
HAL Id: hal-03381747
https://hal.science/hal-03381747

Preprint submitted on 17 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The agreement power of disagreement
Quentin Bramas, Anissa Lamani, Sébastien Tixeuil

To cite this version:
Quentin Bramas, Anissa Lamani, Sébastien Tixeuil. The agreement power of disagreement. 2021.
�hal-03381747�

https://hal.science/hal-03381747
https://hal.archives-ouvertes.fr


The agreement power of disagreement?
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Abstract. We consider the rendezvous problem of two autonomous robots with very weak
capacities. This problem is notoriously impossible to solve in the semi-synchronous execution
model when robots are deterministic, oblivious, and their ego-centered coordinate system is
fully symmetric.
We show that if the robots disagree on the unit distance of their coordinate system, it be-
comes possible to solve rendezvous and agree on a final common location, without additional
assumptions.

1 Introduction

We consider swarms of mobile robots that must coordinate to solve a given task. More precisely, we
consider robots modeled by dimensionless points that evolve in a Euclidean bidimensional space
according to the Look-Compute-Move (LCM) model introduced by Suzuki and Yamashita [11].
In the LCM model, robots repeatedly execute cycles of Look-Compute-Move phases. In the Look
phase, the robot obtains an ego-centered view of the position of the other robots (in its own
coordinate system). In the Compute phase, the robot decides where it should move next (still
in its own coordinate system). Finally, in the Move phase, the robot simply moves toward its
destination.

The vast majority of the research effort in the LCM model [5] focuses on understanding the
exact hypotheses that make a task solvable. In most cases, those hypotheses are tightly coupled
with the amount of synchronization between robots. Three main synchronization models have
been considered: the fully synchronous (FSYNC) model mandates all robots to execute their
LCM cycles simultaneously, the semi-synchronous (SSYNC) model allows that only a non-empty
subset of robots executes its LCM cycle simultaneously, while the asynchronous (ASYNC) model
makes no hypothesis about the relative speed of each robot or each phase.

A benchmarking problem in this context is that of rendezvous, where two robots have to meet
in finite time at the exact same location, not known beforehand. Despite its apparent simplicity,
this problem triggered interest from the research community as in FSYNC, it is solvable [11], while
in SSYNC, it is unsolvable [11, 3] deterministically, without additional assumptions. One of the
key reasons for impossibility is that the two robots may have initial symmetric views (and hence
make symmetric moves when operated synchronously), but when only one robot is scheduled for
execution (as is possible in SSYNC), only half of the symmetric algorithm is performed at any
time, preventing the robots from actually meeting (they only converge toward one another).

Related Works To circumvent the aforementioned impossibility result, several options for break-
ing the initial symmetry were considered.

One line of work considers adding extra capacities to the robots. The seminal paper by Suzuki
and Yamashita [11] provides a probabilistic solution to the problem (and each robot makes an
constant expected number of coin tosses). The rest of the literature focused on deterministic
solutions. Another series of papers considers robot that are endowed with some variant of persistent
memory. In more details, it was proposed to endow each robot with a light [4], that is, a robot is
capable of emitting one color among a fixed number of available colors, visible to all other robots.
This additional capacity allows to solve rendezvous in the most general ASYNC model, provided

? This work was partially funded by the ANR project SAPPORO, ref. 2019-CE25-0005-1.



that lights of robots are capable to emit at least four colors [4]. In the SSYNC model, Viglietta [12]
proved that being able to emit two colors is sufficient to solve rendezvous. In the same paper [12],
Viglietta proves [12] that three colors are sufficient in ASYNC. Both solutions in ASYNC [4, 12]
and SSYNC [12] output a correct behavior independently of the initial value of the lights’ colors.
Then, Okumura et al. [9] presented a rendezvous algorithm with two colors in ASYNC assuming
rigid moves (that is, the move of every robot is never stopped by the scheduler before completion),
or assuming non-rigid moves but robots being aware of δ (the minimum distance before which the
scheduler cannot interrupt their move). Also, the solution of Okumura et al. [9] requires lights to
have a specific color in the initial configuration. Finally, Heriban et al. [7] prove that two colors
are necessary and sufficient in ASYNC without extra assumptions.

