
HAL Id: hal-03382261
https://hal.science/hal-03382261

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Derived Terms without Derivation – A shifted
perspective on the derived-term automaton

Sylvain Lombardy, Jacques Sakarovitch

To cite this version:
Sylvain Lombardy, Jacques Sakarovitch. Derived Terms without Derivation – A shifted perspective
on the derived-term automaton. Journal of Computer Science and Cybernetics, Vietnamese Academy
of Science and Technology, Vietnam, 2021, 37 (3), pp.201-221. �10.15625/1813-9663/37/3/16263�.
�hal-03382261�

https://hal.science/hal-03382261
https://hal.archives-ouvertes.fr


Derived Terms without Derivation∗

A shifted perspective on the derived-term automaton

Sylvain Lombardy1 and Jacques Sakarovitch2

1LaBRI, Bordeaux INP – Bordeaux University – CNRS
2IRIF, CNRS – Paris University and Telecom Paris, IPP

Abstract

We present here a construction for the derived term automaton (aka partial deriva-

tive, or Antimirov, automaton) of a rational (or regular) expression based on a sole

induction on the depth of the expression and without making reference to an operation

of derivation of the expression. It is particularly well-suited to the case of weighted

rational expressions and the case of expressions over non free monoids.

1 Introduction

In this paper, we address once again the laboured problem of the transformation of a

rational (regular) expression into a finite automaton that accepts the language, or the

series, denoted by the expression.

In the Handbook of Automata Theory that appeared recently [16], we have given a

survey on the many aspects of the transformation of an automaton into an expression and

vice-versa, together with a comprehensive bibliography [20]. We explain in this chapter

that the equivalence between automata and expressions may be generalised from ‘classical’

automata and expressions to weighted automata and weighted expressions, to automata

and expressions over monoids that are not necessarily free monoids, and even to weighted

automata and weighted expressions over monoids that are not necessarily free monoids

(but still graded). This generalisation makes on one hand-side the relationship between

automata and expressions tighter and leads on the other hand-side to ‘split’ Kleene Theo-

rem into two parts: the first one is the correspondence between automata and expressions,

and the second the equality between the family of rational (or regular) languages or series

and the family of recognisable languages or series, an equality which holds in the case of

languages or series over free monoids only.

As we describe in that survey [20], there are two main methods for computing an

automaton from an expression which yield two distinct, even though related, automata:

the position automaton and the derived-term automaton of the expression.

The first method can be credited to Glushkov [11]. It associates with an expression

of litteral length n a (non-deterministic) automaton with n + 1 states — often called the

∗Published in Journal of Computer Science and Cybernetics, Vol. 37, No. 3 (2021), Special issue dedi-

cated to the memory of Professor Phan Dinh Dieu, pp. 201–221.

1



Glushkov or position automaton of the expression. As we recall in Section 3 below the

position automaton may be inductively defined by means of operations on automata of

a certain kind that we call standard automata. The definition and computation of the

position automaton readily generalises to weighted expressions [5] and, even more easily

as there is nothing to change, to expressions over non free monoids.

It takes some more lines to sketch the second method. It is well-known that a language

(subset of a free monoid) is accepted by a finite automaton if and only if it has a finite

number of (left) quotients. The starting point of the second method is the idea, due

to Brzozowski, to lift this property of recognisable languages at the symbolic level of

rational (or regular) expressions. In [4], Brzozowski defined the derivatives of a rational

expression and turned them into the states of a deterministic automaton that recognises

the language denoted by the expression. He then showed that modulo the axioms of

associativity, commutativity, and idempotency of the addition (on the set of languages),

the ACI-properties, the set of derivatives of an expression is finite. Under this form, it is

clear that this ‘derivative’ method is essentially different from the first one as it cannot

be generalised to weighted rational expressions since weighted finite automata cannot be

determinised nor to expressions over non free monoids since subsets accepted by finite

automata over such monoids have not necessarily a finite number of (left) quotients.

Thirty years later, Antimirov made another fundamental contribution to this theory

and proposed a new derivation process [1]. Antimirov’s derivation breaks Brzozowski’s

derivatives into parts — hence the name ‘partial derivatives’ given to these parts, a ter-

minology we find unfortunate and we call them derived terms. As before, derived terms

are turned into the states of a finite automaton which we call derived-term automaton

and which accepts the language denoted by the expression. This construction has sev-

eral outcomes. The number of derived terms of an expression is not only finite but also

‘small’, smaller than, or equal to, the litteral length of the expression. Derived terms are

defined without the usage of ACI-properties, which makes them easier to compute than

the derivatives.

Finally, a link between the two methods was established somewhat later by Champar-

naud and Ziadi in [7], and the derived-term automaton of an expression E was shown to

be a morphic image1 of the position automaton of E, a result which we refer to as the

morphism theorem in the sequel.

In [13], we have extended the construction of the derived-term automaton to weighted

expressions. Of course, the relationship with ‘derivatives’ has disappeared in this generali-

sation, but the link the derivation of an expression and the quotient of series is as strong as

in the Boolean case. The ‘weighted version’ of the characterisation of recognisability with

the quotients is due to Jacob in full generality and reads as follows: a series is recognisable

if and only if it belongs to a finitely generated submodule stable by quotient (see [3] or [18]

for instance). And the derived terms of a weighted expression are a set of generators of a

1Usually, one says that an automaton A is a quotient of an automaton B if there exists a morphism

from B onto A, that is, if A is a morphic image of B. In this introduction, we prefer this latter terminology

as it does not collide with the (left) quotient of a language, or of a series (by a word).

– 2 –



module that contains the series denoted by the expression and that is stable by quotient.

The construction of the same automaton has also been given by Rutten as a byproduct of

his theory of conduction on series which puts the quotient operation on series at the first

place [17].

We also showed, in the same paper, that the morphism theorem quoted above could

be generalised to the weighted case, and, with the adequate generalisation of the notion of

morphism to weighted automata, that the derived-term automaton of a weighted expres-

sion E is a morphic image of the position automaton of E.

It must be noted however that a difficulty arose in the proof of this last result. In

the derivation process and, if the weight semiring contains such elements, some terms may

vanish from the set of derived terms by the interplay of ‘positive’ and ‘negative’ coefficients.

In such cases, they will be ‘missing’ and the derived-term automaton will not be a morphic

image of the position automaton but only a sub-automaton of a morphic image of the

position automaton. Instead of contenting ourselves with this weaker statement, we proved

that the definition of the derived terms could be decorrelated from the derivation itself

and obtained by induction on the expression and that the ‘morphism theorem’ would then

hold in full generality. The proofs of the various properties of the derived-term automaton

however relied on the connection with the derivation of the expression and the quotients

of the series.

*

This long presentation was necessary to set up the framework in which this work takes

place and to state the new ideas it brings to this much walked subject.

