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In this paper, we propose new asymptotic confidence intervals for extreme quantiles i.e., for quantiles located outside the range of the available data.

We restrict ourselves to the situation where the underlying distribution is heavy-tailed. While asymptotic confidence intervals are mostly constructed around a pivotal quantity, we consider here an alternative approach based on the distribution of order statistics sampled from a uniform distribution.

The convergence of the coverage probability to the nominal one is established under a classical second-order condition. The finite sample behavior is also examined and our methodology is applied to a real dataset.

Introduction

Let X be a random variable defined on a probability space (Ω, A, P). The distribution of X is entirely characterized by its cumulative distribution function F (•) := P(X ≤ •) or equivalently by its quantile function given by 1 F ← (•) = inf{x ∈ S | F (x) ≥ •}, where S is the support of the distribution. In what follows, we assume that F is a continuous and strictly increasing function so that F ← = F -1 is the inverse function of F .

The question of the estimation of a large quantile F ← (1 -β) =: Q(β) for a level β close to 0 is crucial in actuarial science or in finance in order to be able to compute risk measures such as the Value-at-Risk or the Tail-Value-at-Risk, see Embrechts et al. [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF] and Konstantinides [START_REF] Konstantinides | Risk theory. A Heavy Tail Approach[END_REF]. Large quantiles are also useful in climate science to calculate return levels of extreme precipitation or temperature, see for instance Katz et al. [START_REF] Katz | Statistics of extreme in hydrology[END_REF] and Naveau et al. [START_REF] Naveau | Statistical methods for extreme event attribution in climate science[END_REF].

There is a large literature dedicated to quantile estimation when n independent copies X 1 , . . . , X n of X are observed. When the level β = β n is not too small in the sense that β n → 0 with nβ n → c ∈ [1, ∞], the quantile Q(β n ) is usually estimated by inverting the empirical cumulative distribution function that is to say by Q (E) n (β n ) := X n-nβn ,n where X 1,n ≤ . . . ≤ X n,n is the sample arranged in ascending order. When the level β n is eventually smaller than 1/n, i.e., when nβ n → c ∈ [0, 1), the quantile Q(β n ) is located outside the range of the sample {X 1 , . . . , X n }. This kind of quantile is referred to as extreme quantile and its estimation requires a priori knowledge of the shape of the tail-distribution. For instance, one can assume that the distribution is heavy-tailed or equivalently that the quantile function Q is a regularly varying function at 0 with index -ξ < 0 that is to say that for all t > 0,

lim α→0 Q(tα) Q(α) = t -ξ .
Under this assumption, Weissman [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF] proposed to estimate the quantile Q(β n ) by the statistic

Q (W) n (β n ) = Q (E) n (α n ) α n β n ξn ,
where α n is a sequence converging to 0 and such that nα n → ∞ and ξ n is a consistent estimator of the tail-index ξ.

Despite its practical interest, little attention has been paid to the construction of asymptotic confidence intervals for Q(β n ) when β n → 0. Recall that for a preselected probability γ ∈ (0, 1), an asymptotic confidence interval for Q(β n )

where F beta (•; a, b) is the distribution function of a Beta distribution with parameters a > 0 and b > 0. Since β n ∈ (0, 1) is a sequence converging to 0 with nβ n → ∞, the sets S inf (β n , n, δ) and S sup (β n , n, δ) are non empty for all δ ∈ (0, 1) (see Lemma 1, i)) allowing us to introduce the integers

L γ (β n ) := max S inf β n , n, 1 -γ 2 and R γ (β n ) := min S sup β n , n, 1 -γ 2 .
The confidence interval proposed in Gardes [START_REF] Gardes | Nonparametric confidence interval for conditional quantiles with large-dimensional covariates[END_REF] is given by [X Lγ (βn),n , X Rγ (βn),n ] and we have the following result.

Proposition 1 Let β n ∈ (0, 1) be a sequence converging to 0 with nβ n → ∞.

If, as n → ∞,

τ n := ln(n) (nβ n ) 1/2 → 0, one has P [X Lγ (βn),n , X Rγ (βn),n ] Q(β n ) = γ + o(τ n ).
Unfortunately, this confidence interval cannot be used for an extreme quantile.

Indeed, if nβ n → c ∈ [0, 1), lim n→∞ ln(n) (nβ n ) 1/2 = ∞,
and thus Proposition 1 does not hold for the extreme quantile Q(β n ). Moreover, for n large enough, S sup (β n , n, (1 -γ)/2) = ∞ for all γ > 1 -2 exp(-c), see Lemma 1,ii). It thus appears that an extrapolation of the confidence interval bounds beyond the range of the data is required to deal with extreme quantiles.

The aim of this paper is to adapt the construction procedure of quantile confidence intervals introduced in Gardes [START_REF] Gardes | Nonparametric confidence interval for conditional quantiles with large-dimensional covariates[END_REF] to the extreme case ). The distribution is assumed to be heavy-tailed and the extrapolation method is inspired by the construction of Weissman's estimator.

nβ n → c ∈ [0, 1
The rest of the paper is organized as follows. The new confidence interval for an extreme quantile is given in Section 2 and the convergence of its coverage probability to γ is established. A procedure to reduce the bias of the coverage probability is described in Section 3. The finite sample performance is examined in Section 4 and an application to a real dataset is presented in Section 5. All the proofs are gathered in Appendix.

Construction of the confidence interval

The following model is considered for the distribution of the random variable X of interest.

(A.1) There exist positive constants d and ξ such that α ξ Q(α) → d as α → 0. Under (A.1), the quantile function Q is a regularly varying function at 0 with index -ξ < 0. More specificaly, Q(α) = α -ξ (α -1 ) where the function converges to d at infinity. Note that is a slowly varying function at infinity i.e., such that for all t > 0,

lim x→∞ (tx) (x) = 1. (1) 
Condition (A.1) holds for a large number of heavy-tailed distributions such as Fréchet, Burr, student, among others.

Given an estimator ξ n of the tail-index ξ, the proposed confidence interval for the extreme quantile Q(β n ) is defined below.

