H)
n (kn)

, Xn−bnαnc,n
(
tn,R(γ̂(H)

n,R)
)ξ̂(H)
n (kn)

]
, (9)

where γ̂(H)
n,• is the solution (if it exists) of the equation in u ∈ (0, 1)

tn,•(u)
(

1 +
√

2
knπ

ŝ(H)
n ln tn,•(u)

)
= tn,•(γ). (10)

We close this section by a result dedicated to the existence and the uniqueness

of the solution of (10).

Proposition 3 If the sequences kn, αn and βn involved in (10) are chosen

in such a way that tn,R(0) = tn,L(0) =: tn(0) > 1,

kn >
2
π

max
(

(ln(βn))2

(1− βntn,R(γ))2 ; [1 + ln(β−1
n )]2

)
, (11)
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and

kn >
2(ln(tn(0))2

π
max

((
1− tn,L(γ)

tn(0)

)−2
;
(

1− tn,R(γ)
tn(0)

)−2)
, (12)

then the solution of (10) exists and is unique.

As an example of sequences satisfying the conditions of Proposition 3, one can

take βn = c/n with c > 0, αn = mn/n withmn →∞ andmn(ln(mn))2 = o(n)

and kn = dmax((ln(n))2,mn(ln(mn))2) for some d > 2/π, see Lemma 5 for

a proof. In particular, a concrete choice is given by kn = d(ln(n))2 for some

d > 2/π, βn = c/n with c > 0 and αn = (ln(kn))a/n for some a > 0. This

choice for the sequence αn is considered in the simulation study, see Section 4.

4 Simulation study

Let X1, . . . , Xn be n independent copies of a random variable X. We propose

to look at the finite sample behavior of the confidence interval for Q(βn) with

βn = 1/n. Four models are considered for the quantile function of X.

• Model 1: Burr distribution. For κ > 0 and c > 0, the quantile function

is given for all u ∈ (0, 1) by Q(u) =
(
u−1/κ − 1

)1/c
. The tail-index is

ξ = 1/(cκ) and the second-order parameter is ρ = −1/κ.

• Model 2: Fréchet distribution. The quantile function is given for all u ∈

(0, 1) by Q(u) = [− ln(1−u)]−ξ. The second-order parameter is ρ = −1.

• Model 3: Absolute Student distribution. For µ > 0, the quantile func-

tion is given for all u ∈ (0, 1) by Q(u) = qt(1− u/2;µ), where qt(·;µ) is

the quantile function of a Student distribution with µ degree of freedom.

The tail-index is ξ = 1/µ and the second-order parameter is ρ = −1.

• Model 4: Log-Gamma distribution with shape parameter a = 2 and

rate parameter r = 2. The tail-index is given here by ξ = 1/r = 1/2 and

the second-order parameter is ρ = 0.

Note that condition (A.2) is satisfied by models 1 to 3 but not for model 4

for which ρ = 0. For each model, we consider three sample sizes : n ∈
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{200, 500, 1000}. The tail index is estimated by the Hill estimator ξ̂(H)
n (kn)

for some kn ∈ {1, . . . , n− 1}. The sequence αn is taken such as

nαn = max
(
3;
⌊
(ln(kn))0.85

⌋)
.

This choice is motivated by the remark made after Proposition 3 since for kn
large enough, nαn ∼ (ln(kn))a with a = 0.85. Note that our choice ensures

that nαn ≥ 3 whatever the value of kn. For the bias-corrected version of the

confidence interval given in (9), we take ŝ(H)
n as in (8) with the sequence

k̃n = min (bkn ln(ln(n))c;n− 1) .

This choice corresponds to the example given after the definition of ŝ(H)
n (equa-

tion (8)) with the constraint k̃n ≤ n − 1. This bias-corrected version is only

used when the uniqueness of a solution to (20) has been shown. This corre-

sponds to k ≥ 26 for n = 200, k ≥ 34 for n = 500 and k ≥ 40 for n = 1000.

When the uniqueness is not guaranteed, the bias-reduced interval is replaced

by the standard one, as presented in Definition 1.

The coverage probability is approximated by generating N = 10000 indepen-

dent samples of size n for the four above mentioned models. This approx-

imation is denoted γ̄N (kn). In the same way, we approximate the coverage

probabilities

P
(
Xn−bnαnc,n (tn,L(γ))ξ̂n ≤ Q(βn)

)
and P

(
Xn−bnαnc,n (tn,R(γ))ξ̂n ≥ Q(βn)

)
,

by γ̄N,L(kn) and γ̄N,R(kn). Of course, it is expected to obtain for γ̄N (kn) a

value close to γ and for γ̄N,L(kn) and γ̄N,R(kn), values close to (1 + γ)/2.

We compare our intervals’ performances with the "new normal" ridge

confidence interval presented in Buitendag et al. [6]. This interval is based

on a ridge regression estimator for the extreme value index, as developed in

Buitendag et al. [5], as well as on a new asymptotically normal quantity.

We choose this interval as a competitor among the 12 presented in Bui-

tendag et al. [6] since it ensured accurate coverage in most of their simu-

lations. This new normal ridge confidence interval is based on an estimator

12



of the second order parameter ρ from Fraga Alves, Gomes, and de Haan [12].

