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This paper studies the existence of electromagnetic surface waves localized on a boundary of half-infinite
periodic superlattices formed by an arbitrary periodic sequence of layers of homogeneous or functionally graded
materials with generally anisotropic dielectric permittivity and magnetic permeability tensors. The geometry in
question implies either two superlattices attached together to form a photonic bicrystal or else a superlattice
in contact with vacuum or any other homogeneous dielectric or metal. Using the formalism of transfer and
impedance matrices, a series of statements is proved on the maximum number of surface waves which may
exist within a forbidden band at a fixed tangential wave number. This number embraces possible occurrences of
surface waves in a given bicrystal and in its counterpart obtained by swapping the upper and lower superlattices.
A maximum total number of surface waves in both these structures with an arbitrary arrangement of their unit
cells is 2 in the lowest forbidden band (extending from zero frequency) and 4 in any upper forbidden band.
The same statements apply to the case where one of the half spaces is occupied by a homogeneous material.
A factor 2 smaller number of surface waves occur in a bicrystal composed of superlattices with a symmetric
arrangement of unit cells. The existence considerations are further specialized for the surface waves with TE and
TM polarizations.

DOI: 10.1103/PhysRevA.102.033515

I. INTRODUCTION

Theoretical and experimental investigation of bulk and
localized (surface) waves in periodic optical structures called
photonic crystals has been a focus of attention for a few
decades [1–4]. Active studies in this field are stimulated by
potentially vast areas of application, such as antenna en-
gineering [3,5], optical communication systems [6–8], and
optical sensors [9–12]. Various topics of interest concern,
among other issues, the band structure of electromagnetic
wave spectra, the reflection and refraction of bulk waves,
and the occurrence of surface electromagnetic waves (SEWs).
Theoretical analysis of the propagation of electromagnetic
waves in two- and three-dimensional photonic crystals is
essentially based on numerical methods [3,4,13,14]. The case
of one-dimensional photonic crystals, or superlattices, admits
closed-form analytical results for some basic wave parame-
ters, particularly when the crystal is fabricated of optically
isotropic materials and has a simple structure. For instance, a
bilayered superlattice composed of isotropic materials allows
a simple explicit expression of the transfer matrix and hence
of the reflection and refraction coefficients as well as of the
dispersion equation for surface waves (see [15,16]). Within
the above framework, explicit calculations have proved fruit-
ful for studying different aspects of the SEW propagation
in half-infinite superlattices under different boundary condi-
tions [15–22], in finite superlattices on a substrate [23,24],
and in quasiperiodic [25,26] and functionally graded [27–29]
superlattices. At the same time, it is well known that the

SEW dispersion equation even for the simplest setups is a
transcendental one, i.e., it does not admit a closed-form solu-
tion, and, moreover, its formulation for more general cases of
anisotropic superlattices with a complex arrangement of unit
cells (period) is virtually implicit. Thus a direct approach to
finding SEWs usually comes down to a numerical procedure
which has to be implemented anew for each new set of
material data and the frequency and wave-number values.
Evidently, such strategy is by construction unable to yield
an insight into the SEW existence conditions in general. The
latter task requires some special analytical approaches.

A similar challenge is faced in acoustics. A general method
for successful solving of the existence problem for the surface
acoustic waves in anisotropic homogeneous elastic and piezo-
electric solids was developed and applied in [30–33]. The
method rested on the so-called Stroh formulation of the wave
equation together with the constitutive relations [34], which
was complemented by introduction of the surface impedance
matrices linked to the energy quantities [35]. This approach
combined with the transfer-matrix technique was recently ex-
tended to surface waves in one-dimensional phononic crystals
[36–40].

In contrast to acoustic waves, no SEWs exist on an in-
terface between half-infinite homogeneous isotropic solids
unless the dielectric permittivity of one of them is negative
[41]. However, if at least one of the adjoined solids is optically
anisotropic, then its dielectric permittivity does not need to
be negative for admitting a surface wave. Such waves were
investigated via explicit calculations in a series of publications
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[42–57]. Existence of SEWs in dielectric materials with gen-
erally anisotropic permittivity was studied in [58,59]. Adapt-
ing the concepts of the Stroh integral matrix and the surface
impedances from the acoustic-wave theory [30–33] to the
case of the Maxwell equations and invoking the Lagrangian
density of electromagnetic field, it was shown that at most
one dispersionless SEW can exist at the interface between two
anisotropic homogeneous half spaces [59].

The present paper is concerned with the existence of SEWs
in superlattices formed by arbitrary periodic repetition of lay-
ers of homogeneous or functionally graded materials possess-
ing generally anisotropic dielectric permittivity and magnetic
permeability but being nongyrotropic and nonabsorbing. As
usual, the assumption of no losses implies in practical terms
referring the consideration to frequency ranges of negligible
absorption. Our approach to formulating and analyzing the
SEW dispersion equation stems from the methodology devel-
oped in [30–33] for homogeneous elastic media and modified
for phononic crystals in [36–40]. We will use the general
properties of the transfer matrix through a period and of the
appropriately defined impedance matrices. It is worth noting
that, in contrast to the formalism of [58,59], the treatment
developed in our paper operates without the need for the
“optical” integral Stroh matrix and Lagrangian density of
electromagnetic fields and, additionally, it involves magnetic
anisotropy as well as takes into account the frequency de-
pendence of dielectric permittivity and magnetic permeabil-
ity. Such a framework allows us to establish the maximum
possible number of SEWs for a forbidden band (wave number
being fixed) which may exist on an interface of a photonic
bicrystal composed of two half-infinite superlattices. The
results obtained for the general setting of the problem will be
specialized for particular cases such as a superlattice bounded
by a homogeneous medium (e.g., vacuum), a superlattice with
a symmetrically arranged unit cell, and a superlattice of a
certain crystallographic symmetry for which the sought SEWs
consist of uncoupled TE or TM modes.

Note that the issue of symmetry appears in the paper in
different senses. First of all, it is assumed throughout that
any given regular stratification is observed strictly, i.e., there
is no dispersion of thickness of layers and no structural
defects affecting wave spectra (otherwise see, e.g., [60–62];
this aspect is also touched upon in Sec. IV). At the same
time, we will see that the properties of waves propagating in a
perfectly periodic material depend essentially on whether the
unit cell is formed of layers arranged in the symmetric or in
any asymmetric stacking order. Another matter is anisotropy,
or crystallographic symmetry of the constituent materials. Its
impact is especially manifested when it allows for electro-
magnetic waves of transverse polarizations. Considerations of
the paper concern materials of unrestricted anisotropy, i.e., of
any crystallographic symmetry; however, an additional focus
is set on the case of TE and TM waves in view of their wide
relevance to practical applications.

The paper is organized as follows. Definition and basic
properties of the transfer matrices and the impedance matrices
related to photonic superlattices are given in Sec. II. The
results on the existence of SEWs in adjoined superlattices
and in superlattices on a homogeneous substrate or in contact
with vacuum are presented in Sec. III. Numerical examples

are discussed in Sec. IV. The conclusions are recapitulated in
Sec. V. The proofs of some key properties of the impedance
and related matrices are provided in Appendices A and B.

II. TRANSFER MATRIX AND IMPEDANCE MATRICES

A. Transfer matrix

Consider an optically anisotropic nongyrotropic and non-
absorbing medium. Taking the stratification direction as the
axis Z, assume an electromagnetic wave of the form(

E(r, t )
H(r, t )

)
=

(
E(z)
H(z)

)
ei(kx−ωt ), (1)

where E and H are the vectors of electric and magnetic
fields, r is the radius vector, and ω and k are frequency and
wave number. As applied to the wave (1), the Maxwell equa-
tions can be cast into a system of four ordinary differential
equations:

dξ

dz
= iN̂ξ, (2)

where the vector ξ(z) is composed of xth and yth com-
ponents of amplitudes E(z) and H(z) [15,16,58,59,63]. We
choose to take

ξ(z) =
(

u
v

)
, u(z) =

(−Ey

Hy

)
, v(z) =

(
Hx

Ex

)
. (3)

The corresponding matrix N̂ in a layer takes the form

N̂ =

⎛⎜⎜⎜⎜⎝
−k μxz

μzz
ωmxy ωmxx 0

−ωεxy −k εxz

εzz
0 ωεxx

ωεyy − k2

ωμzz
k
(

εyz

εzz
− μyz

μzz

)
−k μxz

μzz
−ωεxy

k
(

εyz

εzz
− μyz

μzz

)
ωmyy − k2

ωεzz
ωmxy −k εxz

εzz

⎞⎟⎟⎟⎟⎠,

(4)

where the SI system of units is adopted,

εi j = εi j − εizε jzε
−1
zz ; mi j = μi j − μizμ jzμ

−1
zz , i, j = x, y,

(5)

εi j and μi j are the components of tensors of dielectric per-
mittivity ε̂ and magnetic permeability μ̂, respectively. By
construction, the matrix N̂ satisfies the symmetry

(T̂N̂)t = T̂N̂, (6)

where the subscript t means transpose and

T̂ =
(

0̂ Î
Î 0̂

)
(7)

with 0̂ and Î being zero and identity 2 × 2 matrices.
Suppose that the stratified medium is periodically layered

and its unit cell consists of n layers of thicknesses hi (i =
1, . . . , n), each characterized by the matrix N̂i (4). Denote
by M̂(H, 0) ≡ M̂ the transfer matrix relating the vector of
amplitudes (3) at the opposite edges z = 0 and z = ∑n

i=1 hi ≡
H of a unit cell, so that ξ(H ) = M̂ξ(0) and

M̂ = M̂n . . . M̂2M̂1, (8)
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where M̂i is a transfer matrix through the ith layer. If this layer
is homogeneous, then M̂i = exp (ihiN̂i ); if it is functionally
graded, then M̂i = ∫̂

[Î + iN̂i(z)dz], where
∫̂

is the multiplica-
tive integral over the given ith layer [64]. In either case, due
to (6) and the fact that any matrix N̂i in the assumed absence
of absorption is real, the matrix M̂ satisfies the equality

M̂−1 = T̂M̂†T̂, (9)

where † means Hermitian conjugation. Note that the subse-
quent analysis does not in any way engage an explicit form of
the transfer matrix M̂ and rests solely on its general properties.

