
HAL Id: hal-03381732
https://hal.science/hal-03381732v1

Submitted on 17 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exathlon: A Benchmark for Explainable Anomaly
Detection over Time Series

Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, Nesime
Tatbul

To cite this version:
Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, et al.. Exathlon: A Benchmark for
Explainable Anomaly Detection over Time Series. Proceedings of the VLDB Endowment (PVLDB),
2021. �hal-03381732�

https://hal.science/hal-03381732v1
https://hal.archives-ouvertes.fr

Exathlon: A Benchmark for Explainable Anomaly Detection
over Time Series

Vincent Jacob
†
Fei Song

†
Arnaud Stiegler

†
Bijan Rad

†
Yanlei Diao

†
Nesime Tatbul

∗
†
Ecole Polytechnique, France

∗
Intel Labs and MIT, USA

{vincent.jacob,fei.song,arnaud.stiegler,bijan.rad,yanlei.diao}@polytechnique.edu,tatbul@csail.mit.edu

ABSTRACT
Access to high-quality data repositories and benchmarks have been

instrumental in advancing the state of the art in many experimen-

tal research domains. While advanced analytics tasks over time

series data have been gaining lots of attention, lack of such com-

munity resources severely limits scientific progress. In this paper,

we present Exathlon, the first comprehensive public benchmark

for explainable anomaly detection over high-dimensional time se-

ries data. Exathlon has been systematically constructed based on

real data traces from repeated executions of large-scale stream pro-

cessing jobs on an Apache Spark cluster. Some of these executions

were intentionally disturbed by introducing instances of six differ-

ent types of anomalous events (e.g., misbehaving inputs, resource

contention, process failures). For each of the anomaly instances,

ground truth labels for the root cause interval as well as those for

the extended effect interval are provided, supporting the develop-

ment and evaluation of a wide range of anomaly detection (AD)

and explanation discovery (ED) tasks. We demonstrate the practical

utility of Exathlon’s dataset, evaluation methodology, and end-to-

end data science pipeline design through an experimental study

with three state-of-the-art AD and ED techniques.

1 INTRODUCTION
Time series is one of themost ubiquitous types of data in our increas-

ingly digital and connected society. Advanced analytics capabilities

such as detecting anomalies and explaining them are crucial in

understanding and reacting to temporal phenomena captured by

this rich data type. Anomaly detection (AD) refers to the task of

identifying patterns in data that deviate from a given notion of nor-

mal behavior [13]. It finds use in almost every domain where data

is plenty, but unusual patterns are the most critical to respond (e.g.,

cloud telemetry, autonomous driving, financial fraud management).

AD over time series data has been of particular interest, not only

because time-oriented data is highly prevalent and voluminous, but

also more challenging to analyze due to its complex and diverse

nature: multivariate time series can consist of 1000s of dimensions;

anomalous patterns may be of arbitrary length and shape; there

may be intricate cause and effect relationships among these pat-

terns; data is rarely clean. Furthermore, by helping uncover how or

why a detected anomaly may have happened, explanation discovery
(ED) forms a crucial capability for any time series AD system.

Recent advances in data science and machine learning (ML)

significantly reinforced the need for developing robust anomaly

detection and explanation solutions that can be reliably deployed

in production environments [30, 38]. However, progress has been

rather slow and limited. While there is extensive research activity

going on [12], proposed solutions have been mostly adhoc and far

from being generalizable to realistic settings. We believe that one

of the critical roadblocks to progress has been the lack of open

data repositories and benchmarks to serve as a common ground

for reproducible research and experimentation. Indeed, access to

such community resources has been instrumental in advancing the

state of the art in many other domains (e.g., [4, 19]). Inspired by

those efforts, in this paper, we propose Exathlon, the first compre-
hensive public benchmark for explainable anomaly detection over
high-dimensional time series data.

Exathlon focuses on the familiar domain of metric monitoring

in large-scale computing systems, and provides a benchmarking

platform that consists of: (i) a curated anomaly dataset, (ii) a novel

benchmarking methodology for AD and ED, and (iii) an end-to-end

data science pipeline for implementing and evaluating AD and ED

algorithms based on the provided dataset and methodology. More

specifically, we make the following contributions in this work:

Dataset. We constructed Exathlon systematically based on real

data traces collected from around 100 repeated executions of 10 dis-

tributed streaming jobs on a Spark cluster over 2.5 months. Inspired

by chaos engineering in industry [5], our traces were obtained by

disturbing more than 30 job executions with nearly 100 instances

of 6 different classes of anomalous events (e.g., misbehaving inputs,

resource contention, process failures). For each of these anomalies,

we provide ground truth labels for both the root cause interval and

the corresponding effect interval, enabling the use of our dataset in

a wide range of AD and ED tasks. Overall, both the normal (undis-
turbed) and anomalous (disturbed) traces contain enough variety

(including some noise due to Spark’s inherent behavior) to capture

real-world data characteristics in this domain (Table 1).