However, this estimator is not always well-defined. When such problem oc-

curs, we replace the new normal ridge confidence interval by the new normal

Hill confidence interval, which is also presented in Buitendag et al. [6] and

does not rely on the estimation of ρ. The coverage comparison of our two

confidence intervals (standard and bias reduced) with the new normal ridge

is given in Figure 1.

Our confidence intervals provide good coverage probabilities for the distribu-

tions we considered, as we can see on the left column of Figure 1.

The bias reduction enlarges the range of values of k for which the interval has a

coverage rate close to the objective. The new normal ridge confidence interval

performs especially well for the Student distribution (ξ = 1, ρ = −1) and

the Fréchet distribution (ξ = 0.5, ρ = −1). However, it is not very accurate

for the log-gamma distribution (ξ = 0.5, ρ = 0), while our bias reduced

interval is always close to the nominal level of 0.95 even if the second-order

condition (A.2) is not valid in this case.

For the left bound, in the central column of Figure 1, our intervals coverage

rates are very close to the nominal level of 0.975, as long as k does not exceed

160. As for the right bound, in the right column of Figure 1, the nominal level

is only hit once, for a value of k below 200, depending on the distribution and

the interval considered (bias reduced or not).

However, coverage curves only indicate approximately what will happen if we

choose a fixed k. Usually, we select a value of k which seems adequate with

regard to the Hill plot, as it will be presented in the next paragraph.

Selection of the sequence kn − To select the number of observations

used to estimate the tail-index, we propose for each of the N samples to

pick kn in a stability region of the plot {(j, ξ̂(H)
n (j)); j ∈ J} where J :=

{b0.05nc, . . . , b0.5nc}. To detect this region, we use the following procedure.

Let

J (H) :=
[
min
j∈J

ξ̂(H)
n (j); max

j∈J
ξ̂(H)
n (j)

]
,

13



Figure 1: Coverage rate of the interval and of the left and right bounds (from left to

right) for absolute Student, Fréchet, Burr and log-gamma distributions and sample

size n = 500.
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be the interval of variation of the Hill estimator ξ̂
(H)
n (kn) when kn goes

through the interval J . This interval is divided into M non-overlapping slices

S1, . . . ,SM . We define the stability region as the longest sequence of consec-

utive integers for which the Hill estimator belongs to the same slice. More

specifically, for eachm ∈ {1, . . . ,M}, we denote by J (opt)
m the longest sequence

of consecutive integers such that ξ̂(H)
n (j) ∈ Sm for each j ∈ J (opt)

m . Denoting

by |J | the number of elements in an interval J and letting

m∗ = arg max
m∈{1,...,M}

∣∣∣J (opt)
m

∣∣∣ ,
the stability region is given by J (opt)

m∗ . We finally take for kn the integer

k(opt)
n := 1

|J (opt)
m∗ |

∑
j∈J(opt)

m∗

j = 1
2
(
max J (opt)

m∗ + min J (opt)
m∗

)
.

This procedure is applied with M = 5 and the obtained results for the two-

sided confidence intervals are shown in Tables 1 to 6. We also give in Tables 7

to 18 (see Appendix), the empirical coverage probabilities for the one-sided

confidence intervals (left and right bound).

Since our selection procedure for k(opt)
n is not tailored for the new normal ridge

estimator, we also use a "rule of thumb" with k = bn/5c. We notice that our

bias reduced confidence interval nearly always performs well when applied for

k
(opt)
n . The worst case is attained for a sample size of n = 200 with a Student

distribution where ξ = 1 and ρ = −1 for which the estimated coverage is

0.9381, see Table 2. The bias reduction is mostly beneficial.

On the contrary, the performances of the new normal ridge confidence interval

are often better using bn/5c, but it only outperforms our confidence intervals

when n = 200 for the Student and the Fréchet distributions.

5 Application to a real dataset

We apply our procedure to the norwegian fire insurance claims dataset as

studied in Beirlant et al. [1]. Data have been corrected for inflation and the

claims are expressed in millions of 2012 Norwegian Krone (NOK). The heavy

tailness of this data set has already been validated in Gardes and Girard [14].
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N(k(opt)

n ) 0.9355 0.9463 0.9732

γ̄N(bn/5c) 0.9236 0.9580 0.9531

500
γ̄N(k(opt)

n ) 0.9446 0.9520 0.9764

γ̄N(bn/5c) 0.9520 0.9653 0.9604

1000
γ̄N(k(opt)

n ) 0.9510 0.9535 0.9717

γ̄N(bn/5c) 0.9531 0.9530 0.9713

Table 1: Empirical coverage probabilities for a theoretical coverage probability of

γ = 0.95 and a Student distribution (ξ = 0.5 and ρ = −1).

n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N(k(opt)

n ) 0.9066 0.9381 0.9506

γ̄N(bn/5c) 0.8663 0.9147 0.9484

500
γ̄N(k(opt)

n ) 0.9240 0.9427 0.9571

γ̄N(bn/5c) 0.9037 0.9353 0.9415

1000
γ̄N(k(opt)

n ) 0.9400 0.9512 0.9563

γ̄N(bn/5c) 0.9191 0.9399 0.9294

Table 2: Empirical coverage probabilities for a theoretical coverage probability of

γ = 0.95 and a Student distribution (ξ = 1 and ρ = −1).
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N(k(opt)

n ) 0.9203 0.9458 0.9543

γ̄N(bn/5c) 0.8823 0.9241 0.9495

500
γ̄N(k(opt)

n ) 0.9386 0.9500 0.9374

γ̄N(bn/5c) 0.9171 0.9453 0.9426

1000
γ̄N(k(opt)

n ) 0.9501 0.9556 0.9300

γ̄N(bn/5c) 0.9306 0.9483 0.9260

Table 3: Empirical coverage probabilities for a theoretical coverage probability of