Definition 1 Let X 1 , . . . , X n be n independent random variables with common quantile function Q satisfying (A.1). For a preselected probability γ ∈ (0, 1), a sequence β n such that nβ n → c ∈ [0, 1) and a sequence α n converging to 0 with nα n → ∞, the two-sided confidence interval for the extreme quantile

Q(β n ) is I(γ, β n , ξ n ) := X n-nαn ,n (t n,L (γ)) ξn , X n-nαn ,n (t n,R (γ)) ξn ,
where, denoting by F ← beta (•; a, b) the quantile function of a Beta distribution of parameters a > 0 and b > 0,

t n,L (γ) = β -1 n F ← beta 1 -γ 2 , nα n + 1, n -nα n and t n,R (γ) = β -1 n F ← beta 1 + γ 2 , nα n + 1, n -nα n .
The idea leading to this confidence interval is given hereafter. We start by remarking that 1-F (X n-nαn ,n ) follows a Beta distribution with parameters nα n + 1 and n -nα n . Consequently,

P X n-nαn ,n (t n,L (γ)) ξ > Q(β n ) = F beta (z n (γ), nα n + 1, n -nα n ) , ( 2 
)
where [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF] in the proof of Theorem 1), one has that

z n (γ) = 1 -F ((t n,L (γ)) -ξ Q(β n )). Under (A.1), x 1/ξ (1 -F (x)) → d 1/ξ as x → ∞. Replacing x by Q(u), we obtain that u ξ Q(u) → d as u → 0. Since t n,L (γ) ∼ α n /β n (see equation
(t n,L (γ)) -ξ Q(β n ) ∼ dα -ξ n → ∞. Hence, as n → ∞, z n (γ) ∼ d 1/ξ t n,L (γ)[Q(β n )] -1/ξ ∼ t n,L (γ)β n = F ← beta 1 -γ 2 , nα n + 1, n -nα n . Replacing z n (γ) in (2) by F ← beta 1-γ 2 , nα n + 1, n -nα n , we finally obtain P X n-nαn ,n (t n,L (γ)) ξ ≤ Q(β n ) ≈ 1 - 1 -γ 2 = 1 + γ 2 . ( 3 
)
A similar approximation can be obtained for t n,R (γ). Replacing ξ by a consistent estimator conducts us to the definition of the confidence interval I(γ, β n , ξ n ). It is worth noting that even if z n (γ) ∼ α n , the sequence F beta (z n (γ), nα n + 1, n -nα n ) still depends on γ when n goes to infinity.

We will prove hereafter that the approximation (3) is theoretically justified and more specifically that the coverage probability of the random interval I(γ, β n , ξ n ) converges to γ. To establish this result, one needs to control the rate of convergence in (A.1).

(A.2) There exist a function A converging to 0 at infinity and ρ < 0 such that lim 

α→0 1 A(α -1 ) Q(tα) Q(α) -t -ξ = t -ξ t -1 1 u ρ-1 du. Condition (A.
→ 0 as n → ∞ such that σ -1 n ξ n -ξ ξ d -→ D. If (nα n ) 1/2 max A(α -1 n ); σ n ln(α n /β n ) → 0, then lim n→∞ P(I(γ, β n , ξ n ) Q(β n )) = γ.
Note that under the conditions of Theorem 1,

P X n-nαn ,n (t n,L (γ)) ξn ≤ Q(β n ) → 1 + γ 2 .
Hence, as a by-product of Theorem 1, we obtain a one-sided confidence interval for Q(β n ) given by X n-nαn ,n (t n,L (2γ -1)) ξn , ∞ .

To estimate ξ, the natural way is to use the classic Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] defined for a sequence k n ∈ {1, . . . , , n} with k n → ∞ and k n /n → 0, by

ξ (H) n (k n ) := 1 k n kn i=1 log X n-i+1,n X n-kn,n . ( 4 
)
According to [16, Theorem 3.2.5], under (A.2) and if k

1/2 n A(n/k n ) → 0, k 1/2 n ξ (H) n (k n ) -ξ ξ d -→ N (0, 1) . ( 5 
)
We thus have the following result which is a direct consequence of Theorem 1.

Corollary 1 Assume that conditions (A.1) and (A.2) hold. Let α n ∈ (0, 1), k n ∈ {1, . . . , n} and β n ∈ (0, 1) be sequences such that

α n , k n /n → 0, k n , nα n → ∞ and nβ n → c ∈ [0, 1). If (nα n ) 1/2 max A(α -1 n ); (k n ) -1/2 ln(α n /β n ) → 0 and k 1/2 n A(n/k n ) → 0 then lim n→∞ P(I(γ, β n , ξ (H) n (k n )) Q(β n )) = γ.
The choice of the sample fraction k n in the Hill estimator is a difficult task

and remains an open problem. Several procedures of selection can be found in the literature. Dekkers et de Haan [START_REF] Dekkers | Optimal choice of sample fraction in extreme-value estimation[END_REF] propose to minimize the mean squared-

error of ξ (H) n (k n ) -ξ.
Adaptation of boostrap methods are investigated by Danielsson et al. [START_REF] Danielsson | Using a bootstrap method to choose the sample fraction in tail index estimation[END_REF] and Gomes and Oliveira [START_REF] Gomes | The bootstrap methodology in statistics of extremes -Choice of the optimal sample fraction[END_REF]. Graphical based methods are considered by Sousa and Michailids [START_REF] De Sousa | A diagnostic plot for estimating the tail index of a distribution[END_REF] and Beirlant et al. [START_REF] Beirlant | Tail index estimation, Pareto quantile plots and regression diagnostics[END_REF][START_REF] Beirlant | On exponential representations of log-spacings of extreme order statistics[END_REF]. In the simulation study (see Section 4), we propose an ad-hoc procedure to select the optimal number k n of order statistics.

Finally, note that we can obtain similar results to Corollary 1 by using other tail index estimators such as for instance the bias-reduced Hill estimator proposed by Cairo et al. [START_REF] Cairo | Direct reduction of bias of the classical Hill estimator[END_REF]. Because of its simplicity, we choose to focus on the classical Hill estimator which provides good finite sample performances (see Section 4).

