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ARTICLE INFO ABSTRACT

The paper investigates the existence of interfacial (Stoneley-type) acoustic waves localised at the internal
boundary between two semi-infinite superlattices which are adjoined with each other to form one-dimensional
phononic bicrystal. Each superlattice is a periodic sequence of perfectly bonded homogeneous and/or func-
tionally graded layers of general anisotropy. Given any asymmetric arrangement of unit cells (periods) of su-
perlattices, it is found that the maximum number of interfacial waves, which can emerge at a fixed tangential
wavenumber for the frequency varying within a stopband, is three for the lowest stopband and six for any upper
stopband. Moreover, we show that this number of three or six waves in the lowest or upper stopband, is actually
the maximum for the number of waves occurring per stopband in a given bicrystal plus their number in the
“complementary” bicrystal, which is obtained by swapping upper and lower superlattices of the initial one (so
that both bicrystals have the same band structure). An example is provided demonstrating attainability of this
upper bound, i.e. the existence of six interfacial waves in a stopband. The results obtained under no assumptions
regarding the material anisotropy are also specified to the case of monoclinic symmetry leading to acoustic mode
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decoupling.

1. Introduction

Surface and interfacial acoustic wave solutions normally come
about within such ranges of frequency w and wave vector k which
preclude existence of the propagating partial modes, so that the
boundary condition can be satisfied by a wave packet that wholly
consists of modes decaying into the depth of surrounding media and
thus is localised near the guiding boundary. Localised waves in
homogeneous halfspaces, e.g. the Rayleigh and Stoneley waves, are
non-dispersive and typically exist in the subsonic velocity interval ex-
tending from zero up to a certain threshold velocity [1]. By contrast,
localised waves in periodic halfspaces are dispersive and may exist
inside the infinite sequence of subdomains of the (w, k) space called
forbidden bands or stopbands [2-4]. Thus the realm of localised waves
occurring in periodic media is certainly much more diverse than that in
homogeneous materials. Much work has been done in this direction.
The largest amount of results has been obtained on surface [5-16] and
interfacial [17-21] waves in one-dimensionally periodic structures, or
superlattices, in which case analytical developments can be advanced
further and the numerical calculations are not that costly as compared
to the structures with two- and three-dimensional periodicity. At the
same time, no general and rigorous knowledge on the existence of
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localised waves in anisotropic superlattices can be gained by way of
explicit derivations, which do not provide a closed-form dependence on
the involved parameters even in the simplest case of isotropic materials;
neither can it be extrapolated from numerical results, which are cer-
tainly incapable of embracing infinite variety of possible input data. In
this regard, it is clear that an appropriate approach to the question of
existence of localised waves should capture the essence of the problem
without a need to find these wave solutions themselves.

An efficient approach to surface and interfacial waves in homo-
geneous anisotropic half-spaces has been developed and applied in the
seminal papers [22-29]. It is based on the Stroh formalism and the
concept of surface impedance matrix, whose powerful properties follow
from its link to energetic quantities. Recently we have applied an ex-
tension of this approach coupled with the Floquet-Bloch concepts to the
problem of existence of surface waves in elastic and piezoelectric su-
perlattices (1D phononic crystals) of general anisotropy [30-33]. In
particular, the analysis reveals that the maximum possible number of
surface waves per stopband essentially depends on whether the unit cell
of a superlattice is asymmetric or symmetric relative to its midplane
(note that the symmetry in this context concerns the ordering of con-
stituent layers and has nothing to do with their crystallographic sym-
metry which may be as low as triclinic). Existence of interfacial waves
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in 1D phononic bicrystals formed by two superlattices with a symmetric
unit cell each was studied in [34].

The present paper is concerned with the most general case of in-
terfacial waves in 1D phononic bicrystals, i.e. of the waves localised at
the interface between two perfectly bonded half-infinite superlattices.
Each superlattice is periodically layered, possibly functionally graded,
medium of arbitrary elastic anisotropy with an arbitrary piecewise
constant or continuous variation of material properties within the unit
cell (period). It appears that asymmetry of unit cells much ramifies
possible scenarios of the occurrence of interfacial waves and eventually
augments their possible maximum number allowed at fixed tangential
wavenumber per stopband frequency range. It is found that a bicrystal
with any asymmetric unit cells admits up to three interfacial waves in
the lowest and up to six waves in any upper stopband. This is in contrast
to at most one and three waves which may exist in the lowest and upper
stopbands of a bicrystal with both halves having a symmetric unit cell
[34]. Moreover, the aforementioned bound, which is three or six waves
per stopband, is shown to actually be the maximum for the total
number of waves occurring per the same stopband in a given bicrystal
and in the “complementary” bicrystal, which is obtained by swapping
upper and lower superlattices of the initial one. By way of appropriate
examples, it is confirmed that the upper bound of the number of in-
terfacial waves per stopband is attainable, i.e., that the number of
waves is less or equal (not just less) than the established bound and so
this upper bound is a maximum in the formal meaning of it.

The paper has the following structure. The properties of the transfer
and impedance matrices are outlined in Section 2. The existence and
number of interfacial waves is analysed in Section 3. Numerical ex-
amples are presented in Section 4 and the results obtained are sum-
marized in Section 5.