In view of (9), the eigenvalues γα of M̂,

M̂ζα = γαζα, α = 1, . . . , 4, (10)

are pairwise related, namely,

either |γα| = |γα+2| = 1 (11a)

or γα = 1/γ ∗
α+2, |γα| �= 1, α = 1, 2, (11b)

where ∗ indicates complex conjugation. Denote the compo-
nents of an eigenvector of M̂ by

ζα =
(

Uα

Vα

)
, α = 1, . . . , 4. (12)

By construction, the components of eigenvector ζα have the
same physical dimension as the corresponding components of
the vector ξ (3). Let an eigenvector ζα be the initial value
for Eq. (2) at a period edge. Then the amplitude of the
corresponding wave solution, or eigenmode, ξα (z), taken at
the consecutive period edges in the positive direction of the
Z axis, either is constant (|γα| = 1) or increases (|γα| > 1)
or decreases (|γα| < 1). Aiming to study the localized wave
solutions, we are concerned only with the forbidden bands
defined as the areas of the plane (ω, k) where the absolute
values of both pairs of the eigenvalues γα are not equal to unity
[see (11b)]. The numbering of γα’s in the forbidden bands will
hereafter follow the rule

|γα| < 1 < |γα+2|, α = 1, 2. (13)

Owing to (9), the eigenvectors ζα within a forbidden band
obey a particular orthogonality which, being complemented
by the normalization condition, reads as

ζ†
αT̂ζβ = U†

αVβ + V†
αUβ = δ|α−β|,2, (14)

where α, β = 1, . . . , 4, and δα,β is the Kronecker symbol.
The above-listed properties pertain to a transfer matrix

through a unit cell with an arbitrary arrangement of con-
stituent layers. These properties take a more specific form in
the particular case of a unit cell which remains the same after
inverting the sequence of constituent layers (in other words,
after the unit cell has been mentally cut along the midplane
orthogonal to Z and its upper and lower halves swapped with
each other). We will call such a unit cell symmetric and any
otherwise arranged unit cell asymmetric. Thus a unit cell of
2n + 1 layers is symmetric when its ith and (2n + 2 − i)th
layers are identical. Accordingly, Eq. (8) applied to the trans-
fer matrix through a symmetric unit cell takes the form

M̂(S) = M̂1 . . . M̂nM̂n+1M̂n . . . M̂1, (15)

where the superscript S means “symmetric.” In consequence,
a general identity (9) splits into two independent equalities

(T̂M̂(S) )t = T̂M̂(S), (16a)

M̂(S)−1 = M̂(S)∗, (16b)

which imply that the eigenvalues of M̂(S) satisfy the same
relations (11) as those of M̂ while Eq. (14) is modified to
the form

ζt
αT̂ζβ = δαβ, α, β = 1, . . . , 4. (17)

In addition, the eigenvectors of M̂(S) in a forbidden band can
be introduced so that

ζα = ζ∗
α+2, α = 1, 2. (18)

B. Impedance matrices

Let us introduce the matrices

Ẑ = −iV̂Û−1, (19a)

Ẑ′ = iV̂′Û′−1, (19b)

where

Û = (U1, U2), V̂ = (V1, V2),
Û′ = (U3, U4), V̂′ = (V3, V4)

(20)

are 2 × 2 matrices the columns of which are formed by the
upper and lower parts Uα and Vα of the eigenvectors ζα (12).
Multiplying Eqs. 19(a) and 19(b), respectively, by Û and Û′
from the right and expanding the result in columns of matrices
(20) yields the equalities

Vα = iẐUα, Vα+2 = −iẐ′Uα+2, α = 1, 2. (21)

The matrices Ẑ and Ẑ′ considered in a forbidden band are
Hermitian, as may be observed from the identities

Û†V̂ + V̂†Û = 0̂, Û
′†

V̂′ + V̂′†Û′ = 0̂, (22)

which follow from Eq. (14).
The matrices Ẑ and Ẑ′ appear in the SEW dispersion

equation and thereby play a pivotal role in our considerations,
which is similar to the role of the impedance matrix in the
theory of surface acoustic waves [30–33]. For this reason,
we shall also call them the impedance matrices, although
their definition (19) does not match the classical meaning
of an electromagnetic wave impedance as the measure of
proportionality between the electric field and the magnetic
field. It will be seen that using the impedances defined by
(19) is helpful for pinpointing some essential properties of
the SEW existence problem, particularly those in the lowest
forbidden band.

In the case of a symmetric unit cell, the matrices Û′ and
V̂′ in the forbidden bands are equal to Û∗ and V̂∗ [see (18)].
Hence the impedances Ẑ(S) and Ẑ(S)′ are interrelated as

Ẑ(S)′ = Ẑ(S)∗ = Ẑ(S)t . (23)

Some more properties of the impedance matrices Ẑ, Ẑ′,
and Ẑ(S) are established in Appendix A. One of them, namely,
the sign definiteness of frequency derivatives, is unreservedly
valid for generally anisotropic superlattices with frequency
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FIG. 1. Example of direct (a) and complementary (b) bicrystals
composed of two-layer half-infinite superlattices J = 1 (layers 1 and
2) and J = 2 (layers 3 and 4).

independent dielectric permittivity and magnetic permeabil-
ity, and it is also true when they are frequency dependent and
either the wave field (1) is taken with k = 0 or k is arbitrary
but the superlattice obeys the monoclinic symmetry (see the
precise formulation in Appendix A). Note that the latter set-
ting is predominant in practice. Our subsequent considerations
of the SEW existence are referred to one or the other of the
above cases.

III. EXISTENCE OF SURFACE ELECTROMAGNETIC
WAVES

A. Bicrystal with asymmetric unit cells

Consider a photonic bicrystal formed of two half-infinite
superlattices periodic along a common axis Z and having
asymmetric unit cells. Choose the origin z = 0 of the axis Z
at the interface of the bicrystal. Let the labels J = 1 and 2
correspond to the superlattices located at z � 0 and at z � 0,

respectively. Referring to the given bicrystal as a “direct”
one, we introduce in parallel a “complementary” bicrystal
which consists of the superlattice J = 2 at z � 0 and of the
superlattice J = 1 at z � 0. For a better grasp of these two
structures, one may view the upper part of the direct bicrystal
and the lower part of the complementary one as two halves
of a bisected infinite superlattice J = 1 and, in turn, the lower
and the upper parts of, respectively, direct and complementary
bicrystal as the halves of a bisected infinite superlattice J = 2
(Fig. 1). We will see that general considerations for existence
of SEWs involve both direct and complementary bicrystals
at once.

Equation (8) defines the transfer matrices M̂(J ) (J = 1, 2)
along the positive z direction in the given superlattices, so
that the spatial evolution of the wave field along the positive

and negative z directions away from the interface z = 0 is
determined, respectively, by the matrices M̂(1) ≡ M̂(1)(T1, 0)
and M̂(2)−1 ≡ M̂(2)(0, T2) in the direct bicrystal and by the
matrices M̂(2) and M̂(1)−1 in the complementary one. Recall
that a matrix and its inverse have the same set of eigenvectors
and mutually inverse sets of eigenvalues. Hence the defini-
tion (11) implies the same band structure for the direct and
complementary bicrystals. The SEW localized at the interface
z = 0, i.e., turning to zero at the infinite depth, may generally
exist only within the overlaps of the forbidden bands of the
lower and upper half-infinite superlattices, which we will refer
to as simply the forbidden bands (of a bicrystal).

