
HAL Id: hal-03381821
https://hal.science/hal-03381821

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern Formation in a Three-Species Cyclic
Competition Model

Kalyan Manna, Vitaly Volpert, Malay Banerjee

To cite this version:
Kalyan Manna, Vitaly Volpert, Malay Banerjee. Pattern Formation in a Three-Species Cyclic Com-
petition Model. Bulletin of Mathematical Biology, 2021, 83, pp.1-37. �10.1007/s11538-021-00886-4�.
�hal-03381821�

https://hal.science/hal-03381821
https://hal.archives-ouvertes.fr


Bulletin of Mathematical Biology           (2021) 83:52 
https://doi.org/10.1007/s11538-021-00886-4

ORIG INAL ART ICLE

Pattern Formation in a Three-Species Cyclic Competition
Model

Kalyan Manna1 · Vitaly Volpert2,3,4 ·Malay Banerjee1

Received: 21 August 2020 / Accepted: 9 March 2021
© The Author(s), under exclusive licence to Society for Mathematical Biology 2021

Abstract
In nature, different species compete among themselves for common resources and
favorable habitat. Therefore, it becomes really important to determine the key factors
in maintaining the bio-diversity. Also, some competing species follow cyclic com-
petition in real world where the competitive dominance is characterized by a cyclic
ordering. In this paper, we study the formation of a wide variety of spatiotemporal
patterns including stationary, periodic, quasi-periodic and chaotic population distri-
butions for a diffusive Lotka–Volterra type three-species cyclic competition model
with two different types of cyclic ordering. For both types of cyclic ordering, the
temporal dynamics of the corresponding non-spatial system show the extinction of
two species through global bifurcations such as homoclinic and heteroclinic bifurca-
tions. For the spatial system, we show that the existence of Turing patterns is possible
for a particular cyclic ordering, while it is not the case for the other cyclic ordering
through both the analytical and numerical methods. Further, we illustrate an interest-
ing scenario of short-range invasion as opposed to the usual invasion phenomenon
over the entire habitat. Also, our study reveals that both the stationary and dynamic
population distributions can coexist in different parts of a habitat. Finally, we extend
the spatial system by incorporating nonlocal intra-specific competition terms for all
the three competing species. Our study shows that the introduction of nonlocality in
intra-specific competitions stabilizes the system dynamics by transforming a dynamic
population distribution to stationary. Surprisingly, this nonlocality-induced stationary
pattern formation leads to the extinction of one species and hence, gives rise to the
loss of bio-diversity for intermediate ranges of nonlocality. However, the bio-diversity
can be restored for sufficiently large extent of nonlocality.

Keywords Cyclic competition model · Diffusion · Nonlocal interactions · Hopf
bifurcation · Turing instability · Pattern formation
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1 Introduction

In real world, different species can sometimes compete among themselves in a non-
transitive manner where the competitive dominance follows a cyclic ordering, and
accordingly, this type of competition is called a cyclic competition (Adamson and
Morozov 2012; Moen 1989). Some of the well-documented examples of cyclic com-
petition in real world include the competition among several coral reef invertebrate
species (Buss and Jackson 1979; Jackson and Buss 1975), few strains of yeast (Paquin
andAdams 1983) and certain bacteria strains (Kerr et al. 2002;Kirkup andRiley 2004).
In the literature, it is reported that non-spatial cyclic competition models typically pre-
dict the loss of bio-diversity through the extinction of one or more competing species.
For example, May and Leonard (May and Leonard 1975) investigated the temporal
dynamics of a three-species Lotka–Volterra type symmetric cyclic competition model
and suggested the extinction of two competing species. Some preliminary results were
reported in Gilpin (1975) where oscillatory coexistence was found in ecological com-
munities with an odd number (≥ 3) of competing species. Coste et al. (1979) showed
that periodic attractors arising through the Hopf bifurcation can exist for a small range
of parameter values. Further, Schuster et al. (1979) studied some competition models
for three species which exhibit the survival of one species depending upon the initial
population density. Chaotic oscillation, non-existence of oscillatory coexistence and
competition for different resources were studied in Baer et al. (2006), Chi et al. (1998),
Gardini et al. (1989).

There exists a large body of studies on spatiotemporal dynamics of two- and multi-
dimensional prey–predator systems; however, only a few studies have been conducted
for spatially extended competition models (especially, for cyclic competition models
with three or more species). It is well-known that the Lotka–Volterra type two-species
competition model with only self-diffusion does not admit any stationary pattern (Han
et al. 2011; Lou et al. 2000; Ni et al. 2018). Nevertheless, the inclusion of cross-
diffusion in the modeling approach can effectively produce stationary patches for
two-species competition models (Li et al. 2019; Lou and Ni 1996). Kishimoto showed
that a stable non-constant equilibrium solution can exist for the diffusive three-species
Lotka–Volterra type competition model in Kishimoto (1982). Merino (1996) consid-
ered a diffusive cyclic competition model of three species and proved the existence of
a temporally periodic solution. Lou et al. (2000) asserted the cross-diffusion mediated
existence of heterogeneous patches in a three-species Lotka–Volterra type competi-
tion model. By investigating the dynamics of a diffusive cyclic competition model for
three species, the authors showed the existence of both the traveling waves and spa-
tiotemporal chaos in Petrovskii et al. (2001). Adamson and Morozov (2012) revisited
the cyclic competition model considered in Petrovskii et al. (2001) to explore the role
of species dispersal in maintaining bio-diversity. It should be noted that there does
not exist any study in the literature which explicitly explores the stationary pattern
formation in cyclic competition models of three species as far as our knowledge goes.

The above-mentioned studies on spatially extended competition models assume
both the intra- and inter-specific competitions as local competitions which allow an
individual located at some spatial point to interactwith other individuals (from the same
or different species) present at that point. However, spatialmobility of a species leads to
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the resource depletion in a neighboring region around that specific point (Britton 1989).
Therefore, both the intra- and inter-specific competitions for the common resources
should be controlled by an average population density in that neighborhood instead of
being local, and accordingly, this type of competitions are called nonlocal competitions
(Autry et al. 2018; Banerjee and Volpert 2016; Britton 1989; Tanzy et al. 2013). The
nonlocal competitions are incorporated in the modeling approach through convolution
integrals with a specific kernel function and hence, a system of integro-differential
equations arise (Autry et al. 2018;Banerjee andVolpert 2016;Britton 1989;Tanzy et al.
2013). Examples of kernel function include top-hat, triangular, parabolic, Gaussian
and Laplacian kernels (Manna et al. 2020; Merchant and Nagata 2011; Pal et al. 2019;
Segal et al. 2013).

A considerable number of studies on prey–predator systems with spatial kernels
to model nonlocal interaction have been conducted over the last decade and some
interesting works can be found in Autry et al. (2018), Banerjee and Volpert (2016),
Bayliss and Volpert (2017), Manna et al. (2020), Merchant and Nagata (2011), Mer-
chant and Nagata (2015), Pal et al. (2018), Pal et al. (2019). However, a very limited
number of works on nonlocal competition models can be found in the literature.
Apreutesei et al. (2008) showed the existence of traveling waves for short range of
nonlocal interactions by using Fredholm property and solvability conditions of the
linear integro-differential operators. Also, they observed the propagation of periodic
waves instead of the usual traveling waves for sufficiently large support of the kernel.
Segal et al. (2013) investigated the effects of three different kernels on the spatiotem-
poral dynamics of a nonlocal two-species competition model, and revealed that the
population distributions form islands (or localized cells) for top-hat kernel, whereas
the consideration of parabolic kernel can produce more complex patterns by modu-
lating the amplitude of islands and localized extinction. Also, they demonstrated the
tip-splitting phenomenon within islands for triangular kernel. Similarly, a nonlocal
two-species competition model with two different kernel functions such as asymmet-
ric Gaussian and asymmetric step-function kernels was studied in Tanzy et al. (2013).
This study revealed a range of patterns including dynamic patches with fixed and
variable widths. Ni et al. (2018) reported stationary population patches for a spatial
two-species competition model with the nonlocal intra- and inter-specific competi-
tions.

In this paper, we consider a generalized version of the three-species cyclic com-
petition model previously studied in Adamson and Morozov (2012), Cangiani et al.
(2018), Petrovskii et al. (2001) and investigate its dynamics without and with nonlocal
intra-specific competitions. Also, we are interested to explore the stabilizing effects
of nonlocal competitions on the emerging spatiotemporal dynamics. We organize the
rest of this article in the following manner. In the next section, we introduce the spatial
cyclic competition model for three competing species and present a detailed study
on the resulting spatiotemporal dynamics via both the analytical and numerical tools.
In order to clarify the mechanisms behind the emerging spatiotemporal dynamics,
we encapsulate the dynamics possessed by the corresponding non-spatial system in
Sect. 2.1. Further, we extend the spatial system by considering nonlocal intra-specific
competitions for all the three competing species and investigate the effects of nonlo-
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cality on the resulting spatiotemporal dynamics in Sect. 3. Finally, Sect. 4 concludes
this study with a brief discussion and ecological interpretations of the obtained results.