2. Transfer and impedance matrices
2.1. Transfer matrix

Consider a solid multilayered medium whose density p and stiffness
tensor € = (cj) vary along the stratification axis Y normal to the per-
fectly bonded layer interfaces. The layers may be homogeneous and/or
functionally graded. Assume a displacement wave of the form

u(r, ) = a(y)el=en, (€Y

where k and w are real wave number and frequency, x = m-r and
y = n-r with m and n being unit vectors parallel and orthogonal to the
plane of interfaces, respectively. The Stroh formalism [35,36] casts the
governing equations of elastodynamics in the form of a system

ﬁ=i1§1§

dy ()]
with the vector of unknowns
EO) = @ 1)), 3)

which incorporates amplitudes of the displacement and of the normal
traction n-o = —il(y)e!®~9, The 6 x 6 matrix of coefficients in (2) is

N=-— k (nn)(nm) (nn)!
T R [mr)(n)t(im) — (mm)] + p?T k(mn)(nn) [ @

where (ab)j, = cyya;b, witha, b=n, m and T is the 3 x 3 unit matrix.
The matrix N has a Hamiltonian structure [37], that is,
N =1TN'T, Q)
where T is a matrix with zero diagonal and unit off-diagonal 3 x 3
blocks and the subscript ” denotes transposition. We shall disregard
dissipation and thus take N to be real.

Solution of Eq. (2) with the initial value £(y,) can be expressed as
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§op) = M(Vliyo)g(yol (6)

where M(y,, y,) is the transfer matrix, as it is commonly called in
physics. If the medium within [y,, y,] is a sequence of j=1, ..,n

homogeneous layers, each characterised by matrix N (4) with con-
stant g, ¢¥ and by thickness h;, then

M(, ) = M. NLM, with M; = exp(il; N, %)

If p and € vary continuously with ye€[y,, y,], then ﬂ(yl, ¥, is evaluated
by the multiplicative integral of iN(y)[38]. In either case, since N is
Hamiltonian (5) and real, the transfer matrix satisfies the identity
[38,39]

M= TMT, )
where the symbol " denotes the Hermitian conjugation.

When a stratified elastic medium is a periodic superlattice, its wave
properties are largely characterised by the transfer matrix
I\A/I(yo + H,y,) = M through a unit cell of thickness (period) H and,
more specifically, by its eigenvalues y, and eigenvectors ¢, a = 1, ...,6,
which depend on w and k (¢, also depend on ).

By virtue of (8), the eigenvalues y, occur either as complex con-
jugate pairs y, =y, , of unit absolute value |y |=1 or as pairs
% = 1/7,,, with [y, | # 1 (here and below asterisk implies complex
conjugation). These two options, related to each pair @ and a + 3
(¢ =1, 2, 3) independently, divide the plane (w, k) into alternating
domains called, respectively, passbands and stopbands. Their physical
meaning is due to the fact that any initial value for Eq. (2) can be ex-
panded as a linear superposition of eigenvectors ¢, so that the wave
solution £ (y) of (2) considered after passing m unit cells represents the
same superposition of eigenvectors but with each a -th coefficient
multiplied by y;". Aiming at the localised waves, we will be interested in
the spectral overlaps of three partial stopbands « = 1, 2, 3, i.e., in the
“full” stopbands where |y,| # 1V a. For brevity, we will refer to them
as simply “stopbands” (omitting “full”).

Let us fix the numbering of y, in stopbands so that
[l <1<t a=1,2,3, 9)

where y, = 1/}, ,. In view of Eq. (8), the eigenvectors ¢, inside stop-
bands satisfy the orthogonality relation

{;’f;ﬁ = 5|Ot*ﬁ|,3’ a, ﬁ = 1, ...,6, (10)

where & g is the Kronecker symbol and the unit normalisation at o« = 8
is imposed. The same may be written in the form

ATA ATA A AITAT AITAL A

LA+AL=0, L A+AL-=0,

ATTA ATTA A

LA+AL=1I, 1)
where

A=(AL AL Ay, L=, Ly, Ly,

A'= (A4 A5, Ag), L' = (L, Ls, Lo) (12)

are 3 X 3 matrices whose columns A, and L, are the first three and
second three components of ¢, = (A, L.)T, respectively.

It is at this stage that the case of superlattices with a symmetric unit
cell studied in [34] diverges from the present general consideration. By
symmetric we mean the unit cells whose arrangement is invariant re-
lative to the midplane. According to [34], the general identity (8) ap-
plied to the transfer matrix through a symmetric unit cell splits into two
independent identities M = TM'T and M ' = M". This modification
does not affect the eigenvalues of M and hence the band structure, but
it provides an additional condition on the eigenvectors, namely, that
they can be chosen within the full stopbands as ¢, = 7, , which casts
relations (10) and (11) in a more determinative form. The latter re-
strains a scope of options regarding the existence and number of loca-
lised waves in superlattices with a symmetric unit cell.
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Correspondingly, a general case of superlattices with asymmetric unit
cells considered in the present paper permits a larger variety of possible
scenarios for localised waves.

