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Abstract—On the seasonal time scale, for accessible locations
and when manpower is available, direct observations and field
survey are the most useful and standard approaches. However
very limited studies have been conducted on direct observation
at the decennial to century time-scale due to observational
constrains. Here, we present an open and reproducible pipeline
based on historical aerial images (up to 70 yrs time span)
that includes sensor calibration, dense matching and elevation
reconstruction over two areas of interest that represent pristine
examples for tropical and alpine environments. The Remparts
Canyon and Langevin River in Reunion Island, and the Bossons
glacier in the French Alps share a limited accessibility (in time
and space) that can be overcome only from remote-sensing. We
reach a metric to sub-metric resolution close to the nominal
images spatial sampling. This provides elevation time series with
a better resolution to most recent satellite images such as Pleiades
over a decennial time period.

I. MOTIVATIONS

MOUNTAINOUS landscapes under tropical and alpine
environments share a number of characteristics. Both

environments show steep slopes, and their evolution are mainly
dictated by climatic forcing (i.e., temperature, precipitation
and extreme climatic events) which influences underlying
mechanisms of geomorphic transport (e.g., soil formation,
river dynamics, slope stability and mass wasting). Both expe-
rience important gravity-driven sediment transport (mass wast-
ing, mass transport via glacier. . . ) that occurs from seasonal to
decennial time span. Understanding how these environments
evolve over decades is therefore essential to better anticipate
developments in the 21st century in a context of global climate
change.

As a matter of fact, the Intergovernmental Panel on Climate
Change stated in 2013 that “more frequent and/or intense
heavy rainfall events” were to be expected as a result of
climate change “over most of the mid-latitude land masses and
over wet tropical regions” [1]. In the one hand, hurricanes and
storms generate destructive floods and mass wasting in tropical
regions [2], [3], [4], leading to environmental degradation
[5], [6]. In the other hand, in the alpine region, permafrost
degradation and subsequent mass wasting occurrence clearly
exemplify that phenomenon [7]. The consequences of these
catastrophic events are amplified by other anthropogenic per-
turbations, such as deforestation or soil degradation. It re-
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sults in biodiversity loss and ecosystem dysfunction [8]. In
addition The remobilization of landslide deposits by heavy
rains may have a devastating impact on the infrastructure
and the housing, particularly in densely populated islands.
For example, from 2004 to 2013, mass wasting processes
were responsible for about 4,600 fatalities, and about US$15
million are annually spent for refurbishing damaged roads in
the Caribbean [2].

Similarly, since mountain glaciers are highly sensitive to
global and regional climate change [9], [10], sudden events
like ice avalanches, outbursts of glacier-dammed lakes or
floods on moraines can lead to large sediment loads in
mountain rivers and to hazardous events with many casualties
and extensive destruction. In addition, with the degradation of
the permafrost, mountainous areas are expected to experience
more mass wasting events in the next decades.

Therefore, as a result of climate change, tropical and alpine
regions are faced with major economic and social challenges
[11], [12]. Furthermore, gravity-driven processes (i.e., mass
wasting and glacier) are some of the most efficient events that
shape the surface of the earth. With underlying mechanisms
that operate from a few seconds to 1000’s of years and from
cm3 to 106 m3, they represent a major agent of erosion and
sediment supply to rivers [13].

In light of these considerations, an assessment of land-
scape degradation over several decades, at the watershed scale
and with a metric resolution is necessary. Measurements of
changes in topography have long been used to quantify land-
scape evolution, and the emergence of satellites and remote
sensing improved the spatial resolution and facilitated the stud-
ies on small timescale. Many studies have used a 4D approach
to access the spatio-temporal dynamics of geomorphological
processes at the decade timescale. Some of them used the
association of various data sources for deriving topographic
evolution. For example, by mixing the use of in-situ topo-
graphic measurements with (i) photogrammetry derived from
satellite images [2], or with (ii) the extraction of base level
from orthoimages obtained by satellites in combination with
one digital surface model (DSM) of reference [14], [15]. In
the one hand, despite a metric spatial resolution for the former
method, such approach is limited in both temporal and spatial
coverage due to limitations on field accessibility and/or the
requisite workforces for in-situ measurements. On the other
hand, the second approach is also limited, particularly by the
resolution of the DSM of reference (i.e, ∼25 m in the case
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of typical national services such as the USGS in the US, the
IGN in France or SwissTopo in Switzerland).

Other works have mixed DSMs derived from historical
images with DSMs derived from recent satellites images.
However, differences in the types of source generally lead to a
significant thresholds in detection of change (typically >15 m)
[16].

Additional studies have used times series from satellite
images with stereo capabilities [17], [14], [18], [19]. Such
approach offers high spatial resolution, and has been well-
developed and intensively used since the 2000’s as it is well
supported by commercial softwares. Similarly, recent sensor
developments on LiDAR (Light Detection And Ranging) and
UAV (Unmanned Aerial Vehicle) make very precise measure-
ments even for the ground surface below the canopy in the
case of LiDAR. However, both methods are only limited to
the post 2000’s period.

Finally, one can take advantage of archived images that
offer a great historical depth as well as a sub-metric spatial
sampling. Nonetheless, the use of original photographs implies
intense manual edits, and until now, most studies have dealt
with a narrow spatial cover on specific objects such a individ-
ual glacier or individual landslide, that requires small enough
number of images to be manually processed [20], [21].

Although these different methods are all applicable for
geomorphic processes analysis, the question of reconciling
large spatial coverage with a multi-decades time coverage still
persists. To answer this problem, the most suitable approach
would be to compare time series DSMs derived from archived
aerial images, that allow to assess topographic information
over several decades (pre- 2000) with large spatial coverage
(>10 km2) and high resolution (sub-metric).

Nonetheless, the main difficulty in such an approach lies
in the fact that historical aerial photos have been acquired by
film cameras and that even if they have been subsequently
scanned (with risks of bad conservation over the years) they
were not acquired digitally, leading to flaws and subsequent
difficulties in deriving accurate time series DSMs from pho-
togrammetry algorithms. Moreover, depending on the time and
space scale, the quantification of geomorphic processes by
photogrammetry requires a large number of images. In spite of
the existence of software or photogrammetry programs (free
or proprietary), that are very powerful (and easy to use for
recent images), the use of scanned archived photos requires a
very important preparation to be able to use the algorithms of
photogrammetry. In that regard, the use of a large number of
images for detailed time series, large geographical areas and
detailed geomorphic analysis, requires the automation of all
the steps that can be automated, for the production of DSM
from archived aerial images.