We present here a definition of the derived-term automaton of an expression E by

induction on the formation of E, in parallel with the construction of the position automaton

of E and with no reference whatsoever to the quotients of the series denoted by E nor to a

derivation operation defined on expressions. This new perspective shows that the derived-

term automaton is indeed intrinsically attached to the structure, or to the syntactic tree,

of the expression, in the same way as the position automaton is.

The first consequence, or outcome, of the decorrelation between the construction of

the derived-term automaton and the derivation, and thus the quotient of series, is that it

can be achieved on expressions over non free monoids in which the rational languages or

series no longer coincide with the recognisable ones, and hence are not characterised by

the Jacob’s theorem quoted above any longer.

The second outcome is that the ‘morphism theorem’ which was somewhat tedious

to establish comes for free with this new point of view as it is an intrinsic property of

the construction: at every step of the induction, the derived-term automaton is built

as a morphic image of an automaton which is already a morphic image of the position

automaton.

Of course, the connection with the derivation of expressions, and the quotient of the de-

noted series remains when the expression are over free monoids, since the new construction

yields the same automata as the old one.

– 3 –



The fact that the derived-term automaton is indeed related to the structure of the

expression is not completely new. As we have explained above, and in our own work [13], we

have defined the derived terms by means of an induction rather than by the plain derivation.

In [6], and in order to describe an efficient algorithm for the construction of the derived-

term automaton, a link between the positions of the letters in the rational expression and

the derived terms is made through in-between objects called c-continuations. This allows

to define the derived-term automaton as a morphic image of the position automaton. This

construction is different from ours, since we apply morphisms at every step of our inductive

construction.

There are also been several attempts to apply the derivation techniques to expressions

over non free monoids, namely direct products of free monoids, for dealing with rational

relations. In [8], the extension is made through a new operator that represents the di-

rect product of two languages (or relations), while in [12] the atoms of the expression,

that are letters in the classical case, are replaced by pairs of letters or special symbols

(expressing constraints over letters or pairs). The formalism used in both papers bears

some similarities with ours, but they both use it to define an analogue of the derivation to

bring the construction of the transducer back to the usual construction of the derived-term

automaton. Notice also that only Boolean transducers are considered in [12].

The essence of the new perspective we take on the derived-term automaton of an

expression could be described in the classical case of the rational expressions on a free

monoid. But we discovered this new point of view when we were dealing with weighted

rational expressions on non free monoids. Even though it makes the exposition somewhat

longer and burdensome, we have chosen to present it in its full generality.

In Section 2, we fix the notation for weighted expressions and weighted automata and

define the morphisms of weighted automoata via the notion of conjugacy which proves to

be efficient. In Section 3, we define the restricted class of standard automata on which

one can lift the rational operators and the position automaton, which we prefer to call the

standard automaton of the expression.

The core of the paper lays in Section 4 where the new definition of the derived-term

automaton is presented and its consistency proved. Even though the definition goes purely

by induction on the formation of the expression, we have chosen to keep the old terminology

which bears the weight of history and reconnects with it in the prevalent case of expressions

on a free monoid. In Section 5, we show, via the notion of differential of an expression,

that the new definition of derived-term automaton coincides with the one given in the

previous works on the subject, in the case of expressions on a free monoid.

2 Preliminaries and notation

The definition of usual notions in theoretical computer science, such as free monoids,

languages, expressions, automata, rational (or regular) sets, recognisable sets, etc. may be

found in numerous textbooks.

– 4 –



The corresponding notions of multiplicity (or weight) semirings, (formal power) series,

weighted automata, etc. are probably less common knowledge but are still presented in

quite a few books [2, 3, 10, 21] to which we refer the reader. For the notation, we follow [18,

20]. Let us be more explicit for the two notions we study: the weighted rational expressions

and the weighted finite automata. Before, we recall the notions of graded monoids and of

starrable element in a semiring. And then, we define the notion of morphism of weighted

automata that will be instrumental in this work.

The purpose of the paper, is the construction of automata over a monoid M which is

not necessarily free, for instance automata over A∗×B∗ which are transducers — and this

is a key feature of this work. At the same time we want the automata possibly be weighted

with coefficients taken in a semiring K, thus realising maps from M to K, that is, series

in K〈〈M〉〉. The required hypothesis on M for K〈〈M〉〉 to be closed under (Cauchy) product

is that M be a graded monoid (i.e. endowed with an additive length function) — which is

the case for A∗×B∗ for instance, or more generally for all trace monoids [9].

If k is an element of a semiring K, k∗ is the sum of all powers of k: k∗ =
∑

n∈N k
n .

This infinite sum may be defined — k is said to be starrable — or not defined — k is said to

be non starrable. We are not interested in the problem of determining whether an element

of K is starrable or not. Somehow, we consider that K is equipped with this operator ∗ ,

which is defined on a known subset of K. But the question arises to know if we are able,

given K and M , to determine whether a series of K〈〈M〉〉 is starrable or not. The answer

is positive, via the notion of strong semiring (see [13, 18]), and some additional notation.

The identity element of M is denoted by 1M . We write M• for the set of elements

of M different from 1M , that is, the set of elements with a (stricly) positive length: M• =

M \ {1M} .

The constant term c(s) of a series s is the coefficient of 1M in s (that is, the image

of 1M in s). A series is proper if its constant term in 0K. The proper part sp of a series s is

the series obtained from s by zeroing the coefficient of 1M and keeping all other coefficients

unchanged.

Definition 1. A topological semiring is strong if the product of two summable families is

a summable family.

The definition is taken in view of the following statement.

Theorem 2. Let K be a strong semiring and M a graded monoid. Let s be a series

of K〈〈M〉〉, s0 = c(s) its constant term and sp its proper part. Then s∗ is defined if and

only if s0 is starrable and in this case we have

s∗ = (s∗0 sp)
∗s∗0 = s∗0(sp s

∗
0)

∗ .

The details are not of interest here. It is enough for us to know that all usual semirings

such as N, Z, Q, R, C, (Z,min,+), etc. are strong topological semirings. And may be

that not all topological semirings are strong (cf. [15]). In the sequel, the semirings are

supposed to be strong, and the monoids to be graded, without always stating it explicitely.

– 5 –



2.1 Weighted rational expressions

Definition 3. A rational expression over a monoid M with weight in a semiring K is a

well-formed formula built inductively from the constants 0 and 1 and the elements m inM•

as atomic formulas, using two binary operators + and ·, one unary operator ∗ and two

operators for every k in K: if E and F are expressions, so are (kE), (Ek), (E + F), (E · F),

and (E∗). We denote by KRatEM the set of rational expressions over M with weight in K

and often call them K-expressions or even simply expressions.

Expressions are thus given by the following grammar

E → 0 | 1 | m | (kE) | (Ek) | (E+ E) | (E · E) | (E∗) ∀m ∈M• , ∀k ∈ K .

Definition 4. The constant term of an expression E in KRatEM — if it exists — is the

element of K, written c(E), and inductively computed using the following equations

c(0) = 0 , c(1) = 1 , c(m) = 0 ∀m ∈M• ,

c(kE) = k c(E) , c(Ek) = c(E)k ∀k ∈ K ,

c(F+ G) = c(F) + c(G) , c(F · G) = c(F)c(G) ,

c(F∗) = (c(F))∗ if c(F) is starrable.

