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{name.surname}@ird.fr
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Abstract. Malaria elimination, one of the Sustainable Development
Goals of the United Nation, is challenged by cross-border context speci-
ficities. At the French Guiana-Brazil border, a system was developed to
harmonized epidemiological data providing by the two countries. This
study evaluates the feasibility of using such harmonized data to build a
cross-border early warning system. To this end, the study compared ARI-
MAX and LSTM approaches. Time-lagged meteorological data were in-
troduced to improve the forecasts. LSTM outperformed ARIMAX, with
a 10 to 39% decrease of Mean Absolute and Root Means Square Er-
rors, and better predicted low case numbers. Meteorological data im-
proved significantly model predictions, by considering time-lags from 3
to 7 weeks compatible with the knowledge found in the literature. This
study demonstrated the feasibility of building a cross-border malaria
early warning system, that would significantly contribute to malaria con-
trol and elimination.
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1 Introduction

Malaria is a mosquito-borne parasitic disease mostly present in the tropical and
subtropical areas. The global significant decrease in malaria incidence and mor-
tality rates from 2000 to 2015 (minus 37% and 60%, respectively, [1]) led the
United Nations to consider the elimination of this disease as one of the sus-
tainable development goals [2], and the World Health Organization (WHO) to
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define a Global Technical Strategy aiming at a 90% reduction in global malaria
mortality and incidence by 2030 in comparison with 2015 levels [3]. However,
some countries that have reached good results in 2015, experienced an upsurge
in the following years. It is the case for Brazil, where about 143,000, 129,000 and
194,000 malaria cases were confirmed in 2015, 2016 and 2017, respectively [4].
In French Guiana − a French overseas territory bordering Brazil to the north −
the tendency was comparable with a 131% increase in the number of cases (from
258 to 597 cases) from 2016 to 2017 [5], the majority of which being situated in
the municipalities bordering Brazil [6]. In fact, territorial specificities associated
with the international borders tend to constitute obstacles to disease control and
elimination worldwide [7], and malaria at the border between Brazil and French
Guiana presents typical features of “cross-border malaria” [8].
Given such a situation, an automatic system for the harmonization and visual-
ization of the epidemiological data provided by the health surveillance systems
of the two countries was developed [8]. However, such system does not include
forecast capacities. The prediction of the malaria epidemiological situation in
the region would significantly facilitate malaria elimination in both countries by
helping in planning and carrying out actions i) prior to the malaria case resur-
gence, and ii) better targeted both in time and space. These actions include:
vector control, promotion of the use of impregnated mosquito nets, early resup-
ply of rapid diagnostic tests and medications to health centers, etc.
Malaria is a disease that is very sensitive to environmental conditions, which
determine the ecosystem suitability for the malaria vectors (mosquitoes of the
genus Anopheles) and directly impact vectorial density and capacity. Environ-
mental conditions are consequently key predictive factors of the disease trans-
mission. Previous studies have shown that the number of malaria cases could be
predicted using statistical methods and environmental data. The most popular
predictive models are based on the (Seasonal) Auto Regressive Integrated Mov-
ing Average models with Exogenous Input ((S)ARIMAX) formalism (e.g. in [9],
[10], [11]). On the other hand, little interest was shown in methods derived from
artificial intelligence like Long short-term memory (LSTM) models, whereas such
an approach appears particularly promising. In [12], a LSTM model led to an
error rate reduction of 84 to 87% in comparison with an ARIMA model. Such
an approach was also applied with success to forecast mosquito borne diseases
as Chikungunya and Zika [13]. It was used to predict monthly malaria inci-
dence in India [14] [15] and was combined with ARIMAX, Seasonal and Trend
decomposition using Loess (STL) and Back-Propagation Artificial Neural Net-
work (BP-ANN) in an ensemble modelling approach, for malaria prediction in
China [16].
All previously mentioned models consider environmental data (meteorological
data provided by in situ meteorological stations, and/or remotely sensed in-
dexes, etc.) as inputs.
In this context, this study aimed at evaluating the feasibility of the prediction
of the malaria case number in the French Guiana-Brazil cross-border area, with
a view to developing an early warning system. More specifically, the study com-
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pared two predictive approaches mentioned earlier: the LSTM and the ARIMAX
models.

