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A Fast Wavelet-to-Wavelet Propagation Method for
the Simulation of Long-Range Propagation in Low

Troposphere
Hang Zhou, Alexandre Chabory, and Rémi Douvenot

Abstract—As an alternative method to the discrete split-step
Fourier method, the split-step wavelet method has recently been
derived. This method based on a wavelet decomposition of
the field is efficient and accurate in simulating the long-range
propagation of electromagnetic waves in the low troposphere.
In this paper, to further improve the computational efficiency
and take full advantage of wavelet characteristics, a wavelet-
to-wavelet propagation method is proposed. The propagation,
variable refractivity, and apodization are accounted in the wavelet
domain. The computational complexity is reduced, since no trans-
forms are performed between wave fields and wavelet coefficients.
This method works well for the propagation over a planar
ground with a constant impedance. When a variable impedance
ground condition and/or an irregular relief are considered, a
hybridization with the split-step wavelet method is proposed.
These methods are tested and validated by means of numerical
experiments, showing very good efficiency and accuracy.

Index Terms—Wavelet, propagation, electromagnetic wave,
split-step method, refractivity, impedance ground, relief

I. INTRODUCTION

THE prediction of the long-range propagation of elec-
tromagnetic waves is a main issue for radio frequen-

cies. The parabolic equation method (PE) [1] is one of the
most widely used methods. It can be solved iteratively in
increasing distances by the finite-differences (FD) [2] and the
split-step Fourier methods (SSF) [3] [4]. An inhomogeneous
atmosphere, a ground condition, and an irregular relief can be
accounted in these methods [5]. Between both methods, the
SSF is numerically more efficient for large-scale problems,
since it permits larger grid increments. At each step in SSF,
the wave is transformed from the spatial domain to the spectral
domain by means of a Fourier transform. Lately, Zhou et
al. [6] [7] have proposed the discrete SSF method (DSSF).
This improvement of SSF brings self-consistency [8] [9], with
which numerical spurious solutions due to the a-posteriori
discretization are avoided.

Other methods have also been proposed for propagation
modeling, in which the electromagnetic wave is decomposed
into elementary functions and the propagation is realized
by the analytic formulation of beam propagation. For the
Gaussian beams methods, the wave field is decomposed into
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the Gaussian functions [10] [11]. The Gabor-based beam
algorithms and frame-based beam summation methods are
also utilized in various applications involving radiation and
scattering in complex environments [12]–[15]. In these meth-
ods, refraction effects can be modeled, whereas the relief
at grazing incidence with large variations can not be ac-
counted [2] [16] [17].

Here, we use the wavelet decomposition for the propagation
modeling. The multi-resolution wavelets are wavelike oscilla-
tion functions constructed by dilations and/or translations from
a mother wavelet and a scaling function [18]. A wave can be
decomposed on these wavelets by means of the fast wavelet
transform. The wavelet-based methods have been firstly used
in the method of moments to improve the efficiency [19].
Then, a wavelet-based algorithm to solve PE has been pro-
posed in [20] [21]. This method can model the propagation as
accurately as DSSF. However, its computational complexity is
the same as DSSF, since a Fourier transform is required in the
computation.

In order to improve the efficiency of the long-range prop-
agation method, a split-step wavelet method (SSW) has been
presented in [22]. It is an alternative solution to DSSF. At
each range step, direct and inverse wavelet transforms are per-
formed. The propagation is computed in the wavelet domain
by means of a multiplication by a pre-computed propagation
matrix. The SSW is more efficient than DSSF while keeping
a good accuracy. This is due to the high efficiency of wavelets
for data compression and the low complexity of the fast
wavelet transforms (FWT). However, the refractivity, relief,
and apodization are accounted in the spatial domain. This
means that the transforms between wave fields and wavelet
coefficients are required at each marching step, similarly to
DSSF.

In this work, to further improve the efficiency of SSW,
a new wavelet-based method is proposed. The main idea
is to perform all the propagation in the wavelet domain.
This method is denoted as the wavelet-to-wavelet propagation
method (WWP). Since no transform is performed during
the propagation, the computation time of WWP is shorter
than SSW. Furthermore, the refractivity and apodization is
accounted in the wavelet domain and the relief is considered
by a hybridization method with SSW.

In Section II, a brief introduction of the wavelet decomposi-
tion and the split-step wavelet method is presented. In Section
III, the proposed wavelet-to-wavelet propagation method is
introduced for the wave propagation over a planar ground
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with a constant surface impedance. In Section IV, the method
for a variable impedance ground and/or an irregular relief
is introduced. In Section V, the different methods and their
computational complexities are summarized. Finally, tests and
validations are performed in Section VI.

II. BRIEF INTRODUCTION OF WAVELET DECOMPOSITION
AND SPLIT-STEP WAVELET METHOD

A. Configuration and discretization

We assume an ejωt time-dependence of the fields, with ω
the angular frequency. The aim is to simulate the propagation
in a vertical plane (x, z) with y the direction of invariance.
The source is assumed to be located at x < 0 and the field
u(0, z) is known. The propagation is computed in the region
x > 0, z ≥ 0. An impedance ground condition is assumed.
The fields can be decomposed in a transverse electric (TE)
and a transverse magnetic (TM) components with respect to
the vertical direction z.