Evaluation Methodology. Exathlon evaluates AD and ED algo-

rithms in terms of two orthogonal aspects: functionality and compu-

tational performance. For AD, we primarily target semi-supervised
techniques (i.e., with a model developed/trained using only nor-

mal data, possibly with occasional noise, and then tested against

anomalous data) for range-based anomalies (i.e., contextual and
collective anomalies occurring over a time interval instead of only

at a single time point [13]) over high-dimensional time series (i.e.,
multivariate with 1000s of dimensions). This decision is informed

by our observation of this being the most common and inclusive

usage scenario in practice. For ED, we broadly consider bothmodel-
free (e.g., [3, 58]) and model-dependent (e.g., [44]) techniques. AD
functionality is evaluated under four well-defined model learning

settings, based on four key evaluation criteria – anomaly existence,

range detection, early detection, and exactly-once detection – us-

ing a novel range-based accuracy framework [51]. Similarly, ED

functionality is tested for two capabilities – local explanation and

global explanation – each measured in terms of conciseness, con-

sistency, and accuracy. Computational efficiency and scalability for

both AD model training/inference as well as for ED execution can

also be evaluated at varying data dimensions and sampling rates.

Overall, Exathlon provides a rich and challenging testbed with a

well-organized evaluation methodology (Table 2).

Data Science Pipeline. We designed an end-to-end pipeline for

explainable time series anomaly detection. This pipeline includes all

the data processing steps necessary to turn our raw datasets into AD

and ED results together with their benchmark scores. Our design is

modular and extensible. This not only makes it easy to implement

new AD and ED techniques to benchmark, but also allows creating

multiple variants of pipeline steps to experiment with and compare.

For example, training data preparation for different AD learning

settings or scoring AD results for different criteria levels can be

easily configured, run, and compared in our pipeline (Figure 3).

Experimental Study.Weprovide the first experimental study eval-

uating a representative set of state-of-the-art AD and ED techniques

to illustrate the usage and benefits of Exathlon. Results suggest that

our dataset carries useful signals that can be picked up by the tested

AD and ED algorithms in a way that can be effectively quantified

by our evaluation criteria and metrics. Furthermore, we observe

that our benchmarking framework exposes increasing levels of

challenges to stress-test these algorithms in a systematic way (§6).

Compared to current public resources for time series AD re-

search [2, 18, 20, 34, 43], a key contribution of Exathlon is that it

comprehensively covers one challenging application domain end to

end, as opposed to providing multiple smaller and simpler datasets

from several independent domains. Furthermore, a public bench-

mark for time series ED research with ground truth labels is largely

lacking today, making it hard to evaluate and compare an increas-

ing number of published papers on this important topic. Thus, we

believe Exathlon provides an opportunity for a more in-depth in-

vestigation and evaluation of models and algorithms in both time

series AD and ED, potentially revealing new insights for accelerat-

ing research progress in explainable anomaly detection.

In the rest of the paper, we first briefly summarize related work.

After presenting our dataset, evaluation methodology, and pipeline

design in more detail, we show the practical utility of Exathlon

through an experimental analysis of three state-of-the-art AD and

ED algorithms using a selected set of evaluation criteria and settings

from our benchmark. Finally, we conclude with an outline of fu-

ture directions. The dataset, code, and documentation for Exathlon

are publicly available at https://github.com/exathlonbenchmark/

exathlon.

2 RELATEDWORK
Datasets and Benchmarks. Benchmarks to evaluate database

(DB) system performance have been around for more than 30 years

[16, 17, 26]. In addition to industry-standard benchmarks for re-

lational DB workloads such as TPC-C and TPC-H, new domain-

specific benchmarks for emerging workloads have been proposed

(e.g., Linear Road Benchmark for stream processing [1], YCSB for

scalable key-value stores [15], BigBench for big data analytics [25]).