2 Local Reaction-Diffusion System

In this section, we consider a spatially extended three species cyclic competition
model and investigate its spatiotemporal dynamics. The spatiotemporal dynamics for
the model with specific form of kinetic parameters have been investigated in Adam-
son and Morozov (2012), Cangiani et al. (2018), Petrovskii et al. (2001). Here, we
wish to investigate the dynamics of the model with more general setting in terms
of the kinetic parameters. For simplicity, we consider one-dimensional bounded spa-
tial domain [−L, L] with positive real number L . Accordingly, our spatial model of
interest is given by:

∂N1

∂t
= d1

∂2N1

∂x2
+ (r1 − a11N1 − a12N2 − a13N3)N1, (1)

∂N2

∂t
= d2

∂2N2

∂x2
+ (r2 − a21N1 − a22N2 − a23N3)N2, (2)

∂N3

∂t
= d3

∂2N3

∂x2
+ (r3 − a31N1 − a32N2 − a33N3)N3, (3)

subjected to non-negative initial conditions and periodic boundary conditions. Here,
N j (x, t) with j = 1, 2, 3 represent the density of species j at time t and spatial
position x . The parameters r j and d j account for the intrinsic growth rate and diffusion
coefficient, respectively, for species j . Coefficientsa js denote intra-specific (when j =
s) and inter-specific (when j �= s) competition rates, respectively, with j, s = 1, 2, 3.
From the ecological perspective, we consider all the parameters involved in system
(1–3) to be positive.

The above system (1–3) presents a classical Lotka–Volterra type competitionmodel
for three species (May and Leonard 1975). Before proceeding further, it would be
appropriate to define the feature which actually makes the system (1–3) a cyclic
competition model. Basically, cyclic competition defines a well-ordered competitive
dominance of one species over the other (Adamson and Morozov 2012). Such com-
petitive advantages ordered in a cycle can be efficiently incorporated in the modeling
approach by putting appropriate restrictions on inter-specific competition rates a js

( j �= s). For example, the restrictions a12 < a21, a23 < a32 and a31 < a13 imposed
in a three-species competition system signify the cyclic competition where species
1 outcompetes species 2, species 2 outcompetes species 3 and species 3 outcom-
petes species 1. Similarly, if we flip the inequalities in the above restrictions (that
is, a12 > a21, a23 > a32 and a31 > a13) then we end up with a cyclic competi-
tion in reverse order where species 1 outcompetes species 3, species 3 outcompetes
species 2 and species 2 outcompetes species 1. We are particularly interested in this
specific ordering of the cyclic competition as it can induce the Turing instability (see
Sect. 2.2). For a detailed discussion on cyclic competition, one can go through the
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references (Adamson and Morozov 2012; Cangiani et al. 2018). These are only two
specific ordering for cyclic competition and there exist several other examples of
three-species competition models depending on the relationships among inter-specific
competition rates. However, we do not consider those models in this study.

Now, we discuss the existence of possible spatially homogeneous steady states of
the system (1–3). A typical spatially homogeneous steady state E = (˜N1, ˜N2, ˜N3) of
the system (1–3) corresponds to a non-negative solution of the following system of
coupled algebraic equations:

(r1 − a11˜N1 − a12˜N2 − a13˜N3)˜N1 = 0, (r2 − a21˜N1 − a22˜N2 − a23˜N3)˜N2 = 0,

(r3 − a31˜N1 − a32˜N2 − a33˜N3)˜N3 = 0.

Solving the above system of algebraic equations, we obtain the following spatially
homogeneous steady states for the system (1–3):

(i) Total extinction steady state E0 ≡ (0, 0, 0). Note that E0 exists always.

(ii) Three one-species steady states E+00 ≡
(

r1
a11

, 0, 0
)

, E0+0 ≡
(

0, r2
a22

, 0
)

and

E00+ ≡
(

0, 0, r3
a33

)

. As all the kinetic parameters are positive, these three one-

species steady states also exist for all possible combinations of feasible parameter
values.

(iii) Three two-species steady states E++0 ≡
(

ζ12
ρ12

,
ζ21
ρ12

, 0
)

, E0++ ≡
(

0, ζ23
ρ23

,
ζ32
ρ23

)

and E+0+ ≡
(

ζ13
ρ13

, 0, ζ31
ρ13

)

, where ζ js = r j ass − rsa js (for j, s ∈ {1, 2, 3} with
j �= s) and ρ js = a j j ass − a jsas j (for j = 1, 2; s = 2, 3; and j < s). Each of
these two-species steady states exists provided both the corresponding non-zero
components assume positive values.

(iv) Unique coexistence steady state E∗ ≡ (N∗
1 , N∗

2 , N∗
3 ), where the components are

given by

N∗
1 = ζ13ρ23 − ζ23(a12a33 − a13a32)

ρ13ρ23 − (a12a33 − a13a32)(a21a33 − a23a31)
,

N∗
2 = ζ23ρ13 − ζ13(a21a33 − a23a31)

ρ13ρ23 − (a12a33 − a13a32)(a21a33 − a23a31)
,

N∗
3 = 1

a33
(r3 − a31N

∗
1 − a32N

∗
2 ).

The coexistence steady state is feasible in a parametric regime where each com-
ponent N∗

j ( j = 1, 2, 3) assumes positive values.

In this study, we are mainly interested in the spatiotemporal dynamics possessed by
the system (1–3) around the unique spatially homogeneous coexistence steady state
E∗ as this state accounts for the bio-diversity.
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2.1 Dynamics of the Non-spatial System: A Brief Summary

The consideration that all the three competing species are distributed uniformly in their
natural habitat essentially leads to a non-spatial system. It is believed that the con-
clusions drawn from a non-spatial system work well for the well-mixed populations.
Generally, modeling through non-spatial system leaves out many realistic features
(such as self-movement of populations) of natural ecosystems, and hence, conclu-
sions drawn from their study may be far from reality. However, prior knowledge about
the temporal dynamics plays a significant role in understanding the mechanisms of
the corresponding spatiotemporal dynamics adequately. Thus, we briefly discuss the
dynamics of the non-spatial system corresponding to the spatial system (1–3) in this
subsection. The corresponding non-spatial system is given by

dN1

dt
= (r1 − a11N1 − a12N2 − a13N3)N1, (4)

dN2

dt
= (r2 − a21N1 − a22N2 − a23N3)N2, (5)

dN3

dt
= (r3 − a31N1 − a32N2 − a33N3)N3, (6)

with non-negative initial conditions. Note that the steady states for this non-spatial
system (4–6) are actually the spatially homogeneous steady states of the spatial system
(1–3), and accordingly, we use the same notations to denote them. As the coexistence
steady state E∗ accounts for the bio-diversity in an ecological system, we wish to
examine the dynamical behaviors of the system around E∗. We would like to mention
here that May and Leonard (May and Leonard 1975) thoroughly investigated the
temporal dynamics of the non-spatial system (4–6) with some specific restrictions on
the systemparameters. Some other theoretical studies on this three species competition
model can be found in Chi et al. (1998), Coste et al. (1979), Schuster et al. (1979),
Smale (1976). Here, we wish to present results regarding the linear stability of E∗
and Hopf bifurcation about E∗ by maintaining the generality of the system parameters
and in turn, it would effectively capture some additional dynamics in larger parametric
regimeswhich are beyond the scope of the study presented inMay andLeonard (1975).

Now, linearizing the above system (4–6) about the coexistence steady state E∗ =
(N∗

1 , N∗
2 , N∗

3 ), we obtain the following characteristic equation

λ3 + Aλ2 + Bλ + C = 0, (7)

where

A = a11N
∗
1 + a22N

∗
2 + a33N

∗
3 ,

B = ρ12N
∗
1 N

∗
2 + ρ23N

∗
2 N

∗
3 + ρ13N

∗
1 N

∗
3 ,

C = (a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33
−a13a22a31)N

∗
1 N

∗
2 N

∗
3 .
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Then, the coexistence steady state E∗ is locally asymptotically stable if the following
Routh–Hurwitz criteria are satisfied:

A > 0, C > 0 and AB − C > 0. (8)

We can easily observe that the first inequality A > 0 in (8) is immediately satisfied for
a feasible coexistence steady state E∗. In order to satisfy the second inequality C > 0,
we need to consider a parametric restriction

a11a22a33 + a12a23a31 + a13a21a32 > a11a23a32 + a12a21a33 + a13a22a31,

which acts as a necessary condition for local stability of E∗. Also, the last inequality
in (8) implies

(a11N
∗
1 + a22N

∗
2 )ρ12N

∗
1 N

∗
2 + (a22N

∗
2 + a33N

∗
3 )ρ23N

∗
2 N

∗
3 +

(a11N
∗
1 + a33N

∗
3 )ρ13N

∗
1 N

∗
3 + (a33ρ12 + a22ρ13)N

∗
1 N

∗
2 N

∗
3 > 0.