For numerical reasons, the computation domain is of finite
size and discretized. The computation domain is limited to
x ∈ [0, xmax] and z ∈ [0, zmax]. At the ground z = 0, an
impedance ground condition is accounted. At z = zmax, the
top condition is assumed the same as the ground condition.
An apodization is then applied to remove the reflections over
the top boundary.

The discretization steps are ∆x and ∆z. The computation
domain is discretized by a uniform grid, such as

x = px∆x for px = {0, . . . , Nx},
z = pz∆z for pz = {0, . . . , Nz},

(1)

with Nx = xmax/∆x and Nz = zmax/∆z.
The field of the position (px∆x, pz∆z) is represented by

upx,pz and the vector u(px∆x, ·) is denoted as upx in the
following parts.

B. Multiscale wavelet decomposition

A wavelet is a wavelike oscillation function localized in
both space and frequency domains. A discrete function can
be represented as a linear combination of multiscale ele-
mentary functions by applying the discrete wavelet transform
(DWT) [23]. These elementary functions can be regarded by
being constructed by dilations and translations of a scaling
function φ and a mother wavelet ψ [23], as illustrated in
Fig. 1a and 1b. Assuming the maximum decomposition level
L ∈ N+, the scaling functions (φL,p)p∈[0,Np(L)−1] and the
wavelet functions (ψl,p)l∈[1,L],p∈[0,Np(l)−1], with Np(l) =
Nz/2

l, form an orthonormal basis to the space of the discrete
functions with a length of Nz , as illustrated in Fig. 1c.
Therefore, a discrete function u[·] can be represented by

u[·] =

L∑
l=0

Np(l)−1∑
p=0

U(l,p)χl,p[·], (2)

where the scaling function and the multiscale wavelet func-
tions are expressed as

χl,p[·] =

{
φL,p[·] for l = 0,

ψl,p[·] for l ∈ [1, L].
(3)

The wavelet coefficients are represented by the vector U . The
total size of U is Nz . Each element of U , represented by
double indices (l, p), are defined by

U(l,p) =

{
aL[p] for l = 0, p ∈ [0, Np(L)− 1],

dl[p] for l ∈ [1, L], p ∈ [0, Np(l)− 1],
(4)

with aL[p] the approximation coefficients and dl[p] the detail
coefficients [23]. For computing these coefficients, a fast
algorithm for the discrete wavelet transform, the fast wavelet
transform (FWT), can be applied. Its computational complex-
ity is of order of O(Nz), which is better than the one of fast
Fourier transform (FFT), i.e., O(Nz logNz) [24].

The wavelet transform is a very efficient tool for data
compression. By forcing to 0 the coefficients that are close
to zero, a signal can be approximated by a sparse set of
coefficients within a chosen accuracy. The compressed vector
Ũ is

Ũ(l,p) =

{
0 for |U(l,p)| ≤ Vs,

U(l,p) for |U(l,p)| > Vs,
(5)

with Vs the compression threshold. Generally, Ũ is a sparse
vector and the number of non-zero coefficients Ns is typically
much smaller than the original signal size Nz .

C. Split-step wavelet method

For the SSW method, which is introduced in [22], the
propagation of the field u from px∆x to (px + 1)∆x is
computed by

upx+1 = LHRW−1MfCWupx , (6)

where W and W−1 are the direct and inverse fast wavelet
transforms. The operator C corresponds to data compression
with the threshold value Vs. Mf is the free-space propagation
matrix, containing all the pre-computed wavelet-to-wavelet
propagations. Thus, Mf represents the propagation operator
of the wave in the wavelet domain. The propagation on ∆x is
computed by multiplying the compressed wavelet coefficients
by Mf. Besides, R corresponds to the phase screen which ac-
counts for the refractivity. Then, an apodization H is applied.
The relief is considered by the operator L. These steps are
repeated for the wave propagation at increasing distances.

In Section 4.2 of [22], we have introduced an efficient filling
method for Mf. The fast filling algorithm can be achieved,
because the wavelets have the property to be shift-invariant
on the same decomposition level. In total, only L + 1 DSSF
propagations and 2L FWT are necessary to calculate the entire
matrix Mf, with L the maximum decomposition level.

III. WAVELET-TO-WAVELET PROPAGATION METHOD

For simplicity of presentation, firstly, the fundamental
wavelet-to-wavelet propagation method without considering
the ground is presented, denoted as WWP. Then, a phase
screen method applied on the wavelet coefficients is intro-
duced. Finally, a WWP-M method is developed to simulate
the reflections over a constant impedance planar ground.
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(a) Wavelets of different levels are derived by
dilating the scaling function φ and the mother
wavelet ψ.

(b) Wavelets of the same level are derived
by translations.

(c) All the multiscale wavelets form an or-
thonormal wavelet basis.

Fig. 1. Illustrations of the multiscale wavelets with the maximum decomposition level L = 3.

A. Overview of WWP

The computation steps for the WWP method are illustrated
in Fig. 2. As the initialization, the field at x = 0, i.e., u0, is
transformed to its wavelet coefficients U0 by applying FWT.