Another line of work, most related to the current paper, considers restricting the amount of
symmetry that can occur in (an persist from) the initial configuration. One set of papers relates
to the directions and orientations of the coordinate systems that are given to each robot by
the adversary, to prevent a symmetric situation to occur. This is abstracted by the notion of
compass, that supposedly points to the ”North” of the local coordinate system of each robot.
When compasses are perfect (i.e., the two robots have the same ”North”), SSYNC rendezvous can
be achieved [6]. Also, even if compasses are only eventually perfect (there is a time t, unknown
to the robots, after which compasses are perfect), SSYNC rendezvous is also feasible [10]. Finally,
a complete SSYNC characterization of rendezvous solvability with respect to compasses is due
to Izumi et al. [8]: (i) if compasses are fixed (they do not change throughout the execution),
rendezvous is solvable if and only if the two compasses angle difference φ is smaller than π

2 , and
(ii) if compasses are dynamic (their direction may vary between two LCM cycles), rendezvous is
solvable if and only if φ is smaller than π

4 . The case of ASYNC is only partially solved: while the
results for static compasses extend to ASYNC, rendezvous with dynamic compasses is feasible if
φ < π

6 and impossible if φ ≥ π
4 , but the interval

[
π
6 ,

π
4

)
remains unknown.

Finally, Bramas et al. [1] showed recently that, when robots agree only on the North direction
but not on the East (i.e., they might not have the same chirality), then the rendezvous is solvable,
which might seems surprising because robots can start with symmetric views (and keep their views
symmetric until the rendezvous is achieved).

Our contribution We observe that the coordinate system that is given to each robot also includes
a unit distance (that may be different for each robot as it is given by an adversary). Yet, to our
knowledge, this unit distance was never considered as a tool to break initial symmetry, but rather
as an assumption (all unit distances are equal) when designing impossibility results.

In this paper, we investigate the possibility to include the two robots’ unit distance in the
analysis of rendezvous solvability in SSYNC. In more details, we consider two robots that are
arbitrarily disoriented (so, the angle difference φ may be equal to π

2 ), but have a different unit
distance. Then, ρ is the ratio between the largest and the smallest unit distance of the robots.
In this setting, we show that for any two real numbers ρmin and ρmax, known to the robots,
such that 1 < ρmin < ρmax, if ρ ∈ [ρmin, ρmax], then rendezvous is solvable in SSYNC, without
any additional assumption (robots are deterministic, oblivious, and their compasses are arbitrary).
The extreme case ρ = 1 (both unit distances are equal) is known to render the problem unsolvable.

The rest of the paper is organized as follows. Section 2 describes the execution model. To warm
up, Section 3 considers the simple case when ρ = 2. Then, the general solution is described in
section 4. Concluding remarks are provided in Section 5

2 Preliminaries

We consider two robots, evolving in a Euclidean two dimensional space. Robots are modeled as
points and are assumed to be uniform (they execute the same algorithm), and oblivious (they
cannot remember past actions).

Let Z be a global coordinate system. A configuration at time t, denoted Ct, is a set {r1, r2}
containing the positions of both robots in Z at time t. Notice that ri, i = 1, 2, denotes at the same



time a robot and its position in R2 in the coordinate system Z. Robots do not know Z, instead,
each robot ri has its own coordinate system Zri centered at the current position of ri. We assume
disoriented robots (they do not agree on any axis) that have different unit distance. Let ρ be the
ratio between the largest and the smallest unit distance of the robots i.e., unit2 = ρ · unit1, with
unit2 > unit1. For a robot r, dr denotes the distance between the two robots in its own coordinate
system. Thus, if r and r′ are the two robots, we have dr = ρdr′ or dr = dr′

ρ . For simplicity, in the
remaining of the paper, r1 denotes the robot with the largest unit distance and r2 the other robot
i.e., d1 < d2 (where we abusively write di instead of dri , for i = 1, 2). Of course, a robot is not
aware of it being the robot with the largest unit distance.