Consider a direct bicrystal. Assuming that ω and k belong
to a forbidden band and sticking to the eigenvalue numbering
(13) inside the band, the SEW solution of Eq. (2) should have
the form of linear superpositions ξ(+)(z) = ∑2

α=1 cαξ(1)
α (z) at

z � 0 and ξ(−)(z) = ∑4
α=3 dαξ(2)

α (z) at z � 0, each solution
being generated by its initial value ξ(+)(0) = ∑2

α=1 cαζ(1)
α

and ξ(−)(0) = ∑4
α=3 dαζ(2)

α at z = 0. The continuity of the
tangential components of the electric and magnetic fields
implies that

2∑
α=1

cαζ(1)
α =

4∑
α=3

dαζ(2)
α , (24)

or, equivalently,

U = U′, Ẑ(1)U = −Ẑ′(2)U′, (25)

where U = ∑2
α=1 cαU(1)

α , U′ = ∑4
α=3 dαU(2)

α , and Ẑ(1), Ẑ′(2)

are the impedance matrices defined by (19) for the super-
lattices 1 and 2, respectively. Hence, the sought dispersion
equation for SEWs in the direct bicrystal is

det ẐB = 0 with ẐB = Ẑ(1) + Ẑ′(2), (26)

where the subscript B implies “bicrystal.” By precisely the
same arguments the dispersion equation for SEWs in the
complementary bicrystal is

det Ẑ′
B = 0 with Ẑ′

B = Ẑ(2) + Ẑ′(1). (27)

For analyzing the number of solutions of Eqs. (26) and
(27), it proves helpful to introduce an auxiliary matrix

ĜB = ẐB + Ẑ′
B = Ĝ(1) + Ĝ(2), (28)

where

Ĝ(J ) = Ẑ(J ) + Ẑ′(J ), J = 1, 2. (29)

The matrix ĜB can be expanded in two equivalent forms:

ĜB =
2∑

α=1

(χαeα ⊗ e∗
α + χ ′

αe′
α ⊗ e′∗

α ) (30a)

=
2∑

J=1

2∑
α=1

σ (J )
α t(J )

α ⊗ t(J )∗
α , (30b)

where χα, χ ′
α, σ (J )

α and eα, e′
α, t(J )

α (α = 1, 2; J = 1, 2)
are the eigenvalues and the orthonormal eigenvectors of the
Hermitian matrices ẐB, Ẑ′

B, and Ĝ(J ), respectively, and ⊗ is
a dyadic product. By (26) and (27), zeros of χα (ω, k) and
of χ ′

α (ω, k) define the sought SEW dispersion branches for
the direct and complementary bicrystals, respectively. In the
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following, we analyze the number of SEW solutions per a
forbidden band at fixed k, the upper and lower frequency
edges of which will be denoted by ωl and ωu, respectively
(ωl = 0 for the lowest band).

Consider the lowest forbidden band 0 < ω < ωu. As
shown in Appendix A, the eigenvalues χα of ẐB are positive
near ω = 0, decrease with growing ω, and have no poles
within this band. Hence,

given a fixed k, at most two SEWs can exist in the lowest
forbidden band of a bicrystal.

It is understood that this formulation applies independently to
the direct and complementary bicrystals. However, a stronger
statement can be deduced via Eq. (30). Note first that, by
(A14), the eigenvalues σ (J )

α stay positive in the lowest for-
bidden band. Regarding χα and χ ′

α , it can be shown that at
least two of these four must remain positive throughout the
lowest band. Indeed, assume that this is not so and, say, only
χ1 > 0 while χ2 < 0 and χ ′

1,2 < 0 at some frequency within
0 < ω < ωu. Then a Hermitian contraction of (30a) and (30b)
with the eigenvector e2 yields incompatible inequalities:

e†
2ĜBe2 =

2∑
J=1

2∑
α=1

σ (J )
α

∣∣t(J )†
α e2

∣∣2
> 0,

(31)

e†
2ĜBe2 = χ2 +

2∑
α=1

χ ′
α|e′†

α e2|2 < 0.

Hence the above assumption cannot hold true and not more
than two of χα and χ ′

α, being positive near ω = 0, may
become negative within the lowest band. Since they decrease
continuously, this means that χα and χ ′

α may have not more
than two zeros for two at 0 < ω < ωu. Therefore we can
conclude that

given a fixed k, at most two SEWs can exist in total in
the lowest forbidden band of the direct and complementary
bicrystals.

The latter formulation means that if two SEWs in the lowest
forbidden band occur for the direct bicrystal then none of them
may occur for the complementary one and vice versa, whereas
if there is a single SEW for one of the bicrystal structures then
there may be no more then one SEW for the other (this being
said, it is clear that there may be a single SEW existing in only
one of the bicrystals or there may be no SEWs in the lowest
band at all).

Consider an upper forbidden band ωl < ω < ωu. In con-
trast to the previous case of the lowest band, the eigenvalues of
the matrices ẐB, Ẑ′

B, and Ĝ(J ), being decreasing functions of
ω, do not need to be positive at the lower band edge ωl ( �= 0)
and they may have one pole each at ωl < ω < ωu. Suppose
first that none of them has a pole. The number of zeros of
the eigenvalues χα and χ ′

α of ẐB and Ẑ′
B within the band

in this case is bounded by 4. Note that the occurrence of
maximum number implies that all four χα, χ ′

α are positive
near ωl and negative near ωu, which is indeed a possible
option but it requires two of the four eigenvalues σ (J )

α of Ĝ(J )

to be positive and two negative at the band edges. Next assume
that one of χα, χ ′

α has a pole at some frequency ωp inside
the band and hence so does one of σ (J )

α (α = 1, 2; J = 1, 2).

It could seem at first glance that the eigenvalues χα and χ ′
α

in this case may altogether have as many as five zeros at
ωl < ω < ωu (including two zeros of the same eigenvalue
branch vanishing below and above its pole). However, such
a state of affairs is barred. Indeed, as mentioned above, its
prerequisite is that all four χα, χ ′

α are positive near ωl and
negative near ωu, and the former condition can come about
only if two of σ (J )

α are positive and two are negative at ωl . By
(A14), none of the eigenvalues σ (J )

α may vanish in a forbidden
band, hence the pole occurs for the branch σ (J )

α (ω) that is
negative near ωl . It then follows that one of σ (J )

α is negative
and three are positive at ωp < ω < ωu, say σ

(1)
1 < 0 and σ

(1)
2 ,

σ (2)
α > 0. Provided this is so, a Hermitian contraction of ĜB

(30) with the eigenvector t(1)
2 at ω near ωu yields incompatible

inequalities

t(1)†
2 ĜBt(1)

2 =
2∑

α=1

(
χα

∣∣t(1)†
2 eα

∣∣2 + χ ′
α

∣∣t(1)†
2 e′

α

∣∣2)
< 0,

(32)

t(1)†
2 ĜBt(1)

2 = σ
(1)
2 +

2∑
α=1

σ (2)
α

∣∣t(1)†
2 t(2)

α

∣∣2
> 0,

which rules out the possibility of existence of more than four
SEWs in the case of one eigenvalue pole. Applying similar
argumentation to one-by-one analysis of other possible cases,
where two, three, or all four eigenvalue branches have poles,
renders the same conclusion. Thus,

given a fixed k, at most four SEWs can exist in total in an upper
forbidden band of the direct and complementary bicrystals.

B. Bicrystal with symmetric unit cells

Consider a bicrystal composed of two half-infinite periodic
superlattices with a symmetric unit cell each. By virtue of
Eq. (23), the SEW dispersion equation for the direct bicrystal
[see (26)] can be specialized to the form

det Ẑ(S)
B = 0 with Ẑ(S)

B = Ẑ(S,1) + Ẑ(S,2)t , (33)

while Eq. (27) is obviously equivalent to (33). This means that
there is no need for invoking a complementary bicrystal and
the auxiliary matrix (28). Instead, the full insight follows from
simultaneous analysis of the impedances Ẑ(S,J ) (J = 1, 2) and
their real parts.

Let us write the matrices Ẑ(S)
B and ReẐ(S)

B as

Ẑ(S)
B =

2∑
α=1

χ (S)
α e(S)

α ⊗ e(S)∗
α , (34)

ReẐ(S)
B =

2∑
J=1

2∑
α=1

ν (J )
α p(J )

α ⊗ p(J )
α , (35)

where χ (S)
α and e(S)

α are the eigenvalues and orthonormal
eigenvectors of the matrix Ẑ(S)

B while ν (J )
α and p(J )

α are the
eigenvalues and orthonormal eigenvectors of the matrices
ReẐ(S,J ) (α = 1, 2; J = 1, 2). Note that a contraction of a
Hermitian matrix Ẑ(S)

B with an arbitrary real vector q coincides
with that of its real part, i.e.,

2∑
α=1

χ (S)
α

∣∣qt e(S)
α

∣∣2 =
2∑

J=1

2∑
α=1

ν (J )
α

(
qt p(J )

α

)2
. (36)
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Consider the lowest forbidden band 0 < ω < ωu. Accord-
ing to Appendix A, all four eigenvalues ν (J )

α are positive
within this band and both χ (S)

α are positive near ω = 0 and
decrease continuously. Hence the quantity (36) is positive
throughout the band, so at least one of the eigenvalues χ (S)

α

must remain positive whereas the other one may vanish only
once. Recalling that zero of χ (S)

α is the solution of the SEW
dispersion Eq. (33), we conclude that

given a fixed k, at most one SEW can exist in the lowest
forbidden band of a bicrystal with symmetric unit cells.