If the constant term of a subexpression F of E is not starrable, c(E) is undefined, and E

is said to be non valid ; otherwise, E is a valid expression.

Definition 5. With every valid expression E in KRatEM is associated a series of K〈〈M〉〉,

which is called the series denoted by E, and which we write E .

The series E is inductively defined by

0 = 0K , 1 = 1M , m = m ∀m ∈M• , kE = k E , Ek = E k ∀k ∈ K ,

F+ G = F + G , F · G = F G , and

F
∗ = (F )∗ (F is starrable by the validity of E and Theorem 2).

Two expressions are equivalent if they denote the same series.

It directly follows from Definitions 4 and 5 that the constant term of an expression is

equal to the constant term of the series denoted by the expression.

Proposition 6. c(E) = c(E ) .

Example 7. The Z-expression E1 over the monoid {a, b}∗, E1 = a∗ · (a∗ + (−1)b∗)∗ , is

valid: c(E1) = 1 .

Even though they do not play a role in this work, the definition of the set of rational

series and its characterisation with expressions build its background.

Definition 8. The set of K-rational series over M is the smallest subalgebra of K〈〈M〉〉

which contains the polynomials and is closed under star. It is denoted by KRatM .

Proposition 9. A series of K〈〈M〉〉 is rational if and only if it is denoted by a valid

expression in KRatEM .

– 6 –



2.2 Weighted finite automata

An automaton A over a monoid M with weights in a semiring K is a labelled directed

graph (Q,E), together with two functions I and T from the set Q of vertices — called

states — into K. The set E of edges — called transitions — is contained in Q×K×M•×Q,

that is, every transition is labelled with a monomial km — the weighted label of the

transition — where k is the weight of the transition and m its label. The automaton A is

finite if E is finite.

The weighted label of a path in A is the product of the weighted labels of the transitions

that form the path, hence a monomial hx, where h is the product of the weights of the

transitions and x the product of their labels.

The automaton A determines a map from M to K, that is a series in K〈〈M〉〉, called

the behaviour of A and denoted by A . The series A maps every x in M to the sum of all

elements I(p)hT (q) where h is the weight of a path π with label x, for all such paths π

from p to q, and all pairs of states (p, q). The definition of A takes a handier form in an

algebraic setting. The set E of transitions of A is conveniently described by the transition

matrix of A, which we also denote by E (as it will be indeed the unique way we deal with

this set in the sequel), and which is thus a matrix of dimension Q×Q whose (p, q)-entry is

the sum of the weighted labels of the transitions that go from p to q, a linear combination of

elements of M• when A is finite. We write A = 〈 I,E, T 〉 where the function I is written

as a row-vector of dimension Q whose pth entry is I(p) and the function T is written as

a column-vector of dimension Q whose qth entry is T(q). Since the formation of paths

corresponds to the multiplication of the transition matrix, the behaviour of A may then

be written as

A = I · E∗ · T .

Two automata are equivalent if they have the same behaviour. Finite automata and

rational expressions have the same computational power, as expressed by the following

statement.

Theorem 10. Let M be a graded monoid. A series of K〈〈M〉〉 is rational if and only if it

is the behaviour of a finite K-automaton over M .

The subject of this work is the study of a particular proof of the sufficient condition of

this statement.

2.3 Morphisms and quotient of weighted automata

Automata are structures; one can thus define morphisms between them. We choose to

define the morphisms of weighted automata via the notion of conjugacy, borrowed from

the theory of symbolic dynamical systems. It is the most concise way, and ideally suited

for the sequel.

– 7 –



Definition 11. A K-automaton A = 〈 I,E, T 〉 is conjugate to a K-automaton B =

〈 J, F, U 〉 if there exists a matrix X with entries in K such that

I X = J, EX = XF, and T = XU. (1)

The matrix X is the transfer matrix of the conjugacy and we write A
X
=⇒ B .

If A is conjugate to B, then, for every n, the series of equalities holds:

I En T = I EnXU = I En−1XF U = . . . = I X FnU = J FnU ,

from which I E∗T = J F ∗U directly follows.

Proposition 12. If A is conjugate to B , then A and B are equivalent.

Let ϕ : Q→ R be a surjective map and Xϕ the Q×R-matrix where the (q, r)-th entry

is 1 if ϕ(q) = r, and 0 otherwise. Since ϕ is a map, every row of Xϕ contains exactly

one 1 and since ϕ is surjective, every column of Xϕ contains at least one 1. Such a matrix

is called an amalgamation matrix in the setting of symbolic dynamics. By convention, if

we deal with K-automata, an amalgamation matrix is silently assumed to be a K-matrix,

that is, the null entries are equal to 0K and the non zero entries to 1K.

Definition 13. Let A and B be two K-automata of dimension Q and R respectively. We

say that a surjective map ϕ : Q → R is a morphism2 (from A onto B) if A is conjugate

to B by Xϕ, that is, if A
Xϕ

=⇒ B , and we write ϕ : A → B .

We also say that B is a quotient of A, if there exists a morphism ϕ : A → B .

The composition of two morphisms is a morphism. From Proposition 12 follows that

any quotient of A is equivalent to A.

On the other hand, we can determine whether a surjective map ϕ : Q → R is a mor-

phism or not, without reference to any automaton B. From Xϕ we construct a selection

matrix Yϕ by transposing Xϕ and by zeroing some of its non zero entries in such a way

that Yϕ is row-monomial, with exactly one 1 per row. A matrix Yϕ is not uniquely deter-

mined by ϕ but also depends on the choice of a ‘representative’ in each class of the map

equivalence of ϕ.

Proposition 14. Let A = 〈 I,E, T 〉 be a K-automaton of dimension Q. Let ϕ : Q → R

be a surjective map, Xϕ its amalgamation matrix, and Yϕ a selection matrix. Then ϕ is

a morphism if A is conjugate by Xϕ to the automaton ϕ(A) of dimension R: ϕ(A) =

〈 I ·Xϕ, Yϕ ·E ·Xϕ, Yϕ · T 〉 (in which case ϕ(A) does not depend on the choice of Yϕ).

2The morphisms of weighted automata are ‘more constrained’ than those of Boolean automata. They

correspond to what is often called simulation. Moreover, they are directed and for a same map ϕ one should

distinguish between Out-morphism and In-morphism. But in this work we only deal with Out-morphisms,

which we simply call morphisms.

– 8 –



This proposition points out that the image of ϕ is indeed immaterial and what only

counts, and makes it a morphism of automata or not, is the map equivalence of ϕ.

In the proofs at Section 4, we use indeed a more intuitive description of morphisms.

With the same notation as above, the map ϕ is a morphism if and only if the rows of E ·Xϕ

whose indices are equivalent modulo ϕ are equal and the entries of T whose indices are

equivalent modulo ϕ are equal.