2.2. Impedance matrices

Introduce the impedance matrices Z and 2’ by means of equivalent
definitions

L, = —iZA,, a=1,2,3,

L, =iZA, a=4,5,6. 13)
or

7Z=ital, 2 =-it’A"". (14)

We will be interested in the properties of impedances for w and k lying
in stopbands. This is where Egs. (10), (11) hold true and their use to-
gether with (14) yields Z = 2 andZ = irT, i.e. the impedance matrices
in stopbands are Hermitian and hence possess real eigenvalues. Note
that Z and Z are generally not straightforwardly interrelated, contrary
to the case of a symmetric unit cell where Z' = 7Z'. It has been shown
[30] that the matrices 7 and Z are positive definite at w = 0 and that
their frequency derivatives evaluated in stopbands are negative defi-
nite. The same is certainly true for the matrix

PPN / PN

G=Z+Z7Z =i(AA" ), (15)

where the last equality follows from Eqgs. (11), 3. In consequence, the
eigenvalues of Z, 7' and G are positive at w = 0 and they decrease with
increasing w at fixed k.

An essential feature of the matrix G is that none of its eigenvalues
can vanish inside stopbands, since

. 3
¢'=—iAA ==Y A ® AL
a=1 (16)

cannot diverge in there (here ® denotes dyadic product). The latter fact
is not that obvious because two of the above dyads in G ' do diverge at
the values of (w, k) which yield pairwise degeneracy of eigenvalues of
the matrix M and render it non-semisimple (non-diagonalisable).
However, it turns out that such discontinuities of the separate dyads in
G ' cancel each other and so G is always finite. This observation was
made by using the perturbation theory in [30]. Moreover, in fact a more
general formulation of the above property reads that a sum of dyads
composed like G from the upper halves of the eigenvectors of M is
always finite for a transfer matrix M of any size n X n admitting ei-
genvalue degeneracy of any multiplicity. The corresponding proof can
be based on expressing components of a sum of dyads in question via
the eigendecompostions of matrices M", wherem =0, 1, ..,n — 1.

The fact that the eigenvalues of G cannot vanish along with their
property to decrease with w enables further important conclusions,
namely, that the eigenvalues G are positive throughout the lowest
stopband and can have at most one pole each in any upper stopband.
Hence at most three poles can be shared by six eigenvalues of Z, 7 in
an upper stopband. By definition (14), a pole of eigenvalue of the im-
pedance matrix signifies a surface-wave solution for a half-infinite su-
perlattice with mechanically clamped surface (see [30] for more de-
tails).

Let us summarize the main of established properties which will be
used below for the analysis of interfacial waves:

eigenvalues of Zand Z in stopbands are
decreasing functions of w, positive at w = 0; a7
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Fig. 1. Example of direct (a) and complementary (b) bicrystals composed of
two-layer half-infinite superlattices J =1 (layers 1 and 2) and J = 2 (layers 3
and 4).

eigenvalues of G in stopbands are non — zero decreasing
functions of w, which are positive in the lowest stopband and
admit at most one pole each in an upper stopbands at fixed k. (18)

3. Interfacial waves
3.1. Unrestricted anisotropy

3.1.1. Dispersion equation

Consider a 1D bicrystal consisting of two perfectly bonded half-in-
finite periodic superlattices. Each, or at least one of them, is supposed to
have an asymmetric unit cell (otherwise see [34]). Let the bonding
interface be the plane y = 0 and the superlattices occupying the half-
spaces y > 0 and y < 0 be labeled by indices J =1 and J = 2, respec-
tively. Alongside a given bicrystal, we will consider its counterpart
consisting of the superlattice J = 2 at y > 0 and of the superlattice J = 1
at y < 0. These two mutually swapped structures are referred to in the
following as “direct” and “complementary” bicrystals, respectively (see
an example in Fig. 1).

According to Eq. (6), spatial evolution of the displacement-traction
field at the successive layer interfaces, which are counted away from
the plane y = 0 into the depths of adjoined superlattices with the per-
iods Hi(y > 0) and H, (y <0), is defined by the transfer matrices

MY (i, 0= MY and M (-H,, 0) = M® (0, Hy= [N (1, 0)]!
=M?" in the direct bicrystal and by M® and M~ in the com-

plementary one. Recall that a matrix and its inverse have the same
eigenvectors and mutually inverse sets of eigenvalues, hence the direct
and complementary bicrystals imply identically the same partitioning
of the (w, k) -plane into the pass bands and stopbands defined with
respect to the eigenvalue spectra of matrices M and M®. We are
interested in the interfacial acoustic waves (IAWs) localised at the in-
terface y = 0 and vanishing at the infinite distance y — +o0 . Such
waves should typically exist in the overlaps of the “full” stopbands of
both constituent superlattices J =1 and J = 2, i.e. in the ranges of
(w, k) values where none of the eigenvalues yofl) and ycfz) of M" and M®
has unit absolute value. So-defined overlaps will be called the stop-
bands of a bicrystal and denoted by 0 < w < w, (the lowest stopband)

and w; < w < w, (upper stopbands), where the lower and upper band
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edges w; and w, are functions of k.