The propagation of the wavelet coefficients U is computed
marching on in distances. The propagation on one step in
distance ∆x of the wavelet coefficients at px∆x with px ∈
[0, Nx − 1], denoted as Upx , is simulated step-by-step as
follows:

1) A data compression operator C is applied on Upx with
a chosen threshold value Vs. This operator is introduced
in [22]. The compressed coefficients Ũ at px∆x are
given by

Ũpx = CUpx . (7)

2) The propagation is computed by means of multiplying
by a pre-computed propagation matrix M̃. The wavelet
coefficients U p at (px + 1)∆x are

U p
px+1 = M̃Ũpx . (8)

The apodization is accounted in M̃, as detailed in Sec-
tion III-B. This matrix is sparse after being compressed
by a threshold VP. The elements of M̃, i.e., M̃(l,p),(l′,p′),
satisfy

U p
px+1,(l,p) =

∑
l′,p′

M̃(l,p),(l′,p′)Ũpx,(l′,p′). (9)

3) A phase screen directly applied on the wavelet coeffi-
cients, denoted as Rc, is used to consider the variable
refractivity. This operator will be introduced in Sec-
tion III-C.

Upx+1 = RcU p
px+1 (10)

As a conclusion, the propagation of Upx on ∆x is

Upx+1 = RcM̃CUpx . (11)

These steps are iteratively repeated to simulate the propaga-
tion. The field at the final step is obtained by applying the
inverse FWT on the coefficients.

Initial
field u0

Wavelet
coefficients Upx

Compressed
coefficients Ũpx

× Iterations in range
px ∈ [0, Nx − 1]

Propagation
matrix M̃

Propagated
coefficients Uppx+1

Wavelet
coefficients Upx+1

if px < Nx

Apply IFWT
and obtain the
final field uNx

FWT

C: Compression
with thereshold Vs

Rc Apply a phase screen
on coefficients

Yes No

Fig. 2. Overview of WWP for the wave propagation in an inhomogeneous
atmosphere.

B. Propagation matrix M̃

The propagation matrix M̃, mentioned in Section III-A,
accounts for the wave propagation on one step ∆x with
the apodization. First, the propagation matrix for free-space
propagation is introduced for the sake of a simple presentation,
which is denoted as Mf. Then, the apodization is included, so
that M̃ is derived.
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Fig. 3. Illustration of the free-space propagation of one wavelet, giving the
relation of one coefficient to the propagated coefficients.

1) Free-space propagation matrix Mf: No ground is con-
sidered and the matrix Mf records the information of free-
space propagations of wavelets. The elements of the matrix are
M f

(l,p)(l′,p′), where l′ and l correspond to the wavelet levels
of the coefficients before and after propagation, respectively.
The indices p′ and p correspond to the position indices along
the vertical axis before and after propagation, respectively.

The construction of Mf is illustrated in Fig. 3 and intro-
duced as follows:

• Firstly, only one wavelet coefficient U(l′,p′) is considered
and set to 1. All other coefficients are set to zero. The
coefficient U(l′,p′) is transformed to field representation
χl′,p′(0, ·), by applying an IFWT.

• The wavelet χl′,p′(0, ·) is propagated on ∆x. The prop-
agated wavelets χl′,p′(∆x) are obtained by means of
DSSF [7] (Any other propagation methods be used as
well).

• The propagated wavelet coefficients are obtained by ap-
plying a FWT on χl′,p′(∆x, ·) and a compression.

• One column of the propagation matrix, Mf
(·,·)(l′,p′),

contains the propagated coefficients of χl′,p′(∆x, ·).

The elements M(l,p)(l′,p′) for all l, l′, p, p′ are obtained by a
fast filling method, exploiting the translation properties of M f,
as introduced in [22]. Only the propagation of one wavelet
for each level needs to be computed. The other propagated
coefficients could be derived by translations. Thus, L + 1
wavelet propagations are required to be simulated in total.
The computation burden is quite low for filling in the matrix.
Note that this matrix could be replaced by a library of local
propagators, which slightly modify the propagation [25] [26].

2) Apodization included in the propagation matrix M̃:
The wavelets are localized in space. For one wavelet with the

dilation and translation indices (l, p), its vertical position is

z(l, p) =

{
2lp for l ∈ {1, . . . , L},
2Lp for l = 0.

(12)

For the wave propagation without ground, to remove the
reflections over the top and bottom boundaries, two absorb-
ing layers are assumed in the domains z ∈ [−zmax, 0] and
z ∈ [zmax, 2zmax]. For example, for the absorbing layer of
the top boundary, the apodization amounts to a term-by-term
multiplication by a diagonal operator Hc. Its elements are
defined by

Hc
(l,p) =

{
1 for z(l, p) ≤ zmax,
1+cos(π( z(l,p)−zmax

zmax ))
2 for zmax < z(l, p) ≤ 2zmax.

(13)
This equation amounts to directly applying the apodization
layer on the wavelet coefficients.

The propagation matrix including the apodization is com-
puted by M̃(·,·),(l′,p′) = HcMf

(·,·),(l′,p′). Since the absorbing
window is applied directly on the coefficients, one may think
that it is different to the canonical absorbing window applied
on the fields. Indeed, since the attenuation coefficients in (13)
are multiplied term-by-term on the wavelet coefficients, this
means that one attenuation remains constant on the support of
the corresponding wavelet. This leads to a difference compared
to the absorbing window on fields. To mitigate this problem,
the parameters of the wavelets are carefully chosen, such that
the support of the most dilated wavelet remains small w.r.t.
the size of the apodization layer. Tests with different wavelet
parameters are presented in Section VI-A.