The main focus of these benchmarks has been on computational

performance. With recent benchmarks for ML/DL-based advanced

data analytics such as ADABench and DAWNBench, there has

been a focus shift toward end-to-end ML pipelines and new eval-

uation metrics such as time to accuracy [14, 42]. Like in DB and

systems communities, the ML community has also been publishing

datasets and benchmarks to support research in many problem

domains from object recognition to natural language processing

[4, 19, 40, 53]. Well-known data archives for time series research

include: UCI [20], UCR [18], and UEA [2]. These archives provide

real-world data collections created for general ML tasks, such as

classification and clustering. While the need for systematically con-

structing AD benchmarks from real data has also been recognized

by others [22], public availability of anomaly datasets is still lim-

ited [43]. To our knowledge, Numenta Anomaly Benchmark (NAB)

is the only public benchmark designed for time series AD [34].

NAB provides 50+ real and artificial datasets, primarily focusing on

real-time AD for streaming data. Compared to ours, each of these

datasets is much smaller in scale and dimensionality, and does not

capture any information to enable ED. NAB also has several techni-

cal weaknesses that hinder its use in practice (e.g., ambiguities in

its scoring function, missing values in its datasets) [48].

Anomaly Detection (AD). There is a long history of research in

AD [13, 27]. The high degree of diversity in data characteristics,

anomaly types, and application domains has led to a plethora of

AD approaches from simple statistical methods [7] to distance-

based [52], density-based [11, 13], and isolation forests [36] to deep

learning (DL) methods [12]. It is beyond the scope of this paper to

provide a complete survey; we refer the reader to recent survey

papers for a full discussion of such methods [12, 13, 27]. In our

experimental study, we particularly focus on three DL methods

that represent the recent state of the art [39, 47, 56] (detailed in

§6). Such DL methods have the potential to handle a variety of

anomaly patterns, such as contextual and collective patterns [13],

and overcome known limitations of previous density- and distance-

based methods that are very sensitive to data dimensions.

Interpretable Machine Learning. Interpretable ML has recently

attracted a lot of attention [41]. Relevant techniques generally be-

long to two broad families: interpretable models and model-agnostic
methods. Interpretable models directly build a human-readable

model from the data (e.g., linear or logistic regression, decision trees

or rules) [41]. In contrast, model-agnostic methods separate expla-

nations from the ML model, hence offering the flexibility to mix

and match ML models with interpretation methods. In the model-

agnostic family, several methods obtain interpretable classifiers by

perturbing the inputs and observing the response [33, 44, 45, 50].

LIME [44] explains a prediction of any classifier by approximating

it locally with an interpretable sparse linear model, and explains

the overall model by selecting a set of representative instances

with explanations. As such, it is generally considered a method for

local explanations. We evaluate LIME in our experimental study.

Anchors [45] improved upon LIME by replacing its linear model

with a logical rule for explaining a data instance. It offers better cov-

erage of data points in a local neighborhood, but does not support

time series data. SHAP scores [37], RESP scores [6], and axiomatic

attribution [50] are also instance-level explanations that assign a

numerical score to each feature, representing their importance in

the outcome. In contrast to local explanations, other work aims to

explain a model via global explanations. Some of them approximate

a DL model using a decision tree [24, 55], or by learning a decision

https://github.com/exathlonbenchmark/exathlon
https://github.com/exathlonbenchmark/exathlon

set [32, 33] directly as explainable models. All of these methods

suffer from lacking a benchmark dataset and evaluation methodol-

ogy. The FICO challenge was designed to evaluate such methods

using a home loan application dataset, with a known label (high or

low risk) for each application, but it relies on manual evaluation of

returned explanations by real-world data scientists [23]. As a result,

it remains hard to compare different ED methods due to the lack of

ground truth explanations and automated evaluation procedures.

ExplainingOutliers in Data Streams. There is a handful of work
in explaining outliers in data streams. Given normal and abnormal

time periods by the user, EXstream finds explanations to best distin-

guish the abnormal periods from the normal ones [58]. MacroBase

helps the user prioritize attention over data streams, with modules

for both AD and ED tasks [3]. Its AD module uses simple statistical

methods like MAD, which is known to be suitable only for detecting

simple point outliers [13]. For a detected anomaly, MacroBase’s ED

module discovers an explanation in the form of conjunctive pred-

icates, by using a frequent itemset mining framework that takes

minimum support and risk ratio as input parameters. We evaluate

both of these techniques in our experimental study.