In this paper, after highlighting the limitation of current
methodologies for DSMs production when using archived
scanned images, we introduce a new workflow with automatic
steps and we show its application and the results on the
production of DSM for tropical and alpine contexts, namely
Remparts and Langevin rivers (Reunion Island) and Les
Bossons (french Alps).

II. FROM SCANNED AERIAL IMAGES TO DIGITAL SURFACE
MODEL, AND THE ASSOCIATED PITFALLS

Automatic processing archived images for photogrammetry
is a difficult task because numerous steps are hampered by
flaws that can make automation very difficult and/or propagate
errors throughout the entire workflow.

To synthesize, digital photogrammetry applied to overlap-
ping aerial scanned images is based on 4 main steps. The
first one consists in recovering, from the raw images and
from external sources (e.g. camera calibration report, for
sensor and optical system), the technical information necessary
to use the scanned photos as if they had been acquired
with a digital camera (e.g. digital single-lens reflex camera
(DSLR), UAV). The second step consists in extracting the
relative orientation between all the images, using tie points
(determined either manually or automatically, depending on
the software considered). The third step consists in placing
this resulting orientation in a georeferenced (i.e. absolute)
coordinate system using ground control points (GCP) acquired
either in the field or from a reference basemap. Finally, in the
fourth step, pixel correlation is used to derive the final DSM
for the area covered by the aerial photos. In detail, each of
these four steps requires particular caution and are associated
with limitations that we highlight below (by being as agnostic
as possible with software).

A. Step #1 and the potential issues regarding the assessment
of autocollimation

Before being accessible as downloadable images from on-
line catalogs, the scanned images were acquired from a so-
called ”pinhole camera”, and after being physically archived,
they were digitized using a scanner. Therefore, an important
task is to process these pictures to obtain images as if they had
originally been taken by a digital camera, and to obtain the
related metadata (i.e., this what is called pre-processing in the
following sections). First, it is necessary to find the position (in
the scanned photo) of the fiducial marks in order to calculate
the exact internal orientation of the pixel in the images. Even
if this task is easy for the human eye, and in order to make it
automatic to process more than tens of photos, it is necessary
to take into account several aspects. For example, the pattern
as well as the number of these marks can change from one
camera manufacturer to another, and when it comes to multi-
decennial archives, many patterns must be taken into account.
In addition, as shown in figure 1, photos can be in grayscale
or color (figure 1-a,b). In some cases, fiducial marks may even
be barely detectable when covering low contrast areas (e.g.,
figure 1-c). Others can be small (figure 1-d,e). Finally, fiducial
marks may be either cut or missing due to misalignment of
film in the scanner during the manual digitization procedure
(e.g., figure 1-f).

Once being identified and located in each pictures, these
marks are used to re-project and crop the images so that
they are mapped as if they had been acquired digitally in
the first place. For this remapping, an affine transformation
is generally considered to overcome potential misalignment
due to the manual scanning procedure,
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Fig. 1. Variety of sizes and patterns of the fiducial marks over diverse
surveys. a) Corner fiducial mark, b) colored central fiducial mark, c) barely
detectable edge slot fiducial mark, d) small and colored crossed fiducial mark,
e) small and colored corner fiducial mark and f) cut slot fiducial mark.

After this remapping it is necessary to define the intrinsic
geometry of the sensor (height and base of the field of view
pyramid that corresponds to the photos) using the specifica-
tions of the camera such as (i) the focal length F , defined as
F = fi|j × pi|j , with fi|j the focal length in the i, j axis, and
pi|j the pixel size in the i, j axis, (ii) the main point ([i0, j0])
called boresight, and (iii) s the skew coefficient of the axis that
causes shear distortion and aperture or sensor/pixel size.These
three parameters are used to derive the intrinsic matrix (i.e.,
internal calibration) of the camera K as:

K =

 fi 0 0
s fj 0
i0 j0 1

 . (1)

These parameters and specifications of the camera are often
provided with a calibration certificate but they can also be re-
estimated, although it usually requires additional calculations
for a good convergence.

This procedure of cropping/re-mapping the pictures and of
deriving the internal calibration of the camera is critical. Each
photos of the same survey being taken with the same camera,
the the matrix K is constant for all the photos of this survey,
and to be relevant, pictures must be accurately cropped along
the fiducial marks.

Depending on the software package used for the auto-
collimation, the steps described above can be purely manual
or partially automatic. In the case of a manual procedure
over a large data sets, in addition of being time consuming,
it may result in pixel misalignment between images due to
inaccurate pointing of fiducials marks or inaccurate cropping,
etc. Such inaccuracy has a direct impact on the quality of
subsequent operations, and thus on the resulting products. In
the case of semi-automatic procedure, when it exists (i.e.,
at authors’ knowledge, no purely automatic procedure exist
nowadays), we still observed (in the MicMac suite, e.g., [22],
[23]) up to 10% of misalignment due to erroneous fiducial
marks detection over more than 100’s of images of the same
survey.

This first step of auto-collimation results in the internal
calibration of the camera, that will be used to estimate the

relative orientation of the camera that took the pictures under
consideration.

B. Step #2, the relative orientation

This step called relative orientation consists in inferring the
relative position of the sensor for every images, accounting
for (i) the homologous points (tie points) between images and
(ii) the internal calibration of the camera obtained from the
previous step. Depending on the type of implementation (that
depends on the software package), this step may also be used
to derive internal parameters, such as the optical distortion
from the optical system on board.