2 Material

2.1 Study Area

Fig. 1. Map of the study zone, adapted from Mosnier et al., BMC Infectious Diseases
(2020) [6]

The cross-border area is defined by the Oiapoque municipality in Brazil
and the Ouanary, Saint-Georges-de-l’Oyapock (hereafter referred to as Saint-
Georges) and Camopi municipalities in French Guiana (Figure 1). The popula-
tion is unequally distributed in this area. In the Oiapoque municipality, the 2019
estimation of the Brazilian National Institute of Statistics (IBGE) was 27.270
inhabitants. On the French side, the municipalities of Ouanary, Camopi and
Saint-Georges have respectively 201, 1828 and 4220 inhabitants (according to
the 2017 estimations of the French National Institute of Statistics and Economic
Studies, INSEE). The climate is equatorial with an alternation of rainy (from
January to February and from end of April to June) and dry seasons (from July
to December and in March).
The main parasite species present in the region is Plasmodium vivax [6], which
is particularly difficult to eliminate due to the existence of parasites in dormant
state in the organism, leading to relapses and contributing to maintain a high
parasitic load in the population.
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2.2 Data

Malaria Cases Individual malaria cases were provided by the cross-border
malaria information system [8] that integrates and harmonizes the epidemiolog-
ical data provided by the two countries. Data are available since 2003 and 2007
for the Brazilian and French side, respectively. Information on cases includes the
Plasmodium species, date and locality of notification, residence place, putative
place of infection, patients’ gender and age (for details on the system and the
data, please refer to [8]). Malaria cases on both sides of the border presented
several periods associated with significant differences in case number magnitude
and spatial distribution, relative importance of Plasmodium species, etc. that
can be partly explained by significant changes in prevention and control [8]. In
this study, the new attacks of P. vivax notified during the last period, from Jan-
uary 2014 until December 2019, were considered and weekly aggregated, leading
to a 312 data point time-series.

Meteorological data Meteorological data were provided by two automatic
stations of the French national meteorological service (Meteo-France), situated
in Saint-Georges and Camopi localities. Daily measurements are available from
2007 to 2020. Daily minimum, maximum and mean temperature (referred to as
TN, TX and TM, respectively) and relative humidity (HN, HX and HM), and
accumulated rainfall (RR), were averaged per week to constitute the exogenous
variables (or predictors) in the models. For Camopi station, only daily minimum
and maximum temperature and rainfall rate were available.

3 Predictive Models

3.1 General description

ARIMAX Auto Regressive Integrated Moving Average models with Exogenous
Input (ARIMAX) are defined as follows:

y′t = c+ βxt + φ1y
′
t−1 + ...+ φpy

′
t−p +Θ1εt−1 + ...+Θqεt−q . (1)

With: y′t the d-order differencing of the yt time-series of malaria case num-
bers; c the intercept, a constant; βxt the exogenous variable part, with β the
exogenous variable coefficient and xt the value of the exogenous variable x at
timestamp t; φ1y

′
t−1 + ...+φpy

′
t−p the autoregressive part, with φi the coefficient

of the ith autoregressive parameter (i ∈ [1, p]); Θ1εt−1 + ...+Θqεt−q the moving
average part, with Θj coefficient of the jth moving average parameter (j ∈ [1, q]);
and εt−j the prediction error at the timestamp t− j.