Now, a Hopf bifurcation occurs around E∗ when a pair of complex conjugate eigen-
values pass through the imaginary axis while the third eigenvalue remains to be a
negative real number. Let us assume that λ1, λ2 and λ3 denote the three eigenvalues
corresponding to the characteristic Eq. (7). Then, from the properties of the roots of a
cubic equation, we obtain

− (λ1 + λ2)(λ2 + λ3)(λ3 + λ1) = AB − C . (9)

If we consider a13 as the bifurcation parameter, then at the Hopf bifurcation threshold
a13 = a∗

13 we have AB − C = 0. However, we need to satisfy the transversality
condition in order to guarantee the occurrence of Hopf bifurcation. Therefore, the
non-spatial system (4–6) undergoes Hopf bifurcation at a13 = a∗

13 if the following
conditions hold:

(AB − C)|a13=a∗
13

= 0,
d

da13
(AB − C)|a13=a∗

13
�= 0, (10)

along with the parametric restriction

a11a22a33 + a12a23a31 + a∗
13a21a32 > a11a23a32 + a12a21a33 + a∗

13a22a31

which arises due to the condition C |a13=a∗
13

> 0. Further, the stability of the Hopf-
bifurcating periodic solutions can be easily determined from the sign of the first
Lyapunov coefficient (say, γ ). For smooth readability, we do not include the rig-
orous derivation of this quantity γ here. The detailed derivation of the quantity γ has
been provided in the Supplementary material.

Now, we present some numerical simulations of the non-spatial system (4–6) which
illustrate our theoretical findings and some other dynamical features that are beyond
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the scope of our theoretical analysis. For this purpose, we considered the following
set of parameter values:

r1 = 2, r2 = 2, r3 = 2, a11 = 0.8, a22 = 1.2, a33 = 0.8, a12 = 1.2, a21 = 0.7,

a23 = 1.2, a31 = 1.2, a32 = 0.7, (11)

and treated the rate of competition pressure exerted by the third species on the first
species (that is, a13) as the bifurcation parameter. An increase in the competition
pressure leads to the oscillatory coexistence of all the competing species by destroying
the stable steady state coexistence (see Fig. 1a and b). The destabilization takes place
through a super-critical Hopf bifurcation (the bifurcation threshold is mentioned in the
caption of Fig. 1 and the quantity γ is negative in this case). However, the oscillatory
coexistence is observed for a narrow range of the values of a13. Further increment
in the value of a13 leads to the disappearance of stable population cycle through the
homoclinic bifurcation and only the third species survives at its carrying capacity (see
Fig. 1c and d). This phenomenon arises due to the fact that the third species becomes
a superior competitor in this case and it eventually drives the first two species to
extinction by outcompeting them.

At this stage, we would like to illustrate the temporal dynamics of the three species
competition model studied in May and Leonard (1975) which represents a specific
version of our considered general non-spatial system (4–6). Taking r1 = r2 = r3 = 1,
a11 = a22 = a33 = 1, a12 = a23 = a31 = α and a13 = a21 = a32 = β in
our system (4–6), we obtain the model presented in May and Leonard (1975). For
these specific parametrization, the steady states are given by E0 = (0, 0, 0), E+00 =
(1, 0, 0), E0+0 = (0, 1, 0), E00+ = (0, 0, 1), E++0 =

(

1−α
1−αβ

,
1−β
1−αβ

, 0
)

, E0++ =
(

0, 1−α
1−αβ

,
1−β
1−αβ

)

, E+0+ =
(

1−β
1−αβ

, 0, 1−α
1−αβ

)

and E∗ =
(

1
1+α+β

, 1
1+α+β

, 1
1+α+β

)

.

The local stability of the coexistence steady state E∗ for this specific model is guar-
anteed by the inequality α + β < 2 with α, β > 0. For α + β ≥ 2, all the feasible
steady states are unstable when α < 1 or β < 1. Further, any one of the single-species
steady states becomes stable when both the α and β are greater than unity. Note that a
pair of complex conjugate eigenvalues for the system linearized about E∗ moves from
the left half of the complex plane to the right half through α + β = 2. The detailed
stability analysis in this direction can be found in May and Leonard (1975).

Some of the numerical simulations for this specificmodel are encapsulated in Fig. 2.
For the simulations, we used α = 0.8 < 1 and varied the parameter β. In this case,
the stable steady state coexistence is destroyed and a stable oscillatory coexistence
appears for an appropriate increased value of β (see Fig. 2a and b). The stable limit
cycle disappears through the heteroclinic bifurcation and a heteroclinic cycle appears
connecting all the three single-species steady states for further increment in the value
of β (see Fig. 2c). After its appearance, the heteroclinic cycle persists for all greater
values of β. However, the heteroclinic cycles consist of curved orbits for sufficiently
large values of β (see Fig. 2d). Hopf-bifurcating limit cycles disappear through global
bifurcations like homoclinic and heteroclinic bifurcations and it leads to the system
collapse due to the extinction of one or more species (van Voorn et al. 2007). In
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Fig. 1 Phase portraits of the non-spatial system (4–6) for different values of the coefficient a13 accounting
for the competition pressure of species 3 on species 1. The plots are for a a13 = 0.7, b a13 = 0.8002, c
a13 = 0.807, and (d) a13 = 0.9. Other parameter values are mentioned in (11). The Hopf and homoclinic
bifurcation thresholds are a∗

13 = 0.8 and aHM13 = 0.807, respectively (Color Figure Online)

this case, the heteroclinic cycle persists beyond the onset of such cycle and this is a
remarkable characteristic for the three-species competition model. The existence of a
stable limit cycle demonstrates the oscillatory coexistence of all the three competitive
species. However, the existence of heteroclinic population cycle indicates the system
collapse where only one species survives at its carrying capacity depending upon the
initial population density. Some of the figures (specifically, Fig. 2b and c) presented
here have been illustrated schematically in May and Leonard (1975). The persistence
of heteroclinic orbit for β ≥ 1.205 is a new observation of our present work. Overall,
the simulation results presented in Fig. 2 capture the corresponding temporal dynamics
in a more complete manner.

2.2 Dynamics of the Spatial System: Turing Instability

In this subsection, we investigate the dynamics of the spatial system (1–3). In this
direction, we mainly concentrate on the diffusion-driven or Turing instability of the
spatially homogeneous coexistence steady state E∗ through linear analysis. Turing
instability occurs when the locally stable spatially uniform state E∗ (in the absence
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Fig. 2 Phase portraits of the specific version of our non-spatial system (4–6) studied in May and Leonard
(1975) with α = 0.8 and different values of β: a β = 1.1, b β = 1.2, c β = 1.205, and d β = 1.9 (Color
Figure Online)

of diffusion) becomes unstable to nonuniform perturbations precisely due to diffu-
sion (Murray 1989; Turing 1952). Basically, the presence of diffusion makes the
nonuniform perturbations growing and eventually a spatially heterogeneous structure
in population distribution emerges (Murray 1989; Turing 1952). For this purpose,
we perturb the system (1–3) with small amplitude spatiotemporal perturbation about
the spatially homogeneous coexistence steady state E∗ = (N∗

1 , N∗
2 , N∗

3 ) and then
linearize the system. The corresponding Jacobian matrix is given by

J (k) =
⎡

⎣

−a11N∗
1 − d1k2 −a12N∗

1 −a13N∗
1−a21N∗

2 −a22N∗
2 − d2k2 −a23N∗

2−a31N∗
3 −a32N∗

3 −a33N∗
3 − d3k2

⎤

⎦ , (12)

where the wavenumber is denoted by k. Then, we obtain the following characteristic
equation

λ3 + A(k2)λ2 + B(k2)λ + C(k2) = 0, (13)
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where

A(k2) = (d1 + d2 + d3)k
2 + a11N

∗
1 + a22N

∗
2 + a33N

∗
3 ,

B(k2) = (d1d2 + d2d3 + d3d1)k
4 + {(a22N∗

2 + a33N
∗
3 )d1 + (a11N

∗
1 + a33N

∗
3 )d2

+(a11N
∗
1 + a22N

∗
2 )d3}k2 + ρ12N

∗
1 N

∗
2 + ρ23N

∗
2 N

∗
3 + ρ13N

∗
1 N

∗
3 ,

C(k2) = d1d2d3k
6 + (a11N

∗
1 d2d3 + a22N

∗
2 d1d3 + a33N

∗
3 d1d2)k

4 + {ρ12N∗
1 N

∗
2 d3

+ρ23N
∗
2 N

∗
3 d1 + ρ13N

∗
1 N

∗
3 d2}k2 + (a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a12a21a33 − a13a22a31)N
∗
1 N

∗
2 N

∗
3 .