γ = 0.95 and a Fréchet distribution (ξ = 0.5 and ρ = −1).

n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N(k(opt)

n ) 0.9429 0.9519 0.9656

γ̄N(bn/5c) 0.9308 0.9613 0.9467

500
γ̄N(k(opt)

n ) 0.9465 0.9475 0.9684

γ̄N(bn/5c) 0.9588 0.9681 0.9433

1000
γ̄N(k(opt)

n ) 0.9493 0.9463 0.9707

γ̄N(bn/5c) 0.9535 0.9498 0.9565

Table 4: Empirical coverage probabilities for a theoretical coverage probability of

γ = 0.95 and a Burr distribution (ξ = 0.5 and ρ = −
√

0.5).
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N(k(opt)

n ) 0.9319 0.9496 0.9611

γ̄N(bn/5c) 0.9061 0.9460 0.9493

500
γ̄N(k(opt)

n ) 0.9410 0.9507 0.9670

γ̄N(bn/5c) 0.9384 0.9578 0.9441

1000
γ̄N(k(opt)

n ) 0.9518 0.9548 0.9696

γ̄N(bn/5c) 0.9458 0.9530 0.9444

Table 5: Empirical coverage probabilities for a theoretical coverage probability of

γ = 0.95 and a Burr distribution (ξ = 0.5 and ρ = −1).

n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N(k(opt)

n ) 0.9285 0.9503 0.9550

γ̄N(bn/5c) 0.8951 0.9316 0.9514

500
γ̄N(k(opt)

n ) 0.9464 0.9541 0.9200

γ̄N(bn/5c) 0.9336 0.9530 0.9301

1000
γ̄N(k(opt)

n ) 0.9550 0.9557 0.8846

γ̄N(bn/5c) 0.9441 0.9527 0.8938

Table 6: Empirical coverage probabilities for a theoretical coverage probability of

γ = 0.95 and a log-Gamma distribution (ξ = 0.5 and ρ = 0).
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We only use data from years 1985 to 1992, for which the sample sizes are

similar, ranging from 607 in 1985 to 827 in 1988. For the quantile level, we

take β = 1/638 where 638 is the median value of the sample sizes from years

1985 to 1992. For years with a sample size larger than 638, the level β can

thus be considered as extreme. For each year, we select k(opt)
n as described in

Section 4. An illustration of the procedure is given in Figure 2 for year 1992,

for which k(opt)
n = 195.

On Figure 3, we check that the procedure is consistent, showing the rough

alignment of points

{(
− log

(
i/k(opt)

n

)
, log

(
Xn−i,n/Xn−k(opt)

n ,n

))
, 1 ≤ i < k(opt)

n

}
,

on a line of slope ξ̂n(k(opt)
n ) passing through the origin.

The resulting bias corrected intervals are illustrated in Figure 4.

Note that the larger intervals are obtained for the higher centers of the inter-

vals, which gives an insight on the quantile estimate. This is not surprising

since a large quantile is associated with a large tail-index and a high variabil-

ity in the tail of the distribution. The width of the interval provides us an

indication on the tail-variability and in that sense, our results are consistent

with those exposed in Gardes and Girard [14]. Note that the confidence in-

terval for year 1985 [177, 850] does not match confidence intervals for years

1990 and 1991 (respectively [46, 158] and [32, 116]).
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Figure 2: Selection procedure for k(opt)
n for year 1992. We represent the estimated

extreme value index in terms of k. The shaded area represent the k values outside

[0.05n, 0.5n], the horizontal dashed lines represent the slices and the red part of the

curve is the longest part of the curve that belongs to the same slice.

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

ξ̂ n
(k
)

0 100 200 300 400 500 600

k
(opt)
n

Figure 3: Q-Q plot for year 1992 for the k(opt)
n = 195 largest observations.

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3
.5

− log
(
i/k

(opt)
n

)

lo
g
( X

n
−
i,
n
/X

n
−
k
(
o
p
t
)

n
,n

)

20



Figure 4: Application to Norwegian Fire Insurance data set for years 1985 to 1992.
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Appendix - Proofs and additional results

Preliminaries results

Lemma 1 i) If αn is a sequence converging to 0 with nαn → ∞ then

for all δ ∈ (0, 1) and for n large enough, Sinf(αn, n, δ) 6= ∅ and

Ssup(αn, n, δ) 6= ∅.

ii) If βn ∈ (0, 1) is a sequence such that nβn → c ∈ [0, 1) then for n large

enough, Ssup(αn, n, δ) = ∅ for all δ < exp(−c).

Proof − i) The function j 7→ Fbeta(αn;n− j + 1, j) is increasing. Hence, for

all j ∈ {1, . . . , n},

αnn ≤ Fbeta(αn;n− j + 1, j) ≤ 1− (1− αn)n.

Since αnn → 0 and 1− (1− αn)n → 1, the conclusion is straightforward.

ii) As shown before, for all j ∈ {1, . . . , n},

0← βnn ≤ Fbeta(βn;n− j + 1, j) ≤ 1− (1− βn)n → 1− exp(−c).
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Hence, if 1− δ > 1− exp(−c) then, for n large enough, Ssup(αn, n, δ) = ∅.