A bias reduction procedure

We propose a heuristic method to reduce the bias in the coverage probability of the confidence interval I(γ, β n , ξ n ). For i ∈ {1, . . . , n}, let

U i = 1 -F (X i ).
Since F is a continuous and strictly increasing function, U 1 , . . . , U n are independent uniform random variables and for all k ∈ {1, . . . , n} the order statistic U k,n follows a beta distribution with parameters k and n -k + 1. In the proof of Theorem 1, it is shown that

P X n-nαn ,n (t n,L (γ)) ξn ≤ Q(β n ) = P U nαn +1,n ≥ β n t n,L (γ)W n,L (γ) ,
and

P X n-nαn ,n (t n,R (γ)) ξn ≥ Q(β n ) = P U nαn +1,n ≤ β n t n,R (γ)W n,R (γ) , with W n,• (γ) = exp ξ n -ξ ξ ln t n,• (γ) ×    1 -F Q(β n )(t n,• (γ)) -ξn β n (t n,• (γ)) ξn/ξ    .
The construction of the confidence interval is based on the fact that, for n large enough, W n,• (γ) ≈ 1. Indeed, since

β n t n,L (γ) = F ← beta 1 -γ 2 , nα n + 1, n -nα n ,
we obtain the approximation

P X n-nαn ,n (t n,L (γ)) ξn ≤ Q(β n ) ≈ P U nαn +1,n ≥ β n t n,L (γ) = 1 + γ 2 ,
and similarly for the right-bound of the interval.

To reduce the bias in the coverage probability of the confidence interval, we propose to find a more accurate approximation w n,• (γ) of W n,• (γ). In Lemma 4, we show that under the conditions of Theorem 1,

W n,• (γ) = 1 + ξ n -ξ ξ ln t n,• (γ)(1 + o P (1)), (6) 
where o P (1) is a notation for a random variable converging to 0 in probability.

It appears that the error in the approximation of W n,• (γ) by 1 is mainly due to the estimation of the tail index. In view of ( 6), we decide to approximate could consists in replacing ξ n by a bias-corrected estimator of the tail index, see e.g., Cairo et al. [START_REF] Cairo | Direct reduction of bias of the classical Hill estimator[END_REF]. This requires the estimation of the second order parameter which is a quite difficult task in practice. In this paper, we propose an alternative solution.

From ( 6), we have Proposition 2 Let ξ n and ξn be two estimators of ξ such that

W n,• (γ) ≈ 1 + sgn( ξ n -ξ)| ξ n -ξ|/ξ ln t n,• (γ)
σ -1 n ξ n -ξ ξ d -→ D and ς -1 n ξn -ξ ξ d -→ D,
for some non-degenerate distributions D and D and where σ n and ς n are two sequences converging to 0 and such that σ n /ς n → ∞. Then, the estimator

s n := ( ξ n -ξn )/| ξ n -ξn | is such that lim n→∞ P s n = sgn( ξ n -ξ) = 1.
We finally propose the following bias-corrected confidence interval.

Definition 2 Let X 1 , . . . , X n be n independent random variables with quantile function Q satisfying (A.1). For a preselected probability γ ∈ (0, 1), a sequence β n such that nβ n → c ∈ [0, 1) and a sequence α n converging to 0 with nα n → ∞, the bias-reduced confidence interval for the extreme quantile

Q(β n ) is I BR (γ, β n , ξ n ) := X n-nαn ,n (t n,L ( γ n,L )) ξn , X n-nαn ,n (t n,R ( γ n,R )) ξn ,
where γ n,• is the solution (if it exists) of the equation in u ∈ (0, 1)

t n,• (u) (1 + r s n σ n ln t n,• (u)) = t n,• (γ). (7) 
Conditions for the existence and the uniqueness of the solution of ( 7) are provided in the particular case where the Hill estimator is used to estimate the tail index, see hereafter.

Application with the Hill estimator

Let us give the expression of the bias-reduced confidence interval when the Hill estimator ξ

(H) n (k n ) is used
for the estimation of the tail-index ξ. Recall that under the second-order condition (A.2) and for sequences k n and kn converging to infinity such that

k 1/2 n A(n/k n ) → 0 and k1/2 n A(n/ kn ) → 0, one has k 1/2 n ξ (H) n (k n ) -ξ ξ d -→ N (0, 1) and k1/2 n ξ (H) n ( kn ) -ξ ξ d -→ N (0, 1).
If the sequence kn is such that k n / kn → 0, one can use the result of Proposition 2 to estimate the sign of ξ

(H) n (k n ) -ξ.
This estimator is given by

s (H) n := ξ (H) n (k n ) -ξ (H) n ( kn ) | ξ (H) n (k n ) -ξ (H) n ( kn )| . ( 8 
)
An example of sequences k n and kn satisfying the above conditions is given by k n = d(ln(n)) 2 for some positive constant d and kn = k n ln(ln(n)). If, for instance, we take for r the expectation of the folded normal distribution |N (0, 1)|, we obtain the bias-reduced confidence interval

X n-nαn ,n t n,L ( γ (H) n,L ) ξ (H) n (kn) , X n-nαn ,n t n,R ( γ (H) n,R ) ξ (H) n (kn) , (9) 
where γ

(H) n,• is the solution (if it exists) of the equation in u ∈ (0, 1) t n,• (u) 1 + 2 k n π s (H) n ln t n,• (u) = t n,• (γ). ( 10 
)
We close this section by a result dedicated to the existence and the uniqueness of the solution of [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF].

Proposition 3 If the sequences k n , α n and β n involved in [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF] are chosen in such a way that t n,R (0

) = t n,L (0) =: t n (0) > 1, k n > 2 π max (ln(β n )) 2 (1 -β n t n,R (γ)) 2 ; [1 + ln(β -1 n )] 2 , ( 11 
)
and

k n > 2(ln(t n (0)) 2 π max 1 - t n,L (γ) t n (0) -2 ; 1 - t n,R (γ) t n (0) -2 , ( 12 
)
then the solution of [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF] exists and is unique.

As an example of sequences satisfying the conditions of Proposition 3, one can take

β n = c/n with c > 0, α n = m n /n with m n → ∞ and m n (ln(m n )) 2 = o(n)
and

k n = d max((ln(n)) 2 , m n (ln(m n ))
2 ) for some d > 2/π, see Lemma 5 for a proof. In particular, a concrete choice is given by

k n = d(ln(n)) 2 for some d > 2/π, β n = c/n with c > 0 and α n = (ln(k n )) a
/n for some a > 0. This choice for the sequence α n is considered in the simulation study, see Section 4.

Simulation study

Let X 1 , . . . , X n be n independent copies of a random variable X. We propose to look at the finite sample behavior of the confidence interval for Q(β n ) with

β n = 1/n.
Four models are considered for the quantile function of X.

• Model 1: Burr distribution. For κ > 0 and c > 0, the quantile function is given for all u ∈ (0, 1) by

Q(u) = u -1/κ -1 1/c
. The tail-index is ξ = 1/(cκ) and the second-order parameter is ρ = -1/κ.