Therefore, the spatially homogeneous coexistence steady state E∗ is locally asymp-
totically stable provided the following Routh–Hurwitz criteria

A(k2) > 0, C(k2) > 0 and A(k2)B(k2) − C(k2) > 0 (14)

are satisfied for all k > 0. In this case, real parts of all the eigenvalues are negative.
On the other hand, Turing instability emerges when the real parts of two eigenvalues
remain negative and the remaining one eigenvalue passes through zero. Without any
loss of generality, we assume that λ1, λ2 and λ3 represent the roots of the characteristic
Eq. (13), and accordingly, we obtain

λ1 + λ2 + λ3 = −A(k2), (15)

λ1λ2 + λ2λ3 + λ3λ1 = B(k2), (16)

λ1λ2λ3 = −C(k2), (17)

−(λ1 + λ2)(λ2 + λ3)(λ3 + λ1) = A(k2)B(k2) − C(k2). (18)

Let us assume that kT denote the critical wavenumber at the Turing bifurcation thresh-
old. Thus, at this critical wavenumber k = kT we have without any loss of generality

λ1 |k2=k2T
= 0, Re(λ2) |k2=k2T

< 0 and Re(λ3) |k2=k2T
< 0. (19)

Hence, we have C(k2) = 0 at the critical wavenumber k = kT . Further, the condi-
tions for Turing instability presented in (19) leads to A(k2T ) > 0, B(k2T ) > 0 and
A(k2T )B(k2T ) − C(k2T ) = A(k2T )B(k2T ) > 0. Thus, the coexistence steady state E∗
becomes Turing unstable when C(k2) < 0 holds for at least one k > 0 and it remains
stable whenC(k2) > 0 holds for all k ≥ 0. Also, beyond the Turing bifurcation thresh-
old there exists a range of k-values around kT for which the inequality C(k2) < 0
holds true. We can rewrite the expression of C(k2) as

C(k2) ≡ C3(k
2)3 + C2(k

2)2 + C1(k
2) + C0, (20)

where C3 = d1d2d3 > 0 for positive diffusion coefficients and C2 > 0 as C2 =
a11N∗

1 d2d3 + a22N∗
2 d1d3 + a33N∗

3 d1d2. The consideration of k = 0 reduces the
characteristic Eq. (13) to the corresponding characteristic Eq. (7) of the associated

123



   52 Page 12 of 35 K. Manna et al.

non-spatial system and the local stability of E∗ for the non-spatial system is simply
guaranteed by the inequalities presented in (8). As A(0) = A = a11N∗

1 + a22N∗
2 +

a33N∗
3 > 0 holds true for any feasible coexistence steady state E∗, the conditions

for temporal local stability of E∗ reduces to the inequalities C(0) = C > 0 and
A(0)B(0) − C(0) = AB − C > 0. Hence, we obtain the condition C0 > 0 as a
necessary requirement for Turing instability where C0 = C(0) = C = (a11a22a33 +
a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31)N∗

1 N
∗
2 N

∗
3 . Calculating

the first and second order derivatives of C(k2), we obtain dC(k2)
d(k2)

= 0 and d2C(k2)
d(k2)2

> 0

at k = kT . Therefore, the minimum for C(k2) occurs at k = kT where

k2T =
−C2 +

√

C2
2 − 3C1C3

3C3
. (21)

Looking at Eq. (21), we can easily deduce that k2T is a positive real number if C1 < 0
or C2 < 0 and C2

2 > 3C1C3. As we have already seen that C2 > 0 holds true for our
considered system, the condition responsible for the positivity of k2T simply reduces
to C1 < 0. Therefore, we obtain the Turing bifurcation boundary as

2C3
2 − 9C1C2C3 − 2(C2

2 − 3C1C3)
3
2 + 27C0C

2
3 = 0. (22)

Note that Eq. (22) is free from the wavenumber k. We can consider it as an equation for
the diffusion coefficient d2 and accordingly, by solving it one can obtain the threshold
value dT2 for the Turing instability whenever feasible positive solutions are available.
However, the above equation is implicit and it is difficult to find dT2 analytically.
Therefore, we compute dT2 numerically from Eq. (22) whenever all other parameter
values are known.

Now, we present various numerical simulations which corroborate our theoreti-
cal results obtained in this subsection and illustrate other interesting spatiotemporal
dynamics possessed by the spatial system (1–3). We would like to emphasize here
that the conditions for Turing instability derived in this section are fairly general and
accordingly, these conditions can be satisfied by several parameter sets satisfying
both the cyclic and non-cyclic competitions. However, we are interested only in the
dynamics of the system (1–3) with cyclic competition in this study. Therefore, we
chose a parameter set in such a way that the inter-specific competitions follow a cyclic
ordering. To be specific, here we are interested in parameter values which satisfy the
conditions a12 > a21, a23 > a32 and a31 > a13. For this purpose, we considered the
following set of parameter values:

r1 = 2, r2 = 2, r3 = 2, a11 = 0.8, a22 = 1.2, a33 = 0.8, a12 = 1.2, a21 = 0.7,

a23 = 1.2, a31 = 1.2, a32 = 0.7, d1 = 0.1, d3 = 0.2, (23)

and varied the values of the parameters a13 and d2. For the chosen parameter values,
Fig. 3 represents four different domains such as stable, Turing, Hopf–Turing and Hopf
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Fig. 3 Plots of temporal-Hopf
and Turing bifurcation curves in
(a13, d2)-parameter space for
the reaction-diffusion system
(1–3). The other parameter
values are given in (23). The red
vertical line and the blue dashed
curve represent the
temporal-Hopf threshold
(a∗
13 = 0.8) and the Turing

bifurcation curve, respectively
(Color Figure Online)

domains in the (a13, d2)-parameter space separated by the temporal-Hopf and Turing
bifurcation curves.

For numerical simulations of the spatial system (1–3), we discretized the system
using forward Euler scheme for the reaction part and central difference scheme for the
diffusion part. The grid sizes (both the temporal and spatial) have been chosen in such
a manner so that we can avoid the numerical artifacts. For all the numerical results
presented in this subsection, we chose the computational domain as [−200, 200].
Furthermore, the numerical simulations have been supplemented by periodic boundary
conditions and the following pulse-type initial conditions:

N j (x, 0) =
{

N∗
j + η j , |x | < 10

N∗
j , 10 ≤ |x | ≤ 200

(24)

where |η j | � 1 and j = 1, 2, 3.
At this point, we exhibit various stationary and dynamic patterns which efficiently

capture the rich spatiotemporal dynamics possessed by the spatial system (1–3). First,
Fig. 4a represents the resulting population distribution of the first species N1 for a
representative point from the Turing domain presented in Fig. 3. We can observe
that the pattern is stationary in time and heterogeneous in space, and this type of
stationary population patches become apparent for reasonable rate of competition
pressure exerted on the first species by the third with moderate dispersal rate of the
second species. Other two competing species also sustain within similar stationary
patches. Similarly, Fig. 4b represents the stationary spatially heterogeneous pattern
of the population N1 for a representative point lying in the Hopf–Turing domain.
Note that the choice of different parameter values from both the Turing and Hopf–
Turing domains will eventually lead to the stationary spatially heterogeneous pattern.
However, we have observed that the patch size with high density increases for both
the first and second species, and it decreases for the third one with increasing value of
d2. The reason behind this phenomenon can be attributed to the fact that successive
two patches merge together and in turn, it leads to a decrease in the number of patches
by increasing the width.

Figure 4c–f demonstrates different types of dynamic patterns observed for the
parameter values chosen from the Hopf domain. We do not include here the corre-
sponding phase portraits of the spatially averaged densities of all the three competitive
species (which are helpful for classification of the dynamic patterns) to make our main
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Fig. 4 Plots of various stationary and dynamic patterns exhibited by the first species N1 for different
values of the parameters a13 and d2. The patterns are obtained by simulating the spatial system (1–3) for
a a13 = 0.75, d2 = 25; b a13 = 0.85, d2 = 10; c a13 = 0.8002, d2 = 1; d a13 = 0.805, d2 = 1; e
a13 = 0.85, d2 = 1; and f a13 = 0.9, d2 = 1. The other parameter values are mentioned in (23). All the
patterns are presented for a certain time period after neglecting the initial transients (Color Figure Online)

123



Pattern Formation in a Three-Species Cyclic... Page 15 of 35    52 

Fig. 5 Plots of spatial distribution of the densities of all the three competitive species. Here, left panel a
illustrates the spatial distributions for first and second species, and right panel b illustrates the same for
first and third species. The parameter values are the same as that for Fig. 4a. The plots are presented for a
particular time instant after the population distributions settle in stationary regime (Color Figure Online)