Explaining Outliers in SQL Query Results. Scorpion explains

outliers in group-by aggregate queries by searching through var-

ious subsets of the tuples that were used to compute the query

answers [54]. Given a set of explanation templates by the user, Roy

et al.’s approach performs precomputation in a given DB to enable

interactive ED [46]. Similarly, given a table, El Gebaly et al.’s work

constructs an explanation table and finds patterns affecting a bi-

nary value of each tuple [21]. These approaches target traditional

DB workloads and are not applicable to our problem. There have

been recent industrial efforts on time series anomaly explanation

and root cause analysis in DB systems [30, 38]. These approaches

require a variety of inputs from the user, e.g., causal hypotheses

[30] or labels of root causes [38], whereas our work focuses on

semi-supervised learning for explainable AD. Moreover, these sys-

tems are largely based on proprietary code and datasets that are

not accessible to the research community.

3 DATASET
The Exathlon dataset has been systematically constructed based

on real data traces collected from a use case scenario that we im-

plemented on Apache Spark. In this section, we first describe this

scenario, followed by the details of how we created the normal and

anomalous data traces themselves.

3.1 Use Case: Spark Application Monitoring
Large-scale data analytics applications are deployed on Apache

Spark clusters everyday. Monitoring the execution of these jobs to

ensure their correct and timely completion via AD can be business-

critical. For example, some of the largest e-commerce platforms run

Spark jobs on petabytes of data each day to analyze purchase pat-

terns, target offers, and enhance customer experiences [49]. Since

results of these jobs affect immediate business decisions such as

inventory management and sales strategies, they are often specified

with deadlines. Anomalies that occur in job execution prevent ana-

lytical jobs frommeeting their deadlines and hence cause disruption

to critical operations on those e-commerce platforms. We model

this widespread and challenging AD use case in our benchmark.

System Setup. Our Spark workload consists of 10 stream process-

ing applications (detailed in our technical report [29]), analyzing

user click streams from the WorldCup 1998 website [35]. As in Fig-

ure 1(a), Data Sender servers send streams at a controlled input rate
to a Spark cluster of 4 nodes, each with 2 Intel

®
Xeon

®
Gold 6130 16-

core processors, 768GB of memory, and 64TB disk. Each application

has certain workload characteristics (e.g., CPU or I/O intensive) and

is executed by Spark in a distributed manner, as in Figure 1(b). Sub-

mitted an application, Spark launches aDriver process to coordinate
the execution. The driver connects to a resource manager (Apache

Hadoop YARN), which launches Executor processes on a subset of

nodes where tasks (units of work on a data partition, e.g., map or
reduce) will be executed in parallel. Given 32 cores, each node can

also run tasks from multiple applications concurrently. As common

real-world practice, we run 5/10 randomly selected applications at

a time. The placement of Driver and Executor processes to cluster

nodes is decided by YARN based on data locality, load on nodes,

etc. Except for I/O activities, YARN offers container isolation for

resource usage of all parallel processes.

Trace Collection. We ran the 10 Spark streaming applications in

our 4-node cluster over a 2.5-month period. The data collected from

each run of a Spark streaming application is called a Trace. Some

of the traces were manually pruned, because they were affected by

cluster downtimes or the injected anomalies were not well reflected

in the data due to failed attempts. After this manual pruning, we

kept 93 traces to constitute the Exathlon dataset.

Metrics Collected. During each application execution, we col-

lected metrics from both the Spark Monitoring and Instrumenta-

tion Interface (UI) and underlying operating system (OS). Table 1(a)

gives a summary of the metrics collected per trace. The Driver offers

243 Spark UI metrics covering scheduling delay, statistics on the

streaming data received and processed, etc. Each executor provides

140 metrics on various time measurements, data sizes, network

traffic, as well as memory and I/O activities. As we wanted to keep

the number of metrics the same for all traces, we set a fixed limit of

5 for the number of Spark executors (3 active + 2 backup). This way,

even if an active executor fails during a run and a backup takes over,

the number of metrics collected stays the same, 5 × 140 = 700, with

null values set for inactive executors. 335 OS metrics for each of the

4 cluster nodes were collected using the Nmon command, capturing

CPU time, network traffic, memory usage, etc. All in all, each trace

consists of a total of 2,283 metrics recorded each second for 7 hours

on average, constituting a multi-dimensional time series.