• Model 2: Fréchet distribution. The quantile function is given for all u ∈ (0, 1) by

Q(u) = [-ln(1 -u)] -ξ .
The second-order parameter is ρ = -1.

• Model 3: Absolute Student distribution. For µ > 0, the quantile function is given for all u ∈ (0, 1) by Q(u) = qt(1 -u/2; µ), where qt(•; µ) is the quantile function of a Student distribution with µ degree of freedom.

The tail-index is ξ = 1/µ and the second-order parameter is ρ = -1.

• Model 4: Log-Gamma distribution with shape parameter a = 2 and rate parameter r = 2. The tail-index is given here by ξ = 1/r = 1/2 and the second-order parameter is ρ = 0.

Note that condition (A.2) is satisfied by models 1 to 3 but not for model 4

for which ρ = 0. For each model, we consider three sample sizes : n ∈ {200, 500, 1000}. The tail index is estimated by the Hill estimator ξ

(H) n (k n )
for some k n ∈ {1, . . . , n -1}. The sequence α n is taken such as

nα n = max 3; (ln(k n )) 0.85 .
This choice is motivated by the remark made after Proposition 3 since for k n large enough, nα n ∼ (ln(k n )) a with a = 0.85. Note that our choice ensures that nα n ≥ 3 whatever the value of k n . For the bias-corrected version of the confidence interval given in ( 9), we take s

(H)
n as in [START_REF] Danielsson | Using a bootstrap method to choose the sample fraction in tail index estimation[END_REF] with the sequence kn = min ( k n ln(ln(n)) ; n -1) .

This choice corresponds to the example given after the definition of s When the uniqueness is not guaranteed, the bias-reduced interval is replaced by the standard one, as presented in Definition 1.

The coverage probability is approximated by generating N = 10000 independent samples of size n for the four above mentioned models. This approximation is denoted γN (k n ). In the same way, we approximate the coverage probabilities We compare our intervals' performances with the "new normal" ridge confidence interval presented in Buitendag et al. [START_REF] Buitendag | Confidence intervals for extreme Pareto-type quantiles[END_REF]. This interval is based on a ridge regression estimator for the extreme value index, as developed in Buitendag et al. [START_REF] Buitendag | Ridge regression estimators for the extreme value index[END_REF], as well as on a new asymptotically normal quantity.

P X n-nαn ,n (t n,L (γ)) ξn ≤ Q(β n ) and P X n-nαn ,n (t n,R (γ)) ξn ≥ Q(β n ) ,
We choose this interval as a competitor among the 12 presented in Buitendag et al. [START_REF] Buitendag | Confidence intervals for extreme Pareto-type quantiles[END_REF] since it ensured accurate coverage in most of their simulations. This new normal ridge confidence interval is based on an estimator of the second order parameter ρ from Fraga Alves, Gomes, and de Haan [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF].

However, this estimator is not always well-defined. When such problem occurs, we replace the new normal ridge confidence interval by the new normal Hill confidence interval, which is also presented in Buitendag et al. [START_REF] Buitendag | Confidence intervals for extreme Pareto-type quantiles[END_REF] and does not rely on the estimation of ρ. The coverage comparison of our two confidence intervals (standard and bias reduced) with the new normal ridge is given in Figure 1.

Our confidence intervals provide good coverage probabilities for the distributions we considered, as we can see on the left column of Figure 1. m * . We finally take for k n the integer

k (opt) n := 1 |J (opt) m * | j∈J (opt) m * j = 1 2 max J (opt) m * + min J (opt) m * .
This procedure is applied with M = 5 and the obtained results for the twosided confidence intervals are shown in Tables 1 to 6. We also give in Tables 7 to 18 (see Appendix), the empirical coverage probabilities for the one-sided confidence intervals (left and right bound).

Since our selection procedure for k (opt) n

is not tailored for the new normal ridge estimator, we also use a "rule of thumb" with k = n/5 . We notice that our bias reduced confidence interval nearly always performs well when applied for

k (opt) n
. The worst case is attained for a sample size of n = 200 with a Student distribution where ξ = 1 and ρ = -1 for which the estimated coverage is 0.9381, see Table 2. The bias reduction is mostly beneficial.

On the contrary, the performances of the new normal ridge confidence interval are often better using n/5 , but it only outperforms our confidence intervals when n = 200 for the Student and the Fréchet distributions.

Application to a real dataset

We apply our procedure to the norwegian fire insurance claims dataset as studied in Beirlant et al. [START_REF] Beirlant | Practical Analysis of Extreme Values[END_REF]. Data have been corrected for inflation and the claims are expressed in millions of 2012 Norwegian Krone (NOK). The heavy tailness of this data set has already been validated in Gardes and Girard [START_REF] Gardes | On the estimation of the variability in the distribution tail[END_REF]. as described in Section 4. An illustration of the procedure is given in Figure 2 for year 1992, for which k

(opt) n = 195.
On Figure 3, we check that the procedure is consistent, showing the rough alignment of points

-log i/k (opt) n , log X n-i,n /X n-k (opt) n ,n , 1 ≤ i < k (opt) n , on a line of slope ξ n (k (opt) n
) passing through the origin.

The resulting bias corrected intervals are illustrated in Figure 4.

Note that the larger intervals are obtained for the higher centers of the intervals, which gives an insight on the quantile estimate. This is not surprising since a large quantile is associated with a large tail-index and a high variability in the tail of the distribution. The width of the interval provides us an indication on the tail-variability and in that sense, our results are consistent with those exposed in Gardes and Girard [START_REF] Gardes | On the estimation of the variability in the distribution tail[END_REF]. Note that the confidence in- 

-log i/k (opt) n log X n-i,n /X n-k (opt) n ,n 20 
Hence, if 1 -δ > 1 -exp(-c) then, for n large enough, S sup (α n , n, δ) = ∅.

In all what follows, U 1 , . . . , U n are n independent standard uniform random variables. The associated order statistics are denoted U 1,n ≤ . . . ≤ U n,n .