In all what follows, U1, . . . , Un are n independent standard uniform random

variables. The associated order statistics are denoted U1,n ≤ . . . ≤ Un,n.

Lemma 2 Let αn ∈ (0, 1) be a sequence converging to 0 with nαn → ∞ as

n → ∞. If there exist δ ∈ (0, 1) and kn ∈ {1, . . . , n} such that P(Ukn,n ≤

αn)→ δ then kn/(nαn)→ 1.

Proof − Let us first show that necessarily, kn →∞. Suppose that this is not

the case. There exists A > 0 such that for all N ∈ N\{0}, there exists n ≥ N

for which kn < A. Now, let E1, . . . be independent standard exponential

random variables. From Rényi’s representation of ordered standard uniform

random variables,

P(Ukn,n ≤ αn) = P
(
nTkn
Tn+1

≤ nαn
)
,

where for i ∈ N\{0}, Ti = E1 + . . .+Ei. By the law of large numbers, n/Tn+1

converges in probability to 1 and for all N ∈ N \ {0}, there exists n ≥ N such

that

Tkn ≤
bAc+1∑
i=1

Ei.

Hence, for all N ∈ N \ {0}, there exists n ≥ N such that

P(Ukn,n ≤ αn) ≥ P

 n

Tn+1

bAc+1∑
i=1

Ei ≤ nαn

→ 1,

since nαn →∞. Hence,

lim sup
n→∞

P(Ukn,n ≤ αn) = 1,

which is in contradiction with the fact that P(Ukn,n ≤ αn)→ δ ∈ (0, 1).

Now, for all ε > 0, let An,ε = {nUkn,n/kn ∈ [1− ε, 1 + ε]}. One has

P(Ukn,n ≤ αn) = P({Ukn,n ≤ αn} ∩An,ε) + P({Ukn,n ≤ αn} ∩AC
n,ε),

where AC
n,ε is the complement of the set An,ε. Since kn → ∞, Rényi’s repre-

sentation of the order statistic Ukn,n, and the law of large number entail that

nUkn,n/kn converges in probability to 1. Hence,

P({Ukn,n ≤ αn} ∩AC
n,ε) ≤ P(AC

n,ε)→ 0.
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Moreover,

P({Ukn,n ≤ αn} ∩An,ε) =


0 if nαn/kn < 1− ε,

P(An,ε) if nαn/kn > 1 + ε.

Since P(An,ε)→ 1, we thus have proven that for all ε > 0, P(Ukn,n ≤ αn)→ 0

if nαn/kn < 1 − ε and P(Ukn,n ≤ αn) → 1 if nαn/kn > 1 + ε. Since by

assumption, P(Ukn,n ≤ αn) → δ ∈ (0, 1), it appears that for all ε > 0, for n

large enough, 1− ε ≤ nαn/kn ≤ 1 + ε and the proof is complete.

Let us now give a technical result which is a consequence of the second-order

condition.

Lemma 3 Under conditions (A.1) and (A.2), if αn ∈ (0, 1) and βn ∈ (0, 1)

are sequences converging to 0 with αn/βn → ∞ then, for every sequence tn
such that tn ∼ (αn/βn)−ξ, one has

lim
n→∞

1
|A(α−1

n )|

∣∣∣∣∣1− F (Q(βn)tn)
t
−1/ξ
n βn

− 1
∣∣∣∣∣ = − 1

ξρ
.

Proof − Condition (A.2) and [16, Theorem 2.3.9] entail that for all t > 0,

lim
x→∞

1
A((1− F (x))−1)

(1− F (tx)
1− F (x) − t

−1/ξ
)

= ξ−2t−1/ξ
∫ t

1
uρ/ξ−1du.

We can then use [16, Remark B.3.15] to obtain

lim
x→∞

1
A((1− F (x))−1)

(
t1/ξx

1− F (xtx)
1− F (x) − 1

)
= − 1

ρξ
,

where tx →∞ as x →∞. Applying this result with x = Q(βn)tn ∼ dα−ξn →

∞ and tx = t−1
n ∼ (αn/βn)ξ →∞ as n→∞ leads to

βnt
−1/ξ
n

1− F (Q(βn)tn)
1

A((1− F (Q(βn)tn)−1) ×
(

1− F (Q(βn)tn)
t
−1/ξ
n βn

− 1
)
→ 1

ξρ
,

as n → ∞. From (A.1), x1/ξ(1 − F (x)) → d1/ξ as x → ∞ and thus, 1 −

F (Q(βn)tn) ∼ αn. Hence, since |A| is a regularly varying function, |A((1 −

F (Q(βn)tn)−1)| ∼ |A(α−1
n )| and thus

lim
n→∞

1
|A(α−1

n )|

∣∣∣∣∣1− F (Q(βn)tn)
t
−1/ξ
n βn

− 1
∣∣∣∣∣ = − 1

ξρ
.
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In the next lemma, an asymptotic expansion of the random variable

Wn,•(γ) = exp
(
ξ̂n − ξ
ξ

ln tn,•(γ)
)
×

1− F
(
Q(βn)(tn,•(γ))−ξ̂n

)
βn(tn,•(γ))ξ̂n/ξ

 ,
is established.