This procedure of relative orientation is automatically per-
formed in an iterative way and starts first with the identifica-
tion of tie points along each possible image pairs. However,
this operation using a feature detection algorithm for image
analysis (i.e., SIFT in the workflow presented here) is time
demanding as it goes in n ∗ (n− 1)/2, n being the number of
images to process. To facilitate and accelerate the procedure,
one can provide a reference list of image pairs. Once enough
tie points are detected for each overlapping pairs, a second
operation consists in retrieving the relative orientation of each
camera. This is done from inferring the sensor matrix defined
as:

P =

[
R
t

]
K, (2)

where R and t are the extrinsic rotation and translation,
respectively. This step is also called ”external calibration” and
sometimes integrates the estimate of the radial distortion of the
camera optical lens system (for some software it is performed
in an intermediate step). In order to take into account the
optical distorsion in the position of the pixel on the image, it is
necessary to estimate the radial distortion coefficients kn, used
to calculate the undistorted coordinates idxcorr (i.e., index in
the vector image) as follows :

idxcorr = idxdist/(1 +
∑

knr
2∗n). (3)

where, r is the conic, defined as r = i2 + j2. In practice,
for long-focus lenses, like the ones used in aerial surveys, two
coefficients of the radial distortion should be sufficient.

The result of this step is the relative arrangement of each
image. Yet this relative orientation does not fully represents
the reality of the scene one seek to reconstruct since it is not
georeferenced or even scaled, which is done in the next step.

However, it is worth noting that in order to facilitate the
procedure of tie point recognition, one can directly provide the
approximate locations of the images. Indeed, depending on the
national service responsible for aerial survey, flight path are
often available and so provide embedded GPS-like positions.
Nonetheless, for campaigns prior to the introduction of GPS
(early 1980’s) we observed errors from 10 to ∼100’s of meter
in horizontal locations between position approximated from
the flight paths and the final DSM (accurately georeferenced).
Yet, elevation, obtained from the plane altimeter is much
more accurate even for old campaigns. As a consequence, the
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heterogeneity in the accuracy of the location of the images
must be taken into consideration when using flight path.
Finally, in this case where the locations of the images are
available (i.e. a priori), this step of external calibration leads
to an approximation of the absolute orientation, which is
described in the next section.

C. Step #3, absolute orientation and the crucial aspect of the
Ground Control Points

After computing the relative orientation for every image,
another procedure is required in order to accurately place
this orientation into a georeferenced coordinate system. This
is done by retrieving the absolute orientation of the cam-
eras (i.e., inference of R, t,w) using external geographical
information, called reference points or Ground Control Point
(GCP). Indeed, external control are required to scale up the
sensor coordinates (row and columns of the pixel in the image)
towards the world coordinates following:

[i, j, 1] = [x, y, z, 1]P/w, (4)

where [i, j] are the pixels in the image, [x, y, z] the points
of reference in the world and w a scale factor.

Although for several decades, modern sensors have been
equipped with integrated GPS providing geographic informa-
tion during the acquisition and facilitating the transformation
of pixel coordinates to world coordinates, archived images do
not provide such metadata. Therefore, the step described here
require GCPs that provide the exact geolocation M(x, y, z), of
a particular site/object on the images. GCPs can be of various
nature and generally require manual recognition or manipu-
lation on the photos under investigation. For example, GCPs
can be GPS measurements from field surveys, well-identified
and recognized features on orthoimages or even benchmark
points of well-known elevation selected on basemaps. In the
literature, most studies acknowledge the usage of GCPs [21],
[20], yet with the aim of studying DSM time series over
several decades, finding GCPs over such periods is in fact dif-
ficult. The general approach is to manually recognize features
that exist on the recent photos and on the old photos under
investigation. Urban constructions have been widely used as
GCPs since it is easily recognizable on pictures, but even for
these features it may still be challenging to recognize them
in old pictures, especially when urban areas have undergone
significant development during the period covered by the
studied images (extension of houses, enlargement of road
junctions, etc.), see Fig. 2).

Of course, this is also true for features in landscapes with
high rates of change (e.g., floods, landslides, rock avalanches,
overflows), which is often the case for relief of steep slopes.
Therefore, finding (on photos) and extracting GCPs that exist
now and that existed before is not always an easy task and is
a labor-intensive task, even for few images. For decadal time
series, it usually results in a small number of GCPs (a few tens
of points), sparsely scattered over the entire canvas or grouped
in one place (Figure 3). Indeed, there are two main reasons
why GCPs cannot be recognized in campaigns of different
ages. Shadows are one of the problems, while some GCPs

Fig. 2. Examples of building evolution between 1989 and 1997 taken on
volcano flank of Piton de la Fournaise, just above the Remparts river valley.
(1) House replacement, (2) new building, (3) extension, and (4) new road.

may simply not exist on the photo of a different date. As
a result, some areas are often over-weighted in the selection
of GCPs (see the probability distribution in figure 3). For
example, in Reunion Island (one of the two reference areas
of this study and described later), the urban areas in which
GCP recognition is easiest, are distributed along the volcano
flank, resulting in a more or less homogeneous distribution
of GCPs as a function of altitude (Fig. 3). On the contrary,
in the Chamonix valley (the other area of interest described
later), the agglomeration is localized in the valley, which gives
a heterogeneous distribution of GCPs as a function of altitude.
As exemplified, the difficult selection of GCPs, as it is a
manual procedure (for all software), often introduces a strong
bias in the altitude constraints and often leads to a number
of GCPs lower than the actual potential number that could be
used.

Finally, the relevance of the chosen GCPs is not only related
to their use for the absolute orientation but also to the fact that
they are used in a subsequent procedure to optimize the camera
calibration (and thus the absolute orientation). Indeed, after
the absolute orientation calculation, the resulting point cloud
(which represents the studied scene) is used as a reference
canvas from which, using the GCPs, the camera parameters are
refined. This procedure is called the bundle adjustment. This
adjustment may concern the relative locations of the cameras,
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Fig. 3. GCPs identified over several surveys at Bossons glacier (top panel)
and Remparts river (bottom panel). Red lines link corresponding GCPs (in
blue) over various surveys. GCPs corresponding to shadowed areas as well as
urban zones are indicated. Blue histograms are showing weighted probability
distributions of GCPs as a function of elevation accounting for the redundancy
over the images. 52 GCPs were collected for top of the Bossons scene, while
62 were collected for the Remparts scene.

the orientations of the cameras or even the coefficients of
radial distortion (only when numerous GCPs are available).
This optimization therefore depends heavily on the quality of
the GCPs, which may ultimately, for the reasons mentioned
above, be insufficient to obtain an accurate aerotriangulation
of the whole canvas.