Lemma 2 Let α n ∈ (0, 1) be a sequence converging to 0 with nα n → ∞ as n → ∞. If there exist δ ∈ (0, 1) and k n ∈ {1, . . . , n} such that P(U kn,n ≤

α n ) → δ then k n /(nα n ) → 1.
Proof -Let us first show that necessarily, k n → ∞. Suppose that this is not the case. There exists A > 0 such that for all N ∈ N \ {0}, there exists n ≥ N for which k n < A. Now, let E 1 , . . . be independent standard exponential random variables. From Rényi's representation of ordered standard uniform random variables,

P(U kn,n ≤ α n ) = P nT kn T n+1 ≤ nα n ,
where for i ∈ N \ {0},

T i = E 1 + . . . + E i .
By the law of large numbers, n/T n+1 converges in probability to 1 and for all N ∈ N \ {0}, there exists n ≥ N such that

T kn ≤ A +1 i=1 E i .
Hence, for all N ∈ N \ {0}, there exists n ≥ N such that

P(U kn,n ≤ α n ) ≥ P   n T n+1 A +1 i=1 E i ≤ nα n   → 1, since nα n → ∞. Hence, lim sup n→∞ P(U kn,n ≤ α n ) = 1,
which is in contradiction with the fact that

P(U kn,n ≤ α n ) → δ ∈ (0, 1). Now, for all ε > 0, let A n,ε = {nU kn,n /k n ∈ [1 -ε, 1 + ε]}. One has P(U kn,n ≤ α n ) = P({U kn,n ≤ α n } ∩ A n,ε ) + P({U kn,n ≤ α n } ∩ A C n,ε ),
where A C n,ε is the complement of the set A n,ε . Since k n → ∞, Rényi's representation of the order statistic U kn,n , and the law of large number entail that nU kn,n /k n converges in probability to 1. Hence,

P({U kn,n ≤ α n } ∩ A C n,ε ) ≤ P(A C n,ε ) → 0.
Moreover,

P({U kn,n ≤ α n } ∩ A n,ε ) =            0 if nα n /k n < 1 -ε, P(A n,ε ) if nα n /k n > 1 + ε.
Since P(A n,ε ) → 1, we thus have proven that for all ε > 0,

P(U kn,n ≤ α n ) → 0 if nα n /k n < 1 -ε and P(U kn,n ≤ α n ) → 1 if nα n /k n > 1 + ε. Since by assumption, P(U kn,n ≤ α n ) → δ ∈ (0, 1
), it appears that for all ε > 0, for n large enough, 1 -ε ≤ nα n /k n ≤ 1 + ε and the proof is complete.

Let us now give a technical result which is a consequence of the second-order condition.

Lemma 3 Under conditions (A.1) and (A.2), if α n ∈ (0, 1) and β n ∈ (0, 1)

are sequences converging to 0 with α n /β n → ∞ then, for every sequence t n such that t n ∼ (α n /β n ) -ξ , one has

lim n→∞ 1 |A(α -1 n )| 1 -F (Q(β n )t n ) t -1/ξ n β n -1 = - 1 ξρ .
Proof -Condition (A.2) and [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF]Theorem 2.3.9] entail that for all t > 0,

lim x→∞ 1 A((1 -F (x)) -1 ) 1 -F (tx) 1 -F (x) -t -1/ξ = ξ -2 t -1/ξ t 1 u ρ/ξ-1 du.
We can then use [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF]Remark B.3.15] to obtain

lim x→∞ 1 A((1 -F (x)) -1 ) t 1/ξ x 1 -F (xt x ) 1 -F (x) -1 = - 1 ρξ , where t x → ∞ as x → ∞. Applying this result with x = Q(β n )t n ∼ dα -ξ n → ∞ and t x = t -1 n ∼ (α n /β n ) ξ → ∞ as n → ∞ leads to β n t -1/ξ n 1 -F (Q(β n )t n ) 1 A((1 -F (Q(β n )t n ) -1 ) × 1 -F (Q(β n )t n ) t -1/ξ n β n -1 → 1 ξρ ,
as n → ∞. From (A.1), x 1/ξ (1 -F (x)) → d 1/ξ as x → ∞ and thus, 1 -

F (Q(β n )t n ) ∼ α n .
Hence, since |A| is a regularly varying function, |A((1 -

F (Q(β n )t n ) -1 )| ∼ |A(α -1 n )| and thus lim n→∞ 1 |A(α -1 n )| 1 -F (Q(β n )t n ) t -1/ξ n β n -1 = - 1 ξρ . W n,• (γ) = exp ξ n -ξ ξ ln t n,• (γ) ×    1 -F Q(β n )(t n,• (γ)) -ξn β n (t n,• (γ)) ξn/ξ    , is established.
Lemma 4 Assume that conditions (A.1) and (A.2) hold. Let α n ∈ (0, 1) be a sequence converging to 0 with nα n → ∞ and β n ∈ (0, 1) a sequence such that nβ n → c ∈ [0, 1). Let also ξ n be an estimator of the tail-index ξ for which there exist a non-degenerate distribution D and a sequence σ n → 0 as n → ∞ Taylor expansion of the exponential function leads to

such that σ -1 n ξ n -ξ /ξ d -→ D. If (nα n ) 1/2 max A(α -1 n ); σ n ln(α n /β n ) → 0, then W n,• (γ) = 1 + ( ξ n -ξ)/ξ ln t n,• (γ)(1 + o P (1)). Proof -Recall that W n,• (γ) = F 1,n × F 2,n where F 1,n = exp(Z n ) with Z n := ln t n,• (γ)( ξ n -ξ)/ξ and F 2,n :=    1 -F Q(β n )(t n,• (γ)) -ξn β n (t n,• (γ)) ξn/ξ    .

Let us first focus on the factor

F 1,n = 1 + Z n (1 + o P (1)). (13) 
Let us now deal with the factor F 2,n . Applying Lemma 3 with t n = (α n /β n ) -ξn leads to

F 2,n = 1 - 1 ξρ A(α -1 n )(1 + o(1)), ( 14 
)
where o( 1) is the generic notation for a sequence converging to 0. Multiplying ( 13) and ( 14), we obtain

W n,• (γ) = 1 + Z n 1 - 1 ξρ Z -1 n A(α -1 n )(1 + o(1)) + o P (1) .
Using again the facts that ln t n,• ∼ ln(α n /β n ) and σ -1

n ( ξ n -ξ)/ξ d -→ D, one has that Z -1 n = O P (σ -1 n (ln(α n /β n )) -1 ).
Remarking that

A(α -1 n )/σ n ln(α n /β n ) → 0, we have Z -1 n A(α -1 n ) = o P (1)
and the proof is complete.