text concise; however, we include them as Fig. 17 inAppendixA for the sake of clarity.
In this regard, we fixed the value of d2 to unity and varied the value of a13. For gradual
increments in the value of a13 from the temporal-Hopf threshold, we obtained homo-
geneous in space and periodic in time (Fig. 4c), quasi-periodic (Fig. 4d), and chaotic
(Fig. 4e and f) patterns. From Fig. 4c, we can easily observe that the period is not
regular as it is expanding gradually with the advancement of time. This type of irreg-
ular periodic behavior in temporal scale has been demonstrated in May and Leonard
(1975). For this pattern, the phase portrait describes a heteroclinic orbit joining the
three single-species spatially homogeneous steady states (see Fig. 17a). Thus, the
consideration of spatial mobility of all the three species transforms a Hopf-bifurcating
stable limit cycle for the corresponding non-spatial model (see Fig. 1b) to a hetero-
clinic orbit. From ecological perspective, this indicates that moderate dispersal rates
of all the three competing species destroy the stable oscillatory coexistence and lead
to the extinction of two competing species. We call the pattern presented in Fig. 4d a
quasi-periodic pattern as the corresponding phase portrait is restricted to an annular
region in the asymptotic sense (see Fig. 17b). In this case, the population distribu-
tions oscillate over both the space and time. Further, the phase portraits demonstrated
in Fig. 17c and d effectively confirm the chaotic nature of the patterns presented in
Fig. 4e and f, respectively. Also, we verified the chaotic nature by means of sensitivity
to initial conditions, power spectrum and calculation of dominant Lyapunov exponent
(Manna and Banerjee 2018; Mukherjee et al. 2018; Pascual 1993; Wolf et al. 1985),
but restricted ourselves from including them in this study for the sake of brevity. The
basic difference in these two chaotic patterns is that an interesting triangle-shaped
structure emerges in Fig. 4f. Both the quasi-periodic and chaotic patterns suggest that
the introduction of moderate mobility of all the three competing species restores the
system which is doomed to collapse without any species mobility (see Fig. 1c and d)
through the formation of dynamic population patches. Interestingly, these patterns are
spatially symmetric with respect to the middle point of one-dimensional space.
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Fig. 6 Plots of spatial distribution of the densities of all the three competitive species. Here, left panel a
illustrates the spatial distributions for first and second species, and right panel b illustrates the same for
first and third species. The parameter values are the same as that for Fig. 4f. The plots are presented for a
particular time instant after the population distributions settle in chaotic regime (Color Figure Online)

Figure 4 shows different types of patterns for the first species N1 only as we have
observed that the corresponding patterns for the remaining two competitive species
(that is, N2 and N3) are qualitatively similar and accordingly,we restrict ourselves from
displaying them in this study. However, the density correlations for all the three species
differ and these differences are encapsulated in Figs. 5 and 6. For stationary patterns,
we have observed that the high density patches of the first species N1 correspond
to the same as that of the second species N2 and to the low density patches of the
third species N3. This phenomenon is illustrated in Fig. 5 with the same parameter
values used for Fig. 4a. However, the density correlations change significantly for the
corresponding dynamic spatially heterogeneous patterns. One such instance is shown
in Fig. 6 with the same parameter values used for Fig. 4f.

The emergence of different types of stationary and dynamic patterns in different
domains of the (a13, d2)-parameter space can also be characterized by the cor-
responding dispersion relations. Here, we present the typical dispersion relations
corresponding to the four different domains by plotting the imaginary part and the
maximum real part of the eigenvalues of the linearized system against a range of
values of the wavenumber k starting from zero. Accordingly, the five different rep-
resentative dispersion relations are illustrated in Fig. 7. The five different parameter
sets used to draw these dispersion relations give rise to a pair of complex conjugate
eigenvalues for k = 0 and then they become real for higher positive values of k through
a threshold k∗ which is denoted by a large black dot in each of these figures. First, we
chose a representative parameter set from the stable domain and the resulting disper-
sion relation is presented in Fig. 7a. In this case, the largest real part of the eigenvalues
stays negative over the entire admissible range of values of k, and accordingly, we
could not find any spatiotemporal pattern. For this parameter set, we have k∗ ≈ 0.269
through which a pair of complex conjugate eigenvalues turn into real. Then, the dis-
persion relation for a representative parameter set from the Turing domain is presented
in Fig. 7b. In this case, the largest real part of the eigenvalues becomes positive for
the values of k belonging to (k−, k+) with k∗ < k− < k+, and accordingly, we found
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Fig. 7 Plots of dispersion relations of the spatial system (1–3) for different values of the parameters a13
and d2: a a13 = 0.7, d2 = 10; b a13 = 0.75, d2 = 25; c a13 = 0.85, d2 = 10; d a13 = 0.9, d2 = 3.2;
e a13 = 0.9, d2 = 1. The other parameter values are given in (23). Imaginary parts and maximum of real
parts of the eigenvalues against a range of values of the wavenumber k are represented by red and blue
colors, respectively (Color Figure Online)

a stationary Turing pattern (see Fig. 4a). For the considered parameter set, we have
k∗ ≈ 0.159, k− ≈ 0.275 and k+ ≈ 0.493. Both the k− and k+ are denoted by large
magenta dots in this figure.

Now, when the parameter a13 is greater than the temporal-Hopf bifurcation thresh-
old (that is, a13 > a∗

13 = 0.8), the largest real part of the eigenvalues becomes positive
at k = 0. Figure 7c and d demonstrates two possible representative dispersion relations
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for the parameter values chosen from the Hopf–Turing domain. In Fig. 7c, the largest
real part of the eigenvalues remains positive in two disjoint sets of values of k, namely
[0, k1) and (k−, k+) such that k1 < k∗ < k− < k+. From this figure, we can observe
that the largest real part in (k−, k+) is greater than the largest real part in [0, k1) and
accordingly, we can expect the formation of stationary pattern which is corroborated
by Fig. 4b. For the chosen parameter set, we have k1 ≈ 0.051, k∗ ≈ 0.219, k− ≈ 0.292
and k+ ≈ 0.685. The quantity k1 is indicated by a large green dot in this figure. Further
in Fig. 7d, we have k1 ≈ 0.128, k∗ ≈ 0.36, k− ≈ 0.502 and k+ ≈ 0.667. Here, we
can observe that the largest real part in [0, k1) is greater than the largest real part in
(k−, k+)which is actually the opposite to that noticed in Fig. 7c. However, in this case,
we obtained stationary spatially heterogeneous pattern for all the competing species
and accordingly, did not include them in this manuscript for the sake of brevity. The
dominating largest real part in [0, k1) produces only the dynamic transients which
eventually settle into stationary spatially heterogeneous population distributions. The
robustness of these stationary patterns has been verified with several different initial
conditions.Wewould like to mention here that this dispersion relation (that is, Fig. 7d)
can also correspond to some dynamic patterns in other ecological systems (Pal et al.
2020).

Finally, Fig. 7e demonstrates the dispersion relation for a representative parameter
set from the Hopf domain. In this case, the largest real part is positive only in the
interval [0, k1) and it stays negative for all k > k1. This type of dispersion relation
endorses the emergence of dynamic pattern and Fig. 4f serves as a concrete example.
For this parameter set, we have k1 ≈ 0.205 and k∗ ≈ 0.694. We would like to mention
here that all other dynamic patterns presented in this subsection correspond to similar
dispersion relations. However, the value of the maximal real part of the eigenvalues
at k = 0 plays a key role in determining the nature of the dynamic patterns. The
population oscillations become more irregular for larger maximum real part of the
eigenvalues at k = 0.

An interesting phenomenon has been observed in theHopf domainwhen the param-
eter values were taken very close to the Turing bifurcation curve. In this case, we
obtained different types of dynamic patterns depending on the amplitudes of the pulse-
type initial conditions. The simulation results are encapsulated in Fig. 8. The patterns
presented here look very similar to each other; however, the differences in their nature
can be understood from the corresponding phase portraits of the spatially averaged
densities presented in Fig. 18 (see Appendix A). From these phase portraits, we clas-
sify the patterns presented in Fig. 8 as periodic, quasi-periodic and chaotic patterns,
respectively. The emergence of different spatiotemporal population distributions for
a fixed set of parameter values implies that the spatial system (1–3) admits multiple
stable states. These patterns also demonstrate another interesting feature that the spa-
tiotemporal oscillations are restricted in certain regions of the spatial domain, whereas
the population distributions stay stationary over the remaining regions. However, the
consideration of parameter values lying in theHopf domain and sufficiently away from
theTuring bifurcation curve leads to spatiotemporal oscillations over thewhole domain
for all the populations (see Fig. 4c–f). Note that the chosen set of parameter values
gives rise to a qualitatively similar dispersion relation as presented in Fig. 7e. Further,
taking different widths of the pulse-type initial conditions with fixed amplitude we
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Fig. 8 Plots of different dynamic patterns such as a periodic, b quasi-periodic and c chaotic patterns
exhibited by the first species N1 for different amplitudes of the pulse-type initial conditions. The patterns
are obtained by simulating the spatial system (1–3) for a13 = 0.9 and d2 = 2.6 with other parameter
values as mentioned in (23). The patterns are presented for a certain time period after neglecting the initial
transients (Color Figure Online)

obtained different dynamic patterns in this case as described above and accordingly,
we did not include the simulation results in this study for the sake of brevity. Overall,
these results signify that the spatiotemporal dynamics of the system (1–3) are highly
sensitive to initial population distributions when the parameter values are taken from
the Hopf domain and sufficiently close to the Turing bifurcation curve.