Robots operate in cycles that comprise three phases: Look, Compute and Move. More precisely,
at each time instant, an activated robot first takes a snapshot to see the position of the other
robot in its ego-centered coordinate system. Based on this snapshot, the robot either computes a
destination or decides to remain idle. Finally, the robot moves towards the computed destination
(if any) following a straight path. We assume non-rigid movements i.e. a robot can be stopped
anywhere along the path to its destination after traveling at least a fixed positive distance δ. The
value of δ is common to the two robots but it is unknown. Its value can be arbitrarily small but
it is fixed and never changes.

In configuration C, the local view of a robot ri, denoted Vri is the output of the look phase.
More precisely, when a robot ri takes a snapshot, it observes the position of the other robot in its
own coordinate system Zri (translated by −ri so that ri is always at the center). An algorithm
A is a function mapping local views to destinations. When ri is activated at time t, algorithm A
outputs ri’s destination p in its local coordinate system Zri based on Vri .

We consider the SSYNC model where at each time instant, a non-empty subset of robots is
activated by an external entity called scheduler. The activated robots execute their Look-Compute-
Move cycle synchronously. We assume that the scheduler is fair i.e. each robot is activated infinitely
often. An execution E = (C0, C1, . . . ) of an algorithm A is a sequence of configurations, where C0

is an initial configuration, and every configuration Ct+1 is obtained from Ct by applying A to the
robots scheduled for execution by the scheduler.

3 An algorithm when ρ = 2

As an introduction, we show a simple algorithm solving the problem when ρ = 2. In this case, the
level li ∈ Z of a robot ri is the unique integer such that di ∈ [2−li , 2−li+1). By construction, we
know that l2 = l1 − 1, because d2 = 2d1. Then, Algorithm 1 solves the rendezvous with ρ = 2.
Indeed, by construction, only one robot remains idle and one robot moves to the other.

Algorithm 1: Rendezvous with ρ = 2, executed by robot r.

if lr ≡ 0 mod 2 then Remain idle
else Move to the other robot.

Visually:

case lr ≡ 0 mod 2
r

case lr ≡ 1 mod 2
r

Theorem 1. Algorithm 1 solves the rendezvous problem in SSYNC when ρ = 2.

Proof. As ρ = 2, at each time instant, |l1 − l2| = 1 where for any i ∈ {1, 2}, li ∈ Z is the level
of robot ri. That is, by Algorithm 1, at each time instant, a single robot is allowed to move. Its



destination is the other robot’s position. Let dt be the distance between the two robots at time t.
Two cases are possible:

1. dt ≤ δ . As the scheduler is assumed to be fair, the robot allowed to move is eventually
activated. When it moves, as the other robot remains idle by Algorithm 1, the rendezvous is
achieved.

2. dt > δ . First observe that the distance between the two robots never increases. Indeed, at each
time instant, a robot either moves towards the other robot along the straight line connecting
them or remains idle. As the scheduler is assumed to be fair, the robot allowed to move is
eventually activated. When it moves, the distance between the two robots decreases by at least
δ. That is, at each time a robot moves, the distance between the two robots decreases by at
least δ. Hence, we can deduce that there exists a time t′ > t such that dt′ ≤ δ and we retrieve
Case 1.

From Cases 1 and 2 we can deduce that the rendezvous is eventually achieved. Hence, the
theorem holds.

4 An algorithm when ρ ∈ [ρmin, ρmax]

In this section, we assume that the robots know an upper and a lower bound on the value ρ i.e.,
ρ ∈ [ρmin, ρmax]. In this case, the intervals defining the level of a robot are more complex.