3.2 Undisturbed vs. Disturbed Traces
In generating our traces, we followed an approach similar to chaos

engineering (i.e., an approach devised by high-tech companies like

Netflix for injecting failures and workload surges into a production

system to verify/improve its reliability) [5] and general systems

monitoring (e.g., Microsoft’s NetMedic [31]). Thus, we first gen-

erated undisturbed traces to characterize the normal execution be-

havior of our Spark cluster; we then introduced various anomalous

events to generate disturbed traces. Table 1(b) provides an overview.

Undisturbed Traces. Uninterrupted executions of 5/10 randomly

selected applications at a time, at parameter settings within the

capacity limits of our Spark cluster, over a period of 1 month, gave

us 59 normal traces of 15.3GB in size. Any instances of occasional

User
click

streams

Disturbed via injected anomalies

Data
Senders

Spark
Cluster

…

Stream
Applications

Spark & OS metrics:
high-dimensional
(2000+) time
series data

(a) Spark application monitoring

Client
application

Driver
Program

YARN container

Spark App
Master

Worker Node

Executor
Long
Task

Receiver

Tasks to
process
data

Launch
executors

Data to other nodes

Worker Node

Executor

Task Task

(b) Spark execution environment (c) Trace with bursty input anomalies

Figure 1: Spark application monitoring, and metrics observed in anomaly instances (a pair of red vertical bars marks a root cause event)

Metric Spark UI Spark UI OS

Type Driver Executor (Nmon)

of 5 x 140 4 x 335

Metrics 243 = 700 = 1340

Total 2,283

Frequency 1 data item per second

Data Items 2,335,781

Duration 649 hours

Total Size 24.6 GB

(a) Metrics and data size

Trace Anomaly # of Anomaly Anomaly Length (RCI + EEI) Data
Type Type Traces Instances min, avg, max Items

Undisturbed N/A 59 N/A N/A 1.4M

Disturbed T1: Bursty input 6 29 15m, 22m, 33m 360K

Disturbed T2: Bursty input until crash 7 7 8m, 35m, 1.5h 31K

Disturbed T3: Stalled input 4 16 14m, 16m, 16m 187K

Disturbed T4: CPU contention 6 26 8m, 15m, 27m 181K

Disturbed T5: Driver failure

11

9 1m, 1m, 1m

128K

Disturbed T6: Executor failure 10 2m, 23m, 2.8h

Ground (app_id, trace_id, anomaly_type, root_cause_start, root_cause_end,
Truth extended_effect_start, extended_effect_end)

(b) Undisturbed traces, disturbed traces, and ground truth labels of 97 anomalies

Table 1: The Exathlon dataset

cluster downtime were manually removed from these traces. It

is important to note that, although undisturbed, these traces still

exhibit occasional variations in metrics due to Spark’s inherent

system mechanisms (e.g., checkpointing, CPU usage by a DataNode

in the distributed file system). Since such variations do appear in

almost every trace, we consider them as part of the normal system

behavior. In other words, our normal data traces include some

“noise", as most real-world datasets typically do.

Disturbed Traces. Disturbed traces were obtained by introducing

anomalous events during an execution. Based on discussions with

industry contacts from the Spark ecosystem, we came up with 6

types of anomalous events. When designing these, we considered

that: (i) they lead to a visible effect in the trace, (ii) they do not

lead to an instant crash of the application (since AD would be of

little help in this case), (iii) they can be tracked back to their root

causes. We briefly describe these anomalies below; please refer to

our report for further details.

Bursty Input (Type 1): To mimic input rate spikes, we ran a disrup-

tive event generator (DEG) on the Data Senders to temporarily

increase the input rate by a given factor for a duration of 15-30

minutes. We repeated this pattern multiple times during a given

trace, creating a total of 29 instances of this anomaly type over 6

different traces. Please see Figure 1(c) for an example.

Bursty Input Until Crash (Type 2): This is a longer version of Type

1 anomalies, where we let the DEG period last forever, crashing

the executors due to lack of memory. When an executor crashes,

Spark launches a replacement, but the sustained high rates keeps

crashing the executors, until Spark eventually decides to kill the

whole application. We injected this anomaly into 7 different traces.

Stalled Input (Type 3): This type of anomaly mimics failures of

Spark data sources (e.g., Kafka or HDFS). To create it, we ran a

DEG that set the input rates to 0 for about 15 minutes, and then

periodically repeated this pattern every few hours, giving us a total

of 16 anomaly instances across 4 different traces.

CPU Contention (Type 4): The YARN resource manager cannot pre-

vent external programs from using the CPU cores that it has allo-

cated to Spark processes, causing scheduling delays to build up due

to CPU contention. We reproduced this anomaly using a DEG that

ran Python programs to consume all CPU cores on a given Spark

node. We created 26 such anomaly instances over 6 different traces.