In the last lemma, we propose an example of sequences α n , β n and k n satisfying the conditions of Proposition 3 and that can be used to construct the bias-reduced confidence interval [START_REF] Dekkers | Optimal choice of sample fraction in extreme-value estimation[END_REF]. 

n = d max((ln(n)) 2 , m n (ln(m n )) 2 ) for some d > 2/π. Proof -First note that α n → 0, nα n = m n → ∞ and that β n /α n → ∞. Since t n (0) ∼ α n /β n → ∞, one has for n large enough that t n (0) > 1. Next, since ln(β n ) ∼ ln(n), [1 -ln(β n )] 2 ∼ (ln(n)) 2 and 1 -β n t n,R (γ) → 1, it is readily seen that condition (11) is satisfied since k n max (ln(β n )) 2 (1 -β n t n,R (γ)) 2 ; [1 + ln(β -1 n )] 2 ∼ k n (ln(n)) 2 ≥ d > 2 π .
Let us now focus on condition [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF]. One has that ln

t n (0) ∼ ln(α n /β n ) = ln(m n ) -ln(c) ∼ ln(m n ).
Moreover, a Taylor expansion together with the use of [13, Lemma 1] entail that for n large enough, there are constants 0 < c 1 < c 2 such that

m 1/2 n t n,• (γ) t n (0) -1 ∈ [c 1 , c 2 ].
Hence, for n large enough, there exists constants 0 < c 3 < c 4 such that 12) is checked and the proof is complete.

m n (ln(m n )) 2 ln t n (0) 1 -t n,• (γ)/t n (0) ∈ [c 3 , c 4 ]. Since k n /[m n (ln(m n )) 2 ] ≥ d > 2/π, condition ( 

Proof of main results

Proof of Theorem 1 -Let us prove that

P X n-nαn ,n (t n,L (γ)) ξn ≤ Q(β n ) → 1 + γ 2 , the proof of P X n-nαn ,n (t n,R (γ)) ξn ≥ Q(β n ) → 1 -γ 2 ,
being similar. Let U i := 1 -F (X i ) for i ∈ {1, . . . , n}. Since F is a continuous and strictly increasing function,

P X n-nαn ,n (t n,L (γ)) ξn ≤ Q(β n ) = P U nαn +1,n ≥ Z n ( ξ n ) ,
where

Z n ( ξ n ) = 1 -F Q(β n ) (t n,L (γ)) -ξn .
By assumption, σ -1 n ( ξ n -ξ) = O P (1) that is to say that for all ε > 0, there exists c ε > 0 such that for n large enough, P(σ -1 n | ξ n -ξ| > c ε ) < ε. We have the decomposition

P U nαn +1,n ≥ Z n ( ξ n ) = P {U nαn +1,n ≥ Z n ( ξ n )} ∩ {| ξ n -ξ| > σ n c ε } + P {U nαn +1,n ≥ Z n ( ξ n )} ∩ {| ξ n -ξ| ≤ σ n c ε } =: T 1,n + T 2,n .
For n large enough,

0 < T 1,n < ε. ( 15 
)
To deal with the second term, the definition of t n,L (γ) and the fact that U nαn +1,n is distributed as a Beta distribution with parameters nα n + 1

and n -nα n , entail that

P(U nαn +1,n ≥ β n t n,L (γ)) = 1 -γ 2 .
Hence, from Lemma 2,

t n,L (γ) ∼ α n /β n , (16) 
and thus, for n large enough,

(1 -ε) ln α n β n ≤ ln (t n,L (γ)) ≤ (1 + ε) ln α n β n .
As a consequence, when the event

{| ξ n -ξ| ≤ σ n c ε } occurs, exp -c ε (1 -ε)σ n ln α n β n ≤ (t n,L (γ)) ξ-ξn ≤ exp c ε (1 + ε)σ n ln α n β n .
Since by assumption, σ n ln(α n /β n ) → 0, one has for n large enough

1 -2c ε σ n ln α n β n ≤ (t n,L (γ)) ξ-ξn ≤ 1 + 2c ε σ n ln α n β n , and thus 1 -F (Q(β n )t n,+ (ξ)) ≤ Z n ( ξ n ) ≤ 1 -F (Q(β n )t n,-(ξ)) , where t n,± (ξ) := (t n,L (γ)) -ξ 1 ± 2c ε σ n ln α n β n .
Applying Lemma 3 with t n = t n,± (ξ) leads to

lim n→∞ 1 |A(α -1 n )| 1 -F (Q(β n )t n,± (ξ)) (t n,± (ξ)) -1/ξ β n -1 = - 1 ξρ .
Using this convergence, when the event {| ξ n -ξ| ≤ σ n c ε } occurs, one has for n large enough that

β n [t n,+ (ξ)] -1/ξ 1 + |A(α -1 n )| 1 + ε ρξ ≤ Z n ( ξ n ) ≤ β n [t n,-(ξ)] -1/ξ 1 -|A(α -1 n )| 1 + ε ρξ .
As a consequence, for n large enough,

p n,--ε ≤ T 2,n ≤ p n,+ , (17) 
where

p n,± := P U nαn +1,n ≥ β n [t n,± (ξ)] -1/ξ 1 ± |A(α -1 n )| 1 + ε ρξ .
Since U nαn +1,n is distributed as a Beta distribution with parameters nα n + 

) 18 
Gathering ( 17) and ( 18) entail that for n large enough,

1 + γ 2 -2ε ≤ T 2,n ≤ 1 + γ 2 + ε. ( 19 
)
Collecting ( 15) and ( 19) conclude the proof. 2/π and remark that when u ∈ (0, 1), t n,R (u) ∈ (t n (0), β -1 n ). If we prove the existence and the uniqueness of the solution of the equation

Proof of

f s (H) n ,dn (x) = t n,R (γ), (20) 
when x ∈ (t n (0), β -1 n ), then necessarily equation [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF] will also admit an unique solution given by γ The inequality

k n > 2 π
(ln(t n (0)) 2 (1 -t n,R (γ)/t n (0)) 2 , entails that f 1,dn (t n (0)) < t n,R (γ). Moreover, since t n (0) > 1, on has n )] 2 yields to β -1 n < exp(d -1 n -1). Hence, the function f -1,dn is increasing on the interval (t n (0), β -1 n ). Moreover, since t n (0) > 1, f -1,dn (t n (0)) < t n (0) < t n,R (γ) and finally, the inequality

f 1,dn (β -1 n ) > β -1 n > t n,
k n > 2 π
(ln(β n )) 2 (1 -β n t n,R (γ)) 2 , entails that f -1,dn (β -1 n ) > t n,R (γ) and the proof is complete.

  where sgn is the sign function. Using the fact that σ -1 n | ξ n -ξ|/ξ d -→ |D| for some sequence σ n → 0, we propose to replace | ξ n -ξ|/ξ by rσ n where r > 0 is any constant in the support of the distribution of |D|. For instance, r can be the expectation of |D| or a random value generated from |D|. To approximate W n,• (γ), we also need to estimate sgn( ξ n -ξ). An estimator s n is proposed in the next result.