3 Standard automata

We define a restricted class of automata, and then show that rational operations on series

can be lifted on the automata of that class. They are thus well-suited for the constructions

we build by induction on the formation of the expressions.

An automaton is standard if it has only one initial state, which is the end of no

transition. Figure 1 shows a standard automaton, both as a sketch, and under the matrix

form. The definition does not forbid the initial state i from also being final and the scalar c

in K, is the constant term of A .

Ai

c

A =

〈

(

1 0
)

,







0 J

0 F






,







c

U







〉

.

Figure 1: A standard automaton

Elementary matrix computations show

A = c+ J F ∗U , (2)

where c = c(A ) is the constant term of A and J F ∗U is the proper part of A .

It is convenient to say — when there is no ambiguity — that the dimension of the

standard automaton A is is the dimension of the vector J (or of the matrix F ).

It is rather obvious that every automaton is equivalent to a standard one, but this will

not be used here.

3.1 Operations on standard automata

Their special form allows to define operations on standard automata that are parallel to

the rational operations. Let A (as in Figure 1) and B (with obvious notation) be two

standard (K-)automata; let k be in K. Then we define the following standard automata

• kA =

〈

(

1 0
)

,







0 kJ

0 F






,







k c

U







〉

, (3)

• Ak =

〈

(

1 0
)

,







0 J

0 F






,







ck

U k







〉

, (4)

– 9 –



• A+ B =

〈

(

1 0 0
)

,

















0 J K

0 F 0

0 0 G

















,

















c+ d

U

V

















〉

, (5)

• A · B =

〈

(

1 0 0
)

,

















0 J cK

0 F U ·K

0 0 G

















,

















cd

U d

V

















〉

, (6)

and finally A∗, which is defined when c∗ is defined,

• A∗ =

〈

(

1 0
)

,







0 c∗ J

0 H






,







c∗

U c∗







〉

with H = U · c∗ J + F . (7)

After these definitions, it is rather natural to say that the two exterior multiplications

and the star are the dimension invariant operations. Elementary matrix computations

then establish the following.

Proposition 15. Let A and B be two standard K-automata, and let k be an element in K.

It then holds: kA = k A , Ak = A k , A+ B = A + B , and A · B = A B .

The case of the star operation is significantly more involved and requires that Theorem 2

is first established. Then, the following statement holds.

Proposition 16. Let K be a strong semiring. If A is a standard K-automaton, it then

holds: A∗ = (A )∗ .

3.2 The standard automaton of an expression

The definition of the ‘rational’ operations on standard automata immediately induces the

definition of a standard automaton canonically associated with every rational expression.

It coincides with the automaton first defined by Glushkov in [11].

Proposition 17. For every valid rational K-expression E, there exists a canonical standard

K-automaton SE that realises the series denoted by E, that is, SE = E .

Proof. The definition of SE starts with the definitions of standard automata for the atomic

formulas.

• E = 0 then S0 =
〈

(

1
)

,
(

0
)

,
(

0
)

〉

.

• E = 1 then S1 =
〈

(

1
)

,
(

0
)

,
(

1
)

〉

.

• E = m ∈M then Sm =

〈

(

1 0
)

,

(

0 m

0 0

)

,

(

0

1

)〉

.

– 10 –



It is clear that S0 = 0 = 0 , S1 = 1 = 1 , and Sm = m = m .

The natural definitions: Sk E = kSE , SEk = SE k , SF+G = SF + SG , SF·G = SF · SG ,

and SF∗ = (SF)
∗ , allow the construction of SE for every valid K-rational expression E, by

induction on the formation of the expression, whereas Propositions 15 and 16 insure that

SE = E .

This automaton SE will be indifferently called ‘the standard automaton’ or ‘the position

automaton’ of E.

Example 7 (continued). Let us write E1 = F1 ·G1 with F1 = a∗ and G1 = (a∗ + (−1)b∗)∗.

It comes

SF1
=

〈

(

1 0
)

,

(

0 a

0 a

)

,

(

1

1

)〉

, SG1
=

〈

(

1 0 0
)

,







0 a −b

0 2a −b

0 a 0






,







1

1

1







〉

,

and SE1
= SF1

· SG1
=

〈

(

1 0 0 0
)

,











0 a a −b

0 a a −b

0 0 2a −b

0 0 a 0











,











1

1

1

1











〉

.

3.3 Morphisms of standard automata

Let A and A′ be two standard automata,

A =

〈

(

1 0
)

,







0 J

0 F






,







c

U







〉

, andA′ =

〈

(

1 0
)

,







0 J ′

0 F ′






,







c′

U ′







〉

,

and ϕ : A → A′ a morphism of automata. The image by ϕ of the inital state i of A

is necessarily the initial state i′ of A′ and no other state q of A is mapped onto i′ for

otherwise q would not be accessible.

Hence the transfer matrix of ϕ is of the form







1 0

0 Xϕ






,

and the conjugacy relation (1) passes to the ‘core’ of the automata

c = c′ , J Xϕ = J ′ , F Xϕ = XϕF
′ , and U = XϕU

′ .

The operations on standard automata that we have defined above are consistant with

morphisms.

– 11 –



Proposition 18. Let A and A′, B and B′ be four standard automata, and let ϕ : A → A′

and ψ : B → B′ be two automata morphisms. Then ϕ×ψ : A+B → A′+B′ , ϕ×ψ : A·B →

A′ · B′ , and ϕ : A∗ → (A′)∗ are automata morphisms.

Proof. The statement for the addition is obvious. The computations for the other two

operations are hardly more complex.

For the product we have





















0 J cK

0 F U K

0 0 G





















·





















1 0 0

0 Xϕ 0

0 0 Xψ





















=





















0 J Xϕ cKXψ

0 F Xϕ U KXψ

0 0 GXψ





















=





















0 J ′ cK ′

0 XϕF XϕU
′K ′

0 0 XψG
′





















=





















1 0 0

0 Xϕ 0

0 0 Xψ





















·





















0 J ′ cK ′

0 F ′ U ′K ′

0 0 G′





















.

And for the star, the sequence of equalities

(U c∗J + F )Xϕ = (U c∗J)Xϕ + F Xϕ = Xϕ (U
′ c∗J ′) +XϕF = Xϕ (U

′ c∗J ′ + F ′)

yields the result.

4 The standard derived-term automaton of an expression

By a process similar to the construction of SE, though more involved, we associate now

with every K-expression E another standard automaton, the standard derived-term au-

tomaton TE. We begin with the definition of the set D(E) of derived terms of E.

4.1 The derived terms of an expression

The set of derived terms is defined by induction on the formation of the expression.

Definition 19. The set D(E) of derived terms3 of a K-expression E over M is a set of

K-expressions defined inductively by:

Base cases

• E = 0 or E = 1 D(E) = ∅ . (8)

• E = m m ∈M \ 1M D(E) = {1} . (9)

3The definition is the same as in [13] and all subsequent works of ours. We have changed the name

from true derived term to derived term and the notation from TD (E) to D(E) for simplification, as the new

presentation allows it.