Lemma 4 Assume that conditions (A.1) and (A.2) hold. Let αn ∈ (0, 1) be

a sequence converging to 0 with nαn → ∞ and βn ∈ (0, 1) a sequence such

that nβn → c ∈ [0, 1). Let also ξ̂n be an estimator of the tail-index ξ for which

there exist a non-degenerate distribution D and a sequence σn → 0 as n→∞

such that σ−1
n

(
ξ̂n − ξ

)
/ξ

d−→ D. If (nαn)1/2 max
(
A(α−1

n );σn ln(αn/βn)
)
→

0, then Wn,•(γ) = 1 + (ξ̂n − ξ)/ξ ln tn,•(γ)(1 + oP(1)).

Proof − Recall that Wn,•(γ) = F1,n×F2,n where F1,n = exp(Zn) with Zn :=

ln tn,•(γ)(ξ̂n − ξ)/ξ and

F2,n :=

1− F
(
Q(βn)(tn,•(γ))−ξ̂n

)
βn(tn,•(γ))ξ̂n/ξ

 .
Let us first focus on the factor F1,n. Since ln tn,• ∼ ln(αn/βn) and, by as-

sumption, σ−1
n (ξ̂n − ξ)/ξ d−→ D, one has that Zn/[σn ln(αn/βn)] = OP(1),

where OP(1) represents a stochastically bounded random variable. Since

σn ln(αn/βn) → 0, we thus have that Zn = OP(σn ln(αn/βn)) = oP(1). A

Taylor expansion of the exponential function leads to

F1,n = 1 + Zn(1 + oP(1)). (13)

Let us now deal with the factor F2,n. Applying Lemma 3 with tn = (αn/βn)−ξ̂n

leads to

F2,n = 1− 1
ξρ
A(α−1

n )(1 + o(1)), (14)

where o(1) is the generic notation for a sequence converging to 0. Multiply-

ing (13) and (14), we obtain

Wn,•(γ) = 1 + Zn

(
1− 1

ξρ
Z−1
n A(α−1

n )(1 + o(1)) + oP(1)
)
.

Using again the facts that ln tn,• ∼ ln(αn/βn) and σ−1
n (ξ̂n − ξ)/ξ d−→

D, one has that Z−1
n = OP(σ−1

n (ln(αn/βn))−1). Remarking that

A(α−1
n )/σn ln(αn/βn) → 0, we have Z−1

n A(α−1
n ) = oP(1) and the proof is

complete.
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In the last lemma, we propose an example of sequences αn, βn and kn satis-

fying the conditions of Proposition 3 and that can be used to construct the

bias-reduced confidence interval (9).

Lemma 5 Let mn be a positive sequence such that mn → ∞ and

mn(ln(mn))2 = o(n). The conditions of Proposition 3 are satisfied by tak-

ing βn = c/n with c > 0, αn = δn/n and kn = dmax((ln(n))2,mn(ln(mn))2)

for some d > 2/π.

Proof − First note that αn → 0, nαn = mn → ∞ and that βn/αn → ∞.

Since tn(0) ∼ αn/βn → ∞, one has for n large enough that tn(0) > 1. Next,

since ln(βn) ∼ ln(n), [1 − ln(βn)]2 ∼ (ln(n))2 and 1 − βntn,R(γ) → 1, it is

readily seen that condition (11) is satisfied since

kn

/
max

(
(ln(βn))2

(1− βntn,R(γ))2 ; [1 + ln(β−1
n )]2

)
∼ kn

(ln(n))2 ≥ d >
2
π
.

Let us now focus on condition (12). One has that ln tn(0) ∼ ln(αn/βn) =

ln(mn)− ln(c) ∼ ln(mn). Moreover, a Taylor expansion together with the use

of [13, Lemma 1] entail that for n large enough, there are constants 0 < c1 < c2

such that

m1/2
n

∣∣∣∣ tn,•(γ)
tn(0) − 1

∣∣∣∣ ∈ [c1, c2].

Hence, for n large enough, there exists constants 0 < c3 < c4 such that

mn(ln(mn))2 ln tn(0)
1− tn,•(γ)/tn(0) ∈ [c3, c4].

Since kn/[mn(ln(mn))2] ≥ d > 2/π, condition (12) is checked and the proof is

complete.

Proof of main results

Proof of Theorem 1 − Let us prove that

P
(
Xn−bnαnc,n (tn,L(γ))ξ̂n ≤ Q(βn)

)
→ 1 + γ

2 ,

the proof of

P
(
Xn−bnαnc,n (tn,R(γ))ξ̂n ≥ Q(βn)

)
→ 1− γ

2 ,
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being similar. Let Ui := 1−F (Xi) for i ∈ {1, . . . , n}. Since F is a continuous

and strictly increasing function,

P
(
Xn−bnαnc,n (tn,L(γ))ξ̂n ≤ Q(βn)

)
= P

(
Ubnαnc+1,n ≥ Zn(ξ̂n)

)
,

where

Zn(ξ̂n) = 1− F
(
Q(βn) (tn,L(γ))−ξ̂n

)
.

By assumption, σ−1
n (ξ̂n − ξ) = OP(1) that is to say that for all ε > 0, there

exists cε > 0 such that for n large enough, P(σ−1
n |ξ̂n − ξ| > cε) < ε. We have

the decomposition

P
(
Ubnαnc+1,n ≥ Zn(ξ̂n)

)
= P

(
{Ubnαnc+1,n ≥ Zn(ξ̂n)} ∩ {|ξ̂n − ξ| > σncε}

)
+ P

(
{Ubnαnc+1,n ≥ Zn(ξ̂n)} ∩ {|ξ̂n − ξ| ≤ σncε}

)
=: T1,n + T2,n.