D. Step #4 and #5: 3D points cloud and digital surface
model reconstruction

The final step consists in computing the depth map from ray
intersections by using dense correlation over the images. This
is done using image correlation from moving windows that are
easy to implement and well suited for long range acquisition
(i.e., small B/H ratio). However, archived images often show
low radiometric dynamics that can lead to inaccurate DSM
construction due to the saturation of very bright areas (i.e.
glaciers) and/or to low brightness and/or low contrast in shaded
areas (i.e. valley bottom). The overall workflow is summarized
in Figure 4.

E. Potential issues regarding the quality assessment of the
resulting DSM using GCPs

Considering the criticality of each of the four main steps
in the process of construction of DSMs from scanned aerial
images, an accurate quality assessment of the result is re-
quired. The simplest way of estimating the accuracy of the
resulting DSM would be to use the GCPs used to compute
the absolute orientation and compare their position (x,y,z) to
their corresponding location in the modeled DSM. In other
words the accuracy of the resulting DSM could be inferred
by the standard deviation of errors at the GCPs locations.
However, if such a comparison is necessary, it is not sufficient
and might sometimes be misleading instead. Indeed, although
the step of absolute orientation (i. e. bundle adjustment) seeks
to minimize the Euclidian distance between ray intersections
and the location of the GCPs, too few and too sparse GCPs
(over the landscape of interest) can lead (depending on the
free parameters that are considered during this step) to a
global distortion of the resulting DSM, while close to the
GCPs [24]. Therefore, in the case of two campaigns that
share little to no GCPs, such potential and global distortion
will lead to a large difference between DSMs while having
a small standard deviation of errors at their respective GCPs
locations. The direct consequence is that such a difference
(in altitude) between two DSMs will account for both the
error in the DSM construction and the actual changes in
elevation due to the real geomorphological processes that one
seek to quantify. In addition, attempts in correcting a global
distortion due to sparse GCPs (or to an erroneous estimates of
the radial distortion associated with quasi-parallel sights [25])
using polynomial regression, should also lead to inaccurate
final DSMs and then hinder for potential real changes in
elevation. A strong mismatch between the GCPs and their
equivalent on the final DSM clearly show the poor quality
of the final product, but a good correspondence does not
necessarily implies an accurate DSM, espacially with sparse
GCPs. Other tests such as the the variation in elevation over
areas known to be stable over the decade time scale studied
need to be evaluated.

III. COOKBOOK FOR A ROBUST PHOTOGRAMETRIC
WORKFLOW FROM HISTORICAL TIME SERIES

In order to automatically produce time series of DSM, from
large volumes of archived images and within the previously
identified limits, we propose a complete workflow with new
approaches on pre-processing and canvas co-registration steps.
In this work, our efforts are mainly focused on sensor cali-
bration since it is the most critical and difficult aspect when
processing scanned images.

A. Pre-processing

As described above, a crucial step is to transform the
scanned films into digital type images using the reference
marks. While many software packages offer no solution, some
others (both commercial and open-source) have rudimentary
tools that essentially consist of locating the marks by clicking
on the images. Depending on the software, either the manual
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pointing must be repeated on each image, or the spot automat-
ically propagate across the data set assuming a constant or at
least very close location for all images. By applying the latter
method with MicMac [23], we have observed more than 10%
of errors on more than 100 images, which then have to be
corrected manually. As long as the fiducial marks exist in all
scanned images, the next step of co-registering the reference
marks can be achieved with a sub-pixel accuracy. In addition,
the manual procedure of scanning archived images often leads
to missing and/or partially cropped fiducial marks, that prevent
the manual or existing automatic identification process. To
overcome these limitations, and to allow processing hundreds
of images from various campaigns with heterogeneous fiducial
mark patterns (see Fig. 1), and potential missing marks, we
introduce the FiducialLib workflow as outlined in the figure
5.

This workflow consist of four procedures. 1- The Fidu-
cial marks pattern extraction is a manual step that defines
the template images corresponding to the types of fiducial
marks present in the images of the different campaigns under
consideration. 2- Manual creation of a catalog that describes
the number of fiducial marks in the images of the different
campaigns (i.e 4 or 8 marks). 3- Automatic search all the
images for the fiducial marks by pattern recognition based on
a simple correlation operation:

S(i, j) =
∑
i′,j′

(F ′(i′, j′) · I ′(i+ i′, j + j′)), (5)

where S is the score of the pattern recognition step from the
fiducial mark pattern template F into the image I , and where
prime function is defined as:

M ′(i′, j′) = M(i′, j′)−
∑
i”,j”

M(i”, j”)/(w · h), (6)

where w and h being the width and the height of the pattern
template. The location of the fiducial mark corresponds to the
best match, and is being obtained as the global maximum of
S.

In the case of a missing fiducial marks (due to the cropping
of the image during the scan procedure), a virtual frame
is modeled from the other identified fiducial marks, so the
location of the missing marks can be retrieved, in order
to reshape/remap the image accordingly. Assuming a 2D
homothetical deformation, a minimum of three fiducial marks
are required.

From the whole data used to develop the workflow presented
in this study, we empirically found that keeping max(S) > 0.5
allows us to retrieve the different pattern templates even when
they are located over an area of a very different brightness in
the different images (e.g., forest vs. snow).
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Finally the fourth step of the FiducialLib workflow is the
remapping using a homothetic transformation. This operation
takes pixels from one place in the image and locating them in
another position in a new image resulting into a digital-like
image, as it was taken with a digital camera in the first place.
The whole FiducialLib is provides in algorithm 1.

An example of the use of the FiducialLib is given in Figure
6. The main advantages of our approach is that it is an agnostic
method with regards to the fiducial mark patterns and needs
very little manual edits. After the manual definition of the
template (as many as the number of campaigns required) Fidu-
cialLib automatically process the images. More importantly,
over the +100’s images processed for this study (i) we do not
observe any rejection over various campaigns, even when one
to two fiducial marks are missing, (ii) we achieve a sub-pixel
accuracy for the locations of the fiducial marks, and (iii) the
missing mark problem is overcome as long as two orthogonal
axis can be identified.