With regard for the numbering convention (9) applied to the ei-
genvalues chJ ) of MY (J = 1, 2), the IAW solutions £ (y) of Eq. (2) in
the superlattices J = 1at y > 0 and J = 2 at y < 0 of the direct bicrystal
should be generated by the initial values &M (0) = 22:1 ¢V and
20 =3°_ ,da¢@ at y = 0. The continuity of the displacement and
traction requires that

2 4
Y =3 dug®,
a=1 a=3 (19)

or, equivalently,

729u = -2 %v, (20)

U=,
~ Ar(2

where U = Z‘;’(:l c,UY , U = Ei=4 d,UY, and 720 2 @ are the im-

pedance matrices defined by Eq. (13) for the superlattices J = 1 and 2,

respectively. Hence, the dispersion equation for IAWs in the direct bi-

crystal is

A~ . ~ o) ~1(2)

detZg =0 with Zz=Z "+ Z , 21)
where the subscript B means “bicrystal” (instead of the notation Z; with
I for “interface” as used in [34]). Swapping labels J =1 and 2 in (21)
yields the dispersion equation for IAWs in the complementary bicrystal,

) ~r(1)

detZy =0 with Zz =27+ 2 (22)

It is evident that (21) and (22) are quite different equations and so the
IAWs in the same stopbands of the direct and complementary bicrystals
do not at all coincide; for instance, a given stopband may well admit an
IAW for the direct bicrystal and does not admit it for the com-
plementary one, or vice versa. However, we will demonstrate that the
IAW existence in these two bicrystal structures is particularly corre-
lated. With this in mind, introduce the matrix

632234’2;2614’62
A~ ~ PN
with 6, =2"+2", 7=1,2 23)

For the future use, note the identity

3
G; = Z (Aaesel + 1. el e
a=1 24

3
= Z gWEDEDT 4 gD DD,
a=1
where 1., e, and 1/, €. are the eigenvalues and eigenvectors of Z; and

2/3’ respectively; go(f ) and £ are the eigenvalues and eigenvectors of G
(a=1,2,3,J=1,2).

3.1.2. IAWs in the lowest stopband

As follows from (17) and the definition of 23 and 2;;, each of their
eigenvalues is positive at w = 0, decrease with growing » and has no
poles within the lowest stopband 0 < w < w,,. Since their zeros are the
solutions of the dispersion Egs. (21) and (22), it follows that the direct
and complementary bicrystals admit the existence of at most three
IAWs each in the lowest stopband at any fixed k. However, a stronger
statement can be proved if we consider these two bicrystal structures
simultaneously and invoke the matrix @B. By (18) and (23), @B is po-
sitive definite throughout the lowest stopband and, in particular, at its
upper edge w,. Hence no more than three out of six eigenvalues 1., 1,
of 23 and 2;; can be negative at w,. Indeed, assume that there are four
negative and only two positive ones, say, Ai,, 4{, < 0 and 43, 1; > 0.
Then multiplying the first equality in (24) from the right and left sides
by the vector product e; X e; = p and its complex conjugate p* yields

2

A ’ ’
P'Gsp = ), (alple + 2;Iple]) < 0 atw,
a=1 (25)
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which contradicts positive definiteness of Gg. Thus, at any fixed k and
in the lowest stopband, the number of zeros of eigenvalues of 23 and i;g,
i.e. the total number of solutions of Egs. (21) and (22), cannot exceed
three. We can therefore conclude that

given a fixed k, at most three IAWSs can exist in the lowest
stopband for the direct and complementary bicrystals in total. (26)

It is clear that this result is in no conflict with the possibility of up to
three IAWs in the direct bicrystal or in the complementary one; at the
same time, (26) is a stronger statement in the sense that it additionally
restricts the total number of IAWs in these structures. For instance, it
tells us that if two IAWs occur in the lowest stopband for a given bi-
crystal then at most one IAWs can exist within this band for its swapped
counterpart and vice versa. Note to this end that only one IAW at fixed k
is allowed in the lowest stopband of a bicrystal with symmetric unit
cells of both constituent superlattices [34].

3.1.3. IAWs in upper stopbands

By (17), any eigenvalue of matrices Zz and 7 may have at most two
zeros (one before and one after the pole) in an upper stopband
w < w < wy at fixed k, so that each of Egs. (21) and (22) may have at
most six solutions, i.e. a direct and complementary bicrystals admit at
most six IAWs each. Note that this is twice the maximum number of
IAWs which are possible for a bicrystal with symmetric unit cells [34].
Now, like in the case of the lowest stopband, we will show that the
existence of IAWs in the direct and complementary bicrystals is corre-
lated in the sense that the maximum number of six IAWs at fixed k per
upper stopband in each bicrystal is also the supremum for the aggregate
number of IAWs for both bicrystals within a given stopband.

If none of six eigenvalues of Zz and 2;; has a pole in a stopband at
given k, i.e. they all are monotone in w , then the total number of ei-
genvalue zeros for Z; and 2;; cannot exceed six. Let us pose a question
whether an occurrence of eigenvalue pole(s) for 23 and/or 2;3 (and
hence for G, and/or G,) may augment this upper bound, i.e. may permit
Egs. (21) and (22) to have more than six roots in total and so more than
six IAWs to be shared by the direct and supplementary bicrystals in the
same upper stopband and fixed k.