For n large enough,

0 < T1,n < ε. (15)

To deal with the second term, the definition of tn,L(γ) and the fact that

Ubnαnc+1,n is distributed as a Beta distribution with parameters bnαnc + 1

and n− bnαnc, entail that

P(Ubnαnc+1,n ≥ βntn,L(γ)) = 1− γ
2 .

Hence, from Lemma 2,

tn,L(γ) ∼ αn/βn, (16)

and thus, for n large enough,

(1− ε) ln
(
αn
βn

)
≤ ln (tn,L(γ)) ≤ (1 + ε) ln

(
αn
βn

)
.

As a consequence, when the event {|ξ̂n − ξ| ≤ σncε} occurs,

exp
(
−cε(1− ε)σn ln

(
αn
βn

))
≤ (tn,L(γ))ξ−ξ̂n ≤ exp

(
cε(1 + ε)σn ln

(
αn
βn

))
.

Since by assumption, σn ln(αn/βn)→ 0, one has for n large enough

1− 2cεσn ln
(
αn
βn

)
≤ (tn,L(γ))ξ−ξ̂n ≤ 1 + 2cεσn ln

(
αn
βn

)
,
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and thus 1− F (Q(βn)tn,+(ξ)) ≤ Zn(ξ̂n) ≤ 1− F (Q(βn)tn,−(ξ)) , where

tn,±(ξ) := (tn,L(γ))−ξ
(

1± 2cεσn ln
(
αn
βn

))
.

Applying Lemma 3 with tn = tn,±(ξ) leads to

lim
n→∞

1
|A(α−1

n )|

∣∣∣∣∣1− F (Q(βn)tn,±(ξ))
(tn,±(ξ))−1/ξβn

− 1
∣∣∣∣∣ = − 1

ξρ
.

Using this convergence, when the event {|ξ̂n − ξ| ≤ σncε} occurs, one has for

n large enough that

βn[tn,+(ξ)]−1/ξ
(

1 + |A(α−1
n )|1 + ε

ρξ

)
≤ Zn(ξ̂n) ≤ βn[tn,−(ξ)]−1/ξ

(
1− |A(α−1

n )|1 + ε

ρξ

)
.

As a consequence, for n large enough,

pn,− − ε ≤ T2,n ≤ pn,+, (17)

where

pn,± := P
(
Ubnαnc+1,n ≥ βn[tn,±(ξ)]−1/ξ

(
1± |A(α−1

n )|1 + ε

ρξ

))
.

Since Ubnαnc+1,n is distributed as a Beta distribution with parameters bnαnc+

1 and n− bnαnc and since

βn[tn,±(ξ)]−1/ξ
(

1± |A(α−1
n )|1 + ε

ρξ

)
= F←beta

(1− γ
2 , bnαnc+ 1, n− bnαnc

)(
1± 2cεσn ln

(
αn
βn

))(
1± |A(α−1

n )|1 + ε

ρξ

)
,

one has

pn,± = 1−Fbeta

(
F←beta

(1− γ
2 , bnαnc+ 1, n− bnαnc

)
(1 + δn,±); bnαnc+ 1, n− bnαnc

)
,

where

δn,± =
(

1± 2cεσn ln
(
αn
βn

))(
1± |A(α−1

n )|1 + ε

ρξ

)
−1 = O

(
σn log

(
αn
βn

))
+O

(
A(α−1

n )
)
.

The notation O(1) stands for an asymptotically bounded sequence. From the

mean value theorem,

pn,± = 1 + γ

2 + δn,±F
←
beta

(1− γ
2 , bnαnc+ 1, n− bnαnc

)
× fbeta (ζn, bnαnc+ 1, n− bnαnc) ,
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where

ζn = F←beta

(1− γ
2 , bnαnc+ 1, n− bnαnc

)
(1 + θδn,±) ∼ αn,

with θ ∈ (0, 1). From [13, Lemma 1]

fbeta (ζn, bnαnc+ 1, n− bnαnc) = O
(
n1/2

α
1/2
n

)
.

Since F←beta ((1− γ)/2, bnαnc+ 1, n− bnαnc) ∼ αn, we have pn,± = (1+γ)/2+

O
(
δn,±(nαn)1/2

)
. Since by assumption

δn,±(nαn)1/2 = O
(

(nαn)1/2 max
(
A(α−1

n );σn ln
(
αn
βn

)))
= o(1),

we finally obtained

pn,± = 1 + γ

2 + o(1). (18)

Gathering (17) and (18) entail that for n large enough,

1 + γ

2 − 2ε ≤ T2,n ≤
1 + γ

2 + ε. (19)

Collecting (15) and (19) conclude the proof.

Proof of Proposition 2 − Let us introduce the notations

ζ1,n := σ−1
n

(
ξ̂n − ξ

)
and ζ2,n := ς−1

n

(
ξ̌n − ξ

)
.

One has ŝn = sgn(ξ̂n − ξ)sgn(1−∆n), where

∆n := ςn
σn

ζ2,n
ζ1,n

.

As a consequence,

P
(
ŝn = sgn(ξ̂n − ξ)

)
= P (sgn(1−∆n) = 1) = P(∆n < 1).