– 12 –



Induction

• E = kF D(E) = D(F) . (10)

• E = Fk D(E) = D(F) k = {Kk | K ∈ D(F)} . (11)

• E = F+ G D(E) = D(F) ∪ D(G) . (12)

• E = F · G D(E) = D(F) · G ∪ D(G) = {K · G | K ∈ D(F)} ∪ D(G) . (13)

• E = F
∗ D(E) = D(F) · F∗ = {K · F∗ | K ∈ D(F)} . (14)

Lemma 20. Let E be a K-expression over M . Then Card(D(E)) ≤ ℓE .

Proof. The equality holds for the base cases. Both litteral length and number of derived

terms are invariant for dimension invariant operations. For the addition and product

operations, ℓF+G = ℓF·G = ℓF + ℓG and D(F+ G) and D(F · G) are the union of sets each of

which satisfies the inequality: they also satisfy the inequality, all the more that the union

may not be disjoint.

Indeed, the interest, the subtility, and the difficulty, of the construction to come arise

from the fact that the union in the definition of D(F+ G) and D(F · G) happens not to be

disjoint.

Example 7 (Continued). Let F1 = a∗ , G1 = (a∗ + (−1)b∗)∗ and E1 = F1 · G1 . It holds:

D(F1) = {a∗} , D(G1) = {a∗ · G1, b
∗ · G1} and D(E1) = D(G1) .

4.2 The inductive definition of the standard derived-term automaton

With every K-expression E, and by induction on the formation of E, we associate a standard

automaton TE of dimension D(E), which we call the standard derived-term automaton of E.

Base cases

T0 = S0 , T1 = S1 , and Tm = Sm . for every m in M .

Dimension invariant operations

Tk F = kTF , TF k = TF k , and TF∗ = (TF)
∗ .

Addition and product

• TF + TG is a standard automaton of dimension D(F) ⊔ D(G) . Let ϕ be the ‘natural’

map

ϕ : D(F) ⊔ D(G) → D(F) ∪ D(G) ,

that is, ϕ maps two terms K and K′ of D(F) ⊔ D(G) onto one if they are equal, hence

K ∈ D(F) , K′ ∈ D(G) and K = K′ , or, to state it otherwise, if K ∈ D(F) ∩ D(G) .

Proposition 21. The map ϕ is a morphism of automata.

And we define

TF+G = ϕ(TF + TG) .

– 13 –



• TF · TG is a standard automaton of dimension D(F)⊔D(G) in bijection with D(F) ·G⊔

D(G) . Let ψ be the ‘natural’ map

ψ : D(F) · G ⊔ D(G) → D(F) · G ∪ D(G) ,

that is, ϕ maps two terms K and K′ of D(F) · G ⊔ D(G) onto one if they are equal, hence

K ∈ D(F) · G , K′ ∈ D(G) and K = K′ , or, to state it otherwise, K ∈ D(F) · G ∩ D(G) .

Proposition 22. The map ψ is a morphism of automata.

And we define

TF·G = ψ(TF · TG) .

This ends the inductive definition of TE. Modulo the proof of Propositions 21 and 22

which is given below, this definition directly implies the following key statement of the

paper, by induction on the formation of the expression E and as a consequence of Propo-

sitions 17, 18, and 12.

Theorem 23. For every valid K-rational expression E, the standard K-automaton TE
realises the series denoted by E and is a quotient of SE.

Example 7 (continued). Let F1 = a∗ , G1 = (a∗ + (−1)b∗)∗ and E1 = F1 · G1 . We have

seen that D(F1) = {a∗} , D(G1) = {a∗ · G1, b
∗ · G1} and D(E1) = D(G1) .

It then comes: TF1
= SF1

, TG1
= SG1

and

TF1
· TG1

=

〈

(

1 0 0 0
)

,











0 a a −b

0 a a −b

0 0 2a −b

0 0 a 0











,











1

1

1

1











〉

.

The derived term of F1, a
∗ , multiplied by G1, is equal to the first derived term of G1,

a∗ · G1 . They index respectively the second and third rows and columns of the matrix

above. If we add the second and third columns, we get a matrix whose second and third

rows are equal, and the second and third entries of the final vector are also equal (instance

of Proposition 22). These two states may then be merged to build the quotient and we get

TE1
=

〈

(

1 0 0
)

,







0 2a −b

0 2a −b

0 a 0






,







1

1

1







〉

.

4.3 Proof of Propositions 21 and 22

The construction of TE starts with the same automata as SE for the base cases. At every

step, it uses an operation on standard automata, and possibly a morphism. Let us be more

precise in the definition and notation for the standard derived-term automaton.

– 14 –



4.3.1 Definitions and notation

Let F be a K-expression over M . As we have seen, the standard automaton TF has

dimension D(F) and we write:

TF =

〈

(

1 0
)

,







0 J

0 F






,







x

U







〉

. (15)

The mere equation (15) implies that the scalar x, the vectors J and U of dimen-

sion D(F), as well as the matrix F of dimension D(F)×D(F), are also associated with F even

though it does appear explicitely in the writing. When we need to make it more explicit,

we write

J = J (F) , F = F(F) , and U = U(F) . (16)

By (2) and Proposition 6, the scalar x is the constant term of F. By convention, we

consider that the vectors J (F) and U(F) of dimension D(F) are also of dimension D, for

any finite D ⊂ KRatEM that contains D(F), or that F(F) is a matrix of dimension D×D,

the ‘missing’ entries being set to 0K.

4.3.2 The running claims and the preparatory lemmas

In order to be able to establish Propositions 21 and 22, that is, to settle the cases of

addition and product operators, we have to maintain properties, ‘the claims’, all along

the inductive process, hence for all operators. To this end, we also introduce another

function I(F), which is a vector of dimension D(F) defined inductively as follow.

Base cases

• E = 0 or E = 1 I(E) = ∅ vector of dimension 0. (17)

• E = m m ∈M \ 1M I(E) = (m) . (18)

Dimension invariant operators

• E = kF I(E) = k I(F) . (19)

• E = Fk I(E) = I(F) , (20)

more precisely I(E)K k = I(F)K ∀K ∈ D(F) .

• E = F
∗ I(E) = (c(F))∗ I(F) , (21)

more precisely I(E)KF∗ = (c(F))∗ I(F)K ∀K ∈ D(F) .

Addition and product

• E = F+ G I(E) = I(F) + I(G) , (22)

i.e. I(E)K = I(F)K + I(G)K ∀K ∈ D(F) ∪ D(G) .

– 15 –



• E = F · G I(E) = I(F) + c(F) I(G) , (23)

i.e. I(E)K = I(F)K + c(F) I(G)K ∀K ∈ D(F) · G ∪ D(G) .

The construction of TE goes with the verification, at every step of the induction, of the

following properties.