Suppose first that there is one eigenvalue pole inside a given stop-
band. In this case, in order for the number of zeros of eigenvalues 1., 1.,
(x=1,2,3)of 23 and 2/3 to exceed six, all six of them must be positive
at the lower stopband edge w; and negative at the upper band edge w,,
so that both 23 and 2;3 and hence @B must be positive definite at w; and
negative definite at w,. Under this condition, manipulating the second
equality in (24) similarly to (25) demonstrates that at least three among
six eigenvalues go(f ) of @, (J =1, 2) must be positive at w; and at least
three be negative at w,. At the same time, by (18), none of them can
vanish in a stopband, so the eigenvalue with a pole must be negative at
w, and positive at w,, whereas the continuous ones must be either all
positive or all negative throughout the given stopband. Hence, given
one eigenvalue pole, the above requirement of at least three positive
go(" ) at a; implies that at least four goE] ) must be positive at w,, while at
least three negative go(f ) at w, entail at least four go(f ) are negative at w;.
For example, let the latter four ones be go((] Ja=1,2;J=1,2. Then
multiplying the second equality in (24) from the right and left sides by
the vectors t{V x t@ = q and q* yields

2

qGsa = ), @gtPP +gP1gtPR) <0 atw,

a=1 @7
which contradicts positive definiteness of @B at w;. Similarly, occur-
rence of at least four positive go(f ) at w, rules out negative negativeness
Gy. Thus the occasion of a single eigenvalue pole of Z; and 2;3 does not
raise the upper bound of six for the possible number of IAWs per an
upper stopband and fixed k in direct and supplementary bicrystals in
total.
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Next let us assume that two eigenvalue poles occur in a given

stopband. Now the questioned possibility of more than six zeros of ei-
~ ~l

genvalues 1,, 4, of Zz and Z necessitates one of the following options:

(i) all six A, 4, (@ =1, 2, 3) are positive at w;, and at most one is po-
sitive at w,, ;

(ii) one of 14, A, is negative at w; and all six are negative at w,, so that
Gy cannot be negative definite at w; and it is such at w,,.

At the same time, by assumption, there are two discontinuous and
four monotone branches of eigenvalues go(f ) (w) of of @J J=1,2),i.e. at
least two of go({] ) are negative at a; and at least two of g OEJ ) are positive at
w,. Assume the case (i), so that GB is positive definite at w; and it cannot
have this property at w,. Then, by analogy with (27), there must be no
less than either four or three positive eigenvalues g D(f ) at w; which entail
either six or five positive g¢) at w,, respectively. The former implies
positive definiteness of (A}B at w, and hence contradicts the case (i). The
latter means that, at w,, one positive eigenvalue of 23 and 2;3, say A,
coexists with one negative eigenvalue of G; or G, say g. Multiplying
two equalities in (24) from the right and left sides by the vectors
t{V x e; = s and s* leads to incompatible inequalities

3 3
Z AolsTe 2 + z Als’el? <0,
a=2 a=1 (28)

~
s*Ggs

3 3

sGps = Y. gMISEDOP + ) g@ISEDR > 0.

a=2 a=1 (29)
Thus option (i) is inconsistent and should be rejected. In turn, option
(ii) implies that G is negative definite at w, and hence, in the presence
of two poles, four or three eigenvalues of @1 and 62 are negative at w,
and six or five ones are negative at w;. By analogous reasoning, option
(ii) can also be ruled out.

Considerations for the cases of more than two (up to six) eigenvalue
poles in a stopband are further ramified but similar in the essence. It is
straightforward to verify that none of these occasions can yield more
than six eigenvalue zeros for Z; and Z. Thus we can conclude that

given a fixed k, at most six IAWSs can exist in an upper
stopband for the direct and complementary bicrystals in total. (30)

3.2. Monoclinic symmetry

All the preceding considerations hold true under no assumptions
regarding the crystallographic symmetry and orientation of the in-
volved materials. Now we consider the case where all constituent layers
of a bicrystal are of at least monoclinic symmetry and their stiffness
tensors possess a common symmetry plane orthogonal to the layer in-
terfaces. The wave Eq. (2) in the sagittal plane XY coinciding with the
symmetry plane splits into two equations for the modes of shear hor-
isontal and sagittal polarizations (SH- and S-modes, respectively). So do
the transfer and impedance matrices. Correspondingly, the interfacial
waves consisting of SH- and of S-modes are uncoupled from each other
and may therefore be considered separately. Note that the stopbands
where these waves occur are also mutually independent.

3.2.1. SH-IAWs

The dispersion equations defining SH-IAWs within stopbands in the
direct and complementary bicrystals, respectively, are the uncoupled
zz-components of Egs. (21) and (22), namely,

Zpe =0 with Zg = Z0 + 7/, (31)
Zhp =0 with Z . = Z9 + Z,©. (32)

The SH impedances Z¢ and Z,\"’ (J = 1, 2) share the general properties
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of impedances described in Section 2.1 and also fulfil some particular
features following explicitly due to the scalar format. In summary,
Z$) (w) and 74 (w) taken at k fixed and w varying in stopbands are real
decreasing functions, positive at @ = 0; in the lowest stopband
0 < w < w,, they are continuous and one of ZSEQ (w) and Zs’f(',’ ) (w) related
to the same superlattice (same J) stays positive while the other has one
zero; in an upper stopband w; < w < w,, the functions Zg} (w) and
7 (w) with the same J have one zero and one pole, which either both
occur for one or the other function or occur by one for different func-
tions. Besides, they satisfy

Zg) + ZZ’Z(J) =0 atw = w(#0) and
atw=w, (J=1or?2). (33)

In particular, bearing in mind that the SH impedance decrease with w, it
follows from (33) that the impedance value at the lower edge wj is
greater (respectively, less) than its value at the upper edge w, at the
same k if this impedance is continuous (respectively, has a pole) within
this stopband. For more details, see [40].