The propagation matrix M̃ is precomputed before the
computation for wave propagation. This matrix is recorded as
preacquired data, used for all the simulations with the same
parameters.

C. Phase screen

The phase screen operator Rc, mentioned in Section III-A,
is introduced in this section. The phase screen method is used
to consider a variable refractivity in DSSF and SSW. In WWP,
this method is applied on the wavelet coefficients, which is
possible due to the localization property of the wavelet.

For each coefficient U(l,p), its vertical position z(l, p) is
given in (12). Here, an approximation is assumed that the
refractivity is constant over the width of each wavelet. The
error remains small when the most dilated wavelets are of
narrow width, which is the same as the discussion in Section
III-B2. The error of this assumption depends on the wavelet
parameters and gradient of refractivity, which is tested in
Section VI-B2.

The operator Rc amounts to a term-by-term multiplication
by Upx(l, p) by a phase screen Rc

px(l, p), defined by

Rc
px(l, p) = exp

(
n(px∆x, z(l, p))− 1

2

)
. (14)

This corresponds to the phase screen used in the wide-angle
DSSF algorithm [27].
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(a) Wavelet propagated in free space.

(b) Wavelet propagated with reflection on the ground.

Fig. 4. The two possible types of propagated wavelets.

D. Propagation over a planar ground with a constant surface
impedance (WWP-M)

If a planar ground with a constant surface impedance is
assumed at z = 0, the ground reflections could be included
in the propagation matrix, so that the method is denoted by
WWP-M.

In WWP-M, both the ground reflections and the apodization
at the top boundary are included in M̃, which is expressed by

M̃(·,·),(l′,p′) = HcMg
(·,·),(l′,p′), (15)

with Mg the propagation matrix considering the reflections
over the ground.

In order to fill Mg, for each wavelet χl′,p′(0, ·), two cases
may occur, depending if the propagated wavelet χl′,p′(∆x, ·)
is reflected over the ground. A threshold of −50 dB below
the maximum value is introduced to assess the limits of the
wavelet vertical extension. The wavelet is reflected by the
ground, if the limits reaches the ground after propagation on
∆x.

• If χl′,p′(∆x, ·) does not reach the ground, as illustrated
in Fig. 4a, Mg

(·,·)(l′,p′) is filled by the same way as
presented in Section III-B1. The wavelets propagated in
free space satisfy the same shift-invariant property as the
wavelets before propagation.

• If χl′,p′(∆x, ·) is reflected by the ground, as in Fig. 4b,
it is simulated again by DSSF in the presence of the
ground reflection. Then, the corresponding column of Mg

is filled. Indeed, the shift-invariance is lost in this case
and the steps of Fig. 3 must be applied for each of these
wavelets separately.

By replacing M̃ in (8) by (15), the wave propagation
over a planar ground with constant surface impedance can be
efficiently simulated by WWP-M.

IV. PROPAGATION OVER A NON CONSTANT IMPEDANCE
GROUND AND/OR WITH AN IRREGULAR RELIEF (WWP-H)

In SSW, a dielectric ground is accounted for by a local
image technique with a Dirichlet condition after a change of
variable as proposed by Dockery and Kuttler [27]. Since the
discrete wavelets we use are not symmetric, the local image
method cannot be applied on the wavelets directly.

In the case with a relief, the classical staircase modelling [5]
is applied in the space domain. Therefore, in any of these
cases, the lower part of the field is propagated with SSW to
consider the boundary condition and the relief. This requires
an hybridization between WWP and SSW, denoted hereafter
as WWP-H.

This method is presented with a planar impedance ground
for the sake of simplicity. Then, the implementation for an
irregular relief is added to the method.

A. Propagation over a planar ground with a variable surface
impedance

The hybridization method WWP-H combines the WWP
method with the concept of DMFT [27] and the local image
source method of SSW [22]. Here, w is the variable change
of the field u as in DMFT [27]. The wavelet coefficients of
w are denoted as W(l,p). The main steps of the method are
illustrated in Fig. 5 and introduced as follows:

1) As illustrated by the green frame in Fig. 5(a), we focus
on the wavelet coefficients W(l,p) in a thin layer for
z(l, p) ∈ [−zim, 2zim], with zim = Nim∆z. The value
of 2zim is assumed to be larger than the width of the
largest wavelet and its field spread with propagation. In
practice, Nim � Nz.

2) Applying inverse FWT on these coefficients, the cor-
responding field is obtained, denoted as w

(1)
pz , with

pz ∈ [−Nim, 2Nim], illustrated in Fig. 5(b).
Due to the truncation of the coefficients, the field w(1)

pz

has spurious oscillations near the bottom and top limits,
i.e., at pz = −Nim and pz = 2Nim. The choice of Nim
guarantees that after one step ∆x, this error does not
reach the domain pz ∈ [0, Nim], which is illustrated by
the red line in Fig. 5(b).