We define two infinite sequences of intervals as follows:

∀i ∈ Z Si = [ρ−iminρ
−i
max, ρ

−(i−1)
min ρ−imax) (1)

Mi = [ρ−iminρ
−(i+1)
max , ρ−iminρ

−i
max) (2)

The sets Si and Mi are called levels. We consider that the levels are ordered by the inverse of their
length i.e., for all i ∈ Z, we say level Mi, resp. Si, is greater than level Mi′ , resp. Si′ , when i > i′.
Moreover, level Mi is greater than level Si.

First, notice that ⋃
i∈Z

Si ∪Mi = R∗+

and the intervals are pairwise disjoints, so the sequences form a partition of R∗+. Figure 1 illustrates
this partition. We can see that when the distance dr seen by a robot r decreases, its level increases.
For simplicity, we say a robot r is in a set X, or has level X, if its distance dr is in X.

0 Si+1 Mi Si Mi−1 Si−1 Mi−2

Fig. 1. Partition of the line R∗
+ into levels

We now prove a lemma that states that both robots cannot have a level of type S, and the
levels of the robots are not too far away.

Lemma 1. For every i ∈ Z, if a robot r has level Si, then the other robot r′ has level Mi−1 or
Mi.

Proof. We have dr ∈ [ρ−iminρ
−i
max, ρ

−(i−1)
min ρ−imax). If dr < dr′ , then

dr′ = ρdr ∈
[
ρmin × ρ−iminρ

−i
max, ρmax × ρ−(i−1)min ρ−imax

)
=Mi−1

If dr > dr′ , then

dr′ =
dr
ρ
∈
[

1

ρmax
× ρ−iminρ

−i
max,

1

ρmin
× ρ−(i−1)min ρ−imax

)
=Mi



For simplicity, let

M0 =
⋃

i≡0 mod 2

Mi

M1 =
⋃

i≡1 mod 2

Mi

S0 =
⋃

i≡0 mod 2

Si

S1 =
⋃

i≡1 mod 2

Si

Also, consider the indexes of those sets modulo 2 eg., M−1 =M3 =M1.

Let s(d) be the smallest value defined as follows:

d
1− ρ−1min

2ρ2minρ
2
max

≤ s(d) ≤ d1− ρ−1min

2
such that s(d) ∈ S0 (3)

Lemma 2. s(d) is well defined

Proof. We have to prove that, for any d > 0, we have[
d

1− ρ−1min

2ρ2minρ
2
max

, d
1− ρ−1min

2

]
∩ S0 6= ∅

Assume, for the sake of contradiction, that the intersection is empty for a given d > 0. Let a be
the smallest number in S0 such that

d
1− ρ−1min

2
< a (4)

a is well defined because each interval Si is closed to the left. Then a ∈ Si for some i ∈ Z, i ≡ 0
mod 2, and it is clear that a = ρ−iminρ

−i
max (i.e., a is the lower bound of the interval Si). Since by

assumption

Si+2 ∩
[
d

1− ρ−1min

2ρ2minρ
2
max

, d
1− ρ−1min

2

)
= ∅

and by the minimality of a, we have

ρ
−(i+2)
min ρ−(i+2)

max ≤ d 1− ρ−1min

2ρ2minρ
2
max

⇒ a = ρ−iminρ
−i
max ≤ d

1− ρ−1min

2

The last inequality contradicts Equation (4).

We say a robot r executes Move(s) if it moves a distance s(dr) towards the other robot. The
first inequality ensures that if both robots execute Move(s), then one of them eventually reaches
the next level. The second part of the definition ensures that if one robot executes Move(s) and
the other executes Move(Other), the one that executes Move(s) is now in S0.