In an upper forbidden band ωl < ω < ωu, the eigenvalues
χ (S)

α and ν (J )
α are not sign definite near the lower edge ωl

and may have poles within the band. Suppose first that both
χ (S)

α are continuous. Since they are decreasing functions of
ω, the maximum number of their zeros in this case is 2.
Next assume the presence of poles. By (A18), each of the
two pairs of eigenvalues ν (1)

α and ν (2)
α of ReẐ(1) and ReẐ(2)

may have one pole and hence the eigenvalues χ (S)
α of ẐB

may have one or two poles per an upper forbidden band.
In both cases, the analysis of Eq. (30) with account for the
property of ν (J )

α to have no zeros inside forbidden bands (see
Appendix A) leads to the same conclusion that the eigenvalues
of ẐB can turn to zero at most twice. Thus,

given a fixed k, at most two SEWs can exist in an upper
forbidden band of a bicrystal with symmetric unit cells.

Note that if only one of the two half-infinite superlattices
forming a given bicrystal has a symmetric unit cell while the
other superlattice has an asymmetric one, then the maximum
admissible number of SEWs is described by statements for-
mulated in Sec. III A.

C. SEWs in a superlattice - homogeneous medium structure

Let us address the case where a half-infinite superlattice is
bounded by a homogeneous dielectric. The four eigenvalues
of a constant matrix N̂ (4), which are equal to i times wave
numbers along the axis Z , are complex valued at frequencies
smaller than a certain critical value ωL(k). The impedances
Ẑ(H ) and Ẑ′(H ) of a homogeneous medium are defined simi-
larly to (19) but with the eigenvectors of N̂ in place of those
of the transfer matrix M̂. When taken in the range ω < ωL,

the matrices Ẑ(H ) and Ẑ′(H ) are Hermitian and satisfy Ẑ′(H ) =
Ẑ(H )t . Their eigenvalues are positive at ω → 0 and decrease
continuously with growing ω. [Note also that the impedance
of a superlattice with a symmetric unit cell has the same
properties within the lowest forbidden band as those of the
impedance of a homogeneous material].

Assume a half-infinite superlattice with asymmetric unit
cell and consider in parallel two configurations: the one where
the given superlattice and homogeneous medium occupy, re-
spectively, the half spaces z � 0 and z � 0 (a direct structure)
and the other one where they swap their places (a complemen-
tary structure). Note that the latter complementary structure is
equivalent to the configuration where the homogeneous half
space is at z � 0 (like for the direct structure), whereas the
superlattice located at z � 0 differs from the given superlattice
in that the unit cell of the former is obtained from the unit
cell of the latter by inverting the sequence of layers. The

dispersion equations defining the SEWs in these structures
are given by (26) and (27) with J = 1 related to the given
superlattice and with Ẑ(2) and Ẑ′(2) replaced, respectively,
with the impedances Ẑ(H ) and Ẑ′(H ) of the homogeneous
medium. According to the above-mentioned properties of
Ẑ(H ) and Ẑ′(H ), the existence considerations for SEWs in this
case are similar to those developed in Secs. III A and III B.
Specifically, it follows that

if a half-infinite superlattice has an asymmetric unit cell, then,
for a fixed k and ω < ωL, at most two SEWs in the lowest
forbidden band and at most four SEWs per upper forbidden
bands can exist in total in the direct and complementary
superlattice - homogeneous dielectric structures;

and

if a half-infinite superlattice has a symmetric unit cell, then,
for a fixed k and ω < ωL, at most one SEW in the lowest
forbidden band and at most two SEWs per upper forbidden
bands can exist in the superlattice bounded by a homogeneous
dielectric.

A different situation may occur for a superlattice coated
by a metal film with isotropic dielectric permittivity ε/ε0 =
1 − ω2

p/ω
2, where ε0 is the absolute permittivity and ωp is the

plasma frequency (the Drude model without dissipation). Let
the film be thick enough to behave as a half-infinite medium
with respect to optical wavelengths. Then its impedance is a
diagonal matrix Ẑ(M ) = diag(Z (M )

11 , Z (M )
22 ) with the elements

Z (M )
11 = cε0

ω

√
k2c2 + ω2

p − ω2,

(37)

Z (M )
22 = − ω

ε0c
(
ω2

p − ω2
)√

k2c2 + ω2
p − ω2,

where c is the speed of light. We consider the frequency range
ω < ωp. According to (37), Z (M )

11 in this range is positive and
tends to infinity as ω → 0, while Z (M )

22 is negative, vanishes at
ω = 0 and tends to minus infinity as ω → ωp. Both Z (M )

11 and
Z (M )

22 monotonically decrease with increasing frequency.
A negative value of Z (M )

22 is in contrast to the positive
definiteness of the impedance of periodic or homogeneous
dielectric materials at low frequency. Hence a particular dis-
similarity of the SEW properties can be expected in the lowest
forbidden band 0 < ω < ωu (let ωu < ωp). It is evident that
the dispersion Eqs. (26) and (27) with ẐB = Ẑ + Ẑ(M ) and
Ẑ′

B = Ẑ′ + Ẑ(M ) at fixed k and 0 < ω < ωu may have up
to two roots each, since the eigenvalues of the matrices ẐB

and Ẑ′
B are positive at ω → 0 and decrease continuously

with increasing frequency in this range. Thus the maximum
possible number of SEWs in the lowest forbidden band of
a superlattice in contact with metal is 2, which is the same
as in the case of a contact with a homogeneous or periodic
dielectric (see the corresponding statements above and in
Sec. III A). At the same time, the maximum total number
of SEWs, embracing their occurrences in both direct and
complementary structures, is no longer 2, as it was in the case
of a contact with a dielectric, but may equal 3. To show this,
consider the matrices ĜB = Ĝ(1) + Ĝ(2) with Ĝ(1) = Ẑ + Ẑ′
and Ĝ(2) = 2Ẑ(M ) defined by analogy with Eqs. (28) and (29).
Both eigenvalues of Ĝ(1) in the lowest forbidden band are
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positive, as is the eigenvalue Z (M )
11 , while Z (M )

22 is negative.
Therefore, taking a contraction of Ĝ(J ) with the eigenvector
e = (1 0)t of Ẑ(M ) corresponding to Z (M )

11 yields

et Ĝe = et ẐBe + et Ẑ′
Be > 0, (38)

hence at least one of the four eigenvalues of the matrices ẐB

and Ẑ′
B must stay positive throughout the lowest forbidden

band. Thus it follows that

if a half-infinite superlattice with an asymmetric unit cell is
coated by metal, then the maximum total number of SEWs
which can exist at fixed k in the direct and complementary
structures inside their lowest forbidden band is 3.

Regarding a superlattice with symmetric unit cell, the
restriction on the maximum number of SEWs in the lowest
forbidden band, which must not exceed 1 in the case of a con-
tact with a dielectric, can also be relaxed when the superlattice
is in contact with metal. Reasoning similarly as above, it can
be demonstrated that the latter case admits existence of two
SEWs at maximum in the lowest band.

D. TE and TM SEWs

Let the layers constituting a superlattice possess a common
plane of symmetry parallel to the sagittal plane XZ and/or a
twofold symmetry axis orthogonal to XZ (this implies crys-
tallographic symmetry of a monoclinic or higher type). Then
the xy and yz components of the dielectric permittivity and
magnetic permeability tensors are zero. As a result, Eq. (2)
with the matrix of coefficients (4) splits into the following two
systems describing, respectively, the TE- and TM-polarized
modes:

d
dz

(−ey

hx

)
= i

(
0 ωmxx

ωεyy − k2

ωμzz
0

)(−ey

hx

)
, (39)

d
dz

(
hy

ex

)
= i

(
0 ωεxx

ωμyy − k2

ωεzz
0

)(
hy

ex

)
, (40)

where (−ey hx )t = (−Ey Hx )t eikϕε and (hy ex )t =
(Hy Ex )t eikϕμ with ϕε = ∑n

i=1 hi(εxz/εzz )i and ϕμ =∑n
i=1 hi(μxz/μzz )i, the sum being taken over n layers of a unit

cell (replaced by an integral if the unit cell is functionally
graded). Since both TE and TM modes are described by
similar equations, we will refer our analysis to the TE modes
and then extend the conclusions to the TM modes. Note
that similar considerations for the acoustic analogy, which is
related to the so-called shear horizontal waves, may be found,
e.g., in [65,66].

Denote the transfer matrix associated with Eq. (39) by
M̂TE. Zero trace of the matrix of coefficients in (39) implies
that det M̂TE = 1 and therefore, by virtue of Eq. (9), M̂TE

has real diagonal elements and purely imaginary off-diagonal
elements. Mutually inverse eigenvalues γ1 = 1/γ2 of M̂TE are
given by

γα = 1
2 [trM̂TE ±

√
(trM̂TE)2 − 4], α = 1, 2, (41)

where trM̂TE = M11 + M22. Considering the interior of TE
forbidden bands, which are determined by the inequality
trM̂TE > 2, let us denote the eigenvalue with an absolute
value smaller than 1 by γ (i.e., |γ | < 1). The TE impedances

FIG. 2. Frequency dependence of impedances ZTE and Z ′
TE in the

lowest (a) and upper (b, c) forbidden bands of a superlattice with
asymmetric unit cell. One of the curves 1 and 2 depicts ZTE(ω) and
the other is Z ′

TE(ω).