B. Canvas co-registration

In order to produce accurate time series of DSMs, all
considered canvas from the different campaigns need to be
co-registered onto a common georeferenced frame. Yet, the
second major limitation of photogrammetry using historical
images to produce time series DSM, is associated to what we
name ”the GCPs paradigm”. While required for bundle ad-
justment and georeferencing of each canvas, manually chosen

GCPs do not necessarily guarantee an accurate co-registration
between canvas from different campaigns, essentially due to
the limitation discussed in the previous section. The ideal
approach to maximize the accuracy of the co-registration of
the canvas would consist of selecting a large number of GCPs
well-distributed over the area under investigation and which
exist through all the canvas. Unfortunately as discussed in
section 2, this is barely possible in real situations. Therefore,
another approach consists of selecting different GCPs only
on the canvas of reference C0. The two main advantages
of using the most recent canvas as the canvas of reference
(to register the others) is that (i) it allows to maximize the
chances of selecting and recognizing numerous GCPs from
other reference sources such as orthoimage, maps or GPS
measurements on the field, and that, (ii) if the most recent
canvas is acquired from digital camera, it helps optimizing
the sensor calibration convergence. Yet, although selecting
GCPs is essential for the absolute orientation and the bundle
adjustment of each canvas of a time series, their choice, their
nature, and their use in the alignment of the canvas are critical.
Consequently we propose to avoid the use of GCPs to align
the different campaigns (i.e., canvas) with each other, by using,
instead, a feature detection algorithm such as scale-invariant
feature transform (SIFT).

Indeed, even in a changing landscape, many areas or objects
remain stable over time, and the number of stable features in
an image increase with its coverage area. For instance, human
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Fig. 6. Exempe of results of the FiducialLib for the 1949 campaign over Bossons glacier. The fiducial mark pattern recognition in the image is shown
(top left panel). The FiducialLib is also able to retrieve the location of the missing fiducial mark from the remaining pattern image (bottom-left panel).The
complete sensor size reconstruction is shown for a bright (top-right) and dark (bottom-right) terrains.

recognizable objects such as fixed roads, old buildings, and
some crests and hills do not necessarily evolved over the time
frame considered (e.g., 5 to 10 years which is the typical time
lapse between aerial survey). But more importantly, feature
detection algorithm does not deal with real objects but with
image derived features. It extracts its own feature description
and use it to identify the same feature in another image, thus
overcoming eye recognition problems and thus ensuring a
better spatial distribution and a greater number of these tie
points between each campaign and the reference one C0.

By doing so, we obtain a sufficient number of homologous
points features in a common scene, typically between 100’s
and 1000’s when images overlap with more than 50% in
coverage.

This step is done by applying a pre-processing difference
of Gaussian filter on the images, that allows to catch some
point even in either saturated (i.e, glacier/snow cover) of under
shadow (steep cliffs) areas, which are common on our region
of interests. In addition, in our approach there is no need for
all images of a given canvas Cn, to be link/associated to the
canvas of reference C0 as long as each image of canvas Cn is
associated with at least one other image of Cn. The geographic
information from the reference C0 is hence propagated through

the entire series of Cn, backward in time from one canvas to
another, with C0 the most recent canvas.

Moreover, we take advantage of this approach for optimiz-
ing the co-registraion of the different canvas from the different
campaigns. Indeed, processing archive aerial images usually
lead to bad convergence during camera calibration, that can
be improved by setting the sensor properties (focal length and
boresight, when initializing the calibration). However, since
the different canvas Cn are all related by new GCPs (tie
point between campaigns), we can propagate the orientation
information from C0 through Cn. As the canvas of reference
needs to be the most recent campaign (see above) the ori-
entation is propagated backward in time, from one canvas to
another with no re-evaluation of the reference canvas (i.e, C0

to C1, C1 to C2 etc. or C0 to C1, C0 to C2 etc). In practice,
this is done by performing simultaneously both, the external
orientation and the bundle adjustment with 100’s to 1000’s
tie points for each image. As far as the spatial distribution
of the tie points (between each campaign and its reference)
is not statistically biased, then the process converges rapidly
and leads to co-registered canvas after the step 1 to 3 as
described in section 2. In a similar manner, we can back-
propagate the aero-triangulation to older canvas. In the case
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Algorithm 1 FiducialLib’s algorithm
Input: Fiducial Mark F + sensor canvas SC + I1 · · · In scanned images
Output: J1 · · · Jn digitized-like images

1: function MAIN(:)
2: [In,n,nFMP,F,SC]= getInput(:)
3: for i← 1 to n do
4: for k ← 1 to nFMP do
5: subI ← I(SC[k])i . SubImage closeby Fid. Mark
6: [x,y,c] ← matchFMP(Fk ,subI)
7: if c>0.8 then
8: P(k) ← [x,y]
9: else if c>0.5 then

10: Print(/!\Warning) . Suspicious result
11: P(k) ← [x,y]
12: else
13: P(k) ← Null
14: end if
15: J ← doHomoG(I,P,SC)
16: return J
17: end for
18: end for
19: end function

20: function MATCHFMP(F, subI)
21: S =

∑
F · subI . normalized 2d-correlation

22: [c,ind] = max(S) . Correlation peak and indices
23: [x,y] " ind . Indices to subscripts
24: return x,y,c
25: end function

26: function DOHOMOG(I,P,SC)
27: nP ←

∑
(P != Null)

28: T ← P\SC . infer a geom. transf.
29: if nP>=3 then

30: T ←

a d g
b e h
c f 1

 . i.e., affine transformation

31: else

32: T ←

a d
b e
c f

 . i,e., nonreflective similarity

33: end if
J ← I· T . Apply geometric transformation to I

34: return J
35: end function

of a too important age difference between two campaigns, one
can chose a given Cn becoming a new reference for a ”very”
old canvas. We call this approach the ”backward time nearest
neighbor propagation” (BTN2P). Finally, since it relies on a
well established bundle adjustment algorithm, the accuracy of
the canvas co-alignment is easy to assess.