Consider SH-IAWs in the lowest stopband 0 < w < w,,. It follows
from the above that each of the aggregate functions Zz ., and Zg,, on
the left-hand sides (L.h.s.) of Egs. (31) and (32) may have one and only
one zero, i.e., no more than one SH-IAW can exist in the lowest stop-
band for any given (direct) bicrystal and the same is true for the
complementary bicrystal. This being stated, an additional argument
rules out the possibility of these SH-IAWSs to emerge by one for both
direct and complementary bicrystals. Indeed, the latter would imply
that both Zz ,; < 0 and Zg,, < 0 at w,, i.e.

Zog+ Zhoy =20+ 2P + 2P + 22 <0
at w = w,, (34

which is impossible due to (33). Thus the above statement can be
sharpened to the form:

the lowest stopband of a bicrystal admits at most
one SH — IAW per fixed k which occurs alternatively

in either direct or complementary bicrystal.
(35)

Consider SH-IAWs in an upper stopband w; < w < w, (k being
fixed). Note that the Lh.s. function of any one of Egs. (31) and (32), say
Zp () in (31), has two zeros either if Z ,, has one pole and is positive
at w; and negative at w, or if Zs ;,, has two poles, is of the same sign at
both band edges and its value at wj is less than at w,,. In the former case,
by (33), the Lh.s. function Z ., (w) in Eq. (32) is negative at w; and
positive at w,, hence, being a decreasing function, it must have a pole
but no zeros. In the latter case, the function Z; ,, () is continuous and,
by (33 ), is sign-definite throughout the stopband. Thus in any case if
one of Egs. (31) has two solutions, then the other has none. Thus we
arrive at the following conclusion:

given a fixed k, at most two SH — IAWs can exist in an upper
stopband for the direct and complementary bicrystals in total. (36)

3.2.2. S-IAWs
The dispersion equations defining S-IAWs have the same form as
Egs. (21) and (22) but applied to the S-impedances which are the 2 x 2

upper diagonal blocks of the 3 x 3 impedances 72" and 7' U). The fact
that S-impedances are matrices, not scalars like SH-ones, does not allow
the conclusions as detailed as in the SH case. Adapting the considera-
tions presented in Section 3.1 to the case of 2 X 2 matrices leads to the

following statements:

given a fixed k, at most two S — IAWSs can exist in the lowest stop
band for the direct and complementary bicrystals in total;

37
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given a fixed k, at most four S — IAWSs can exist in an upper stop
band for the direct and complementary bicrystals in total.

(38)

4. Maximum number of IAWs: Examples

It was found above that the number of IAWSs per stopband cannot be
greater than the certain quantity. The purpose of the present section is
to prove by evidence that this upper bound is really attainable (i.e., in
formal terms, that this bound is a maximum rather than supremum).
With this in mind, we present below a number of examples where the
maximum possible number of IAWs does occur in a canonical bilayered
structure involving the materials of practical use and the model ones.

Consider an infinite sequence of alternating layers of materials A
and B which all have the same thickness h except a single layer, say of
material A, with the thickness d being less than 2h. Such structure
implying a multilayered composite with a period H = 2h perturbed by
an embedded structural defect is of its own interest and it is also sui-
table for numerical modeling. The structure at hand emulates a bi-
crystal (composite superlattice) whose interface y = 0 is a fictitious
plane dividing the defect layer into two layers y e [0, ;] and
Yy € [—hy, 0] where h; + h, = d. Correspondingly, the upper halfspace
y > 0 may be seen as a superlattice with a unit cell comprising A/B/A
layers of successive thicknesses {h;, h, h — h;} , while the lower half-
space y < 0 is a superlattice with an A/B/A unit cell of thicknesses
{h — hy, h, hy}(both triplets of layer thicknesses are ordered in the po-
sitive y-direction). Referring to this structure as a direct bicrystal, we
mentally swap its two halves to arrive at its complementary counterpart
as defined in Section 3.1.1. By construction, this complementary bi-
crystal is also an infinite sequence of alternating equidistant A and B
layers with a period H = 2h perturbed by an embedded defect A layer,
whose thickness is d' = H — d. Both above models of direct and com-
plementary bicrystals are shown in Fig. 2.

Note aside that the location of the fictitious interface inside the
defect layer of a given a thickness d (i.e. splitting d into h; and h, )
makes no impact on the IAW dispersion spectrum. This is physically
evident indeed, since the wave localisation and guidance are due to the
defect layer as a whole. From the formal perspective of a bicrystal

a) b)

[

® ®

L
Fig. 2. Direct (a) and complementary (b) bicrystals composed of layers of
materials A and B (white and grey domains respectively). Dashed line shows a
fictitious interface y = 0 cutting the defect A layer. Dotted lines mark the edges
of A/B/A unit cells. Thicknesses of layers constituting the unit cells are in-
dicated at left.
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model, this follows from the fact that shifting the period edge from the
point y=0 to y= Ay changes each of the transfer matrices
19[(]) (H, 0) = IVI(J), J =1, 2, for the constitutive halves of the bicrystal
to its similar matrix

A~ A~ A A~ —1

M7 (H + ay, Ay) = MMM, (39)
where M, = M(Ay, 0) is the transfer matrix for the defect layer mate-
rial. Hence the “shifted” transfer matrices have the same eigenvalues y,

as either of I\A/I(]) (which are also similar to each other for the given
model). Their eigenvectors are obtained by multiplying all eigenvectors
{UEJ ) of MY by the same matrix I\A/IXI; this confirms the invariance of the
band structure and of the roots of the boundary Eq. (19) with respect to
Ay.