ZTE and Z ′
TE defined by analogy with Eq. (19) via the eigen-

vectors of the matrix M̂TE are real scalars:

ZTE = γ − M11

M12

, Z ′
TE = M11 − 1/γ

M12

, (42)

where Mi j ≡ ImMi j = −iMi j (i, j = 1, 2, i �= j).
In consequence of the general features of the impedance

matrices proved in Appendix A, ZTE and Z ′
TE in forbidden

bands are decreasing functions of ω at any fixed k. Note also
from (42) that the equality ZTE = −Z ′

TE holds at the edges of
a forbidden band (where γ = 1/γ ) but cannot occur inside
this band (where γ �= 1/γ ). Using these facts allows one to
ascertain the key properties of ZTE(ω) and Z ′

TE(ω). They read
that ZTE and Z ′

TE considered in any upper forbidden band must
have in total one pole and one zero, so that either one of ZTE

and Z ′
TE has a pole and the other has zero or else both zero and

pole occur for one of the impedances ZTE and Z ′
TE while the

other has none. In turn, one of ZTE and Z ′
TE considered in the

lowest forbidden band has zero but none of them has a pole.
Some possible options of the shape of functions ZTE(ω) and
Z ′

TE(ω) are shown in Fig. 2.
Let us argue the above-stated propositions. Guaranteed

existence of a pole within an upper forbidden band is readily
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seen from the fact that a decreasing function ZTE and an
increasing function −Z ′

TE cannot start from a common value
at one band edge and end up at a common value at the
other edge (as they must) without having a first-order pole in
between. Further properties are easy to visualize by drawing
a two-valued function formed by ZTE and −Z ′

TE. It is evident
that a single pole of the functions ZTE or Z ′

TE implies that one
of them must also have a single zero inside the band, while the
occurrence of more than one pole is ruled out since otherwise
it would lead to the equality of ZTE and −Z ′

TE inside the band,
which is not possible. A different state of affairs takes place
in the lowest forbidden band 0 < ω < ωu, where ZTE and Z ′

TE
tend to positive infinity at ω → 0 (see Appendix A). In this
case, sketching ZTE and −Z ′

TE confirms that no pole can exist
due to inequality of ZTE and −Z ′

TE throughout the band, while
their equality at ωu necessitates one zero for either ZTE or Z ′

TE.
In the case of an asymmetric unit cell, a single zero and

a single pole appropriately “shared” between ZTE and Z ′
TE

generally occur strictly inside the forbidden band. As an
exceptional occasion, either of them may come about at the
band edge, which is the case if M12 happens to vanish at
this edge. On the other hand, this is always so when the unit
cell is symmetric. Then, by (16a), M11 = M22 and γ = M11 −
sign(M11)

√
M2

11 − 1 where M2
11 − 1 = M12M21 > 0, so both

TE impedances merge into one impedance Z (S)
TE given by

Z (S)
TE = sign(M11M12)

√
−M21

M12
. (43)

At the edges of the upper forbidden bands, the corresponding
equality γ = 1/γ implies that either M12 or M21 must turn
to zero and hence the decreasing function Z (S)

TE either tends
to plus infinity at the lower band edge and turns to zero at
the upper edge or it turns to zero at the lower edge and tends
to minus infinity at the upper edge. Since Z (S)

TE must tend to
positive infinity at ω → 0, the former of the two above options
is always the case in the lowest forbidden band. Note for
completeness that the pole or zero of Z (S)

TE moves away from
the band edge into the band interior in the extraordinary case
when M12 and M21 at this edge vanish simultaneously.

Now we are in the position to examine the existence of
the SEWs of TE and TM polarization. Assume a bicrystal for
which both constituent half spaces admit TE and TM modes
propagating in the sagittal plane XZ. The dispersion equations
(26) and (27) each split into two scalar equations, so that

Z (1)
TE + Z ′(2)

TE = 0, Z ′(1)
TE + Z (2)

TE = 0 (44)

define the TE SEWs in the given (direct) and complementary
bicrystals, respectively, and the same equations hold for the
TM SEWs. Based on the outlined properties of the TE and
TM impedances and a simple graphical analysis, we can
formulate the following statements. If either or both parts of a
monoclinic bicrystal have a unit cell of a generic (asymmetric)
arrangement, then

given a fixed k, at most one TE-SEW (one TM-SEW) in the
lowest TE (TM) forbidden band and at most two TE-SEWs
(two TM-SEWs) in any upper TE (TM) band, respectively,
can exist in total for the direct and complementary bicrystals.

If both upper and lower parts have symmetric unit cells, then

no TE-SEW (no TM-SEW) exists in the lowest forbidden
band and at most one TE-SEW (one TM-SEW) at a fixed k
can exist in an upper TE (TM) forbidden band.

These statements can be given a stronger formulation
provided that the forbidden bands of the two superlattices
constituting a bicrystal coincide with each other. Then the
above-formulated upper bound becomes the only and neces-
sary option, namely, one TE SEW (one TM SEW) must exist
for either a direct or a complementary bicrystal within the
lowest forbidden band and two TE SEWs (one TM SEWs) in
total must exist in any upper forbidden band. Note that two
half-infinite superlattices of the same period have identical
band structure when they can be viewed as being cut from the
same infinite superlattice along different cross-section planes
and then adjusted to each other (see Sec. IV).

Let us briefly discuss SEWs occurring at the interface
of a superlattice with a homogeneous dielectric when both
media are of appropriate crystallographic symmetry and admit
TE and TM modes. The impedances Z (H )

TE and Z (H )
TM of TE

and TM modes in a homogeneous medium, being defined
by analogy with (19) but in terms of eigenvectors of the
coefficient matrices of Eqs. (39) and (40), are

Z (H )
TE = 1

ω
√

mxxμzz

√
k2 − εyyμzzω2, (45a)

Z (H )
TM = 1

ω
√

εxxεzz

√
k2 − εzzμyyω2. (45b)

Both Z (H )
TE and Z (H )

TM are real and positive at frequencies lower
than the critical values ω

(T E )
L (k) and ω

(T M )
L (k), which are the

roots of the equations k/
√

εyyμzz = ω and k/
√

εzzμyy = ω,
respectively, and both are decreasing functions of ω within
this frequency range. The aforementioned conclusions on the
number of TE and TM SEWs in a bicrystal embrace the case
of a superlattice bounded by a homogeneous medium; what
is interesting is that those statements can be given a stronger
form. For example, let a superlattice with an asymmetric unit
cell occupy the half space z � 0. If its TE impedance ZTE at
some fixed k has both a pole at ω(TM)

p and a zero at ω(TE)
0 within

an upper forbidden band, then the inequality ω(TE)
p < ω

(TE)
0 is

sufficient for the existence of one and only one TE SEW in this
band while the inverse inequality ω

(TE)
0 < ω(TE)

p is necessary
for possible occurrence of two TE SEWs. In the case of a
superlattice with a symmetric unit cell, existence of a single
SEW in an upper forbidden band is ensured or ruled out
when zero of ZTE occurs at the upper or lower band edge,
respectively.

Let the adjoined homogeneous medium be metal, so that
Eq. (45) is specialized into the form (37) with the TM
impedance being negative. The latter particularity reveals
itself in permitting the existence of one TM SEW in the
lowest forbidden band of a superlattice with symmetric unit
cell bounded by metal while this was banned in the case of a
contact with a dielectric.

IV. NUMERICAL EXAMPLES

The purpose of this section is to illustrate the above theo-
retical results and, most importantly, to demonstrate that the
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FIG. 3. A bicrystal composed of layers A (white) and B (gray)
materials. All layers are of the same thickness except for the two
“defect” A and B layers 1 and 2. The bold dashed line is the interface
between the half-infinite A/B/A and B/A/B superlattices; dotted
lines indicate edges of the unit cells.

established maximum for a possible number of SEWs per a
forbidden band is attainable, i.e., that this number of SEWs
can exist in a band and, hence, this is really a maximum rather
than an upper bound. Since the occurrence of the maximum
number of SEWs is a special rather than a generic occasion,
we will use not only real but also fictitious materials with
physically admissible parameters in order to facilitate the
search task.

As a structural model, we will consider a most transparent
representation of a bicrystal, namely, an infinite structure
of alternating layers of two types A and B which are all
of the same thickness h except a single defect cell. In the
first set of examples, we will assume this cell to also be an
A/B bilayer with thicknesses d1 and d2, where d1, d2 < h
(Fig. 3). Such structure may equally be seen as a bicrystal
consisting of two half-infinite periodic superlattices, the in-
terface z = 0 of which is that between the A and B defect
layers. They consist of three-layer unit cells of the same
thickness H = 2h separated by virtual interfaces drawn in-
side a “physical” layer, so that one superlattice (the upper
one in Fig. 3) has a A/B/A unit cell with successive layer
thicknesses {d1, h, h − d1} and the other (lower in Fig. 3)
has a B/A/B unit cell with layer thicknesses {d2, h, h − d2}
(here the thicknesses are listed in the order away from the
interface z = 0). Both unit cells are asymmetric provided that
d1,2 �= h/2. It may also be helpful to think of this bicrystal
as obtained via bisecting two identical infinite superlattices
of A and B layers of identical thickness along two dif-
ferent planes inside the layers of different types (i.e., one
plane inside layer A, the other inside layer B) and then
putting together the half space lying above one plane and
the half space lying below the other plane. Similar con-
junction of the other two half spaces yields a complemen-
tary bicrystal. The upper and lower superlattices of such
a pair of bicrystals have the same band structure because

FIG. 4. Dimensionless frequency  ≡ ωH/c of two TE SEWs
(curves 1 and 2) at fixed kH = 5.6 vs the relative thickness d1/h of
the terminal AlAs layer adjacent from above to the internal interface
of the AlAs/GaAs/AlAs–GaAs/AlAs/GaAs bicrystal with a period
H = 2h. The relative thickness of the terminal layer GaAs adjacent
to the interface from below is d2/h=0.35. Horizontal dashed lines
show the forbidden band edges.

the transfer matrices over the period [z0, z0 + H] counted
from different reference points z0 of an infinite periodic se-
quence are similar matrices and hence possess the same set
of eigenvalues.