LSTM The LSTM (Long Short-Term Memory) models are part of the Re-
current Neuronal Network (RNN) model family [17]. They can handle time se-
ries prediction, with long-term dependencies. They are composed of LSTM cell
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layers. For each cell, current state (Ct) and output (or hidden state) (ht) are
updated as a function of the previous cell state and output (Ct−1 and ht−1,
respectively) and of the input data vector Xt, using three filters (referred to as
gates): a Forget gate (Ft), an Input gate (It) and a Output gate (Ot). Current
(at t) gates, cell state and output are defined as follows [18]:

It = σ(wi[ht−1, Xt] + bi)
Ft = σ(wf [ht−1, Xt] + bf )
Ot = σ(wo[ht−1, Xt] + bo)
Ct = Ft ~ Ct−1 + It ~ tanh(wc[ht−1, Xt] + bc)
ht = Ot ~ tanh(Ct)

(2)

Fig. 2. LSTM model structure

The model structure for the study was composed of two LSTM cell layers,
two dropout layers and an output layer (Figure 2). Each dropout layer followed
a LSTM layer to avoid overfitting [19]. The training phase was performed using
an early stopping function based on the loss function of the test data [20]. The
patience of this function was set to 80 epochs. As a consequence, the training
did not stop in the staging part of the function while avoiding the overfit. The
optimizer used was the Adam version of stochastic gradient descent [21] and the
loss function was the mean absolute error.
To make the two model types (ARIMAX and LSTM) comparable, the inputs
of the LSTM models are the number of the malaria cases at the p past weeks
(autoregressive component) and s years (seasonality component) and the time-
lagged meteorological data (exogenous variables).

3.2 Model parameterization and selection

An iterative parameterization and selection procedure was similarly applied to
the ARIMAX and LSTM models. At the first iteration, the best time-lag for
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each exogenous variable was determined: 1) a set of candidate models was pa-
rameterized, by considering each meteorological station and each time-lagged
meteorological variable separately, with time-lags from 0 to 10 weeks. Each candi-
date model was the one that locally minimized the Akaike Information Criterion
(AIC), by considering its possible parameterizations around initial values deter-
mined by classical statistical tests and auto-correlation functions (see below for
details); 2) Then a cross-correlation procedure was used to select the three can-
didate models (and their associated time-lagged exogenous variables) with the
best 4-week horizon prediction accuracy according to the Mean Average Error
(MAE). The MAE was chosen because the comparison is made between models
using the same dataset, i.e. in the absence of any scale-dependency problem.
At the second iteration, the best combination of previously selected exogenous
variables was determined: 1) a set of 9 candidate models was parameterized by
considering all possible combinations of the three previously selected exogenous
variables; 2) the best final model was the one with a minimum MAE of predic-
tion, using cross-validation.
Models were calibrated with data from 2014 to 2017 and tested with those from
2018 to 2019.
Such a procedure is described in Figure 3. Specificities for each model are details
hereafter.

Fig. 3. Common overall parametrization and selection procedure for ARIMAX and
LSTM models. yt is the malaria case time-serie, {xk,l}k,l∈[1,K]×[1,L] is the set composed
of the K predictors, each of them time-lagged from 1 to L weeks. Comb({xs}s∈[1,3])
refers to all the combinations of the selected best predictors.

ARIMAX Seasonality and initial model parameters p0, d0 and q0 were deter-
mined according to statistical tests and auto-correlation function: a seasonality
test (Webel-Ollech test) was used to decide or not the inclusion of a seasonal
component in the model; a stationarity test (unit-root test) permitted to find the
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differencing order d; p and q parameters were determined by considering the time
lag associated with the maximum value of the auto-correlation function (ACF)
and partial auto-correlation function (PACF), respectively. These parameters
were optimized in a a second step by finding a local minimum of the AIC, by
testing all the parameter value combinations within the neighborhood (+/− 1)
of the previously found initial values. Such a procedure were performed itera-
tively for the ARIMAX models until finding a local minimum of AIC, and only
once for the SARIMAX models, due to a prohibitive computing time. Finally,
model residuals were tested to check if it corresponds to a white noise.

LSTM Each candidate model parameterization was realized in a two step pro-
cedure comparable with the one used for the ARIMAX models: 1) determination
of initial values of p and s according to autocorrelation; 2) identification of a lo-
cal minimum of the MAE (Mean average error) by exploring the neighboring
values of the input pairs (p− /+ 1, s− /+ 1).
The previous model parameterization and selection procedures were applied to
predict weekly new P. vivax cases with a prediction horizon of 4 weeks and by
considering separately three data sets: cases notified for the entire cross-border
area, and cases notified by the two national surveillance systems considered sep-
arately.