Algorithm 2: The movement of a robot r depends on the distance between the two
robots d (seen by robot r), and on where the robot r sees itself in the line (on the right
or on the left)

d ∈ S0 ∪ S1

d ∈M0

The right robot moves a distance s(d)

d ∈M1

The left robot moves a distance s(d)

Our algorithm is defined in Figure 2. First we notice that, by Lemma 1, robots cannot both
stay stationary. Indeed, if r1 is in Si, then d2 ∈ Mi−1 and if r2 is in Si, then r1 ∈ Mi (recall r1
and r2 denotes the two robots such that d1 < d2).

Let Conf(X,Y ) be the set of configurations where r1 ∈ X and r2 ∈ Y . Recall that r1 and r2
are such that the distance d1 is smaller than d2, so r1 has a greater level than (or the same as) r2.

We directly have the following lemma to reduce the number of cases we handle in the sequel.

Lemma 3. For every i, j ∈ {0, 1},

Conf(Si,Mi) = Conf(Mi+1,Si) = Conf(Si,Sj) = ∅

Proof. Since r1 has a greater level compared to r2 so, for every i ∈ Z, if r1 ∈ Si, then r2 ∈Mi−1,
by Lemma 1, hence Conf(Si,Mi) = ∅. Similarly, if r2 ∈ Si, then r1 ∈Mi (because Mi is the level
right above Si). Finally, we saw that, by construction, both robots cannot be in an S level.

This means Conf(M0,S0), Conf(M0,M0), Conf(S1,M0), Conf(M1,M0), Conf(M1,S1), and
Conf(M1,M1) are the only non-empty set of configurations.

From flexible to rigid movements. The following lemma shows that, the robots eventually
are, and remain, at distance at most δ from each other. Using this lemma, we can now assume in
the remaining of the paper that movements are rigid.

Lemma 4. If the distance d between the two robots is greater than δ (in the global coordinate
system), then, after two rounds, the distance between robots decreases by at least a constant C
(that depends only on δ, ρmin and ρmax).

Proof. First, it is clear that robots cannot increase the distance between them.
If one or two robots execute Move(s), then the distance between the robots decreases by at

least

min

(
δ, d

1− ρ−1min

2ρ2minρ
2
max

)
≥ C with C = δ

1− ρ−1min

2ρ2minρ
2
max

If one robot remains idle and the other robot execute Move(s), then the distance decreases by
at least δ.
The last remaining case is when both robots are in M and execute Move(Other) at time t. It is
possible that the distance does not decrease at all (if both robots reach their destination) or the
distance decreases by an arbitrarily small amount. In the next round, at time t+ 1, either (a) the
robots are in the same level as before, (b) the level of only one robot increases, or (c) the level of
both robots increases.

In case (a), the positions of the robots at time t+ 1 are exchanged, so they now both execute
Move(s) and the property of the lemma is obtained after one more round.
In case (b), one robot reaches S while the other remains in M, at time t + 1, so the property is
obtained after one more round as well (since one robot remains idle).



In case (c), since both robots cannot reach S (by Lemma 1) so one robot must increases from Mi

to Mi′ with i < i′. we observe that, to do so, the distance must decrease by at least d
ρmin

≥ δ
ρmin

,
which is greater than C defined above, and the Lemma is proved.

When a single robot is activated. First, we compute the configurations that are eventually
reached when only one robot is activated.

Lemma 5. If a single robot is activated and executes Move(Other), then the robots gather in one
round.

Lemma 6. From Conf(Mi,Mi), if a single robot is activated and executes Move(s), then eventu-
ally we reach either a configuration in Conf(Si+1,Mi).

Proof. Consider C ∈ Conf(Mi,Mi), with i ∈ Z, and d1 and d2 the distances seen by r1 and r2
respectively in C. We have d1 ≥ ρ−iminρ

−(i+1)
max . After a single robot, say r1, executes Move(s), let d′1

and d′2 the distances seen by r1 and r2 respectively. So:

d′1 = d1 − s(d1) ≥ d1 − d1
1− ρ−1min

2
≥ d1ρ−1min ≥ ρ

−(i+1)
min ρ−(i+1)

max

Where the first inequality comes from the definition of s(d), in Equation 3. Hence, d′1 /∈ Mi+1.
Similarly, d′2 /∈Mi+1. The same is true if only r2 executes Move(s).