The conclusion is straightforward since, under the assumptions of Proposi-

tion 2,
ζ2,n
ζ1,n

= OP(1) and ςn
σn
→ 0.
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Proof of Proposition 3 −We focus on the equation (10) with • = R. The

case • = L is very similar and is omitted for the sake of conciseness. For

s ∈ {−1, 1} and d > 0, let us introduce the function fs,d : [0,∞)→ R defined

for all x ≥ 0 by fs,d(x) = x(1 + sd ln x). Let us also introduce the sequence

dn := k
−1/2
n

√
2/π and remark that when u ∈ (0, 1), tn,R(u) ∈ (tn(0), β−1

n ). If

we prove the existence and the uniqueness of the solution of the equation

f
ŝ

(H)
n ,dn

(x) = tn,R(γ), (20)

when x ∈ (tn(0), β−1
n ), then necessarily equation (10) will also admit an

unique solution given by γ̂
(H)
n,R = 2Fbeta (βnx∗n, bnαnc+ 1, n− bnαnc) − 1,

where x∗n is the solution of (20).

Let us start with the study of the function fs,d. When s = 1, the function

fs,d is decreasing on (0, exp(−(1 + d−1))) and increasing elsewhere. We also

remark that f1,d(x) ≤ 0 for all x ≤ exp(−(1 + d−1)) and that fs,d(x) → +∞

as x → ∞. When s = −1, the function is increasing on (0, exp(d−1 − 1))

and decreasing elsewhere. Moreover, 0 < fs,d(x) ≤ d exp(d−1 − 1) for

x ≤ exp(d−1 − 1) and fs,d(x)→ −∞ as x→∞.

First, let us consider the situation when ŝ
(H)
n = 1 in equation (20).

The inequality

kn >
2
π

(ln(tn(0))2

(1− tn,R(γ)/tn(0))2 ,

entails that f1,dn(tn(0)) < tn,R(γ). Moreover, since tn(0) > 1, on has

f1,dn(β−1
n ) > β−1

n > tn,R(γ). Hence, in view of the above study of the function

f1,d, the existence and uniqueness of the solution is proved.

Now, let us focus of the case ŝ(H)
n = −1. The inequality kn > (2/π)[1 +

ln(β−1
n )]2 yields to β−1

n < exp(d−1
n − 1). Hence, the function f−1,dn is increas-

ing on the interval (tn(0), β−1
n ). Moreover, since tn(0) > 1, f−1,dn(tn(0)) <

tn(0) < tn,R(γ) and finally, the inequality

kn >
2
π

(ln(βn))2

(1− βntn,R(γ))2 ,

entails that f−1,dn(β−1
n ) > tn,R(γ) and the proof is complete.
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,L(k(opt)

n ) 0.9747 0.9733 0.9749

γ̄N,L(bn/5c) 0.9757 0.9746 0.9557

500
γ̄N,L(k(opt)

n ) 0.9628 0.9587 0.9803

γ̄N,L(bn/5c) 0.9736 0.9727 0.9647

1000
γ̄N,L(k(opt)

n ) 0.9610 0.9569 0.9789

γ̄N,L(bn/5c) 0.9631 0.9572 0.9770

Table 7: Empirical coverage probabilities for the left bound (with an objective of

(1 + γ)/2 = 0.975) and a Student distribution (ξ = 0.5 and ρ = −1).

Additional results

Additional results on the one-sided confidence intervals are given below.
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,R(k(opt)

n ) 0.9608 0.9730 0.9983

γ̄N,R(bn/5c) 0.9479 0.9834 0.9974

500
γ̄N,R(k(opt)

n ) 0.9818 0.9933 0.9961

γ̄N,R(bn/5c) 0.9784 0.9926 0.9957

1000
γ̄N,R(k(opt)

n ) 0.9900 0.9966 0.9928

γ̄N,R(bn/5c) 0.9900 0.9958 0.9943

Table 8: Empirical coverage probabilities for the right bound (with an objective of

(1 + γ)/2 = 0.975) and a Student distribution (ξ = 0.5 and ρ = −1).

n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,L(k(opt)

n ) 0.9770 0.9763 0.9643

γ̄N,L(bn/5c) 0.9771 0.9770 0.9644

500
γ̄N,L(k(opt)

n ) 0.9697 0.9664 0.9735

γ̄N,L(bn/5c) 0.9742 0.9743 0.9657

1000
γ̄N,L(k(opt)

n ) 0.9707 0.9677 0.9740

γ̄N,L(bn/5c) 0.9719 0.9699 0.9592

Table 9: Empirical coverage probabilities for the left bound (with an objective of

(1 + γ)/2 = 0.975) and a Student distribution (ξ = 1 and ρ = −1).
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,R(k(opt)

n ) 0.9296 0.9618 0.9863

γ̄N,R(bn/5c) 0.8892 0.9377 0.9840

500
γ̄N,R(k(opt)

n ) 0.9543 0.9763 0.9836

γ̄N,R(bn/5c) 0.9295 0.9610 0.9758

1000
γ̄N,R(k(opt)

n ) 0.9693 0.9835 0.9823

γ̄N,R(bn/5c) 0.9472 0.9700 0.9702

Table 10: Empirical coverage probabilities for the right bound (with an objective of

(1 + γ)/2 = 0.975) and a Student distribution (ξ = 1 and ρ = −1).