It is worth noting that, an multi-block (or multi-canvas)
approach has been proposed for painting restoration using mul-
tiple cameras [26]. However our methodology varies in many
regards. First, the scene depth for landscapes are changing
overtime, while in the paintings case, changes are in mainly
in the radiometry (i.e., the restoration does not affect the depth
of the scene). Second, historical surveys come with a badly
constrained orientation or no flight path, while in the case of
painting restoration, the location of the cameras are accurately
known and fixed. Finally, and being the most critical point, the
scanned sensors are badly calibrated as discussed previously.
Because of these considerations, in our method, both internal
and external calibrations are done by the ”backward time
nearest neighbor propagation”, as opposed to an evaluation
by iterative addition of canvas [26] that would lead to non-

convergence in the case of archived scanned images.

C. Overview on the workflow

Here we summarize our new approach for the production
of time series DSM from archived aerial images:
-I- Download the scanned archived aerial images from online
catalogs or manually scanned achieved films, of each cam-
paigns of the studies times series
-II- Pre-process all the images from all the campaign with
FiducilLib (algorithm 1) in order to transform the scanned
images into images taken by digital cameras.
-III- Designation of the campaign of reference and selection
of the GCPs for the campaign of reference. In our strategy
the archived images the closest in time to the dataset (e.g.
maps, GPS measurements) used to select the GCPs, is the
campaign of reference. Selection of high quality GCPs on
the images of the campaign of reference from basemaps of
national surveys/institutions (e.g. IGN for France, SwissTopo
for Switzerland, USGS for USA...), orthoimages or GPS
measurements.
-IV- Process the campaign of reference and evaluate the
relative and absolute orientation of its cameras (Step 2 and 3 of
the classic photogrametry workflow). The result is the canvas
of reference, named C0 (function ImgTo3DCloud(C0) in
algorithm 2).
-V- Process the other campaigns using the ”backward time
nearest neighbor propagation” approach. The tie points be-
tween the considered canvas Cn with C0 are used for both
evaluating the internal and absolute orientation of the cameras
(function ImgFromC0To3Dcloud(C0,Cm) in algorithm 2).
Note that the evaluation can be performed from an orthoimage
as far as a common tie points can be found with Cm.
-VI- Dense pixel matching resulting in 3D cloud for each
resulting canvas Cn using shape from motion algorithm upon
user choice.
-VIbis [optional]- While this does not concern the data dis-
cussed here, in case of poor tie point matching between canvas,
and/or in case of unbalanced spatial dispersion of the tie
points between canvas (as it may happen when radiometry
varies between canvas and or if the time span is too large
in regards to the actual changes in the landscape), hence
a 3D homothetic compensation can be done by assessing
the Euclidean isometry that minimizes the point to point
distance between the considered 3D cloud and a reference
considering a residual threshold upon user choice (either the
3D cloud derived from C0, or from an external source, func-
tion CloudCorr(3Dpts0,3Dptsm,Threshold) in algorithm
2). The computing transformation matrix is applied to external
orientation of the cameras, so both 3D cloud and derived
orthoimages can be corrected with this Euclidean isometry in
order to preserve the relative shape of the cloud - as opposed
to polynomial correction - allowing mass balance calculation
of time series.

We provide the whole workflow in algorithm 2.
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Algorithm 2 BTN2P algorithm
Input: Reference Canvas C0, other canvas Cm composed of J1 · · · Jn

scanned images
Input: GCP from reference
Output: time series of co-registered DSM

1: function MAIN(:)
2: for m← 0 to Nsurvey − 1 do
3: [Cm]= FiducialLib(ProjectDirectory)
4: end for
5: 3Dpts0 = ImgTo3Dcloud(C0) . Reference 3D cloud
6: DSM0 = NearestGrid(3Dpts0)
7: for m← 1 to Nsurvey − 1 do
8: 3Dptsm = ImgFromC0To3Dcloud(C0,Cm) . 3D cloud for

survey m
9: P .radius← search radius . scaled with the 3D cloud sampling

10: P .n pixel← number of pixel . computed from the 3D cloud
footprint

11: DSMm = NearestGrid(3Dptsm,P) . DSM for survey m
12: end for
13: ∂Hm = DSMm - DSMm−1 . Elevation change between m &

m− 1
14: end function

15: function IMGTO3DCLOUD(C)
16: Jn ← C{n}.Jn
17: K ← C.K
18: Tie Points Search over Jn
19: Internal parameters evaluation from 2D Tie points with fixed K
20: External parameters evaluation from 2D Tie points
21: Dense pixel matching
22: Bundle adjustment in relative frame from 3D Tie points
23: Georeferencing ← GCP
24: Bundle adjustment ← GCP
25: Dense pixel matching
26: return 3Dpts
27: end function

28: function IMGFROMC0TO3DCLOUD(C0,Cm)
29: In ← C0{n}.Jn
30: Jn ← Cn{n}.Jn
31: K ← Cn.K
32: Tie Points Search over Jn and In . In can be an orthoimage
33: Internal parameters evaluation for Jn from 2D Tie points with fixed

K
34: External parameters evaluation for Jn from 2D Tie points
35: Dense pixel matching over Jn
36: Bundle adjustment from 3D Tie points
37: External evaluation from C0

⋃
Cm tie points

38: Dense pixel matching
39: if poor tie point coverage then
40: CloudCorr(3Dpts0,3Dpts,Threshold) . 3D Homothety
41: end if
42: return 3Dpts
43: end function

44: function NEARESTGRID(3Dptsm)
45: radius← P .radius
46: Npixel ← P .n pixel
47: for i← 1 to Npixel do
48: DSMi ←

∑
radius 3Dptsz

49: return DSM . DSM from weighted mean in search radius
50: end for
51: end function

52: function CLOUDCORR(3Dpts0,3Dptsm,Threshold)
53: while RMS¿Threshold do
54: match the closest point from 3Dpts0 in 3Dptsm
55: RMS point to point distance minimization
56: Apply Euclidean isometry to C0