3) The field in the local image layer (with pz ∈ [−Nim, 0])
is updated by the upper part (with pz ∈ [0, Nim]), as
illustrated by the red line in Fig. 5(c). The field w(2) is
defined as

w(2)
pz =


w

(1)
pz for pz ∈ [1, 2Nim],

0 for pz = 0,

−w(1)
−pz for pz ∈ [−Nim,−1],

(16)

The spurious oscillation at the bottom limit in Fig. 5(b)
is cleared up in this step. The error at the top limit is
addressed in the next step.

4) The coefficients W (2)
(l,p), with z(l, p) ∈ [−zim, 2zim], is

obtained by applying FWT on w(2). These coefficients
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are represented by the yellow grid in Fig. 5 (d). The
coefficients with z(l, p) ∈ [−zim, zim] are needed for the
next step, illustrated by the blue frame in Fig. 5 (d).
The upper part with z(l, p) ∈]zim, 2zim] is dropped off
to remove the error at the top limit.

5) The final coefficients W g are obtained by

W g
(l,p) =

{
W

(2)
(l,p) if z(l, p) ∈ [−zim, zim],

W(l,p) if z(l, p) ∈]zim, zmax].
(17)

As illustrated in Fig. 5 (e), W g are the combination of
the coefficients inside the pink frame of (a) and the ones
inside the blue frame of (d).

With the WWP-H method, the wavelets are not required
to be symmetric. This method avoids the spurious errors
and wavelet transforms are performed only on a thin layer.
The operator for applying this method is denoted as G. The
propagation on ∆x is computed by

Wpx+1 = RcM̃GCWpx . (18)

Finally, the field at the final step uNx
is calculated by recur-

sions introduced in DMFT [27] from wNx
, which is obtain by

applying inverse FWT on WNx
.

B. Propagation over an irregular relief

The WWP-H can account for an irregular relief. The stair-
cases terrain model [5] is used. At each range step px∆x, the
height of the ground is zg

px . The irregular relief is accounted
by adapting +zg

px in the equations of Section IV-A. Other
terrain models, such as the shift map terrain model, can also
be incorporated in WWP-H. However, at each range step, the
propagators should be calculated again. This can be realized
with a negligible calculation cost by using a fast calculation
of the propagators, as proposed in [28].

As a conclusion, the hybridization method WWP-H can
model the propagation over an impedance ground and/or with
an irregular relief. In the next section, the computational
complexities of the propagation methods WWP-M, WWP-H,
SSW, and DSSF are compared.

V. COMPLEXITIES OF DIFFERENT PROPAGATION METHODS

Each propagation method includes two parts, the
wavelet/Fourier transform part and the propagation part.
The computational complexities of both parts are compared.

1) In DSSF, the complexity of FFT is O(Nz logNz) and
the one for propagation is O(Nz) [27].

2) In SSW, the complexity of FWT is O(Nz + Nim) ≈
O(Nz). The complexity of the propagation is O(Ne)
where Ne ≤ NMNs. Here, NM , Ns are the numbers
of the non-zero elements of M and U , respectively.
Therefore, NM and Ns are much smaller than Nz due
to the high compression ratio of the wavelet decompo-
sition. [22]

3) In WWP-M, as introduced in Section III, no wavelet
transform is performed. For the propagation, the com-
plexity is the same as in SSW, which is O(Ne).

TABLE I
COMPUTATIONAL COMPLEXITIES OF WWP, SSW AND DSSF FOR THE

PROPAGATION ON ∆x

DSSF SSW WWP-M WWP-H
Tran. O(Nz logNz) O((1+β)Nz) −− O (3βNz)
Prop. O(Nz) O(Ne) O(Ne) O(Ne)

4) In WWP-H, as introduced in Section IV, a thin layer of
the wavelet coefficients near the ground is transformed
in the field domain. The complexity of this transform is
O(3Nim) = O(3βNz) with β � 1. For the propagation,
the complexity is O(Ne).

The computational complexities of DSSF, SSW, WWP-M,
and WWP-H are summarized in Table I. The complexities of
the propagation part (prop.) and the transform part (tran.) are
compared. For the propagation part, WWP-M, WWP-H, and
SSW are the same. In practice, their complexities are much
smaller than DSSF, since NM � Nz, Ns � Nz due to the
compression and Ne ≤ NMNs. For the transform part, WWP-
M is obviously the best and the complexity of WWP-H is
smaller than SSW. They are both faster than DSSF.

As a conclusion, the complexities of WWP-M and WWP-H
are less than SSW, and they are both much lower than DSSF.
Both methods WWP-M and WWP-H are applied with different
ground or relief conditions in the next section.

VI. NUMERICAL TESTS

Various simulations are performed to test the wavelet-to-
wavelet propagation methods. Results accuracies are compared
to analytic solutions, the geometrical optics method, DSSF,
and SSW. Moreover, the computational efficiencies are com-
pared.

Due to the compression threshold on the propagation matrix
M, VM and on the signal, Vs. Numerical errors exist compared
to the analytic solution. According to the numerical experi-
ments in [29], the expected error δNx

. VPNx + VsNx, with
Nx the number of range steps. Thus, the error increases with
the total number of iterations.

