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Abstract. Human Posture Classification(HPC) is used in many fields
such as as human computer interfacing, security surveillance, rehabili-
tation, remote monitoring, and so on. This paper compares the perfor-
mance of different classifiers in the detection of 3 postures, sitting, stand-
ing, and lying down, which was recorded using Microsoft Kinect cameras.
The Machine Learning classifiers used included the Support Vector Clas-
sifier, Naive Bayes, Logistic Regression, K-Nearest Neighbours, and Ran-
dom Forests. The Deep Learning ones included the standard Multi-Layer
Perceptron, Convolutional Neural Networks(CNN), and Long Short Term
Memory Networks(LSTM). It was observed that Deep Learning methods
outperformed the former and that the one-dimensional CNN performed
the best with an accuracy of 93.45%.

Keywords: Machine learning · Deep learning · Detecting Alzheimer.

1 Introduction

Human Posture Classification(HPC) has applications in a wide range of fields
such as human computer interfacing, security surveillance, rehabilitation, re-
mote monitoring, and so on [20]. There are broadly two kinds of sensor schemes
that can be used for HPC: wearable and contactless. Wearable methods use sen-
sors such as accelerometers, gyroscopes, magnetometers or even sensors that use
physiological data such as Electromyogram(EMG), on different locations of the
body while contactless ones rely on image or video processing, and also sensors
in the proximity of the patient. Generally, wearable methods are obtrusive and
cause discomfort. This is especially true for the elderly and the physically com-
promised. Hence, the research area of contactless HPC has gained popularity in
the past few years [4, 7, 11,19,26,40,41,45].

HPC has been used to identify and correct several medical ailments in the
past. Matar et al. used contactless bed-sheet pressure sensors to detect bed-
posture and prevent pressure ulcers [38]. Lee et al. used inertial sensors to
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monitor squat exercises to prevent knee and leg injuries [33]. In camera based
methods, Microsoft Kinect devices, which provides depth images using a combi-
nation of RGB and IR cameras and outputs the 3D coordinates of 32 joints, are
quite popular. These solutions have benefited from the developments Machine
and Deep Learning [3]. However, most of the past papers just use one or two
classifiers without addressing in detail the classification schemes that produce
optimal results. Hence, this work extensively compares the performance of differ-
ent machine and deep learning classifiers and attempts to ascertain the optimum
classifier(s) for posture data.

The rest of the paper is structured as follows. Section 2 provides the back-
ground information related to posture detection. Section 3 presents the proposed
methodology. Section 4 provides the experimental results of the proposed posture
detection and discussion, and finally Section 5 concludes the paper.

2 Related Work

Sidrah et al. [34] developed a novel approach based on hybrid approach used
machine learning and deep learning approaches to detect human posture de-
tection. However, the proposed approach can detect falling and standing and
it cannot detect multiple posture detection. Panini et al. [42] presented an ap-
proach based on posture human detection in domotic application. The machine
learning is used to generate the probability maps. The statistic classifier used
to compare the probability maps and histogram profiles extracted from mov-
ing of people. The experimental results show that the results are robust and
computational time are lowers as compared to state-of-the-art approaches such
as [2, 8–10,12–18,27,29,30].

Ma et al. [37] proposed a cushion-based posture detection system used to
process sensor for human detection in the wheelchair. The method is consists
of three different steps such as classification for posture, backward selection of
sensor configuration, and comparison with state-of-the-art approaches [1, 5, 6,
21–25,28,31,32,35,36,46,47].

Nasirahmadi et al. [39] proposed an approach to identify whether a two-
dimensional imaging system along with deep learning approaches to detecting
standing and lying postures with CNN and ResNet features extraction of RGB
images were used. Sacchetti et al. [44] developed an approach to classify human
posture detection in classroom ambience. The posture can be divided into confi-
dent and non confident aiming for teacher evaluation, interested/non interested.
The approach presents some concepts about postures and how effectively detect
openpose library and finally neural network is used measure the effectiveness of
the approach.

3 Methodology

In this section, we discussed the proposed methodology for human posture de-
tection. The Fig 1 displays the overview framework of the approach.
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Fig. 1. Overview Proposed Approach

3.1 Classifiers

A wide range of machine and deep learning classifiers were used and are illus-
trated in Table 1 and Table 2. The Waikato Environment for Knowledge Analysis
(WEKA) platform was used in this study to implement these algorithms. Among
machine learning algorithms, the Naive Bayes Classifier’s prior probabilities were
set to 0, the Logistic Regression model used L2 loss, the K-nearest neighbours
algorithm used 30 neighbours, and the the Random Forests classifier used 100
decision trees.

Convolutional Neural Network: For comparison, the novel CNN framework is
developed. The implemented CNN consists of input, hidden and output layers.
Our proposed CNN framework contains convolutional, max pooling and fully
connected layers. The 10-layered CNN framework achieved the most promising
results. The Fig 2 shows the architecture for CNN.

Fig. 2. Overview architecture of CNN

Long Short Term Memory (LSTM): The long short term memory (LSTM)
proposed architecture contains input layer, two different stacked LSTM and one
output as fully connected layer. Particularly, the LSTM architecture consists of
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two different stacked bidirectional layers (contains 128 cells and 64 cells) with
dropout 0.2 and a dense layer with two neurons and softmax activation.