2.3 Non-existence of Turing Patterns: A Special Case

In this subsection, we aim to prove the non-existence of Turing patterns for the
reaction-diffusion system (1–3) theoretically with specific form of kinetic parameters
as considered in May and Leonard (1975). For this purpose, we assume the kinetic
parameters as r1 = r2 = r3 = 1, a11 = a22 = a33 = 1, a12 = a23 = a31 = α and
a13 = a21 = a32 = β with α > 0 and β > 0. With these types of kinetic parameters,
the reaction-diffusion system (1–3) becomes

123



   52 Page 20 of 35 K. Manna et al.

∂N1

∂t
= d1

∂2N1

∂x2
+ (1 − N1 − αN2 − βN3)N1, (25)

∂N2

∂t
= d2

∂2N2

∂x2
+ (1 − βN1 − N2 − αN3)N2, (26)

∂N3

∂t
= d3

∂2N3

∂x2
+ (1 − αN1 − βN2 − N3)N3, (27)

subjected to non-negative initial conditions and periodic boundary conditions. The
spatiotemporal dynamics of this specific competitionmodel (25–27) have been investi-
gated elaborately in Adamson andMorozov (2012), Petrovskii et al. (2001). However,
these studies did not discuss the stationary Turing patterns. Therefore, it would be
really interesting to investigate the possible emergence of Turing patterns for this spe-
cific model. In this case, the spatially homogeneous coexistence steady state is given
by

E∗ ≡
(

1

1 + α + β
,

1

1 + α + β
,

1

1 + α + β

)

.

As local stability of E∗ for the non-spatial system is a necessary requirement for
the emergence of Turing instability in the spatial system, we briefly reiterate the
condition regarding the stability of E∗ in non-spatial setting. One can go through the
reference (May and Leonard 1975) for the detailed investigation of the dynamics of
the corresponding non-spatial system. The coexistence steady state E∗ is locally stable
if the inequality α + β < 2 is satisfied (May and Leonard 1975). Thus, by employing
the AM-GM inequality for positive real numbers we obtain

√

αβ ≤ α + β

2
< 1 ⇒ αβ < 1. (28)

Now, the characteristic equation for the spatial model (25–27) is given by

λ3 + A(k2)λ2 + B(k2)λ + C(k2) = 0, (29)

where

A(k2) = (d1 + d2 + d3)k
2 + 3

(1 + α + β)
,

B(k2) = (d1d2 + d2d3 + d3d1)k
4 + 2(d1 + d2 + d3)

1 + α + β
k2 + (1 − αβ)

(1 + α + β)2
,

C(k2) = d1d2d3k
6 + (d1d2 + d2d3 + d3d1)

(1 + α + β)
k4 + (1 − αβ)(d1 + d2 + d3)

(1 + α + β)2
k2

+ (1 + α3 + β3 − 3αβ)

(1 + α + β)3
.
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Fig. 9 Plot of chaotic pattern
exhibited by the first species N1
for the specific spatial system
(25–27). Here, the used
parameter values are α = 0.8,
β = 1.9, d1 = 0.1, d2 = 1 and
d3 = 0.2. The pattern is
presented for a certain time
period after neglecting the initial
transients (Color Figure Online)

From the analysis performed in the preceding subsection, we can easily obtain in this
case that the condition for positivity of the quantity k2T reduces to

C1 = (1 − αβ)(d1 + d2 + d3)

(1 + α + β)2
< 0 ⇒ αβ > 1. (30)

But the inequality (30) contradicts the inequality obtained in (28). Therefore, we do
not have any positive k2T in order to induce Turing instability and then we should
not expect any stationary Turing patterns for this specific competition model (25–27).
Also, we have performed several numerical simulations which support our theoretical
claim and restrict ourselves from incorporating them in this manuscript for the sake
of brevity.

We have already proved in this subsection that the specific spatial system (25–27)
does not admit any Turing pattern; however, it can possess a rich variety of dynamic
non-Turing patterns. Spatiotemporal dynamics of this model have been investigated
quite thoroughly in the studies (Adamson and Morozov 2012; Petrovskii et al. 2001).
Both the references (Adamson and Morozov 2012; Petrovskii et al. 2001) demon-
strated the existence of traveling waves over one-dimensional spatial domain, and
the existence of spirals, spiraling patches, chaotic patches and co-invasion over two-
dimensional spatial domain. However, there exist clear distinctions in the choice of
initial and boundary conditions used for the numerical simulations of our study with
the references (Adamson and Morozov 2012; Petrovskii et al. 2001). Invasion-type
initial conditions were used in Adamson andMorozov (2012), Petrovskii et al. (2001),
while we relied on the pulse-type initial conditions mentioned in (24). Adamson and
Morozov (2012) considered the invasion-type initial conditions where the first two
species occupy two non-overlapping patches and the third species is present in the
remaining domain at their respective environmental carrying capacities. On the other
hand, Petrovskii et al. (2001) chose non-zero population densities of the three species
at some regions in the middle of the domain with zero population densities elsewhere.
Also, we adopted periodic boundary conditions in contrast to no-flux boundary con-
ditions used in Adamson and Morozov (2012), Petrovskii et al. (2001). Performing
several numerical simulations of the system (25–27), we observed a similar transition
of dynamic patterns from homogeneous in space and periodic in time pattern to chaotic
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pattern through quasi-periodic one for increasing β as illustrated in Fig. 4. In this case,
Fig. 9 represents the chaotic population distribution of the first species. Note that this
pattern is qualitatively similar to the chaotic patterns presented in Fig. 4; however,
the size and scale of the patches are quite different. Further, for a sufficiently large
value of d2 the system can eventually collapse where two competitive species go to
extinction and the remaining species persists at its environmental carrying capacity.

3 Nonlocal Reaction-Diffusion System

The spatial system (1–3) presented in the preceding section has assumed that an
individual of a particular species located at a specific spatial point interacts with
other individuals of that species present at that point only and hence, considered local
intra-specific interactions. However, individuals from a species can interact with each
other inside a suitable neighborhood due to the spatial mobility of that species. This
phenomenon gives rise to the nonlocal intra-specific interactions. In this section, we
incorporate nonlocal interaction terms taking into account the intra-specific competi-
tion for the resources in the reaction-diffusion system (1–3) and accordingly, extend
the model. Note that the mechanisms such as fights, cannibalism, space sharing etc.
can also potentially lead to nonlocal intra-specific competition apart from the usual
resource consumption. The nonlocal cyclic competition model is given by

∂N1

∂t
= d1

∂2N1

∂x2
+ (r1 − a11 J1(N1) − a12N2 − a13N3)N1, (31)

∂N2

∂t
= d2

∂2N2

∂x2
+ (r2 − a21N1 − a22 J2(N2) − a23N3)N2, (32)

∂N3

∂t
= d3

∂2N3

∂x2
+ (r3 − a31N1 − a32N2 − a33 J3(N3))N3, (33)

subjected to non-negative initial conditions and periodic boundary conditions. Here,
the nonlocal intra-specific competitions have been taken care of by Js(Ns) (s =
1, 2, 3), where

Js(Ns) =
∫ ∞

−∞
φs(x − y)Ns(y, t)dy,

with

φs(z) =
{ 1

2δs
, |z| ≤ δs

0, elsewhere
.

For the sake of simplicity, we have taken the kernel functions φs (s = 1, 2, 3) as
the top-hat kernels. This type of kernel function is non-negative and even which effi-
ciently captures the unbiased movement of all the three competitive species. Also,
the parameters δs (s = 1, 2, 3) involved in the kernel functions φs signify the extent
of nonlocality as they regulate the width of the kernels. For a kernel function φs as
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Fig. 10 Plots of temporal-Hopf and Turing bifurcation curves in (a13, d2)-parameter space for different
values of the extent of nonlocality δ (δ1 = δ2 = δ3 = δ) for the nonlocal system (31–33). The red vertical
line represents the temporal-Hopf threshold (a∗

13 = 0.8). The Turing bifurcation curves for different values
of δ are represented by blue (δ = 0.001), black (δ = 1), magenta (δ = 1.2) and green (δ = 2) colored
curves, respectively. The other parameter values are given in (23) (Color Figure Online)

defined above, the nonlocal interaction is restricted within an one-dimensional spa-
tial region of length 2δs where the efficacy of it remains constant. Further, we can
easily deduce that

∫ ∞
−∞ φs(z)dz = 1. Therefore, the nonlocal system (31–33) admits

the same spatially homogeneous steady states as that of the reaction-diffusion system
(1–3) and accordingly, we denote them by using the same notations. One can easily
derive the conditions for Turing instability of the nonlocal system (31–33) following
the procedure presented in Sect. 2.2. However, we restrict ourselves from incorpo-
rating the derivation of these conditions here for the sake of smooth readability. The
detailed derivation of these conditions is provided in the Supplementary material.

Now, we investigate numerically the effect of the extent of nonlocality on the spa-
tiotemporal dynamics possessed by the reaction-diffusion system (1–3). For the sake
of simplicity, we consider the same extent of nonlocality for all the three competitive
species (that is, δ1 = δ2 = δ3 = δ). First, we examine how the different values of δ

act on the Turing bifurcation curve with the parameter values given in (23). Some of
these scenarios are illustrated in Fig. 10 where we can observe the relative positions
of the Turing bifurcation curves for different values of δ. It is a well-known fact that
the nonlocal system (31–33) becomes the local reaction-diffusion system (1–3) as
δ → 0+. Thus, the Turing bifurcation curves for both the local and nonlocal systems
become the same as δ → 0+. This phenomenon is illustrated in Fig. 10 by the blue
broken curve which is exactly the same with the Turing bifurcation curve presented in
Fig. 3. The other Turing bifurcation curves illustrated in Fig. 10 (see black andmagenta
curves) show that the increased value of δ extends both the Turing and Hopf–Turing
domains by diminishing the other two domains (stable and Hopf domains). Further, a
sufficiently large value of δ eventually leads to almost disappearance of both the stable
and Hopf domains, and the whole (a13, d2)-parameter space is divided into the Turing
and Hopf–Turing domains (see green curve in Fig. 10).