  ) with the constraint kn ≤ n -1. This bias-corrected version is only used when the uniqueness of a solution to (20) has been shown. This corresponds to k ≥ 26 for n = 200, k ≥ 34 for n = 500 and k ≥ 40 for n = 1000.

  by γN,L (k n ) and γN,R (k n ). Of course, it is expected to obtain for γN (k n ) a value close to γ and for γN,L (k n ) and γN,R (k n ), values close to (1 + γ)/2.

  The bias reduction enlarges the range of values of k for which the interval has a coverage rate close to the objective. The new normal ridge confidence interval performs especially well for the Student distribution (ξ = 1, ρ = -1) and the Fréchet distribution (ξ = 0.5, ρ = -1). However, it is not very accurate for the log-gamma distribution (ξ = 0.5, ρ = 0), while our bias reduced interval is always close to the nominal level of 0.95 even if the second-order condition (A.2) is not valid in this case.For the left bound, in the central column of Figure1, our intervals coverage rates are very close to the nominal level of 0.975, as long as k does not exceed 160. As for the right bound, in the right column of Figure1, the nominal level is only hit once, for a value of k below 200, depending on the distribution and the interval considered (bias reduced or not).However, coverage curves only indicate approximately what will happen if wechoose a fixed k. Usually, we select a value of k which seems adequate with regard to the Hill plot, as it will be presented in the next paragraph.Selection of the sequencek n -To select the number of observations used to estimate the tail-index, we propose for each of the N samples to pick k n in a stability region of the plot {(j, ξ (H) n (j)); j ∈ J} where J := { 0.05n , . . . , 0.5n }. To detect this region, we use the following procedure. Let J (H) := min j∈J ξ (H) n (j); max j∈J ξ (H) n (j) ,

Figure 1 :

 1 Figure 1: Coverage rate of the interval and of the left and right bounds (from left to right) for absolute Student, Fréchet, Burr and log-gamma distributions and sample size n = 500.

  terval for year 1985[177, 850] does not match confidence intervals for years1990 and 1991 (respectively [46, 158] and[32, 116]).

Figure 2 :

 2 Figure 2: Selection procedure for k (opt) n

Figure 3 :

 3 Figure 3: Q-Q plot for year for the k (opt) n

Figure 4 :

 4 Figure 4: Application to Norwegian Fire Insurance data set for years 1985 to 1992.

  F 1,n . Since ln t n,• ∼ ln(α n /β n ) and, by assumption, σ -1 n ( ξ n -ξ)/ξ d -→ D, one has that Z n /[σ n ln(α n /β n )] = O P (1), where O P (1) represents a stochastically bounded random variable. Since σ n ln(α n /β n ) → 0, we thus have that Z n = O P (σ n ln(α n /β n )) = o P (1). A

Lemma 5

 5 Let m n be a positive sequence such that m n → ∞ and m n (ln(m n )) 2 = o(n). The conditions of Proposition 3 are satisfied by taking β n = c/n with c > 0, α n = δ n /n and k

Proposition 2 -Proof of Proposition 3 -

 23 Let us introduce the notations ζ 1,n := σ -1 n ξ n -ξ and ζ 2,n := ς -1 n ξn -ξ .One has sn = sgn( ξ n -ξ)sgn(1 -∆ n ), where ∆ n := ς n σ n ζ 2,n ζ 1,n .As a consequence,P s n = sgn( ξ n -ξ) = P (sgn(1 -∆ n ) = 1) = P(∆ n < 1).The conclusion is straightforward since, under the assumptions of Proposi-We focus on the equation (10) with • = R. The case • = L is very similar and is omitted for the sake of conciseness. For s ∈ {-1, 1} and d > 0, let us introduce the function f s,d : [0, ∞) → R defined for all x ≥ 0 by f s,d (x) = x(1 + sd ln x). Let us also introduce the sequence d n := k -1/2 n

  = 2F beta (β n x * n , nα n + 1, n -nα n ) -1, where x *n is the solution of[START_REF] Kocherginsky | Practical confidence intervals for regression quantiles[END_REF].Let us start with the study of the function f s,d . When s = 1, the functionf s,d is decreasing on (0, exp(-(1 + d -1))) and increasing elsewhere. We alsoremark that f 1,d (x) ≤ 0 for all x ≤ exp(-(1 + d -1 )) and that f s,d (x) → +∞ as x → ∞. When s = -1, the function is increasing on (0, exp(d -1 -1))and decreasing elsewhere. Moreover, 0 < f s,d (x) ≤ d exp(d -1 -1) forx ≤ exp(d -1 -1) and f s,d (x) → -∞ as x → ∞.First, let us consider the situation when s (H) n = 1 in equation[START_REF] Kocherginsky | Practical confidence intervals for regression quantiles[END_REF].

= - 1 .

 1 R (γ). Hence, in view of the above study of the function f 1,d , the existence and uniqueness of the solution is proved. Now, let us focus of the case s (H) n The inequality k n > (2/π)[1 + ln(β -1

Table 1 :

 1 

	Coverage	Gardes	Gardes and Maistre, Buitendag et al.,
	n				
	probability and Maistre bias reduced	new normal ridge
	γN (k (opt) n	)	0.9355	0.9463	0.9732
	200				
	γN ( n/5 ) 0.9236	0.9580	0.9531
	γN (k (opt) n	)	0.9446	0.9520	0.9764
	500				
	γN ( n/5 ) 0.9520	0.9653	0.9604
	γN (k (opt) n	)	0.9510	0.9535	0.9717
	1000				
	γN ( n/5 ) 0.9531	0.9530	0.9713
	Coverage	Gardes	Gardes and Maistre, Buitendag et al.,
	n				
	probability and Maistre bias reduced	new normal ridge
	γN (k (opt) n	)	0.9066	0.9381	0.9506
	200				
	γN ( n/5 ) 0.8663	0.9147	0.9484
	γN (k (opt) n	)	0.9240	0.9427	0.9571
	500				
	γN ( n/5 ) 0.9037	0.9353	0.9415
	γN (k (opt) n	)	0.9400	0.9512	0.9563
	1000				
	γN ( n/5 ) 0.9191	0.9399	0.9294

Empirical coverage probabilities for a theoretical coverage probability of γ = 0.95 and a Student distribution (ξ = 0.5 and ρ = -1).