This implies that, if a single robot comes closer by executing Move(s), the level of the robots
can increase by at most one, so we reach a configuration in Conf(Mi ∪ Si+1,Mi ∪ Si+1).

Then, observe that both robots cannot increase simultaneously their level because Conf(Si+1, Si) =
∅, by Lemma 3. Also, observe that r2 cannot increase its level alone because Conf(Mi+1, Si+1) = ∅.
Hence, eventually r1 enters level Si+1 and we reach configuration Conf(Si+1,Mi).

Lemma 7. From Conf(Mi,Mj), with i6=j, if a single robot is activated and executes Move(s),
then eventually we reach either a configuration in Conf(Mi,Si).

Proof. We know that C ∈ Conf(Mi,Mi−1), for some i ∈ Z (because the level of r2 is smaller than
the one of r1). Similarly to the previous lemma, a single robot increases its level and it cannot be
r1 because Conf(Si+1,Mi−1) = ∅. Hence, eventually r2 enters level Si and we reach configuration
Conf(Mi, Si) ⊂ Conf(Mi,Si).

When both robots are activated. The nine following Lemmas consider all the possible cases,
when both robots are activated, depending on the level of each robot. Lemma 8-12 consider the
cases where both robots are in M∗, depending on which move the robots are executing (both
Move(s) – Lemma 8-9 –, both Move(Other) – Lemma 10 – or only one Move(s) – Lemma 11-12),
Lemma 13-15 consider the case where one robot is in S∗ (depending on whether the moving robot
executes Move(Other) – Lemma 13 – or Move(s) – Lemma 14-15) and Lemma 3 proves that the
remaining cases cannot occur.

Lemma 8. ∀i ∈ {0, 1}, if C ∈ Conf(Mi,Mi) and both robots execute Move(s), then eventually
we reach a configuration in Conf(Si+1,Mi). The same is true if a single robot is activated.

Proof. Consider C ∈ Conf(Mi,Mi), with i ∈ Z, and d1 and d2 the distances seen by r1 and r2
respectively in C. We have d1 ≥ ρ−iminρ

−(i+1)
max . After both robots execute Move(s), let d′1 and d′2 the

distances seen by r1 and r2 respectively. So:

d′1 = d1 − s(d1)− s(d2) ≥ d1 − 2d1
1− ρ−1min

2
= d1ρ

−1
min ≥ ρ

−(i+1)
min ρ−(i+1)

max

Where the first inequality comes from the definition of s(d), in Equation 3, and from the fact that
d1 < d2 (the same inequality is true if a single robot is activated). Hence, d′1 /∈ Mi+1. Similarly,
d′2 /∈Mi+1. But since robots come closer, robots cannot remain in Mi infinitely and eventually one
robot reaches Si+1 (both cannot reach Si+1 simultaneously because Conf(Si+1, Si+1) = ∅). Since
r1 have a level greater than r2, eventually we must reach Conf(Si+1,Mi) ⊂ Conf(Si+1,Mi).



Lemma 9. ∀i ∈ {0, 1}, if C ∈ Conf(Mi+1,Mi), and both robots execute Move(s), then eventually
we reach a configuration in Conf(Mi+1,Si+1). The same is true if a single robot is activated.

Proof. Consider C ∈ Conf(Mi+1,Mi), for some i ∈ Z. Using the same proof as in the previous
Lemma, we obtain that d′1 /∈ Mi+2 and d′2 /∈ Mi+1. But since robots come closer, robots cannot
remain at the same level infinitely and eventually reaches a level S. Since r1 have a level greater
than r2, and r1 cannot reach Si+2 while r2 is still in Mi (Lemma 1), eventually we must reach
Conf(Mi+1, Si+1) ⊂ Conf(Mi+1,Si+1).