Now, we present some patterns accounting for the spatiotemporal dynamics of
the nonlocal system (31–33). In order to numerically simulate the system (31–33),
we used forward Euler method, trapezoidal rule and central difference scheme for
the reaction parts, nonlocal interaction terms and diffusion parts, respectively. The
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Fig. 11 Plots of stationary Turing patterns accounting for the effect of the extent of nonlocality (δ) for the
first species N1. The patterns are obtained by simulating the nonlocal system (31–33) for a δ = 1.0 and b
δ = 1.5. The other parameter values are mentioned in (23) with a13 = 0.75 and d2 = 25. The patterns are
presented for a certain time period after neglecting the initial transients (Color Figure Online)

numerical simulations were carried out in an one-dimensional computational spatial
domain [−200, 200] with the periodic boundary conditions and the pulse-type initial
conditions as mentioned in (24). Further, both the spatial and temporal grid sizes have
been chosen appropriately to avoid any sorts of numerical artifacts.

First, we investigate numerically the effect of the extent of nonlocality on the
stationary Turing pattern presented in Fig. 4a and the resulting patterns are illustrated
in Fig. 11. The figures show that incorporation of nonlocal intra-specific interaction
does not possess any drastic effect on the dynamics of the system and retains the
stationary nature of the pattern which can be expected from the positioning of the
Turing bifurcation curves presented in Fig. 10. However, the variation in population
density becomes larger with the increment in the value of δ which is evident from
the respective color bars. We would like to mention at this stage that one can observe
similar impact of δ on other stationary Turing and non-Turing patterns possessed by
the local reaction-diffusion system (1–3).

Further, we investigate numerically the effect of the extent of nonlocality on the
chaotic pattern presented in Fig. 4f and the resulting patterns are illustrated in Fig. 12.
Our simulation result presented in Fig. 12a shows that the nonlocalmodel possesses the
triangle-shaped chaotic pattern similar to that of the local model; however, the spatial
symmetry about the middle point is destroyed for moderate extent of nonlocality.
This symmetry-breaking capability of the extent of nonlocality has been documented
previously in Manna et al. (2020). Further increment in the value of δ demolishes the
triangle-like structure, while retains the chaotic nature as shown in Fig. 12b. In this
figure, one can observe that stationary structure emerges in middle region with chaotic
structure toward the boundaries. Finally, sufficiently large value of δ transforms the
chaotic pattern to a stationary one (see Fig. 12c). This type of transition from a dynamic
pattern to a stationary one can be observed for other dynamic patterns possessed by
the local model (1–3).

Another interesting phenomenon has been observed for the population distribution
presented in Fig. 12c where the second competitive species goes to extinction due
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Fig. 12 Plots of different types of dynamic and stationary patterns accounting for the effect of the extent of
nonlocality (δ) for the first species N1. The patterns are obtained by simulating the nonlocal system (31–33)
for a δ = 1.0, b δ = 1.2 and c δ = 1.5. The other parameter values are mentioned in (23) with a13 = 0.9
and d2 = 1. The patterns are presented for a certain time period after neglecting the initial transients (Color
Figure Online)

Fig. 13 Plot of spatial
distribution of the densities for
the first and third species. The
parameter values are the same as
that for Fig. 12c. Note that the
spatial distributions are
presented over the spatial
domain [−50, 50] for the clarity
of visualization though the
simulation was carried out over
the domain [−200, 200]. The
plot is presented for a particular
time instant after the population
distributions settle in stationary
regime (Color Figure Online)
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Fig. 14 Plots of spatial distribution of the densities of all the three competitive species. Here, the panel
a illustrates the spatial distributions for first and second species, and the panel b illustrates the same for
first and third species. The panel c illustrates the spatial distributions for all the three species. The plots
are obtained by simulating the nonlocal system (31–33) for the parameter values mentioned in (23) with
a13 = 0.9, d2 = 1 and δ = 50. The plots are presented for a particular time instant after the population
distributions settle in stationary regime (Color Figure Online)

to huge competition pressure exerted by other two species. This phenomenon can
be easily explained from the density correlation between the first and third species
presented in Fig. 13. From this density correlation plot, we can notice that both the
first and third species aggregate in large numbers over the entire habitat, and hence,
exert an immense competition pressure on the remaining species so that the species
goes to extinction. Further increments in the value of δ up to a certain extent retain
this scenario while the number of patches for both the first and third species decreases
gradually, aggregation in respective patches increases, and patches corresponding to
a species move away from each other. After a certain threshold value of δ, the second
species can persist in stationary patches along with other two competitive species. One
such numerical example is provided in Fig. 14. This phenomenon arises as the patches
corresponding to the first and third species align in such a way that the second species
can access some empty space for resources within their habitat. In this case, all the
three species survive in completely separate patches. Therefore, the incorporation of
nonlocal intra-specific interaction has a negative feedback on the persistence of the
second species, while it has positive feedback on the persistence of the remaining
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Fig. 15 Plot of the Turing bifurcation curve in (δ, d2)-parameter space for a13 = 0.9 (panel a). Plots of

the function ∂C̃
∂k for δ = 1.2 (panel b) and δ = 1.5 (panel c). The other parameter values are mentioned in

(23) (Color Figure Online)

two species for a certain range of values of δ. Overall, the system collapses for an
intermediate range of values of δ and the bio-diversity can be restored either in dynamic
or stationary mode outside this range. It is worthy to mention here that this type of
nonlocality-driven loss and regeneration of bio-diversity has been observed for all
other stationary and dynamic patterns possessed by the local model (1–3).

The transition of the patterns from chaotic to stationary as presented in Fig. 12 can
be explained efficiently from the plot of the corresponding Turing bifurcation curve in
(δ, d2)-parameter space (see Fig. 15a). In this case, theTuring bifurcation curve divides
the (δ, d2)-parameter space into the Hopf–Turing and Hopf domains. From this figure,
we can observe that the parameter sets used for the dynamic patterns presented in Fig.
12a and b lie in the Hopf domain and accordingly, one should expect the emergence of
dynamic patterns. However, the parameter set used for the stationary pattern illustrated
in Fig. 12c lies well inside the Hopf–Turing domain and this explains the emergence of
stationary pattern. Interestingly, the Turing bifurcation curve is not smooth in this case
and a point of non-differentiability arises at δ = 1.376. Thus, it would be reasonable
to look for an explanation for the emergence of this point of non-differentiability. In

order to explain this feature of the Turing bifurcation curve, we plot the function ∂C̃
∂k
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Fig. 16 Plot of stationary
spatially heterogeneous pattern
for the first species N1. The
pattern is obtained by simulating
the nonlocal system (31–33) for
the parameter values
r1 = r2 = r3 = 1,
a11 = a22 = a33 = 1,
a12 = a23 = a31 = α = 0.8,
a13 = a21 = a32 = β = 1,
d1 = 0.1, d2 = 0.5, d3 = 0.2
and δ = 2. The pattern is
presented for a certain time
period after neglecting the initial
transients (Color Figure Online)

against the wavenumber k for δ = 1.2 and 1.5 (see Fig. 15b and c), and look for
the first positive root of it in terms of k which describes the critical wavenumber kT
responsible for the Turing instability. The critical wavenumbers kT are indicated by
large red dots in the corresponding figures, whereas other positive roots are indicated

by large green dots. Note that the function ∂C̃
∂k admits infinitely many positive roots;

however, we have presented the corresponding figures with first few positive roots
for a reasonable numerical illustration. In both of these figures, we can observe the
existence of asymptotes for positive k-values (at k = 1.379 for δ = 1.2 and at k = 2.04
for δ = 1.5). For δ = 1.2, we have obtained kT = 1.001 which lies in the left-side
of the asymptote. However, the critical wavenumber kT = 5.611 lies in the right-side
of the asymptote when δ = 1.5. Therefore, the point of non-differentiability arises as
the critical wavenumber kT crosses the asymptote from left to right at δ = 1.376.