Table 2 :

 2 

	Coverage	Gardes	Gardes and Maistre, Buitendag et al.,
	n				
	probability and Maistre bias reduced	new normal ridge
	γN (k (opt) n	)	0.9203	0.9458	0.9543
	200				
	γN ( n/5 ) 0.8823	0.9241	0.9495
	γN (k (opt) n	)	0.9386	0.9500	0.9374
	500				
	γN ( n/5 ) 0.9171	0.9453	0.9426
	γN (k (opt) n	)	0.9501	0.9556	0.9300
	1000				
	γN ( n/5 ) 0.9306	0.9483	0.9260

Empirical coverage probabilities for a theoretical coverage probability of γ = 0.95 and a Student distribution (ξ = 1 and ρ = -1).

Table 3 :

 3 

	Coverage	Gardes	Gardes and Maistre, Buitendag et al.,
	n				
	probability and Maistre bias reduced	new normal ridge
	γN (k (opt) n	)	0.9429	0.9519	0.9656
	200				
	γN ( n/5 ) 0.9308	0.9613	0.9467
	γN (k (opt) n	)	0.9465	0.9475	0.9684
	500				
	γN ( n/5 ) 0.9588	0.9681	0.9433
	γN (k (opt) n	)	0.9493	0.9463	0.9707
	1000				
	γN ( n/5 ) 0.9535	0.9498	0.9565

Empirical coverage probabilities for a theoretical coverage probability of γ = 0.95 and a Fréchet distribution (ξ = 0.5 and ρ = -1).
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 4 

	Coverage	Gardes	Gardes and Maistre, Buitendag et al.,
	n				
	probability and Maistre bias reduced	new normal ridge
	γN (k (opt) n	)	0.9319	0.9496	0.9611
	200				
	γN ( n/5 ) 0.9061	0.9460	0.9493
	γN (k (opt) n	)	0.9410	0.9507	0.9670
	500				
	γN ( n/5 ) 0.9384	0.9578	0.9441
	γN (k (opt) n	)	0.9518	0.9548	0.9696
	1000				
	γN ( n/5 ) 0.9458	0.9530	0.9444

Empirical coverage probabilities for a theoretical coverage probability of γ = 0.95 and a Burr distribution (ξ = 0.5 and ρ = -√ 0.5).

Table 5 :

 5 

	Coverage	Gardes	Gardes and Maistre, Buitendag et al.,
	n				
	probability and Maistre bias reduced	new normal ridge
	γN (k (opt) n	)	0.9285	0.9503	0.9550
	200				
	γN ( n/5 ) 0.8951	0.9316	0.9514
	γN (k (opt) n	)	0.9464	0.9541	0.9200
	500				
	γN ( n/5 ) 0.9336	0.9530	0.9301
	γN (k (opt) n	)	0.9550	0.9557	0.8846
	1000				
	γN ( n/5 ) 0.9441	0.9527	0.8938

Empirical coverage probabilities for a theoretical coverage probability of γ = 0.95 and a Burr distribution (ξ = 0.5 and ρ = -1).

Table 6 :

 6 We only use data from years 1985 to 1992, for which the sample sizes are similar, ranging from 607 in 1985 to 827 in 1988. For the quantile level, we take β = 1/638 where 638 is the median value of the sample sizes from years 1985 to 1992. For years with a sample size larger than 638, the level β can thus be considered as extreme. For each year, we select k

	(opt)
	n

Empirical coverage probabilities for a theoretical coverage probability of γ = 0.95 and a log-Gamma distribution (ξ = 0.5 and ρ = 0).

  + 1, n -nα n (1 + δ n,± ); nα n + 1, n -nα n , , nα n + 1, n -nα n (1 + θδ n,± ) ∼ α n , with θ ∈ (0, 1). From [13, Lemma 1] f beta (ζ n , nα n + 1, n -nα n ) = O n 1/2 -γ)/2, nα n + 1, n -nα n ) ∼ α n , we have p n,± = (1+γ)/2+ O δ n,± (nα n ) 1/2 . Since by assumption δ n,± (nα n ) 1/2 = O (nα n ) 1/2 max A(α -1 n ); σ n ln

									α	n 1/2	.
	Since F ← beta ((1 α n β n	= o(1),
	we finally obtained				
						p n,± =	1 + γ 2	+ o(1).	(
						n )|	1 + ε ρξ	
	= F ← beta	1 -γ 2	, nα n + 1, n -nα n		1 ± 2c ε σ n ln	α n β n	1 ± |A(α -1 n )|	1 + ε ρξ	,
	one has							
	p n,± = 1-F beta F ← beta , nα n where 1 -γ 2	
	δ n,± = 1 ± 2c ε σ n ln	α n β n	1 ± |A(α -1 n )|	1 + ε ρξ	-1 = O σ n log	α n β n	+O A(α -1 n ) .
	The notation O(1) stands for an asymptotically bounded sequence. From the
	mean value theorem,				
	p n,± =	1 + γ 2	+ δ n,± F ←		

1 and n -nα n and since

β n [t n,± (ξ)] -1/ξ 1 ± |A(α -1 beta 1 -γ 2 , nα n + 1, n -nα n × f beta (ζ n , nα n + 1, n -nα n ) ,

where

ζ n = F ← beta 1 -γ 2

Appendix -Proofs and additional results

Preliminaries results

Lemma 1

i) If α n is a sequence converging to 0 with nα n → ∞ then for all δ ∈ (0, 1) and for n large enough, S inf (α n , n, δ) = ∅ and S sup (α n , n, δ) = ∅.

ii) If β n ∈ (0, 1) is a sequence such that nβ n → c ∈ [0, 1) then for n large enough, S sup (α n , n, δ) = ∅ for all δ < exp(-c).

Proofi) The function j → F beta (α n ; n -j + 1, j) is increasing. Hence, for all j ∈ {1, . . . , n},

Since α n n → 0 and 1 -(1 -α n ) n → 1, the conclusion is straightforward. ii) As shown before, for all j ∈ {1, . . . , n}, 

Additional results

Additional results on the one-sided confidence intervals are given below. 18: Empirical coverage probabilities for the right bound (with an objective of (1 + γ)/2 = 0.975) and a log-Gamma distribution (ξ = 0.5 and ρ = 0).