For the first set of illustrations, assume the A and B materials to be
epitaxially grown GaAs and AlAs [41] with density p = 5360 and
p = 3760 (in kg/m3) and stiffness coefficients
c11 = 118.8, ¢y = 53.8, ¢4y = 59.4 and ¢;; = 120.2, ¢y, = 57, ¢4 = 58.9 (in
GPa units), respectively [42]. Let the defect layer be of GaAs and its
thickness be d = 1.1k in the direct bicrystal and hence d’ = 0.9k in the
complementary one. All the layers are of cubic symmetry and have an
identical orientation. The plane of layer interfaces and the sagittal plane
are orthogonal to the principal (i.e., fourfold) symmetry axes, hence the
sought IAWs split into S- and SH-polarized ones.

Basing on the above material data, examples of the S-IAW and SH-
IAW dispersion branches are calculated and displayed in Figs. 3 and 4a.
Fig. 3 displays the IAW branches in the lowest SH stopband (which is
the area below the dark grey strip indicating the first SH passband) and
in one of the upper S stopbands (the blank strip). Note that the latter is
the third stopband, so that there are two more S stopbands alternating
with S passbands within the lower light grey area and that there is a
second SH stopband within the upper light grey area (the wave bran-
ches in the light grey spectral ranges in this and subsequent figures are
beyond our attention).

It is seen from Fig. 3 that the lowest SH stopband contains a single
SH-IAW branch, which comes about in the direct bicrystal whereas no
such wave exists for the complementary bicrystal. This is in accordance
with statement (35). In turn, the upper S stopband contains four S-IAW
branches, which come about pairwise in the direct and complementary
bicrystals. This observation exemplifies the occurrence of the maximum
number of four S-IAW branches per stopband which was mentioned in
(38).

Fig. 4a demonstrates two S-IAW branches in the lowest S stopband
which both occur in the direct bicrystal. By (37), two is the maximum
possible total number of S-IAWs in a lowest stopband. Correspondingly,
there must be no S-IAWs in the complementary bicrystal and the
computations confirm this fact.

Let us now consider IAWs of general polarisation and confirm that
the maximum number of such waves at k fixed, which is established by
(26) and (30) as three in the lowest stopband and six in an upper
stopband, is a possible event. This can readily be visualised via the
following model examples. The idea of the first example is to modify the
material constants so that the spectral areas occupied by the lowest SH
stopband and the lowest S stopband would be almost congruent and
their overlap would contain the SH-IAW branch along with two S-IAW
branches, which is the maximum possible number of IAWs of both
polarisations. This state of affairs is realised in the structure of “mod-
ified” GaAs and AlAs layers whose actual shear moduli c,4 = cs5 are
replaced with the values 50 and 50.9 GPa, respectively, in order to ap-
propriately adjust parameters of SH modes. Resulting overlap of SH and
S lowest stopbands which contains one SH-IAW and two S-IAW bran-
ches is presented in Fig. 4b; moreover, all these three wave branches
correspond to the direct bicrystal (hence the complementary bicrystal
does not admit any SH- and S-IAWs with frequency in the lowest
stopband). The constructed example with SH and S waves in fact suf-
fices to infer the desired conclusion on waves of general polarisation.
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Fig. 3. S-IAW and SH-IAW dispersion branches in the direct (a) and complementary (b) bicrystals composed of the GaAs and AlAs layers. Notation of the branches is
explained in the insets. Dark grey strip is the first SH passband, so that the area below is the lowest SH stopband. Blank strip is an upper (the third) S stopband.

kg = 27/H and vy = 3000 m/s.

Indeed, it is clear that a small enough disturbance of the geometrical
setup, i.e. deviation of the axes X and/or Y from their initial orientation
parallel to the principal symmetry axes, should retain the above three
dispersion branches in the lowest stopband which correspond, due to
the SH/S mode mixing, to waves of general polarisation.

As an example, Fig. 5 shows the frequencies of IAWs, which exist at
k = 1.55kp in the lowest stopband of the direct bicrystal (see Fig. 2a), as
functions of the thickness d of the defect layer. The direction of pro-
pagation X makes an angle ¢ = 3° with a fourfold symmetry axis of
“modified” GaAs and AlAs layers, while the axis Y remains parallel to
another fourfold symmetry axis. The three waves displayed in Fig. 5
originate from two S-IAWs and one SH-IAW existing at ¢ = 0°(see
Fig. 4a); correspondingly, two of them at ¢ = 3° are quasiS-IAWs
(curves 1 and 2) and one is quasiSH-IAW (curve 3), where “quasi”
implies that the polarizations are close to a pure sagittal or pure shear-
horizontal one. To be more precise, the curves 2 and 3 correspond to
quasiS-IAWs and quasiSH-IAWs, respectively, for d/h > 1.06, but then
curves 2 and 3 come very near to each other at d/h = 1.06 and the
hybridization effect swaps their polarization type, so that the curves 2
and 3 become quasiSH and quasiS, respectively, for d/h < 1.06. Si-
multaneously with that, curve 1 at d/h = 1.06 reaches the stopband
edge and thereby terminates, i.e., the corresponding quasiS IAW ceases
to exist as a localized wave. For d/h > 1.06, this S-IAW consists of two
partial quasi-S modes with a small admixture of quasi-SH mode and
their amplitudes decrease into the depth of n periods by a factor |y, ",

10.46 .
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dh

Fig. 5. Frequencies of IAWs of general polarization at k/kg = 1.55 in the bi-
crystal composed of the “modified” GaAs and AlAs layers vs. thickness d of the
defect layer. The propagation direction X makes an angle of 3° with the direc-
tion [100] in GaAs and AlAs layers. Curve 1 is the branch of quasiS-IAWs, curves
2 and 3 are the branch of quasiS- and quasiSH-IAWs, respectively, atd/h > 1.06
and other way around at d/h < 1.06. The horizontal dot line shows the edge
frequency of the lowest stopband.