Driver Failure (Type 5) and Executor Failure (Type 6): Hardware f-

aults or maintenance operations may cause a node to fail all of a

sudden, making all processes (drivers and/or executors) located on

that node unreachable. Such processes must be restarted on another

node, which causes delays. We created such anomalies by failing

driver processes, where the number of processed records drops to

0 until the driver comes back up again in about 20 seconds. We

also created anomalies by failing executor processes, which get

restarted 10 seconds after the failure, but whose effects on metrics

such as processing delay may continue longer. We created 9 driver

failures and 10 executor failures over 11 different traces.

Ground Truth Table. For all of these 97 anomaly instances over

34 anomalous traces, we provide ground truth labels with the in-

formation shown in Table 1(b). Such labels include both root cause
intervals (RCIs) and their respective extended effect intervals (EEIs).
RCIs typically correspond to the time period during which DEG

programs are running, whereas the EEIs are the time periods that

start immediately after an RCI and end when important system

metrics return to normal values or the application is eventually

pushed to crash. The EEIs are manually determined using domain

knowledge. Additional details can be found in our report.

4 BENCHMARK DESIGN
In this section, we present the evaluation methodology we designed

to benchmark anomaly detection (AD) and explanation discovery

Anomaly Detection (AD) Explanation Discovery (ED) Computational
Functionality Functionality Performance

Evaluation AD1: Anomaly Existence ED1: Local Explanation P1: AD Training Scalability

Criteria AD2: Range Detection ED2: Global Explanation P2: AD Inference Efficiency

AD3: Early Detection P3: ED Efficiency

AD4: Exactly-Once Detection

Evaluation Accuracy: Range-based Precision, Conciseness Time, given

Metrics Recall, F-Score, AUPRC Consistency: Stability (ED1), Concordance (ED2) different Dimensionality
Accuracy: Point-based Precision, Recall, F-Score and Cardinality factors

Table 2: The Exathlon evaluation methodology and benchmark design

(ED) algorithms based on the curated, high-dimensional time se-

ries dataset described in the previous section. As summarized in

Table 2, Exathlon is designed to evaluate AD and ED algorithms

in two orthogonal aspects, functionality and computational perfor-
mance, using well-defined metrics. In terms of functionality, the

evaluation criteria capture that an AD/ED algorithm is exposed to

increasingly more challenging requirements as the functionality

level is raised from one to the next. In terms of computational per-

formance, Exathlon provides three complementary criteria that can

be evaluated by varying dimensionality and size of the dataset.

4.1 Anomaly Detection (AD) Functionality
First and foremost, we designed Exathlon targeting semi-supervised
AD techniques (i.e., trained only with normal data, possibly with

occasional noise, and then tested against anomalous data) for range-
based anomalies (i.e., contextual and collective anomalies occurring

over a time interval instead of only at a single time point) over

high-dimensional (i.e., multivariate with 1000s of dimensions) time

series. This decision is informed by our observation of this being

the most common and inclusive usage scenario in practice.

Evaluation Criteria.We identified four key criteria for evaluating

AD functionality, listed below from basic towards advanced, where

a higher AD level includes the requirements of all preceding levels:

AD1 (Anomaly Existence): The first expectation is to flag the exis-

tence of an anomaly somewhere within the anomaly interval (i.e.,
the root cause interval (RCI) + the extended effect interval (EEI)).

AD2 (Range Detection): The next expectation is to report not only

the existence, but also the precise time range of an anomaly. The

wider a range of an anomaly that an AD method can detect, the

better its understanding of the underlying real-world phenomena.

AD3 (Early Detection): The third expectation is to minimize the

detection latency, i.e., the difference between the time an anomaly

is first flagged and the start time of the corresponding RCI.

AD4 (Exactly-Once Detection): The last expectation is to report each
anomaly instance exactly once. Duplicate detections are undesir-

able, because they may not only redundantly cause repeated alerts

for a single anomalous event, but also confusion if those alerts are

for the same anomaly event or not.