Claim 1. J = J (E) = I(E) , that is, ∀K ∈ D(E) JK = I(E)K .

Claim 2. U = U(E) = c(D(E)) , that is, ∀K ∈ D(E) UK = c(K) .

Claim 3. For any K in D(E), the row of index K of F = F(E) is equal to I(K), that is,

∀K,H ∈ D(E) F(E)K,H = I(K)H . (24)

The idea behind the definition of I(E) and the claims is that we have, at every step of

the induction, the knowledge on TE necessary to prove that the maps ϕ or ψ are morphisms

when the operators addition or product come into play. Before getting to the induction

itself, we state some preparatory lemmas.

Lemma 24. Let E be a K-expression over M . If K ∈ D(E) , then D(K) ⊆ D(E).

Lemma 24 will be used under the following form.

Lemma 25. Let F be a K-expression over M . If H ∈ D(F) , then D(H · F∗) ⊆ D(F∗).

4.3.3 The induction: the base cases

• E = 0 then T0 =
〈

(

1
)

,
(

0
)

,
(

0
)

〉

.

• E = 0 then T1 =
〈

(

1
)

,
(

0
)

,
(

1
)

〉

.

In both cases, Claims 1, 2, and 3 are obvious by the emptyness of D(0) and D(1).

• E = m ∈M then Tm =

〈

(

1 0
)

,

(

0 m

0 0

)

,

(

0

1

)〉

.

Claim 1 holds by (18), Claim 2 since D(m) = 1. Since D(1) is empty, it follows from

our convention that I(1) is the null vector of any dimension and we have here F(1)1,1 =

0 = I(1)1 .

4.3.4 The induction: the dimension invariant operations

• E = kF then TE = kTF =

〈

(

1 0
)

,







0 kJ

0 F






,







kx

U







〉

.

Claim 1 holds by (20). Since Claim 2 and Claim 3 hold for TF, they also hold for TE
as D(E) = D(F), U(E) = U(F), and F(E) = F(F).

– 16 –



• E = Fk then TE = TF k =

〈

(

1 0
)

,







0 J

0 F






,







xk

U k







〉

.

Claim 1 holds by (19). Claim 2 follows from:

∀K ∈ D(E) K = Hk with H ∈ D(F) U(E)K = U(F)H k = c(H)k = c(K) .

Claim 3 follows from the fact that by (20) I(Hk) = I(H) and by (4), and the adequate

renaming of row- and column-indices, F(Fk) = F(F) .

• E = F∗ then

TE = (TF)
∗ =

〈

(

1 0
)

,







0 x∗J

0 H






,







x∗

U x∗







〉

,

with H = U · x∗J + F .

Claim 1 holds by (21). Claim 2 follows from:

∀K ∈ D(E) K = H · F∗ with H ∈ D(F) and U(E)K = U(F)H x
∗ = c(H)c(F∗) = c(K) .

In order to prove Claim 3, let K in D(E), hence K = H · F∗ with H in D(F). By (23),

I(K) = I(H) + c(H) I(F∗) = I(H) + c(H)x∗ I(F) .

By Lemma 25, D(K) ⊆ D(F∗) , that is the dimension of I(K) is contained in D(E). By

induction the claims imply that I(H) is the row of index H of F(F) = F and c(H) =

U(F)H = UH . Hence (25) tells that I(K) is equal to the row of index K of F(F∗) = H.

4.3.5 The operations addition and product

In addition to the notation taken in (15), let G be another K-expression and

TG =

〈

(

1 0
)

,







0 K

0 G






,







y

V







〉

its standard term automaton, which fulfil the running claims.

• E = F+ G . We first form

TF + TG =

〈

(

1 0 0
)

,

















0 J K

0 F 0

0 0 G

















,

















x+ y

U

V

















〉

,

a standard automaton of dimension D(F) ⊔ D(G) . Let ϕ be the map

ϕ : D(F) ⊔ D(G) → D(F) ∪ D(G) = D(E) ,

– 17 –



that maps two terms K and K′ of D(F)⊔D(G) onto one if they are equal, hence if K ∈ D(F) ,

K′ ∈ D(G) and K = K′ , or, to state it otherwise, if K ∈ D(F) ∩ D(G) .

By Claim 2 and Claim 3 for TF and TG, if K ∈ D(F) ∩ D(G) then UK = VK and

FK,. = GK,. = I(K) . This is sufficient for ϕ to be a morphism of automata and establishes

Proposition 21.

With our convention, both J and K can be considered as vectors of dimension D(F) ∪

D(G) = D(E). The image ϕ(TF + TG) is TE and can be written

TE =

〈

(

1 0
)

,







0 J +K

0 H






,







x+ y

W







〉

where H is the ‘fusion’ of F and G and W is the ‘fusion’ of U and V .

Claim 1 then holds by (22). Claim 2 and Claim 3 are directly inherited from the cor-

responding properties for TF and TG (and the convention).

• E = F · G . We first form

TF · TG =

〈

(

1 0 0
)

,

















0 J xK

0 F U ·K

0 0 G

















,

















xy

U y

V

















〉

,

a standard automaton a priori of dimension D(F) ⊔ D(G) , but which we consider as a

standard automaton of dimension D(F)·G⊔D(G) , that is, we multiply all indices from D(F)

by G on the right.

Let ψ be the ‘natural’ map

ψ : D(F) · G ⊔ D(G) → D(F) · G ∪ D(G) = D(E) ,

that is, ψ maps two terms K and K′ of D(F) · G ⊔ D(G) onto one if they are equal, hence if

K ∈ D(F) · G , K′ ∈ D(G) and K = K′ , or, to state it otherwise, if K ∈ D(F) · G ∩ D(G) .

Let K be such an expression, that is, K = H ·G with H in D(F) and K belongs to D(G).

We consider first the final vector of TE.

By Claim 2, we have on one hand U(G)K = VK = c(K) and on the other hand

c(K) = c(H)c(G) = UH y . Hence, the two entries of index K of U y and V are equal.

We then consider F(E). By Claim 3, the row of index K in G is I(K) which, by (23),

is written as I(K) = I(H) + c(H) I(G) , that is,

∀L ∈ D(G) I(K)L = I(H)L + c(H) I(G)L ,

which implies in particular that the non-zero entries of I(H) all correspond to derived

terms of G.

The same Claim 3 on the other hand implies that the row of index H of F (of index H·G

in TE) is I(H). The row of index H of the matrix U ·K is c(H) I(G). If we sum all entries of

– 18 –



equal index in D(F)·G on one hand and in D(G) on the other hand, we obtain a row-vector Z

such that

∀L ∈ D(F) · G ∪ D(G) ZL = I(H)L + c(H) I(G)L ,

and, with our convention, Z = I(K) .

Together with the property shown above for V and U y this proves that ψ is a morphism

of automata and Proposition 22 is established.

Moreover, the same computations establish Claims 1 to 3 for ψ(TF·G) and by this fact,

complete the definition of the standard derived-term automaton.