A. Propagation in an atmosphere without ground

Firstly, propagations in a homogeneous atmosphere without
ground are tested. The objective is to show the accuracy and
efficiency of WWP. A complex source point (CSP) [30] is cho-
sen as source. Its propagation in vacuum can be analytically
calculated and serves here as a reference. The parameters of
the CSP are: frequency f = 3 GHz, zw0 = −50 m, ys = 0 m,
zs = 300 m, and W0 = 3 m.

The simulation parameters are x0 = 0 m, xmax = 5 km,
∆x = 10 m, zmax = 600 m, and ∆z = 0.2 m. Thus, Nx = 500
and Nz = 3000. Besides, absorbing windows are applied on
the domains z ∈ [0, 200] m and z ∈ [400, 600] m.

As a preliminary test, we choose the wavelet parameters
the same as in [22]. The chosen orthonormal wavelet basis is
sym6, with the maximum decomposition level L = 3.

WWP and SSW with compressions on both M and the
wave are applied. The chosen thresholds are VP = 2 × 10−5,
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Fig. 5. Illustration of the hybridization method of WWP with the local image source method in SSW (WWP-H).

Vs = 2 × 10−3. Besides, VP is normalized by the maximum
amplitude of the dilated wavelets, and Vs is normalized by the
maximum amplitude of the fields for each step in distance.
Since Nx = 500, according to the discussion about the
error evaluation with the thresholds values and the iterations
number, the expected error is −37.8 dB.

The propagation of the electric field using WWP is plotted
in Fig. 6a. The normalized final electrical fields of WWP,
SSW and the analytic solution are plotted in Fig. 6b. The
differences between the three methods are quite small. RMS
differences and computation times are listed in Table III. The
RMS difference of WWP with analytic solution meets with
the expected value −37.8 dB. The computation time of WWP
is 3 times shorter than SSW and 10 times shorter than DSSF.
Besides, the time for filling M is 0.7 s. The propagation of a
CSP in a homogeneous atmosphere using WWP is successfully
tested with a high efficiency and a good accuracy.

In order to evaluate the errors and the computation times
with different wavelet parameters, we test different combina-
tions of wavelet family and multiscale level, see Table II. The
case with sym6 and L = 2 has the highest simulation accuracy
and computational efficiency. For the wavelet families sym4
and sym2, the cases with L = 2 and L = 3 respectively
have a higher accuracy than the others. Because the test can
be regarded as the propagation in free-space, the errors are
due to the compressions applied on the matrix and the signal.
These error levels can be estimated as introduced in [26].

In order to validate the method of apodization, as introduced
in III-B2, the simulation range is extended to 10 km (as
plotted in Fig.7) and tested with different wavelet parameters
are performed. Different decomposition levels L and wavelet
families are chosen, the results are listed in Table IV. The
errors remain small and acceptable. The best parameters are
with sym6 and L = 2. The result is quite similar to the
propagation on 5 km. It is believed the errors are mainly due

TABLE II
TESTS USING WWP WITH DIFFERENT WAVELET PARAMETERS.

Wavelet parameters L=1 L=2 L=3 L=4 L=5
sym6 sym6 sym6 sym6 sym6

RMS diff. of ampl. (dB) −50.7 −52.4 −35.6 −34.9 −31.8
Time (s) 0.28 0.27 0.29 0.31 0.30

Wavelet parameters L=1 L=2 L=3 L=4 L=5
sym4 sym4 sym4 sym4 sym4

RMS diff. of ampl. (dB) −38.1 −42.2 −38.0 −33.8 −31.7
Time (s) 0.31 0.31 0.31 0.33 0.32

Wavelet parameters L=1 L=2 L=3 L=4 L=5
sym2 sym2 sym2 sym2 sym2

RMS diff. of ampl. (dB) −42.3 −36.8 −38.1 −34.6 −33.7
Time (s) 0.41 0.41 0.41 0.45 0.46

TABLE III
COMPUTATION TIMES AND RMS DIFFERENCES OF AMPLITUDE OF WWP,

SSW, DSSF TO THE ANALYTIC SOLUTION.

Methods WWP SSW DSSF
RMS difference of amplitude (dB) −35.6 −36.9 −103.3

Time (s) 0.5 1.5 4.9

TABLE IV
TESTS USING WWP WITH DIFFERENT WAVELET PARAMETERS.

Wavelet parameters L=1 L=2 L=3 L=4 L=5
sym6 sym6 sym6 sym6 sym6

RMS diff. of ampl. (dB) −49.3 −67.6 −33.7 −32.0 −31.4
Time (s) 0.61 0.60 0.61 0.65 0.63

Wavelet parameters L=1 L=2 L=3 L=4 L=5
sym4 sym4 sym4 sym4 sym4

RMS diff. of ampl. (dB) −32.3 −45.9 −53.7 −37.0 −33.0
Time (s) 0.76 0.61 0.63 0.63 0.65

Wavelet parameters L=1 L=2 L=3 L=4 L=5
sym2 sym2 sym2 sym2 sym2

RMS diff. of ampl. (dB) −37.9 −31.8 −50.24 −37.3 −35.7
Time (s) 0.93 0.90 0.91 0.92 0.91

to the compressions, but not from the apodization. The errors
caused by the apodization can be neglected.
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(a) Propagation using WWP.