Lemma 10. ∀i, j ∈ {0, 1}, if C ∈ Conf(Mi,Mj), and both robots execute Move(Other), then
after one round, the configuration is still in Conf(Mi,Mj) and the robots have reversed their
position, so they execute Move(s) in the next round.

Proof. If both robots execute Move(Other), then both robots exchange their position and the
distance between them remain the same so that the lemma follows.

Lemma 11. ∀i, j ∈ {0, 1}, if C ∈ Conf(Mi,Mj) and only r1 executes Move(s) (r2 execute
Move(Other)), then we reach a configuration in Conf(S0,M1) (and the robots have reversed their
position).

Proof. If r2 execute Move(Other) and r1 executes Move(s), then, by definition of s(d1), robot
r1 ∈ S0. Then, using Lemma 3, we know that r2 ∈M1.

Lemma 12. ∀i, j ∈ {0, 1}, if C ∈ Conf(Mi,Mj) and only r2 executes Move(s) (r1 execute
Move(Other)), then we reach a configuration in Conf(M0,S0) (and the robots have reversed their
position).

Proof. If r1 execute Move(Other) and r2 executes Move(s), then, by definition of s(d2), robot
r2 ∈ S0. Then, using Lemma 3, we know that r1 ∈M0.

Lemma 13. ∀i ∈ {0, 1}, if C ∈ Conf(Si,Mi−1) ∪ Conf(Mi,Si) and the moving robot executes
Move(Other), then the robots gather in one round.

Proof. Clearly if one robot remains idle while the other executes Move(Other), then the robots
gather.

Lemma 14. ∀i ∈ {0, 1}, if C ∈ Conf(Si,Mi−1) and r2 executes Move(s), then eventually we reach
either a configuration in Conf(Mi,Mi−1) or a configuration in Conf(Mi,Si).

Proof. If r1 remains idle and r2 comes closer by executing Move(s), then one or both robots
eventually increase their levels. By definition of s(d2) (using the same proof as in Lemma 8), r2
cannot go from level Mi−1 to level Mi directly. Hence, either r2 enters level Si (in this case, r1
simultaneously enters Mi), and we reach configuration Conf(Mi,Si), or only r1 enters Mi and
we reach configuration Conf(Mi,Mi−1).

Lemma 15. ∀i ∈ {0, 1}, if C ∈ Conf(Mi,Si) and r1 executes Move(s), then eventually we reach
either a configuration in Conf(Mi,Mi) or a configuration in Conf(Si+1,Mi).

Proof. If r2 remains idle and r1 comes closer by executing Move(s), then one or both robots
eventually increase their levels. By definition of s(d1) (using the same proof as in Lemma 8), r1
cannot go from level Mi to level Mi+1 directly. Hence, either r1 enters level Si+1 (in this case,
r2 simultaneously enters Mi), and we reach configuration Conf(Si+1,Mi), or only r2 enters Mi

and we reach configuration Conf(Mi,Mi).



Main Proof of Correctness. We can characterize a configuration by only looking at where
is located r1 (right or left), whether r2 has the same orientation has r1, and the level of each

robot (in S0, S1, M0 or M1). For simplicity, we use the notation X Y to denote the
configuration where the left robot is in level X ∈ {S0,S1,M0,M1} and the right robot has level
Y . We add a line over the level of r1 and a line under the level of r2. Finally, if both robots have
different orientations, we add a minus in front of r2’s level. To help the reader, we also draw the
destination of each robot in the configuration.