Among deep learning algorithms, both 1D and 2D Convolutional Neural
Networks were used and their structures consisting of max pooling, convolution,
and fully connected layers ( total 10) are illustrated. Both unidirectional and
bidirectional Long Short Term Memory(LSTM) Networks were used consisting
of 2 stacked layers of 128 and 64 cells and a dense layer of softmax activation
function. The Multilayer Perceptron(MLP) consisted of 2 hidden layers and used
the ReLu activation function. K fold cross validation was used and K values of
10,5, and 2 were tested.

4 Results and Discussion

The Deep Learning based classifiers have outperformed the Machine Learning
Classifiers in general, as shown in Table 1and 2. As expected, as the number of
K-folds decreased, the accuracies decreased as well. Among Machine Learning
methods, the Support Vector Machine with Radial Basis Function(RBF) Kernel
performed the best with an overall accuracy of 83.42% while the Naive Bayes
performed the worst with an accuracy of 74.56%. In Deep Learning methods,
CNNs and LSTMs were superior to the traditional MLP networks. Although
the latter 2 had similar accuracies, the 1D-CNN performed the best with an
accuracy of 93.45%. Thus, future work should focus on optimizing the structure
and performance of this network in posture detection.

Dataset: The data from [43] was used in this study, in which Microsoft
Kinect V2 cameras were used to extract posture information of six users and
three activities: sitting, standing, and lying down. Although the cameras obtain
75 points, which represent the x,y, and z coordinates of 25 body joints, 7 location
independent features are extracted from them to reduce the computational load.
These include the height,left hip angle, right hip angle, left knee angle, right
knee angle, chest angle, and chest-knee angle. They were calculated from the
body joints depth coordinates using cosine formula.

Table 1 shows the summary of results of machine learning and their perfor-
mance using 10-fold cross validation. As shown in Table 1 the SVM outperforms
other machine learning classifiers.

Classifier Accuracy Recall Precision F1 score

SVM(RBF) 83.42% 0.83 0.82 0.81

Naive Bayes 74.56% 0.74 0.73 0.74

Logistic Regression 80.91% 0.80 0.79 0.80

KNN 76.98% 0.76 0.75 076

Random Forests 77.08% 0.77 0.76 0.77

Table 1. Machine Learning classifiers and their performance with 10 fold cross vali-
dation
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Table 2 shows the summary of results of deep learning and their performance
using 10-fold cross validation. As shown in Table 2 the 1D-CNN outperforms
other deep learning classifiers such as 2D-CNN, LSTM, BiLSTM.

Classifier Accuracy Recall Precision F1 score

MLP 82.56% 0.82 0.82 0.82

1D-CNN 93.45% 0.93 0.92 0.93

2D-CNN 91.59% 0.91 0.90 0.91

LSTM 88.19% 0.88 0.87 0.88

BiLSTM 90.87% 0.90 0.90 0.90

Table 2. Deep Learning classifiers and their performance with 10-fold cross validation

Table 3 shows the summary of results of machine learning and their perfor-
mance using 5-fold cross validation. As shown in Table 3 the MLP outperforms
other machine learning classifiers.

Classifier Accuracy Precision Recall F-measure

MLP 81.56 0.81 0.8 0.81

SVM 81.02 0.81 0.8 0.81

Naive Bayes 71.36 0.71 0.7 0.71

Logistic Regression 71.26 0.71 0.7 0.71

KNN 74.87 0.75 0.74 75

Random Forest 76.34 0.76 0.76 0.76

Table 3. Machine Learning classifiers and their performance with 5-fold cross valida-
tion

Table 4 shows the summary of results of deep learning and their performance
using 5-fold cross validation. As shown in Table 4 the 1D-CNN outperforms other
deep learning classifiers.

Classifier Accuracy Precision Recall F-measure

1D-CNN 91.51 0.91 0.91 0.91

2D-CNN 90.96 0.91 0.9 0.91

LSTM 89.56 0.89 0.88 0.89

BiLSTM 88.98 0.89 0.88 0.89

Table 4. Deep Learning classifiers and their performance with 5-fold cross validation

Table 5 shows the summary of results of machine learning and their perfor-
mance using 2-fold cross validation. As shown in Table 5 the SVM outperforms
other machine learning classifiers.
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Classifier Accuracy Precision Recall F-measure

MLP 80.42 0.8 0.79 0.8

SVM 81.01 0.81 0.81 0.81

Na´ve Bayes 70.94 0.7 0.7 0.7

Logistic Regression 70.59 0.7 0.7 0.7

KNN 74.29 0.74 0.74 74

Random Forest 75.63 0.75 0.74 0.75

Table 5. Machine Learning classifiers and their performance with 2-fold cross valida-
tion

Table 6 shows the summary of results of deep learning learning and their
performance using 2-fold cross validation. As shown in Table 6 the 1D-CNN
outperforms other deep learning classifiers.

Classifier Accuracy Precision Recall F-measure

1D-CNN 90.23 0.9 0.89 0.9

2D-CNN 89.67 0.89 0.88 0.89

LSTM 88.19 0.88 0.87 0.88

BiLSTM 87.76 0.87 0.86 0.87

Table 6. Deep Learning classifiers and their performance with 2-fold cross validation

5 Conclusion

The human posture detection is important in remote monitoring of patient.
However, most of the current approaches cannot perfectly detect different hu-
man postures such as sitting, standing and lying down. Therefore, in this study,
we proposed an approach based on the machine learning and deep learning ap-
proaches to detect different posture detection.
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