We proceed with an example of two TE SEWs in a forbid-
den band (k being fixed) of a bicrystal with asymmetric unit
cells. According to the foregoing analysis, if the constituent
half-infinite superlattices have the same band structure (which
is the case in hand, see above), then two TE SEWs are
guaranteed to come about in total in the direct and/or com-
plementary bicrystals. We are interested to find an example
where both these TE SEWs occur in one given bicrystal,
that is, when one of the dispersion equations (44) has two
solutions (then the other has none). Figure 2(b) indicates that
for this to happen, i.e., for the two functions Z (I )

TE and −Z ′(J )
TE

(I, J = 1, 2; I �= J) to intersect twice, one of them must be
continuous while the other must have a pole and the band-edge
values of the continuous function must be greater than those of
the discontinuous one. Let us simulate such a situation for the
aforementioned structural model with cubic AlAs and GaAs
as the materials A and B. The principal crystallographic axes
of the corresponding layers are mutually aligned and assumed
parallel to the axes X, Y , and Z. The relative dielectric
permittivities used in the calculation are

εyy

ε0
=

⎧⎨⎩2.0792 + 6.0840λ2

λ2−0.28222 + 1.9λ2

λ2−27.622 (AlAs),

5.743 + 5.1λ2

λ2−0.2257 (GaAs),
(46)

where the wavelength λ = 2πc/ω is counted in microns and is
confined to the interval λ > 0.92 μm, in which the attenuation
of electromagnetic waves in AlAs and GaAs is negligibly
small. These material data are approximated from the results
of [67] and taken from [68]. The layer thickness is set to be
h = 0.2 μm.
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Figure 4 demonstrates the occurrence of two TE SEWs
in an upper forbidden band of the AlAs/GaAs/AlAs–
GaAs/AlAs/GaAs bicrystal assembled according to Fig. 3.
It is seen that two waves exist within a certain range of values
of thickness d1 of the terminal AlAs layer of the upper super-
lattice (the period H = 2h being kept constant). Beyond this
range, one of the TE SEWs disappears in the given bicrystal
and hence appears in the complementary GaAs/AlAs/GaAs–
AlAs/GaAs/AlAs bicrystal.

Let us now seek an example of two TE SEWs in a
superlattice–homogeneous dielectric structure. Two TE SEWs
come about provided that the frequency dependence of the
impedance ZTE of the superlattice corresponds to curve
1 shown in Fig. 2(c) and that ZTE(ωl ) > −Z (H )

TE (ωl ) and
ZTE(ωu) < −Z (H )

TE (ωu). However, since the impedance Z (H )
TE

(45a) involves only one adjustment parameter εyy (contrary to
several material and geometrical parameters available for the
impedance of a superlattice), a simultaneous occasion of the
above-mentioned inequalities between the band-edge values
of ZTE and Z (H )

TE , which is required for the existence of two
TE SEWs, turns out to be a rather tight constraint. We have
failed to model occurrence of two TE SEWs in realistic cases
and will exemplify them for a fictitious superlattice, the unit
cell of which consists of three nonmagnetic orthotropic layers
with the relative dielectric permittivities εyy/ε0 equal to 10, 4,
and 20 (data for the terminal layer are mentioned first), and
a homogeneous half space with εyy/ε0 of 8.75. For this set
of data, two solutions ω1 and ω2 of the TE SEW dispersion
equation ZTE + Z (H )

TE = 0 emerge in a forbidden band very
close to its edges ωl and ωu, respectively. For instance, if
the layer relative thicknesses are 0.075, 0.2, and 0.125 μm,
respectively, then ω1/ωl − 1 ≈ 3 × 10−3 and 1 − ω2/ωu ≈
4 × 10−4.

Our next objective is to confirm that a direct bicrystal
with an asymmetric unit cell and the corresponding com-
plementary bicrystal can support in total two SEWs in the
lowest forbidden band and four SEWs in an upper one. With
this task in mind, we will consider once again an infinite
structure of alternating equidistant layers A and B containing
a single structural defect, which is now a single layer, say
of A type, of a “perturbed” thickness d , where d �= h and
d < 2h. Similarly to the above model with a defect bilayer,
the present structure may be seen as a bicrystal formed by
half-infinite periodic superlattices, each having A/B/A unit
cells with successive layer thicknesses {d1, h, h − d1} for one
half space and {d2, h, h − d2} for the other (two thickness sets
are ordered in the opposite senses with respect to the axis Z),
where d1 + d2 = d with arbitrary d1 < d. The latter implies
that the interface z = 0 between the bicrystal halves may be
taken at an arbitrary point of the Z axis inside the defect layer.
Independence of the defect modes (the sought SEWs) from
the position of this putative interface is physically obvious and
may certainly be confirmed in formal terms.

Having specified the above structure as a direct bicrystal,
the complementary bicrystal (as is defined in the opening
paragraph of Sec. III A) is a similar structure of A and B
layers of the same thickness h except for a defect A layer of
thickness 2h − d . In the subsequent calculations, d is taken to
be d = 0.9h ( �= 0.5h so that the A/B/A unit cells are asym-

metric). The A and B layers are assumed to be uniaxial with
optical axes perpendicular to the XZ plane, nonmagnetic, and
having relative dielectric permittivities ε(A)

xx /ε0 = ε(A)
zz /ε0 =

7.8, ε(A)
yy /ε0 = 10 and ε(B)

xx /ε0 = ε(B)
zz /ε0 = 1.15, ε(B)

yy /ε0 = 2,
respectively. These values ensure that, given the value kH =
2π (which is kept fixed hereafter), the lowest forbidden bands
of TE and TM waves propagating in the XZ plane practically
coincide with each other and so do the first upper forbidden
bands. The common frequency ranges of these lowest and up-
per bands are 0 <  < 2.604 and 2.67 <  < 3.684, where
 ≡ ωH/c.

Under these conditions, we find by computations that
the direct and complementary bicrystals each support one
TE SEW and one TM SEW in the upper forbidden band
at frequencies TE

d = 2.703 and TM
d = 2.735, respectively.

The complementary bicrystal supports one TE SEW and one
TM SEW in the same band at TE

c = 3.572 and TM
c = 3.608.

Within the lowest forbidden band, no SEW occurs in the direct
bicrystal, whereas one TE SEW and one TM SEW come
about for the complementary bicrystal at TE

c = 2.592 and
TM

c = 2.539. These data are actually enough to confirm the
possibility of the desired occasion of as many as two SEWs
in the lowest band and four SEWs in an upper band for direct
and complementary bicrystals in total. These wave solutions
occur as SEWs of general polarization when the propagation
direction X slightly deviates from the symmetry plane (010).
For instance, let them make an angle 10◦; then the lowest for-
bidden band is 0 <  < 2.605 and it contains two solutions
for SEWs propagating in the complementary bicrystal with
frequencies (1)

c = 2.541 and (2)
c = 2.582, while the first

upper band is 2.662 <  < 3.673 and it contains two pairs
of SEW solutions for the direct and complementary bicrystals
at frequencies 

(1)
d = 2.694,

(2)
d = 2.738 and (3)

c = 3.56,

(4)
c = 3.612, respectively.
Finally, let us give an example of the maximum possible

number of SEWs in a bicrystal with symmetric unit cells. For
this purpose, we turn back to the A/B structure with a defect
bilayer shown in Fig. 3 and take the thicknesses of A and B
layers of the defect cell to be d1 = d2 = h/2, which renders
the A/B/A and B/A/B unit cells of the upper and lower half
spaces to be symmetric. The properties of layers A and B are
kept the same as in the above example, hence so is the band
structure (which is not affected by the values of d1, d2). The
wave number is fixed as kH = 2π. The lowest forbidden band
0 <  < 2.604 is void of both TE and TM SEWs which is in
agreement with the corresponding conclusion of Sec. III D.
The first upper forbidden band 2.67 <  < 3.684 contains
the frequencies TE = 3.091 and TM = 3.408 of one TE
SEW and one TM SEW. Now let us modify the bicrystal by
rotating its upper half as a whole about the Z axis by an angle
θ = 10◦ clockwise and its lower half by the same angle θ

anticlockwise. The band structure of the “twisted” bicrystal
changes only slightly, but the former TE and TM modes
propagating in the XZ plane couple and acquire a general
polarization. We find two such SEWs at frequencies (1) =
3.079 and (2) = 3.414. Additionally, one SEW emerges in
the lowest forbidden band, though at frequency ω quite close
to the band edge ωu, namely, 1 − ω/ωu = 4.58 × 10−5. Thus
we observe the existence of two SEWs in an upper forbidden
band and of one SEW in the lowest band, which, according to
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Sec. III B, is the maximum number of such waves admitted in
a bicrystal with symmetric unit cells.