For instance a configuration C ∈
M1 S0 is a configuration where r1 is located on the

right, r2 on the left (they have the same orientation of the line), r1 is in S0 and r2 in M1. Recall
that, since r1 has a level greater than r2, if r1 is in Si for some i ∈ Z (i ≡ 0 mod 2), then r2 must
be in Mi−1. Since C ∈ Conf(S0,M1) and r2 executes Move(s), by Lemma 14, we eventually reach

either a configuration in
M1 M0 or in

S0 M0 (the same is true if a single robot
is activated, since r1 remains idle).

As a second example, C ∈
M0

−M1

is a configuration where r1 is on the left and r2
sees itself on the left as well. Again, if r1 is in Mi for some i ∈ Z (i ≡ 0 mod 2), then r2 is in

Mi−1. If both robots are activated, by Lemma 12 the next configuration is in
−S0 M0

−S0 M0 . If a single robot is activated, either the robots gather in one round (if r1 is

activated) or we can reach configuration
M0

−S0
(if only r2 is activated).

The information of where r1 is located (indicated by an over-line) does not impact the move-
ment of the robots, however, it limits the possibilities for the reached configuration. For instance
if both robots are in Mi and make a Move(s) then we are sure that r1 is the first to reach Si+1.

Using these notations, we can construct the a graph depicting the transitions between the
different sets of configurations. Each arc is proved by one of the previous Lemmas, whose number
is indicated on the arc. It is easy to see that if robots agree, resp. do not agree, on the orientation
of the line, then the same is true in any reached set of configurations. This implies that we can
split the graph in two, one that consider only sets of configuration where the robots agree on the
orientation of the line, Figure 2, and one when they do not, Figure 3. The dashed arcs correspond
to the transitions that can occur when a single robot is activated. Of course, when a single robot

is dictated to move (for instance in
M1 S0 ) then activating only this robot results in the

same configuration. But with a fair scheduler, the other robot is eventually activated. Also, in this
case, activating only the moving robot is similar to activating both robot, so when this happen
we only draw the plain arc. Finally, for clarity, we do do represent the dashed arcs corresponding
to the case where a single robot is activated and executes Move(Other), as robots gather in one
round in this case.

Given the previous lemmas that proves the possible transitions between set of configuration,
the graphs have been generated by an algorithm (available online [2]). It is easy to check that
both graphs are in fact Directed Acyclic Graphs (DAG) with a single sink, the gathered configu-
ration. This means that regardless of the starting configuration, we eventually reach the gathered
configuration.

Theorem 2. When ρ∈[ρmin,ρmax], Algorithm 2 solves the rendezvous in SSYNC.

Proof. Using Lemma 4, we know that eventually robots are and remains at distance at most δ
so that we can consider that the movements are rigid. From there, we showed in Figures 2 and
Figure 3 that regardless of the configuration and regardless of the orientation of the robots, we
eventually reach the gathered configuration.
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Fig. 2. The DAG of configurations and the transitions between them, when the robots have the same
orientation. The number on the edges are the numbers of the Lemmas proving the transition
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Fig. 3. The DAG of configurations and the transitions between them, when the robots have the opposite
orientations. The number on the edges are the numbers of the Lemmas proving the transition.



5 Concluding Remarks

We introduced the possibility to use different unit distances to break symmetries for networks
consisting on deterministic oblivious robots that operate in the Look-Compute-Move model. As
a case study, we considered the rendezvous problem, that is notoriously impossible to solve in
the semi-synchronous execution model, when robots share the same notion of unit distance. By
contrast, we proved that when robots have different unit distances (and are unaware of the actual
ratio between the unit distances), rendezvous becomes possible in the same model.

A natural open question is to consider the completely asynchronous model (ASYNC). Is it
possible to solve rendezvous in ASYNC without any additional capability (no access to a random-
ness source, nor persistent memory) or constraints (compasses may be fully symmetric) other that
the difference in unit distance? Observe that even if ρ = 2, the problem seems difficult, as our
semi-synchronous algorithm for this special case does not solve rendezvous in ASYNC (one can
construct an infinite execution where robots observe one another alternatively as they are moving,
and thus never actually reach the other robot destination).
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