We have already proved in the preceding section that the specific spatial system
(25–27) does not admit any stationary Turing pattern. We could not be able to find
any stationary non-Turing pattern through numerical simulations neither. Therefore,
it would be interesting to examine numerically whether the incorporation of non-
local intra-specific interactions can induce any stationary spatially heterogeneous
population distribution. Through numerical investigations, we have observed that
the incorporation of nonlocality in intra-specific interactions can effectively drive
stationary spatially uniform population distribution to become stationary spatially
heterogeneous one. However, moderate extent of nonlocality leads to the extinction of
the second species and the remaining two species survive with stationary population
patches (see Fig. 16). The reasoning of this type of bio-diversity loss has been provided
in the previous paragraph. Further, the bio-diversity can be regained for sufficiently
large value of δ as shown in Fig. 14. For the dynamic patterns (for example, the chaotic
pattern presented in Fig. 9) possessed by the spatial system (25–27), we have observed
a similar kind of transition from dynamic to stationary spatial population distributions
depending on the extent of nonlocality as illustrated in Figs. 12 and 14. Accordingly,
we restrict ourselves from incorporating these results in this study for the sake of
brevity.
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Fig. 17 Phase portraits of the spatially averaged densities of all the three competitive species corresponding
to the dynamic patterns presented in Fig. 4 (that is, Figs. 4c–f) (Color Figure Online)

4 Discussion and Conclusions

In the existing literature, we find only a few studies on the spatiotemporal dynamics
of competition models for ecological populations taking into account the formation
of various stationary and non-stationary patchy patterns. However, there does not
exist any study which demonstrates the spatiotemporal dynamics of a three-species
competition model with both self-diffusion and nonlocal intra-specific competitions.
In this paper, we have investigated the rich spatiotemporal dynamics of a Lotka–
Volterra type three-species cyclic competition model with self-diffusion and nonlocal
intra-specific competitions.

Firstly, we have summarized a wide variety of dynamics possessed by the corre-
sponding non-spatial system (4–6) in terms of both the analytical and numerical results.
Numerical simulations with parameter values accounting for the specific cyclic order-
ing where a12 > a21, a23 > a32 and a31 > a13 reveal that the stable steady state
coexistence changes to the stable oscillatory coexistence for increased competition
pressure exerted by the third species on the first species (that is, a13). Further incre-
ment in the same competition strength leads to the system collapse through a global
bifurcation such as homoclinic bifurcation and only the third species survives at its
carrying capacity. From ecological point of view, larger values of a13 make the third
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Fig. 18 Phase portraits of the spatially averaged densities of all the three competitive species corresponding
to the dynamic patterns presented in Fig. 8 (Color Figure Online)

species a superior competitor and accordingly, the third species emerges as sole sur-
vivor by destroying the stable oscillatory coexistence for sufficiently large value of
a13.

Further, numerical simulations for the parameter values accounting for another
cyclic ordering where a12 < a21, a23 < a32 and a31 < a13 show that the stable oscil-
latory coexistence disappears through the heteroclinic bifurcation for a sufficiently
large value of the parameter β (β = a13 = a21 = a32). The parameter β repre-
sents the competition pressure exerted by one species to another following this cyclic
ordering. Thus, the increased value of β does not make a specific species a superior
competitor over the others; however, it makes a species better competitor than another
following this cyclic ordering. This is the reason why the survival of one species
depends on the initial population densities. Extinction of one or more species due to
competitive exclusion is a landmark characteristic for multi-species competition mod-
els. The extinction scenario is determined by the intra- and inter-specific competition
strengths for the models with homogeneous population distribution.

Our findings regarding the formation of stationary patches in the presence of self-
diffusion of all the competing species supplement the studies conducted in Kishimoto
(1982), Martínez (2003). For mathematical tractability we often consider the system
consisting with less number of species, but in reality, we findmulti-component species
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competing for the same resource and habitat. Therefore, our study reveals that the
existence of stationary spatially heterogeneous population distributions is more likely
to be observed in nature, and explains the formationof population patcheswithmultiple
competitive species when the strength of competitions is moderate, the resources are
adequate and the dispersal rates are reasonable.

Apart from the stationary patches, the model (1–3) admits various dynamic patterns
such as periodic, quasi-periodic and chaotic patterns when the stationary coexistence
is destroyed due to reasonable competition pressure exerted by one species on another
and moderate dispersal rates of all species. Here, we have considered the third species
as stronger competitor and the second species moves moderately faster than others.
Chaotic pattern exists in a larger parametric region than other dynamic patterns and
it leads to irregular oscillations of densities with respect to both the space and time.
The irregular oscillations emerge due to continuous migration of species in neigh-
boring patches, and continuous change in both the configuration and size of patches
(Banerjee and Volpert 2016). As a result, this phenomenon prevents a species from
being completely extinct by inducing its localized and temporary extinction. Figure 4f
demonstrates that the first two species invade the third species infested region from
the neighboring sites (see also Fig. 6). In the usual sense, the invasion by the first two
species would have meant the successful establishment of them when few individuals
of these species were introduced within a small patch of the whole domain initially
occupied by the third species (Adamson and Morozov 2012; Manna and Banerjee
2018). We can call it as the short-range invasion by the first two species which is a
significant outcome of our study.

Further, we have showed that the specific spatial system (25–27) does not admit
any stationary Turing pattern which can supplement the studies conducted in Adam-
son and Morozov (2012), Petrovskii et al. (2001). Thus, limited variabilities in the
rate constants favor the stationary or dynamic multi-species coexistence through self-
organization (Camazine et al. 2001; Nicolis and Prigogine 1977). The formation of
localized population patches is important for species persistence and this phenomenon
cannot arise in the corresponding non-spatial system. This is due to the fact that indi-
viduals of weak competitors can avoid competition pressure by moving to a location
with relatively low density of strong competitors. Also, the spatialmobility of a species
increases the accessibility of resources to a great extent.

An individual of a species can consume available resources from surroundings due
to its spatial mobility and hence, the nonlocal intra-specific competition comes into
picture (Autry et al. 2018;Britton 1989;Manna et al. 2020;Merchant andNagata 2011;
Tanzy et al. 2013). Accordingly, we have investigated the effects of the nonlocal intra-
specific competitions on the local spatiotemporal dynamics possessed by the spatial
system (1–3) in Sect. 3. Numerical simulations for the parameter values corresponding
to the first type of cyclic ordering with different values of the range of nonlocal
interaction (that is, δ) lead to the expansion of theTuring instability region (see Fig. 10).
In such a way, both the Turing and Hopf–Turing domains engulf the whole (a13, d2)-
parameter space for δ = 2 as the remaining two domains (stable and Hopf domains)
almost disappear. Accordingly, appropriate value of δ can transform the oscillatory
population distribution to stationary one and this phenomenon can be considered as
nonlocal interaction induced stabilization of the system dynamics. Therefore, this type
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of stabilization suggests that resource consumption from surroundings strengthens the
formation of stationary population patches (see Fig. 12). Also, sufficiently small value
of δ retains the nature of the dynamics of the corresponding local spatial system;
however, it breaks the spatial symmetry of the emerging pattern.

The above-mentioned stabilizing and symmetry-breaking capabilities of the non-
local intra-specific competitions have been already discussed in Manna et al. (2020).
Surprisingly, the system collapses as one species goes extinct for intermediate values
of δ and the bio-diversity is regained for sufficiently large values of δ (see Figs. 13
and 14). As far as our knowledge goes, the nonlocality induced bio-diversity loss
has not been reported earlier. Finally, we have shown that the nonlocal system corre-
sponding to the specific model (25–27) can have stationary spatially heterogeneous
patterns which are not achievable without nonlocal intra-specific competitions. Both
the spatial mobility and nonlocal consumption of resources enhance the survival of
multiple competing species, but the nature of patches (whether stationary or dynamic)
is determined by competition strengths, dispersal rates and range of nonlocal interac-
tion. We would like to mention that the study regarding the dynamics of a nonlocal
three-species competition model is rare; however, only a few studies have been con-
ducted to investigate the complex spatiotemporal dynamics of nonlocal two-species
competition models (Apreutesei et al. 2008; Ni et al. 2018; Segal et al. 2013; Tanzy
et al. 2013).

In this study, we have used the top-hat kernel to model the nonlocal intra-specific
interactions as a starting point. It would be interesting to validate our observations with
other forms of kernel, namely parabolic, triangular, Laplacian and Gaussian kernels
(Merchant andNagata 2011; Pal et al. 2019; Segal et al. 2013), as the nature of nonlocal
interaction varies from one species to another. Nevertheless, nonlocality could arise
for the inter-specific competitions (Banerjee and Volpert 2016). Therefore, it would
be another compelling research prospect to explore the dynamics of the model in the
presence of the nonlocal inter-specific competitions. As the movement of a species
from one spatial location to another requires time in the case of long range dispersal,
it would be interesting to consider spatiotemporal kernels (which depend on both the
space and time) instead of spatial kernels (Britton 1990; Gourley and Britton 1996; Pal
et al. 2020). Accordingly, it would be another fascinating future research prospect to
study the effects of spatiotemporal kernels on resulting coexistence scenario of three-
species competition model. We will consider these open problems in a systematic
fashion for our future studies.
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Appendix A

Here, we present the phase portraits of the spatially averaged densities of all the three
competitive species for the dynamic patterns illustrated in Fig. 4. Thus, it would be
appropriate to define what we mean by the spatially averaged densities. The spatially
averaged densities < N j > (t) over an one-dimensional spatial domain [−L, L] are
given by

< N j > (t) = 1

2L

∫ L

−L
N j (x, t)dx,

for j = 1, 2, 3.
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