V. CONCLUDING REMARKS

We have established the maximum number of SEWs which
may exist at a fixed tangential wave number in a forbidden
band of a photonic bicrystal. The latter is formed of two
half-infinite superlattices consisting of periodically assembled
optically anisotropic uniaxial or biaxial nongyrotropic and
nonabsorbing layers. The results apply to the materials with
frequency independent dielectric permittivity ε̂ and magnetic
permeability μ̂ of general anisotropy, or to the materials
of monoclinic and higher crystallographic symmetry with
frequency dependent ε̂ and μ̂, or to any anisotropic materials
with dispersive ε̂ and μ̂ in the special case k = 0 [the latter
implying that the wave field (1) varies along the stratification
direction only]. In the case of generic (asymmetric) arrange-
ment of the unit cell, the established number is the sum of
the number of SEWs in a given (“direct”) bicrystal with the
number of SEWs in its complementary counterpart, which is
obtained by swapping upper and lower superlattices of the
direct one (without turning any of them upside down). The
so-defined maximum number of SEWs is 2 for the lowest
forbidden band originating at ω = 0 and 4 for any upper
forbidden band regardless of the anisotropy and arrangement
of the unit cells. A more stringent prediction follows in the
case when both adjoined superlattices have symmetrically
arranged unit cells invariant relative to the midplane. Such
a bicrystal admits at most one SEW in the lowest forbidden
band and at most two SEWs in any upper band. The same
statements as above apply in the case when a superlattice
is bounded by an arbitrary homogeneous dielectric. At the
same time, certain additional options concerning SEWs in
the lowest forbidden band arise when a superlattice is in
contact with metal. The results obtained for SEWs of arbitrary
polarization have also been specialized for the TE- and TM-
polarized SEWs. For instance, the maximum possible number
of either TE SEWs or TM SEWs occurring in total in the

direct and complementary bicrystals is 1 in a lowest forbidden
band and 2 in any upper forbidden band (the bands for TE
and TM modes being independent of each other). All above
conclusions equally apply to the SEWs in functionally graded
photonic bicrystals.

As already mentioned, the results of the paper are obtained
under a widely used no-loss assumption which underlies the
standard concept of the allowed and forbidden bands and also
renders the impedance matrices Hermitian. A rigorous ac-
count for an absorption in the formalism of wave propagation
in periodic media is a rather intricate issue, since the Bloch
wave number becomes complex valued throughout and so the
notion of band structure is no longer as straightforward as it is
in the no-loss case. This general problem is beyond the scope
of the present paper. However, it is evident that a weak enough
absorption should not change the number of SEWs, unless
the SEW dispersion branch comes too close to the edge of
the forbidden band where its periodicity-induced attenuation
is relatively low and therefore even a weak absorption may
drastically affect the wave type.
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APPENDIX A

We start from considering the limit ω → 0. Taking note
that the matrix N̂ (4) diverges in this limit, it is helpful to
replace the vector ξ(z) and the matrix N̂ in Eq. (2) with the
vector

ξω(z) =
(

uω

v

)
= Ŝξ(z) with Ŝ =

(
1
ω

I 0

0 I

)
(A1)

and with the corresponding matrix N̂ω = ŜN̂Ŝ−1, so that

N̂ω =

⎛⎜⎜⎜⎜⎝
−k μxz

μzz
ωmxy mxx 0

−ωεxy −k εxz

εzz
0 εxx

ω2εyy − k2

μzz
ωk

(
εyz

εzz
− μyz

μzz

)
−k μxz

μzz
−ωεxy

ωk
(

εyz

εzz
− μyz

μzz

)
ω2myy − k2

εzz
ωmxy −k εxz

εzz

⎞⎟⎟⎟⎟⎠. (A2)

All elements of N̂ω remain finite at ω → 0 and hence so are
all components of ξω(z). The transfer matrix M̂ω = ŜM̂Ŝ−1

of Eq. (2) redefined to include ξω(z) and N̂ω has the same
eigenvalues as M̂ while its eigenvectors are ξω

α = (Uω
α Vα )t

with Uω
α = ω−1Uα. Insertion into Eq. (21) yields Vα = iẐωUω

α

and Vα+2 = −iẐ′ωUω
α+2 (α = 1, 2), where the impedances

Ẑω = ωẐ and Ẑ′ω = ωẐ′ stay finite at ω → 0.
Next, using the Maxwell equations, let us represent

the quasistatic limit ω → 0 of the time-averaged
energy density W = 1

4 (E†D + H†B) of the wave

ξω = (uω v)t as

4W (z)
∣∣
ω→0 = d

dz
Im(v†uω )

∣∣
ω→0

= v†N̂ω
12v − uω†N̂ω

21uω > 0, (A3)

where N̂ω
12 and N̂ω

21 are the upper and lower 2 × 2 off-diagonal
blocks of N̂ω. The inequality in (A3) follows from positive-
ness of energy and may be confirmed indeed via substituting
N̂ω

12 and N̂ω
21 from (A2).
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Let the eigenvector ξω
α of M̂ω be the initial condition at the

edge z = 0 of a unit cell. Then the solution ξω
α (z) = (uω v)t

taken at the other edge z = H is ξω
α (H ) = γαζω

α . Integrating
the zth derivative of Im(v†

αuω
α )|ω→0 over a period H and

applying inequality (A3) yields∫ H

0

d

dz
Im

(
v†

αuω
α

)∣∣
ω→0dz = (|γα|2 − 1)Im

(
V†

αUω
α

)∣∣
ω→0 > 0.

(A4)

It follows that |γα|2ω→0 �= 1 and so, in view of (11b), the
semiaxis ω = 0, k �= 0 on the (ω, k) plane is always an origin
of a forbidden band. Keeping ω within this band, consider the
wave solution ξω(z) the initial value of which at z = 0 is an
arbitrary linear combination ξω(0) ≡ (Uω V)t = ∑2

α=1 cαζω
α

of two eigenvectors corresponding to the eigenvalues |γα| < 1
(α = 1, 2). Hence such ξω(z) decays to zero at z → ∞ and so
certainly does a scalar product v†uω of the components of this
solution. Therefore taking into account piecewise continuous
differentiability of ξω(z) and integrating the derivative of
Im(v†uω ) from zero to ∞ yields∫ ∞

0

d

dz
Im(v†uω )

∣∣
ω→0dz

= −Im(v†uω )
∣∣
ω→0, z=0 = Uω†ẐωUω

∣∣
ω→0 > 0, (A5)

where Uω = ∑2
α=1 cαUω

α is an arbitrary vector and Hermitic-
ity of Ẑω was used. Similar reasoning with respect to the wave
ξω(z) generated in the half space z � 0 by the initial condition
ξω(0) = ∑4

α=3 dαζω
α and vanishing at z → −∞ due to |γα| >

1 (α = 3, 4) results in the inequality U′ω†Ẑ′ωU′ω|ω→0 > 0,

where U′ω = ∑4
α=3 dαUω

α is an arbitrary vector. Thus we
conclude that

Ẑ = 1

ω
Ẑω and Ẑ′ = 1

ω
Ẑ′ω

are positive definite matrices at ω → 0.

(A6)

Further we pass to the initial formulation of Eq. (2) and
consider the whole frequency range. At this stage let us
assume that at a fixed k

k
∂

∂ω

(
εiz

εzz

)
= 0, k

∂

∂ω

(
μiz

μzz

)
= 0, i = x, y, (A7)

i.e., the derivatives vanish or/and k = 0. Then using Eqs. (2),
(4), and (6) we find that

−i
d

dz

(
ξ†T̂

∂ξ

∂ω

)
= ξ†T̂

∂N̂
∂ω

ξ = E†
τ ÂE Eτ + H†

τ ÂH Hτ > 0,

(A8)
where Eτ = (Ex Ey)t , Hτ = (Hx Hy)t ,

ÂE = ∂

∂ω

(
ωε̂ − k2

ωμzz
Î′
)

, ÂH = ∂

∂ω

(
ωm̂ − k2

ωεzz
Î′
)

,

Î′ is a 2 × 2 matrix with elements I ′
i j = δi2δ j2, and the ele-

ments of matrices ε̂ and m̂ are defined in (5) (note that ε̂

and m̂ are the inverses of the upper 2 × 2 diagonal blocks
of matrices ε̂−1 and μ̂−1 in the adopted basis X,Y, Z). The
matrices ÂE and ÂH are positive definite, because so are the
matrices ∂ (ωε̂)/∂ω and ∂ (ωμ̂)/∂ω [69,70] and hence also
∂ (ωεzz )/∂ω, ∂ (ωμzz )/∂ω and ∂ (ωε̂)/∂ω, ∂ (ωm̂)/∂ω.