57: end while
58: Dense pixel matching
59: return 3Dptsm
60: end function

IV. APPLICATION TO MOUNTAINOUS TERRAINS

A. geomoprhological settings

In order to demonstrate the benefits of the workflow pre-
sented in this study the analysis of the rate of geomorphic
change, we applied our methodology to two steep-slopes
environments from two different geological contexts. First
we chose a region in the tropical environment of Reunion
Island, in the Indian Ocean. The area of interest is groups the
Remparts and Langevin rivers [2] that incised the flank of the
Piton de la Fournaise volcano over the last 60 Ka [4], leading
to a deep canyons between the remaining and stable parts of
the volcano (called planezes). In these canyons, the difference
in elevation between the planeze and the valley bottom ranges
1500 m to 90 m with valley slopes up to 60 degrees. The
second area of reference is the Bossons glacier located in the
French Alps, next the the city of Chamonix. In this region
the geomorphological context is different from the Reunion
Island since glacial valleys are shallower and wider than river
canyons. However the glacial valley des Bossons presents
a steep slopes of flow of 20-30 degrees between 1200 and
3000 m. These two regions have been chosen for their opposite
climatic environment, for their steep but different kind of relief
and for their strong elevation change between the different
geomorphologic parts. This particular aspect carcaterizes, what
is call in photogrammetry, the scene depth which is known to
be a technical challenge.

B. Data sets

The archived aerial images used in this study were acquired
by the Institut Géographique National (IGN), the French
national geographic service surveys. This office have provided
surveys over the french territories since the 30’s and have
acquired aerial image with a frequency of about 5 to 7 years.
Depending on the period, the flight conditions (elevation)
and the camera focus length (80–220 mm), images present
a ground sampling ranging from 10’s cm to 80 cm. In this
study we chose to process a number of 4 campaigns, from
1949 to 1988 for the Bossons scene, and from 1978 to 2003
for the Remparts-Langevin scene. The number of images per
campaign ranges from 6 to 21, for a total of 37 images for
the Bossons scenes and 67 images for the Remparts-Langevin
scenes. The reason why the Bossons scene has less images is
that the topographical settings of the Chamonix Valley does
not allow any flights at low ground elevation. Therefore the
footprint sized of the images of the Bossons scenes are wider
compared to the Remparts-Langevin scene (acquired at lower
altitude) and a fewer number of images is needed to cover
a comparable area. Both scenes cover an area of about 100
km2. Finally, the digitized historical images were downloaded
from the IGN web service, the size of the images ranges
from 7000x7000 to 12000x12000 pixels, and depending on
the period, images are in grayscale before 1984 and for some
campaigns in colorscale after 1984.

Note that such a data sets required a heavy computing
powerhouse, such as high-end workstation or HPC facility due
to the highly CPU usage as well as memory requirements for
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some specific steps, such as the search for tie points and the
dense correlation process.

C. Results

The landscape dynamics of these two areas is out of the
scope of this study where we focused on the methodology. We
implemented the two algorithms in a mixture of python codes
and MicMac/Apero commands but they can be applied to a
various kind of software at the reader’s discretion. Example
results over the two areas, obtained from our new workflow
are shown in Figure 7. Each cloud corresponds to a region
of about 80-100 km2 with a median geodetic distance of 0.8
meter between the nearest point. As a matter of fact, spatial
sampling of the resulting 3D cloud is directly a function of
both the image sampling and the image redundancy. Thus,
the 3D cloud has a spatial sampling of a factor of 1 to
4 compared to the image. In our regions of interest, some
areas are covered with up to 28 images. In such areas, the
resulting 3D cloud has a spatial sampling similar to the
image’s. Consequently, in order to derive gridded DSM time
series with homogeneous resolution, we decided to resample
the 3D cloud at 1.25 m/post, which is superior to the median
sampling, to guarantee independence between the nodes of the
elevation grid. This aspect is critical when using the DSM to
derive slopes, mass balance and transport fluxes etc.

For both of studied areas, we obtained residuals of pixel to
sub-pixel RMS (0.3–1.2) accounting for the data set covering
the 1939–2003 period. This assures a metric to sub-metric co-
registration between canvas, considering a ground sampling of
15 to 80 cm.

As stated previously, the use of GCPs for the estimate of
the accuracy of the resulting DSMs is somewhat misleading
because such analysis does not account for any global dis-
tortion of the block. Nonetheless, the residuals at our GCPs
fall in the metric order of magnitude in z, being taken on a
DSM of reference with a ground sampling of 5 meters. Typical
horizontal residuals are below one meter where the vertical
residuals range from 10’s cm (on flat or built terrain, such as
houses) to 5 m (where there are picked close to steep slope
badly resolved on reference DSMs, i.e., IGN’s RGEAlti). Most
importantly, the residual in between campaign at GCPs loca-
tion fall below 1 m. But again, this good agreement at GCPs
between campaign is not sufficient for assessing the ability
of our resulting 3D cloud to be used for landscape evolution
over some decades. Instead, we examine the quality of the
results using stable geomorphic areas. Indeed, comparing the
same stable areas between DSMs of different dates allows to
estimate the errors due to the whole process of reconstruction
of the DSMs, and allows to estimate the sensitivity of our
approach and especially the use of automatic GCPs.

Although only a small part of any landscape does not change
over time, stable areas increase as the period of time decreases.
Consequently at a decennial time scale, it is possible to find,
even in active regions, parts that are not affected by erosion
or other geomorphic processes. In the case of the Remparts
and Langevin rivers, the flank of the Piton de la Fournaise
volcano (planezes) that are not affected by river incision can

be considered as stable in a 50 to 100 yr timescale. In the
Bossons Glacier region, the bare slopes of the glacial valley
can also remain stable over a several decades. In order to
evaluate the accuracy of the method, we performed the analysis
of stable geomorphic zones in these two types of regions. The
figure 8 shows the distribution of the differences in elevation
in the stable areas (geomoprhic stable areas), between two
campaigns relative to the elevation. Differences in elevation
range from 5 cm/yr and 92cm/yr with little fluctuation of
the median around zero in the whole range of elevation
suggesting no particular trend in the variation of the difference
of elevation with latitude, longitude or elevation. Consequently
it shows that our approach results in an optimal calibration
and orientation of the cameras all across the campaigns. As a
matter of fact, we observed no problem of poorly established
focal length, which is one of the most sensitive parameters
during the internal calibration. Indeed, a bad estimation of this
parameter leads to a erroneous depth of the global solution,
hence to the slopes of the scene. Here, a good solution is
obtained for both regions under investigation. Moreover, the
absence of trend also shows the absence of relative tilt of the
aerotriangulations of the different campaigns, whereas in our
approach only one campaign is conditioned with GCPs. This
highlights the relevance of our approach as being effective
while being time saving. Finally, the figure 8 shows that in the
one hand, for the bare slope of Chamonix Valley, the change in
height of the modeled DSMs range between 1100 and 3000 m
suggesting that our approach allows to detect geomorphic
changes in the order of a few decimeters per year. On the
other hand, in La Réunion, in the stable area that contains
vegetation the the change in elevation range from 750 m to
2200 m leading to a limit of detection of our approach of
1 m/yr.