4 Results

For the same data set, the two models did not necessarily take into account the
same predictors as input (Table 1). Regardless the data set and the model, the
selected predictors were the mean temperature (TM, selected 4 times out of 6),
the precipitation (RR, 3/6 times), maximum temperature (TX, 3/6 times) and
mean and maximum relative humidity (HN and HX, respectively, 1 times each).
Meteorological data were time-lagged from 3 to 7 weeks.

By comparing the models, LSTM model always gave better results except for
the prediction RMSE of Brazilian data (with only a 1% increase of the RMSE
and with the MAE being 12% lower for LSTM in this case). Improvement in
MAE and RMSE range from 10% to 39% (median: 20%). It is worth noting
that the higher improvements in the prediction performance was reached with
the French Guiana time-series, which presented the lowest numbers of cases per
week.
Both ARIMAX and LSTM gave globally satisfactory results in terms of case
number dynamics, as shown Figure 4. Both models predicted the 2018 peak
(around week number 245 on the figures). However, LSTM better predicted the
peak heights and dates of occurrence, the predicted cases increasing more slowly
and to a lesser extent with ARIMAX compared to observed cases and LSTM
results. Figure 4 also show that LSTM models clearly better predicted low case
numbers for the year 2019 (from week 260 to week 312 on the figures) and that
prediction uncertainty was significantly lower for LSTM models in all situations.
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(a)

(b)

(c)

Fig. 4. Predictions (4-week prediction horizon) for the training and forecasting peri-
ods, for weekly P. vivax cases notified in: (a) the cross-border area; (b) the Brazilian
surveillance system only; (c) the French Guiana surveillance system only. For each sub-
figure, ARIMAX and LSTM results are positioned at the top and bottom, respectively.
The light blue zone corresponds to the 95% confidence interval.
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ARIMAX (p, d, q) LSTM (p, s)

Malaria
case source

Cross-border
area

Brazil French
Guiana

Cross-border
area

Brazil French
Guiana

BY WEEK
Parameter
values

(1,1,1) (1,1,3) (0,1,1) (5,2) (5,2) (6,3)

Predictor
(time lag)

TMSG(3);
HXSG(5)

TMSG(3);
HXC(3)

TMSG(5);
HNSG(5)

RRSG(4);
TXC(7)

RRSG(4);
TXC(7)

RRSG(3);
TMC(5)

MAE 10.5 9.3 2.3 8.4 (-20%) 8.2 (-12%) 1.4 (-39%)

RMSE 12.9 11.9 2.7 11.6 (-10%) 12.0 (+1%) 2.2 (-21%)

Table 1. ARIMAX and LSTM model structures and performances at a 4-week pre-
diction horizon estimated by cross-validation. SG and C indexes for meteorological
variables refer to Saint-Georges and Camopi stations, respectively. MAE is for Mean
Absolute Error and RMSE for Root Mean Square Error.

The computer used for this study was equipped with an AMD Ryzen 4600H
processor and 16 Go RAM. The optimization of the ARIMAX and LSTM models
lasted 16 m 47 s and 1 h 42 m 53 s, respectively. One prediction with ARIMAX
and LSTM lasted 24 s and 3 m 4 s, respectively.