4.4 The derived-term automaton

Finally, let us define yet another automaton associated with an expression E which is

indeed the one we are ultimately aiming at. By convention, we consider that the initial

state of TE is indexed by E. If E belongs to D(E), let ω be the ‘natural’ map

ω : E ⊔ D(E) → D(E) .

Proposition 26. The map ω is a morphism of automata.

Proof. Let

TE =

〈

(

1 0
)

,







0 J

0 F






,







x

U







〉

.

By Claim 1, J = I(E) . If E is in D(E), then, by Claim 2, UE = c(E) = x and, by Claim 3,

FE,. = I(E) . These equalities tell that ω is a morphism of automata.

Definition 27. For every valid K-rational expression E, the derived-term automaton DE

of E is defined by DE = ω(TE) if E is in D(E) and DE = TE otherwise.

We then finally can state:

Theorem 28. For every valid K-rational expression E, the derived-term automaton DE is

a quotient of the standard automaton of E, SE (and hence realises the series denoted by E).

Example 7 (Continued). Let E1 = a∗ · (a∗ + (−1)b∗)∗ .

We have seen that: D(E1) = {a∗ · (a∗ + (−1)b∗)∗, b∗ · (a∗ + (−1)b∗)∗} and

TE1
=

〈

(

1 0 0
)

,







0 2a −b

0 2a −b

0 a 0






,







1

1

1







〉

.

It holds that E1 is in D(E1) and we observe that the first and second lines of the

matrix, as well as the first and second entries of the final vector, both indexed by

– 19 –



instances of the derived term E1, are equal. The quotient of TE1
by the morphism ω is:

DE1
=

〈

(

1 0
)

,

(

2a −b

a 0

)

,

(

1

1

)〉

drawn as
−b

a

2a

The expression E1 has also the property that the ‘Thompson construction’ (when

generalised to weighted automata) applied to it yields a non-valid automaton (see [14]).

5 Back to derivation

Finally, we reconnect this work with the previous ones and show that the derived-term

automaton we have just described coincides — in the case where M is a free monoid —

with the automaton defined by the derivation of expressions process introduced in [1] for

Boolean automata and in [13] for weighted automata (see also [18, 19, 20]).

5.1 Preparation: the differential of an expression

We begin with a definition and a property that are valid in the case of general (graded)

monoids. The specialisation to the case of free monoids allows a particular writing that

will be used in the sequel.

Definition 29. Let E be a K-expression over M . The differential of E, denoted by dE, is

the expression

dE =
∑

H∈D(E)

I(E)H · H . (25)

Equation (25) allows to write a ‘first-order development’ of the expression via the

following statement.

Proposition 30. E = c(E) + dE .

Proof. By induction on the formation of E. Proposition 30, which we rather write under

the form E = c(E) +
∑

H∈D(E) I(E)H H , is based on Equations (17) to (23) which have

been established with the construction of the standard derived-term automaton.

Base cases

• E = 0 and E = 0 obvious by the emptyness of D(E).

• E = m ∈M as obvious since m = m , c(m) = 0K , D(m) = 1 and I(m)1 = m .

Induction

• E = kF c(kF) = k c(F) , D(kF) = D(F) and I(kF) = k I(F) ,

hence c(E) + dE = k c(F) + k
∑

H∈D(F) I(F)H H = k F = E .

– 20 –



• E = Fk c(Fk) = c(F)k , D(Fk) = D(F) k and I(Fk) = I(F) ,

hence c(E) + dE = c(F)k +
∑

H∈D(F) I(F)H Hk = F k = E .

• E = F+G . c(F+G) = c(F) + c(G) , D(F+G) = D(F) ∪ D(G)

and I(F+G) = I(F) + I(G) , hence

c(E) + dE = c(F) + c(G) +
∑

H∈D(F)∪D(F) (I(F) + I(G)) H = F + F = E .

• E = F · G . c(F · G) = c(F)c(G) , D(F · G) = D(F) · G ∪ D(G)

and I(F · G) = I(F) + c(F) I(G) , more precisely:

∀H ∈ D(F) I(F · G)H·G = I(F)H + c(F) I(G)H·G and

∀K ∈ D(G) \ D(F) · G I(F · G)K = c(F) I(G)K . It then comes

c(E) + dE = c(F)c(G) +
∑

K∈D(E)

I(E)K K

= c(F)c(G) +
∑

H∈D(F)

I(F)H H · G + c(F)
∑

H∈D(F)

I(G)H·G H · G

+ c(F)
∑

K∈D(G)\D(F)·G

I(G)K K

= c(F)c(G) +





∑

H∈D(F)

I(F)H H



 G + c(F)
∑

K∈D(G)

I(G)K K

= c(F)



c(G) +
∑

K∈D(G)

I(G)K K



+





∑

H∈D(F)

I(F)H H



 G

= F G = E .

• E = F∗ c(F∗) = (c(F))∗ , D(F∗) = D(F) · F∗ and I(F∗) = (c(F))∗ I(F) , hence

c(E) + dE = (c(F))∗ + (c(F))∗
∑

K∈D(F)

I(F)K K · F∗

= (c(F))∗ + (c(F))∗





∑

K∈D(F)

I(F)K K



 F
∗ .

The term
∑

K∈D(F) I(F)K K is the proper part F p of F . Let us write x = c(F) . It then

comes

c(E) + dE = x∗ + x∗ F p (F )∗ = x∗ + x∗ F p x
∗ (F p x

∗)∗ = x∗ (1K + F p x
∗ (F p x

∗)∗)

= x∗ (F p x
∗)∗ = (F )∗ = E .

If M = A∗ is a free monoid, every entry of I(E) is a linear combination of letters in A.

In (25), we can reorder the terms and see the vector I(E) as the sum of Card(A) K-vectors

– 21 –



of dimension D(E) multiplied by the letters of A:

I(E) =
∑

a∈A

〈I(E) , a〉 · a ,

and the differential becomes

dE =
∑

a∈A

a ·
∑

H∈D(E)

〈I(E) , a〉HH . (26)

As recalled in the introduction, the quotient operation may be defined on languages

∀L ∈ P (A∗) , ∀u ∈ A∗ u−1L = {v ∈ A∗ | uv ∈ L} .

and on series over a free monoid

∀s ∈ K〈〈A∗〉〉 , ∀u ∈ A∗ u−1s is defined by ∀v ∈ A∗ 〈u−1s, v〉 = 〈s, uv〉 .

From Proposition 30 and (26), directly follows then:

a−1
E =

∑

H∈D(E)

〈I(E) , a〉HH .

5.2 The derivation of an expression

The result of the derivation of a (Boolean) expression, as defined by Antimirov in [1] after

modification of the definition of derivatives by Brzozowski [4], is a set of expressions. The

result of the derivation of a weighted expression, which we have defined in [13] as a direct

generalisation of the former, is a linear combination of (weighted) expressions.

Definition 31. Let E be a K-expression over A∗ and a in A. The derivation of E with re-

spect to a, denoted by ∂
∂a E, is a linear combination of expressions in KRatEA∗, inductively

defined by the following formulas.