n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,L(k(opt)

n ) 0.9769 0.9761 0.9590

γ̄N,L(bn/5c) 0.9767 0.9767 0.9582

500
γ̄N,L(k(opt)

n ) 0.9693 0.9664 0.9431

γ̄N,L(bn/5c) 0.9740 0.9741 0.9518

1000
γ̄N,L(k(opt)

n ) 0.9683 0.9644 0.9355

γ̄N,L(bn/5c) 0.9701 0.9676 0.9370

Table 11: Empirical coverage probabilities for the left bound (with an objective of

(1 + γ)/2 = 0.975) and a Fréchet distribution (ξ = 0.5 and ρ = −1).
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,R(k(opt)

n ) 0.9434 0.9697 0.9953

γ̄N,R(bn/5c) 0.9056 0.9474 0.9913

500
γ̄N,R(k(opt)

n ) 0.9693 0.9836 0.9943

γ̄N,R(bn/5c) 0.9431 0.9712 0.9908

1000
γ̄N,R(k(opt)

n ) 0.9818 0.9912 0.9945

γ̄N,R(bn/5c) 0.9605 0.9807 0.9890

Table 12: Empirical coverage probabilities for the right bound (with an objective of

(1 + γ)/2 = 0.975) and a Fréchet distribution (ξ = 0.5 and ρ = −1).

n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,L(k(opt)

n ) 0.9745 0.9731 0.9666

γ̄N,L(bn/5c) 0.9754 0.9743 0.9487

500
γ̄N,L(k(opt)

n ) 0.9582 0.9526 0.9719

γ̄N,L(bn/5c) 0.9734 0.9725 0.9472

1000
γ̄N,L(k(opt)

n ) 0.9538 0.9483 0.9756

γ̄N,L(bn/5c) 0.9587 0.9523 0.9608

Table 13: Empirical coverage probabilities for the left bound (with an objective of

(1 + γ)/2 = 0.975) and a Burr distribution (ξ = 0.5 and ρ = −
√

0.5).
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,R(k(opt)

n ) 0.9684 0.9788 0.9990

γ̄N,R(bn/5c) 0.9554 0.9870 0.9980

500
γ̄N,R(k(opt)

n ) 0.9883 0.9949 0.9965

γ̄N,R(bn/5c) 0.9854 0.9956 0.9961

1000
γ̄N,R(k(opt)

n ) 0.9955 0.9980 0.9951

γ̄N,R(bn/5c) 0.9948 0.9975 0.9957

Table 14: Empirical coverage probabilities for the right bound (with an objective of

(1 + γ)/2 = 0.975) and a Burr distribution (ξ = 0.5 and ρ = −
√

0.5).

n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,L(k(opt)

n ) 0.9758 0.9744 0.9645

γ̄N,L(bn/5c) 0.9760 0.9751 0.9538

500
γ̄N,L(k(opt)

n ) 0.9645 0.9609 0.9714

γ̄N,L(bn/5c) 0.9737 0.9734 0.9490

1000
γ̄N,L(k(opt)

n ) 0.9639 0.9600 0.9754

γ̄N,L(bn/5c) 0.9663 0.9624 0.9512

Table 15: Empirical coverage probabilities for the left bound (with an objective of

(1 + γ)/2 = 0.975) and a Burr distribution (ξ = 0.5 and ρ = −1).
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,R(k(opt)

n ) 0.9561 0.9752 0.9966

γ̄N,R(bn/5c) 0.9301 0.9709 0.9955

500
γ̄N,R(k(opt)

n ) 0.9765 0.9898 0.9956

γ̄N,R(bn/5c) 0.9647 0.9844 0.9951

1000
γ̄N,R(k(opt)

n ) 0.9879 0.9948 0.9942

γ̄N,R(bn/5c) 0.9795 0.9906 0.9932

Table 16: Empirical coverage probabilities for the right bound (with an objective of

(1 + γ)/2 = 0.975) and a Burr distribution (ξ = 0.5 and ρ = −1).

n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,L(k(opt)

n ) 0.9765 0.9755 0.9576

γ̄N,L(bn/5c) 0.9761 0.9758 0.9567

500
γ̄N,L(k(opt)

n ) 0.9659 0.9622 0.9224

γ̄N,L(bn/5c) 0.9737 0.9736 0.9355

1000
γ̄N,L(k(opt)

n ) 0.9632 0.9594 0.8874

γ̄N,L(bn/5c) 0.9656 0.9631 0.8994

Table 17: Empirical coverage probabilities for the left bound (with an objective of

(1 + γ)/2 = 0.975) and a log-Gamma distribution (ξ = 0.5 and ρ = 0).
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n
Coverage Gardes Gardes and Maistre, Buitendag et al.,

probability and Maistre bias reduced new normal ridge

200
γ̄N,R(k(opt)

n ) 0.9520 0.9748 0.9974

γ̄N,R(bn/5c) 0.9190 0.9558 0.9947

500
γ̄N,R(k(opt)

n ) 0.9805 0.9919 0.9976

γ̄N,R(bn/5c) 0.9599 0.9794 0.9946

1000
γ̄N,R(k(opt)

n ) 0.9918 0.9963 0.9972

γ̄N,R(bn/5c) 0.9785 0.9896 0.9944

Table 18: Empirical coverage probabilities for the right bound (with an objective of

(1 + γ)/2 = 0.975) and a log-Gamma distribution (ξ = 0.5 and ρ = 0).
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