In addition, it is worth noting that, as we derived the
surface model field from optical images, the resulting products
combine bare rock terrain and vegetation cover, and hence in a
time series, differences can show the vegetation evolution over
time (e.g., agriculture fields, canopy changes etc.) in region
geomorphologically stable (where bare rock terrain does not
change).

To summarize, we have developed a method for generating
DSM time series from archive scanned images. The results are
a time series DSMs that are intrinsically co-aligned with each
other with a relative precision of the order of one meter. Only
one canvas (i.e., block) of the investigated time series needs the
use of GCPs which dramatically reduce the associated flaws
and limitations. Another advantage of the presented workflow
is the reduced manual steps allowing the automatic processing
of large data sets of images (i.e., 100’s). Finally, the resulting
precision allows to detect artefact due to the scanning of the
archived images. Figure 9 shows an example obtained over a
very stable part of Piton de la Fournaise lava flows between
1984 and 1978 where parallels bands of ± 0.5 m are clearly
observable along image edges, indicating the direction of the
scanning process.
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a/ b/

c/ d/

Fig. 7. Example results on Bossons and Remparts scenes. a) Colored hillshade elevation map over aerial photo of Chamonix valley (coordinates in meter
units, Lambert-93). b) Hillshade 3D view of a resulting DSM. c) Colored hillshade elevation map over aerial photo of the South West part of Piton de la
Fournaise in La Réunion (coordinates in meter units, UTM Zone 40). d) Hillshade 3D view of a resulting DSM.

V. DISCUSSION

This workflow is presented here as a cookbook for en-
vironments that show very steep slopes. The two different
climatic environments used here to apply our method both
share contrasted reliefs, but with different distributions of
slopes because of different geological, morphodynamics and
climatic contexts. In addition, urbanization and land use have
evolved at different pace over the considered period. However,
in both cases our workflow allows detecting and quantifying

the morphodynamical and landscape evolution over decennial
time period.

Notwithstanding, few remaining issues needs to be dis-
cussed and addressed. Some of them, related to the nature
of the raw data, are unsolvable while others can be partially
resolved.

Aerial image sensors operate in visible spectra and are
sensitive to climatic conditions. Therefore, aerial photo often
show partial to significant clouds coverage. This particular
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Fig. 8. Probability distribution function of the annual change rate as a
function of elevation. The blue curve show the median yearly rate between
two dates. The color map represents the probability distribution of the yearly
rate for each elevation bin with non-black being 90% of the distribution. On
the Bossons scene (top), we see the trees evolution around 1100–1600 m
while most of the bare ground is stable above (excluding glaciers). The
planeze ontop of Remparts-Langevin (bottom) are corresponding to 1750–
2250 elevation range where minimum change rate is observed. The valley
corresponds to the 500–1600 m elevation range. White areas on Bossons scene
is due to smaller changes compared to Remparts-Langevin, when excluding
glaciers and river respectively.

point is critical for tropical areas as well as for high relief
regions. This causes two unsolvable limitations: i) the clouds
are not optically transparent, and ii) in case of partial cloud
coverage, their shadows on the ground limit the DSM recon-
struction. This is even more critical under windy conditions,
when clouds are moving from one image to another during
the flight acquisitions. At this stage, the best practice would
suggest to get rid of such images.

Another issue that can be encountered is related to the
topography of the investigated scenes since steep landscapes
will lead to shadowed hillslopes. In the shadow, the radiometry
range drops by a factor 2 or 3 compared to other areas and
make the dense matching very difficult. Attempts to increase
the brightness in such areas make possible to a better pixel
matching. Nonetheless, topographic reconstruction of these
areas remains less accurate than for the ones illuminated. We
show, on the other side of the spectra that very bright areas
such as glaciers, are well reconstructed because associated

Fig. 9. Detection of scanner band defaults when comparing stable areas
between 1978 and 1984.

pixel are actually not saturated on the considered image data
sets (e.g. Fig. 7-a).

Finally, since our workflow allows production of DSMs with
metric resolution, and because biomass growth can be very
quick in different environments, the method presented here can
help assessing the canopy height evolution and hence biomass
dynamics over decades in different climatic settings. This is
a critical aspect of either land use science and/or ecology
research, and we suggest that a workflow using archived aerial
images can be used for other purposes and not only for
quantifying geomorphological processes.

VI. CONCLUSION

A complete and self-consistent workflow for deriving time
series DSM from scanned archived image is presented. The
presented global and automatic method accounts for the vari-
ous kinds of fiducial Mark patterns that exist over the various
campaigns. It requires a minimal usage of GCPs that dramat-
ically reduce the manual edit steps and associated limitations.
The resulting block association and compensation allows to
obtain well aligned canvas. As algorithms are provided, this
is up to the reader to implement it in his/her software of
choice. Consequently, the presented workflow can be use
to obtain time series of DSMs over decennial time period
with a sub-metric sampling. The additionally outcome of the
methods is to provide accurate true orthoimage time series.
This is especially of interest for time evolution assessment for
landscape evolution experience climate forcing [27].

When applying the workflow to two highly steep terrains,
surface process with annual rate change of the order of a meter
are quantifiable. This allows to study landscape dynamics with
sediment flux and mass balance assessment in the decennial
time scale which is critical in geomorphology. The DSMs
resulting from the method presented here are therefore useful
for mass movements assessment, such as landslides, glaciers
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and the like. Finally, as we derive DSM, canopy height can
be also derived, hence biomass evolution. Consequently, the
resulting products of such a pipeline offer substantial new
insights into the critical zone science.
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