EvaluationMetrics.To assess howwell an AD algorithm canmeet

these four functionality levels, we use the customizable accuracy

evaluation framework for time series [51]. This framework extends

the classical precision/recall from point-based data to range-based

data, by introducing a set of tunable parameters. By setting the

values of these parameters in a particular way and applying the

resulting precision/recall formulas to the output of an AD algorithm,

one can assess how well that output measures up to the quality

expectations represented by those parameter settings. We leverage

Figure 2: Range-based precision and recall at AD levels 1-4. Preci-
sion evaluates prediction quality (green out of yellow for each Pi).
Recall evaluates anomaly coverage (green out of blue for each Ri).

this as a mathematical tool to quantify how well an AD algorithm

meets AD1-AD4. Furthermore, we chose to do this in a way that

every level AD𝑖 builds on and adds to the requirements of the

previous level AD𝑖−1. This monotonic design ensures that the AD

functionality score that an algorithm gets (Precision, Recall, or

other metrics obtained by combining them, e.g., F-Score or Area

Under the Precision/Recall Curve (AUPRC)) is always ordered as:

𝑠𝑐𝑜𝑟𝑒 (𝐴𝐷1) ≥ 𝑠𝑐𝑜𝑟𝑒 (𝐴𝐷2) ≥ 𝑠𝑐𝑜𝑟𝑒 (𝐴𝐷3) ≥ 𝑠𝑐𝑜𝑟𝑒 (𝐴𝐷4), which
facilitates evaluating and interpreting results in a systematic way.

In Exathlon, we preferred this design over the alternative of treating

each AD level as orthogonal to enable users to develop/perfect their

models for tasks that become increasingly more challenging.

Figure 2 provides a simple example to illustrate how range-based

precision and recall are computed for different AD levels. Given

real anomaly ranges R1..R4 and predicted anomaly ranges P1..P4

produced by an AD algorithm, we first compute precision/recall

for each range and then average them for overall precision/recall.

Intuitively, precision focuses on the size of TP ranges (colored green)

relative to TP+FP ranges (colored yellow), and recall focuses on the

size of TP ranges relative to TP+FN ranges (colored blue). For AD1,

Recall(Ri) is 1 if Ri is flagged, 0 otherwise. For AD2, Recall(Ri) is

proportional to the relative size of the TP range. For AD3, Recall(Ri)

is further weighted by position of the TP range relative to the start

of Ri. Finally, at AD4, Recall(Ri) degrades to 0 for any Ri that is

not flagged exactly once. Precision(Pi) is computed in an analogous

way, except that AD levels about anomaly coverage quality (AD1

and AD3) are not relevant to it; rather, the main focus is on the

size and number of the real anomaly ranges that are successfully

predicted. In our simple example, it turns out that all AD levels for

Precision consider the same Pi subranges.

To achieve precision and recall at different AD levels, we set the

tunable parameters of the range-based precision/recall framework

with necessary modifications. These details are deferred to our

technical report due to space constraints [29]. Further note that

both the semi-supervised AD algorithms we investigate and the

precision/recall for time series model we use to assess them focus on

binary classification (normal vs. anomalous ranges). On the other

hand, our dataset is inherently a multi-class one (normal ranges

vs. six types of anomalous ranges). This raises a question about

how to evaluate binary predictions under multi-class labels. We

take a holistic approach, and evaluate the AD prediction results

both globally and grouped by type, whenever this is reasonable

and provides useful insights. For example, even though a binary

predictor is not able to detect different anomaly types, we can still

measure its resulting coverage (i.e., recall) for each type. However,

type-wise measurement is not entirely meaningful for precision,

since false positives (FPs) are essentially typeless.

Our benchmark also includes a set of four learning settings LS1-
LS4, ranging from simple to more complex yet realistic ones. These

are detailed in our technical report [29].

4.2 Explanation Discovery (ED) Functionality
Once an anomalous instance is flagged by an AD method, the

next desirable functionality is to find the best explanation for the

anomaly detected, or more precisely, a human-readable formula

offering useful information about what has led to the anomaly.

There have been many ED methods in recent work (see §2).