1.4 1.45 1.5 1.65 1.6

Wig

14 1.45 15 1.55 1.6

kg

Fig. 4. S-TAW and SH-IAW within the lowest stopbands for the bicrystal composed of the “true” GaAs and AlAs layers (a) and for the bicrystal composed of the
“modified” GaAs and AlAs layers (b). The blank area is exactly the S lowest stopband, whereas the SH lowest stopband extends beyond the range of (a) and lies below

the dot-dashed line in (b).
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Fig. 6. Decay factors ly;| = ly,| and ly;|— of the quasiS and quasiSH partial

modes of the quasiS-IAW corresponding to curve 1 in Fig. 5.

where y,, @ = 1, 2, 3, is the triplet of eigenvalues|y,| < 1 of either of the
transfer matrices MY of the half-infinite superlattices J = 1, 2 forming
the given bicrystal (see a discussion around Eq. (39)). The evolution of
the partial decay factors |y,| = || of the partial quasiS modes and || of
the quasiSH partial mode of the given quasiS-IAW with variation of the
defect layer thickness d/h is shown in Fig. 6 (identity |y | = |p,| holds
true owing to the crystallographic symmetry of layers). It is seen that
[n| = |p,| tends to unity at d/h — 1.06, which is in accordance with the
behaviour of curve 1 in Fig. 5.

A similar idea of modelling a nearly congruent pair of upper S and
SH stopbands, each with a maximum possible number (three) of mu-
tually decoupled S-IAWs and SH-IAWs occurring in the direct and
complementary bicrystals, allows us to exemplify the occurrence of the
maximum number of six IAWSs of general polarization, which arise as a
result of a slight change of the initially symmetric propagation geo-
metry. This goal may be achieved by taking the shear moduli ¢4y = cs5 of
“modified” GaAs and AlAs to be equal to 53.2 and 50.9 GPa, that leads to
almost coinciding pair of upper S and SH stopbands, whose overlap
contains two SH-IAW and four S-IAW branches shared by the direct and
complementary bicrystals, see Fig. 7. A perturbation of this geometry
leads to the sought situation with six IAWs of general polarization in
one stopband.

5. Conclusions

We have studied interfacial acoustic waves (IAWs) guided by the
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perfectly bonded interface between two half-infinite periodic super-
lattices. Each superlattice may consist of homogeneous or functionally
graded layers of general anisotropy and may have an arbitrary assem-
bling of its unit cell. The waves under study may be seen as an analogue
of the Stoneley wave at an interface between homogeneous media,
except that they are dispersive and their frequency and wavenumber
form multiple branches lying in the stopband of the structure. The main
objective was to establish how many IAWs can come about in a stop-
band. It was found that, unless the arrangement of unit cells of both
superlattices of a given structure is symmetric relative to the period
midplanes, the maximum possible number of IAWs at fixed wave-
number k and the frequency w varying within a stopband is three for the
lowest stopband and six for any upper ones. Moreover, a stronger
statement was also established which is that the maximum number of
three or six IAWs per stopband is actually a bound for the total number
of IAWs occurring in the given bicrystal and in its counterpart obtained
by swapping its two halves (the latter transformation does not affect the
band structure but leads to a different wave solutions).

The above statements can be further specialised in the case of un-
coupled shear-horisontally and sagittally (SH- and S-) polarised IAWs
propagating in the structures of monoclinic elastic symmetry. In this
case, at most one SH-IAW at fixed k is admitted in the lowest SH-
stopband of the direct and complementary bicrystals in total, i.e. there
may be no such waves or there may be a single one which emerges in
either the direct or complementary bicrystal. At most two S-IAWs can
occur in the lowest S-stopband of the direct and complementary bi-
crystals in total. Regarding upper SH- and S-stopbands, up to two SH-
IAWs and four S-IAWs can exist per such a band in the direct and
complementary bicrystals in total.

It is noteworthy that the aforementioned upper bounds for the
number of IAWs of general polarisation as well as for that of SH-IAWs
and S-IAWs are attainable. This is confirmed by numerical computa-
tions of IAWs guided by a defect layer in a periodically bilayered
structure. It is certainly understood that the maximum number does not
at all has to be reached in an arbitrary case. Generally speaking, the
occurrence of IAWs is more probable when one and/or the other su-
perlattices constituting a bicrystal admits a surface-wave solution on its
clamped boundary, i.e. when the impedance matrix has a pole. In
particular, there is a transparent and relatively definitive link between
the existence of IAWs and the impedance poles in the case of uncoupled
SH-waves.
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Fig. 7. S-IAW and SH-IAW dispersion branches in the direct (a) and complementary (b) bicrystals composed of the “modified” GaAs and AlAs layers. Blank area is the

overlap of SH and S upper stopbands.
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