(b) Normalized electric fields at the final step obtained by WWP, SSW, DSSF,
and the analytic solution (full lines) and differences of WWP-M, SSW, and
DSSF to the analytic solution (dashed lines).

Fig. 6. Propagation in a homogeneous atmosphere of a CSP (5 km) with
L = 3 and wavelet basis sym6.

Fig. 7. Propagation in a homogeneous atmosphere of a CSP (10 km) with
L = 3 and wavelet basis sym6.

TABLE V
TIMES AND RMS DIFFERENCES OF WWP-M, SSW, DSSF COMPARED TO

GO FOR PROPAGATION OVER A PLANAR GROUND OF CSP.

Methods WWP-M SSW DSSF
RMS difference of amplitude
at 10 km (dB)

−27.9 −27.9 −27.9

RMS difference of amplitude
at 20 km (dB)

−36.2 −36.2 −36.4

RMS difference of amplitude
at 50 km (dB)

−50.6 −50.1 −89.0

Total computation time (s) 0.5 6.1 10.2

B. Propagation over a planar ground with a constant surface
impedance

The propagation over a planar ground with a constant sur-
face impedance in a homogeneous atmosphere is considered.
A CSP with W0 = 1 m and hs = 5 m is considered.

The simulation parameters are x0 = 0 m, xmax = 50 km,
∆x = 100 m, zmax = 819.2 m, ∆z = 0.2 m. Thus, Nx = 500.
The compression thresholds are the same as in Test VI-A. The
expected error is −37.8 dB.

In this test, the wavelet sym6 with L = 2 is applied. The
characteristics of the impedance ground are εr = 20 and σ =
0.1 S/m.

1) Propagation in a homogeneous medium: The WWP-M
method introduced in Section III-D is compared to SSW, DSSF
and GO to test its accuracy.

The propagation using WWP-M is shown in Fig. 8a. The
interferences of the direct and reflected waves are well simu-
lated. The normalized final electrical fields at the final step of
the different methods are plotted by solid lines in Fig. 8d.
The differences of SSW, WWP-M, and DSSF to GO are
illustrated by the dotted lines. The results of WWP-M meets to
the expectation. Both methods are very accurate. In addition,
the normalized final electrical fields at 10 km and 20 km are
plotted in Fig. 8b and 8c, respectively.

The simulation results including RMS differences and com-
putation times are shown in Table V. The computation time of
the WWP-M method is 6.6 times shorter than SSW and 16.2
times shorter than DSSF. The time of creating the propagation
matrix M is 2.5 s. In total, 548 propagations of near-ground
wavelets (Fig. 4b) are performed.

2) Propagation with an atmospheric duct: In the vertical
direction, we consider a surface-based duct, which is modeled
by a trilinear modified refractivity, as illustrated in Fig. 9. The
parameters are: M0 = 330 M-units, zb = 50 m, zt = 100 m,
with gradients c0 = 0.118 M-units/m, c2 = −0.3 M-units/m.

In order to test the phase screen method applied on the
wavelet coefficients presented in Section III-C, tests with
different wavelet parameters are performed. The simulation
results are listed in Table VI. As a comparison, the computa-
tional time of SSW with sym6 and L = 3 (the same parameter
as in [22]) is 5.85 s. Under this condition, the RMS difference
of SSW to DSSF is −45.2 dB. The computational time of
DSSF is 8.97 s.
According to the results in Table VI, several conclusions can
be drawn. First, in all cases of WWP-M, the computation
times are much faster than SSW and DSSF. For example, the
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(a) Propagation using WWP-M. (b) Normalized electric fields at 10 km obtained by WWP-M, SSW, and
DSSF (full lines) and differences of WWP-M and SSW to DSSF (dashed
lines).

(c) Normalized electric fields at 20 km. (d) Normalized electric fields at 50 km.

Fig. 8. Propagation over an impedance planar ground of CSP.

Fig. 9. Trilinear model of refractivity

case with sym6 and L = 2 is about 9 times faster than SSW
and 14 times faster than DSSF. Second, the RMS differences
of amplitude between WWP-M and DSSF are greater. This
is because in WWP-M, the refractivity is applied on the
wavelet coefficient directly. This accounts for considering a
constant refractive index on all the support of the wavelet.
The error remains small when the most dilated wavelets are
of narrow width. That is to say, a smaller wavelet order
and a smaller maximum decomposition level L can achieve
a better accuracy. This theoretical analysis is tested and the
simulation results with different wavelet parameters are listed
in Table VI. In cases with small wavelet order and small L,
the accuracy with WWP-M is just a little worse than SSW.
For example, in the case with sym2 and L = 1 (plotted in
Fig. 10a and Fig. 10b), the RMS difference of WWP-M to
DSSF is −40.8 dB and the RMS difference of SSW to DSSF is
−45.2 dB. The difference of simulation accuracy is small, but
the computation time of WWP-M is about 5 times faster than
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TABLE VI
TESTS USING WWP-M WITH DIFFERENT WAVELET PARAMETERS.