As the next step, consider an arbitrary forbidden band and
let the two-partial wave solution ξ(z) = (u v)t be defined by
the initial value ξ(0) ≡ (U V)t = ∑2

α=1 cαζα at z = 0, where
ζα = (Uα Vα )t are the eigenvectors of M̂ corresponding to its
eigenvalues |γα| < 1 (α = 1, 2). Assume the coefficients cα =
cα (ω) to be chosen so that U = ∑2

α=1 cαUα is an arbitrary but
constant vector (independent of frequency). Taking this into
account and integrating the left-hand side of (A8) in z from
zero to ∞ yields

−i
∫ ∞

0

d

dz

[
ξ†T̂

∂ξ

∂ω

]
dz = i

(
U† ∂V

∂ω
+ V† ∂U

∂ω

)
= −U† ∂Ẑ

∂ω
U.

(A9)

A similar integration from zero to − ∞ for the wave decaying
into the depth of a half space z � 0 shows that a Hermi-
tian form U ′† ∂Ẑ′

∂ω
U ′, where U′ = ∑4

α=3 dαU′
α is an arbitrary

constant vector, also has the inverse sign of (A8). Thus we
conclude that

∂Ẑ
∂ω

and
∂Ẑ′

∂ω
are negative

definite matrices in forbidden bands.
(A10)

provided that (A7) is fulfilled. Our consideration of the SEW
in superlattices is largely based on the result (A10). For this
reason, let us accentuate the cases when (A7) and hence (A10)
are ensured.

(1) The layers are generally anisotropic and arbitrarily
oriented but ε̂ and μ̂ are independent of frequency.

(2) ε̂ and μ̂ are frequency dependent but the layers are
monoclinic and oriented so that the stratification axis Z,

i.e., the normal to the layer interfaces, is either parallel to
a symmetry axis or perpendicular to the plane of symmetry
(hence the off-diagonal elements εiz and μiz with i = x, y are
identically zero).

(3) The layers are generally anisotropic and ε̂ and μ̂ are
frequency dependent but k = 0.

It is clear that property (A10) remains valid even if none of
the above conditions is observed but the frequency derivatives
of εiz/εzz and μiz/μzz (i = x, y) are just too small to counteract
the sign definite terms in (A8). Note also that, in view of
Eqs. (39) and (40), the scalar impedances of TE and TM
modes always satisfy (A10).

Of a particular significance for the analysis of SEWs is the
matrix

Ĝ = Ẑ + Ẑ′ = −i(V̂Û−1 − V̂′Û′−1)

= −i(V̂Û−1 + Û′†−1V̂′†)

= −iÛ′†−1(Û′†V̂ + V̂′†Û)Û−1 = −i(ÛÛ′†)−1. (A11)

As a sum of Ẑ and Ẑ′, the matrix Ĝ is also a Hermitian matrix,
is positive definite at ω → 0, and has a negative definite
derivative with respect to ω in forbidden bands. Moreover, it
can be confirmed that none of the elements of matrix Ĝ−1

can diverge inside forbidden bands (see Appendix B). Let us
formulate these properties of Ĝ in terms of its eigenvalues
denoted by σα (α = 1, 2 ). Note that σα should be understood
as eigenvalues of a physically dimensionless matrix represent-
ing the numerical values of elements Gi j of Ĝ in whichever
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system of physical units. It is clear that one or the other choice
of units changes the magnitude of the eigenvalues but does
not touch their real-valuedness, signs, zeros, and poles, which
are the actual issues of our interest. Neither can a choice
of physical units affect the sign of frequency derivatives of
σα’s. They are always negative due to negative definiteness
of matrix ∂Ĝ/∂ω (although its eigenvalues are not equal to
∂σα/∂ω).

It follows from the above that σα are real and satisfy the
inequalities

σα > 0, α = 1, 2, in the vicinity of ω = 0, (A12)

∂σα

∂ω
< 0, α = 1, 2, in forbidden bands, (A13)

σα �= 0, α = 1, 2, in forbidden bands. (A14)

Combining properties (A12) with (A14) shows that

σα, α = 1, 2, have no poles
in the lowest forbidden band, (A15)

while combining(A13) with (A14) and taking into account
that σα’s do not need to be positive at the lower edge of upper
forbidden bands reveals that each of

each of σα, α = 1, 2, may have one pole
in an upper forbidden band. (A16)

Note that if Ĝ has a diverging eigenvalue then so does either
Ẑ or Ẑ′. Therefore the eigenvalues λα and λ′

α (α = 1, 2) of Ẑ
and Ẑ′, being positive at ω → 0 and decreasing with growing
ω in forbidden bands, have no poles in the lowest forbidden
band and may have at most two poles in total in an upper
forbidden band.

In the case of a symmetric unit cell, combining Eqs. (23)
and (A10) yields

Ĝ(S) = 2ReẐ(S) = −i(ÛÛt )−1. (A17)

The eigenvalues να (α = 1, 2) of ReẐ(S) = 1
2 Ĝ(S) certainly

retain the properties (A12)–(A15). A new feature, which
is due to Eq. (A17), is that the poles of να may come
about only simultaneously, since det(Ĝ(S)−1) = −(det Û)2

and hence det(Ĝ(S)−1) vanishes at det Û = 0 together with
its frequency derivative. Thus property (A16) is modified as
follows:

να, α = 1, 2, in an upper forbidden band
are either continuous or have one common pole. (A18)

APPENDIX B

The fact that the matrix

Ĝ−1 = iÛÛ′† = i
2∑

α=1

Uα ⊗ U∗
α+2 (B1)

does not diverge in forbidden bands is not evident at the
secluded values (ω, k)d where the degeneracy γ1 = γ2 and
hence γ3 = γ4 of the eigenvalues γα of the transfer matrix
M̂ occurs such that it renders M̂ non-semi-simple (not di-
agonalizable). When ω, k tend to (ω, k)d , the eigenvectors
ζα = (Uα Vα )t of M̂ tend to infinity and hence so may do the
elements of Ĝ−1. On the other hand, divergence of individual

dyads in (B1) does not necessarily mean divergence of their
sum. We shall prove that in fact all elements of Ĝ−1 stay finite
at (ω, k)d and hence everywhere within any forbidden band.

Let us first note that Ĝ−1 is i times the upper off-diagonal
block of the matrix

∑2
α=1 ζα ⊗ T̂ζ∗

α+2 so that its components
may be written as

(Ĝ−1)i j = i
2∑

α=1

(ζα ⊗ T̂ζ∗
α+2)i, j+2 ≡ i

2∑
α=1

a(i, j+2)
α ,

i, j = 1, 2; α = 1, 2. (B2)

With this in mind, let us consider each (i j)th element of the
matrix identities

M̂m =
2∑

α=1

(
γ m

α ζα ⊗ T̂ζ∗
α+2 + γ m

α+2ζα+2 ⊗ T̂ζ∗
α

)
,

m = 0, . . . , 3, (B3)

in the proximity of (ω, k)d as a system of four equations

2∑
α=1

(
γ m

α a(i j)
α + γ m

α+2a(i j)
α+2

) = b(i j)
m , i, j = 1, . . . , 4, (B4)

where a(i j)
α is defined in (B2), a(i j)

α+2 = (ζα+2 ⊗ T̂ζ∗
α )i j, and

b(i j)
m = (M̂m)i j . The solution of each system is

a(i j)
β = �

(i j)
β

D
, β = 1, . . . , 4, with D =

∏
1�n<β�4

(γβ − γn),

(B5)

where D is the so-called Vandermonde determinant and �
(i j)
β

is obtained from the matrix of coefficients of system (B4) by
replacing its βth column with the column b(i j)

m . It follows from
(B5) that

2∑
α=1

a(i j)
α = �(i j)

D
− 1, i, j = 1, . . . , 4, (B6)

where �(i j) = �
(i j)
1 + �

(i j)
2 + D is the determinant of the

4 × 4 matrix �̂(i j) with components [�(i j)]nβ = b(i j)
n−1 + γ n−1

β

at β = 1, 2 and [�(i j)]nβ = γ n−1
β at β = 3, 4 (n = 1, . . . , 4).

It can be verified that

�(i j) = (γ2 − γ1)(γ4 − γ3)�̃(i j), (B7)

where the determinant �̃(i j) is always finite. As a result,
the product (γ2 − γ1)(γ4 − γ3) cancels in �(i j)/D and hence
the left-hand side of Eq. (B6) remains finite even if (ω, k)
coincides with (ω, k)d where γ1 = γ2 and γ3 = γ4. Thus,
comparing (B2) and (B6), we can conclude that the matrix
Ĝ−1 is assuredly finite inside forbidden bands. If the transfer
matrix M̂ is defined on a symmetric unit cell, then Ĝ−1

reduces to 1
2 (ReẐ(S) )−1 = iÛÛt and so it is (ReẐ(S) )−1 which

takes over the property of having no poles within forbidden
bands.

Note in conclusion that, contrary to the interior of forbid-
den bands, the matrix Ĝ−1 may diverge at their edges, since
they are conditioned by the degeneracy γα = γα+2 (α = 1 or
2) and the latter generally blows up the ratios �(i j)/D.
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