5 Discussion

By comparing the most popular predictive models, ARIMAX and LSTM, results
showed that both models globally gave satisfactory results in terms of prediction
errors. However, LSTM outperformed ARIMAX in many ways: overall predic-
tion errors, malaria peaks temporality prediction, prediction of low case numbers.
The overperformance of LSTM was also found in a comparable study [16]. This
makes LSTM a very good candidate model for malaria case forecasting and,
thus, early warning generation. The fact that LSTM approach particularly im-
proved prediction for low case numbers is of primary interest within the malaria
elimination perspective, implying that malaria case number will globally tend to
decrease. However, despite such a globally favorable epidemiological situation,
it is worth stressing the interest of continuing to monitor and try to forecast
malaria cases in this area, particularly because disease resurgences, which antic-
ipation is crucial in the perspective of elimination, are possible locally [22].
On the other hand, the study was performed on the 2014-2019 period, which
can be too short to definitely conclude on models performances on longer term.
However, as more data is made available monthly, it is fair to expect that the
proposed model will deliver better quality results with time. Moreover, we can
expect that the introduction of exogenous variables known to be good predictors
of malaria since they are directly involved in the eco-epidemiology of the disease,
participated to make the proposed model reliable and robust.
In this study, the fact that the temperature (TM and TX) and the rainfall (RR)
were frequently selected in the models shows their actual predictive potential. In
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fact, mean temperature and rainfall have already been identified as significantly
predictive variables of the malaria vector density in the region [23], [24].
Time lags of 3 to 7 weeks are consistent with the lags found in the literature for
the region [23]. In [24], the authors considered that the observed vector density
could be related to malaria cases notified between 2 and 4 weeks after, and to
meteorological conditions observed from 2 to 4 weeks before, which corresponds
to a lag of 4 to 8 weeks between meteorological conditions and notified cases.
The study made used of meteorological data provided by two in situ stations,
whereas i) the study zone is relatively large and presents different environmen-
tal contexts related to climate and land cover and land use, and ii) the malaria
transmission depends on many other environmental factors. Several studies made
use of remotely sensed environmental indicators, like the Normalized Difference
Vegetation Index (NDVI), to predict malaria cases [11] [16]. In the future, such
a complementary predictor should be included in the models, by making use
of high resolution satellite images like those provided by the Sentinel-2 mis-
sion (European Spatial Agency, Copernicus program). Rainfall estimation from
satellites [26] could also be used to cover all the study area. Furthermore, inte-
gration of additional information on malaria control interventions on both sides
of the border and human mobility (particularly related to illegal gold-mining),
should significantly improve the forecasts as these phenomena highly contribute
to malaria dynamics in the region. Indeed, in [25] was found that more than
30% of the Brazilian malaria cases studied by the authors were imported from
French Guiana and linked to illegal gold-mining. However, human mobility is
particularly difficult to monitor in a systematic, regular manner (as required in
a early-warning system). Consequently, proxies should be found and evaluated
before their integration in models. In fact, the actual consideration of forecasts
in the decision making by the authorities in charge of the malaria disease con-
trol, will depend not only on model performances, but also on their capacity to
explicitly apprehend the highly multifactorial nature of the disease.
In this study, forecasts concern the cases in the entire cross-border area and those
notified separately by the two national surveillance systems. It is not strictly
speaking a spatialization of the prediction, as both surveillance systems include
cases which the residence places and/or putative places of infection can be sit-
uated on the other side of the border. Predicting malaria case numbers at the
locality level would considerably improve the capacity to implement targeted
control actions that become necessary in the perspective of elimination. How-
ever, at such a spatial scale, case scarcity can severely limit the possibility to
built reliable models and a previous locality clustering would be necessary, as in
[22]. To be consistent with the inclusion of environmental exogenous variables,
case spatialization should consider putative place of infection (and not patients’
residence place), but such an information is still rarely informed on the French
Guiana side and the confidence in it, on both sides of the border, is limited [8].
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6 Conclusion

The study implemented and compared ARIMAX and LSTM modelling ap-
proaches to predict the number of malaria cases at the French Guiana-Brazil
border. It concluded on the superiority of the prediction accuracy of the LSTM
approach, both in terms of peak amplitude and temporality, and especially for
low numbers of cases. The feasibility of a reliable prediction of the number of
cases with a 4-week horizon, and therefore of the building of an early warning
system of the disease, have been demonstrated. Such a system would be a highly
valuable tool to assist health actors in planning control actions, particularly in
terms of risk prevention campaigns among populations and logistical organisa-
tion of local health services, and would thus contribute to efforts to eliminate
the disease.
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