Wavelet parameters L=1 L=2 L=3 L=4 L=5
sym6 sym6 sym6 sym6 sym6

RMS diff. of ampl. (dB) −37.7 −27.6 −20.1 −13.4 −5.9
Time (s) 0.78 0.65 0.76 0.81 0.97

Wavelet parameters L=1 L=2 L=3 L=4 L=5
sym4 sym4 sym4 sym4 sym4

RMS diff. of ampl. (dB) −35.3 −26.3 −18.9 −12.3 −6.7
Time (s) 1.01 0.95 1.01 1.09 1.30

Wavelet parameters L=1 L=2 L=3 L=4 L=5
sym2 sym2 sym2 sym2 sym2

RMS diff. of ampl. (dB) −40.8 −34.3 −28.1 −22.0 −17.1
Time (s) 1.86 1.82 1.77 1.82 1.92

(a) Propagation using WWP-M with sym2 and L = 1.

(b) Normalized electric fields at the final step obtained by WWP-M with sym2
and L = 1, SSW, and DSSF (full lines) and differences of WWP-M and SSW
to DSSF (dashed lines).

Fig. 10. Propagation over an impedance planar ground of CSP.

SSW. So, the advantage of WWP-M is clear in computational
efficiency while keeping a good accuracy.

C. Long-range propagation in a complex environment

In this part, we test a long-range propagation over an
irregular relief in an inhomogeneous atmosphere.

A surface-based duct is considered the same as in
Test VI-B2. The relief is chosen as 1 triangular hill of height
80 m with a support of 40 m and 1 Gaussian hill of height

TABLE VII
TIMES AND RMS DIFFERENCES OF WWP-H AND SSW TO DSSF FOR

LONG-RANGE PROPAGATION OF CSP OVER AN IRREGULAR RELIEF.

Methods WWP-H SSW DSSF
RMS difference of amplitude (dB) −38.8 −50.1

Time (s) 3.1 9.4 13.5

80 m with w0 = 10 km. The characteristics of the impedance
ground are εr = 20 and σ = 0.1 S/m. The propagation range
is xmax = 100 km. The range step is 200 m, Nx = 500.
We choose VP = 2 × 10−5 and Vs = 2 × 10−3. The wavelet
parameter is set by sym2 and L = 1.

The WWP-H method is used. The number of points in the
local image layer is chosen Nim = 200 (with Nz = 4096).

The propagation using WWP-H in the vertical plane is
plotted in Fig. 11a. The refractive effects of the surface-based
duct and the reflection by the irregular ground are properly
simulated. The final fields and the differences of WWP-H
and SSW to DSSF are plotted in Fig. 11b. In addition, the
comparison of range variation at the height 150 m is plotted
in Fig. 11c. The error between WWP-H and DSSF remains
small along the range.

The simulation results including RMS differences and com-
putation times are given in Table VII. The difference of WWP-
H to DSSF is −38.8 dB, which well satisfies the simulation
requirement. The computation time of WWP-H is 3.1 s,
which is about 3 times faster than SSW and 4 times faster
than DSSF. Therefore, WWP-H has a better computational
efficiency while keeping a very good efficiency, even on
complex scenarios.

D. Guideline for choosing the wavelet parameters

In [29], a theoretical closed-form formula for the accumu-
lated compression error is given. Both the signal compression
error and matrix compression error accumulate with Nx.
The signal compression error after Nx horizontal iterations
fulfils δsNx

. NxVs and the matrix compression error fulfils
δmNx

. NxVM , with VM the threshold value on the matrix, Vs
the threshold value on the signal, and Nx the number of range
steps. The modellings of ground condition, irregular terrain,
and phase screen are the same in SSW and DSSF. So, the
error is believed to be entirely caused by the thresholdings.

In WWP-M and WWP-H, the best choice of wavelet
parameters not only depends on Nz , but also the models
of phase-screen, apodization, and the hybridisation method
for considering a variable impedance ground and/or irregular
relief. In general, it is hard to determine the best choice
for all cases. However, the numerical simulations show that
the computation time is not so dependent on the wavelet
parameters. Thus, for a practical complex scenario assuming
a varying atmosphere, any wavelet choice implying a small
support is reasonable. Our main recommendation is to keep
L ≤ 2 to keep this support small.

VII. CONCLUSION

In this paper, the wavelet-to-wavelet propagation method
has been presented, as an improvement to the split-step wavelet
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(a) Propagation using WWP-H.

(b) Normalized electric fields at the final step obtained by WWP-H, SSW,
and DSSF (full lines) and differences of WWP-H and SSW to DSSF (dashed
lines).

(c) Normalized electric fields along +x direction at 150 m obtained by WWP-
H, SSW, and DSSF (full lines) and differences of WWP-H and SSW to DSSF
(dashed lines).

Fig. 11. Propagation of CSP over an impedance ground with an irregular
relief.

method. The method is shown to be fast and accurate on planar
ground. To account for relief, the hybridization with SSW
has been presented and successfully tested with numerical
experiments. The computational complexity is smaller than
other methods. In the tests, this method has well simulated
the long-range propagation in a complex environment. The
wavelet-to-wavelet methods have shown a very good efficiency
compared to SSW and DSSF. Moreover, a very good accuracy
is also achieved. To continue this research, several future
works could be considered. The method of WWP could be
extended to solve three dimension problems, a more accurate
model of the phase-screen and the link between the wavelet
support and error at the phase screen step should be further
investigated.
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