Base cases

•
∂

∂a
0 =

∂

∂a
1 = 0K . (27)

•
∂

∂a
b =

{

1K if b = a ,

0K otherwise.
(28)

Induction

•
∂

∂a
(kF) = k

∂

∂a
F . (29)

•
∂

∂a
(Fk) =

([

∂

∂a
F

]

k

)

. (30)

•
∂

∂a
(F+G) =

∂

∂a
F⊕

∂

∂a
G . (31)

– 22 –



•
∂

∂a
(F · G) =

([

∂

∂a
F

]

· G

)

⊕ c(F)
∂

∂a
G . (32)

•
∂

∂a
(F∗) = c(F)∗

([

∂

∂a
F

]

· F∗
)

. (33)

5.3 The reconciliation

Theorem 32. Let E be a K-expression over A∗ and a in A. The derivation of E with

respect to a is the coefficient of a in dE:

∂

∂a
E =

∑

H∈D(E)

〈I(E) , a〉HH . (34)

A direct consequence of this statement is the fact that derivation is the lifting of the

quotient of series at the level of expressions.

Corollary 33.
∂

∂a
E = a−1

E .

Proof of Theorem 32. It is less a proof than a mere verification without mystery, by in-

duction on the formation of E, and based on Equations (17) to (23).

Base cases

• E = 0 and E = 0 obvious by the emptyness of D(E).

• E = a ∈ A as obvious since D(a) = 1 and I(a)1 = a .

Induction

• E = kF
∂

∂a
(kF) = k

∂

∂a
F on one hand-side,

D(kF) = D(F) and I(kF) = k I(F) on the other;

if (34) holds for F, it holds for kF.

• E = Fk
∂

∂a
(Fk) =

∂

∂a
Fk on one hand-side,

D(Fk) = D(F) k and I(Fk) = I(F) on the other;

if (34) holds for F, it holds for Fk.

• E = F+G .
∂

∂a
(F+G) =

∂

∂a
F⊕

∂

∂a
G on one hand-side,

D(F+G) = D(F) ∪ D(G) and I(F+G) = I(F) + I(G) on the other;

if (34) holds for F and G, it holds for F+G.

• E = F · G .
∂

∂a
(F · G) =

([

∂

∂a
F

]

· G

)

⊕ c(F)
∂

∂a
G on one hand-side,

D(F · G) = D(F) · G ∪ D(G) and I(F · G) = I(F) + c(F) I(G) on the other;

– 23 –



more precisely:

∀H ∈ D(F) I(F · G)H·G = I(F)H + c(F) I(G)H·G and

∀K ∈ D(G) \ D(F) · G I(F · G)K = c(F) I(G)K ;

if (34) holds for F and G, it holds for F · G.

• E = F∗
∂

∂a
(F∗) = c(F)∗

([

∂

∂a
F

]

· F∗
)

on one hand-side,

D(F∗) = D(F) · F∗ and I(F∗) = (c(F))∗ I(F) , on the other;

if (34) holds for F, it holds for F∗.

This conclude the proof that the derived-term automaton we have defined in this paper

coincides with the one that was defined in the previous work dealing with expressions over

the free monoids.

It is noteworthy that other works that dealt with the derivation of expressions outside

from the scope of the free monoid [8, 12] have considered entities which are closed to ours.

In particular, the differential of an expression is called the linear form in [12], and the sum

of the differential and the constant term is the expansion in [8].

Nevertheless, we have taken here the formalism to its logical conclusion and designed

a construction of the derived-term automaton that gets rid of the derivation, derivatives

or their analogues.

References

[1] V. Antimirov, Partial derivatives of regular expressions and finite automaton constructions,

Theoret. Computer Sci., vol. 155 (1996), 291–319.

[2] J. Berstel and C. Reutenauer, Rational Series and Their Languages, Springer, 1988. Transla-

tion of Les séries rationnelles et leurs langages Masson, 1984.

[3] J. Berstel and C. Reutenauer, Noncommutative Rational Series with Applications, Cambridge

University Press, 2011. New version of Rational Series and Their Languages. Springer, 1988.

[4] J. A. Brzozowski, Derivatives of regular expressions, J. Assoc. Comput. Mach., vol. 11 (1964),

481–494.

[5] P. Caron and M. Flouret, Glushkov Construction for Series: The Non Commutative Case, Int.

J. Comput. Math., vol. 80,4 (2003), 457–472.

[6] J.-M. Champarnaud, F. Ouardi and D. Ziadi, An Efficient Computation of the Equation

K-automaton of a Regular K-expression, Fundam. Inform., vol. 90,1-2 (2009), 1–16.

[7] J.-M. Champarnaud and D. Ziadi, Canonical derivatives, partial derivatives and finite au-

tomaton constructions, Theoret. Computer Sci., vol. 289 (2002), 137–163.

[8] A. Demaille, Derived-Term Automata of Multitape Expressions with Composition, Sci. Ann.

Comput. Sci., vol. 27,2 (2017), 137–176.

[9] V. Diekert and G. Rozenberg (ed.), The Book of Traces, World Scientific, 1995.

– 24 –



[10] M. Droste, W. Kuich and H. Vogler (Ed.), Handbook of Weighted Automata, Springer, 2009.

[11] V. M. Glushkov, The abstract theory of automata, Russian Math. Surveys, vol. 16 (1961),

1–53.

[12] S. Konstantinidis, N. Moreira and R. Reis, Partial derivatives of regular expressions over

alphabet-invariant and user-defined labels, Theoret. Computer Sci., vol. 870 (2021), 103–120.

[13] S. Lombardy and J. Sakarovitch, Derivatives of rational expressions with multiplicity, Theoret.

Computer Sci., vol. 332 (2005), 141–177.

[14] S. Lombardy and J. Sakarovitch, The validity of weighted automata, Int. J. of Algebra and

Computation, vol. 23,4 (2013), 863–914.

[15] D. Madore and J. Sakarovitch, An example of a non strong Banach algebra, in preparation.

[16] J.-É. Pin (Ed.), Handbook of Automata Theory, Vol. I and II, European Mathematical Society

Press, 2021.

[17] J. M. Rutten, Behavioural differential equations: a coinductive calculus of streams, automata,

and power series, Theoret. Computer Sci., vol. 308 (2003), 1–53.

[18] J. Sakarovitch, Elements of Automata Theory, Cambridge University Press, 2009. Corrected

English translation of Éléments de théorie des automates, Vuibert, 2003.

[19] J. Sakarovitch, Rational and recognisable power series, in: Handbook of Weighted Automata,

M. Droste, W. Kuich and H. Vogler (ed.), Springer, 2009, 105–174.

[20] J. Sakarovitch, Automata and expressions, in: Handbook of Automata Theory, Vol. I, J.-É.

Pin (ed.), European Mathematical Society Press, 2021, 39–78.

[21] A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer,

1977.

– 25 –