These differ in the form of “explanation” provided: some return

a logical formula as an explanation [3, 45, 58], others return a

decision tree [55], and some others return a numerical score for

each feature such as the coefficient in linear regression [44] or

the SHAP score [37]. Exathlon does not pose any restrictions on

the form of explanation used. Instead, it takes an abstract view of

explanations. Formally, we model each trace in the test dataset as

a multi-dimensional time series, [𝒙1 . . . 𝒙𝑡 . . . 𝒙𝑛]𝑇 , where each
data item includes 𝑚 features, 𝒙𝑡 = (𝑥𝑡1, . . . , 𝑥𝑡𝑚). A detected

anomaly is a subsequence of the time series that starts at timestamp

𝑡 and has duration𝑤 , 𝑋𝑡,𝑤 = [𝒙𝑡 . . . 𝒙𝑡+𝑤]𝑇 . If an AD method can

provide only point-based detection, then𝑤 is set to 0. We denote

the explanation generated for the anomaly 𝑋𝑡,𝑤 as 𝐹𝑡,𝑤 and treat it

as a function of the features, A = (𝑎1, . . . , 𝑎𝑚), from the data:

𝐹𝑡,𝑤 (𝑎1, . . . , 𝑎𝑚) |= 𝑋𝑡,𝑤

where |= means that 𝐹𝑡,𝑤 “explains” the anomaly 𝑋𝑡,𝑤 . In addition,

we define an extraction function, 𝐺A over 𝐹𝑡,𝑤 , that returns the

set of features used in the explanation (e.g., appearing in a logical

formula or having non-zero coefficients in a regression model):

𝐺A
(
𝐹𝑡,𝑤 (𝑎1, . . . , 𝑎𝑚)

)
= A𝑡,𝑤 ⊆ A

Finally, we define the size of 𝐹𝑡,𝑤 as the size of its feature set A𝑡,𝑤 :

|𝐹𝑡,𝑤 (𝑎1, . . . , 𝑎𝑚) | = |A𝑡,𝑤 |

Evaluation Criteria: Subject of Explanation. The key distinc-

tion that Exathlon makes is whether an ED method is attempting to

explain a single anomaly (local) or a broad set of anomalies (global).
ED1: Local Explanation: This corresponds to explaining one anom-

aly instance, offering a compact yet meaningful piece of information

to help the user understand this particular instance. As mentioned

by LIME [44], the explanation should be locally faithful. In our con-

text, it means that the same explanation can hold over immediate

“neighbors", which are anomaly instances of the same application

and same anomalous type, and around the same time period.

ED2: Global Explanation: Alternatively, an EDmethod may attempt

to explain a (potentially large) set of anomalies, called a global ex-

planation. In general, it is not possible to find an identical succinct

explanation for many different instances. Hence, a global explana-

tion is usually composed of a set of explanations; e.g., LIME [44]

chooses the most representative 𝑘 instances to explain a model. In

our benchmark, it makes most sense to construct a global model for

a set of anomalies of the same type, but potentially from different

applications or different runs of the same application. This helps

us understand for “semantically similar" anomalies, whether an

ED method can return explanations that are consistent, or even of

predictive power of similar anomalies that arise in the future.

Evaluation Metrics. Exathlon evaluates both local and global ex-

planations for three desired properties:

1. Conciseness: This corresponds to the number of features used in

the explanation. Following the Occam’s razor principle, humans

favor smaller, and thus simpler explanations. As different ED meth-

ods return explanations of different forms, our benchmark counts

the number of features used in the explanation as its conciseness

measure. In the ED1 case, that is |𝐹𝑡,𝑤 | defined above. In the ED2

case, a global explanation includes a set of explanations, and its

conciseness measure is the average of the size of each explanation.

2. Consistency: Anomalies of the same type occurring in a similar

context should have consistent explanations. We customize this

notion for ED1 and ED2, respectively. In both cases, we care only

about the set of features employed in the explanation, without

considering the numerical or categorical values used.

Stability (ED1) is the customized consistency measure for ED1.

It means that the anomalies occurring in a similar context (e.g., for

the same application, same run, and same time period) should have

similar explanations, subject to a small perturbation of the data.

Formally, we introduce a subsampling procedure over an anomaly

𝑋𝑡,𝑤 , which generates a set of samples, {𝑋 (𝑖)
𝑡,𝑤}. We denote the corre-

sponding explanations generated for them as {𝐹 (𝑖)
𝑡,𝑤}. The extraction

function for a set of explanations is defined to be the duplicate-

preserving union (likeUnion All in SQL) of the extraction function

of each respective explanation:

𝐺A

({
𝐹
(𝑖)
𝑡,𝑤 (𝑎1, . . . , 𝑎𝑚)

})
=
⋃
𝑖

𝐺A

(
𝐹
(𝑖)
𝑡,𝑤

)
=
⋃
𝑖

A(𝑖)
𝑡,𝑤 = A∪

𝑡,𝑤

Finally, for each feature 𝑎 𝑗 ∈ A∪
𝑡,𝑤 , we count its frequency in this

feature set and normalize it by the total size of the feature set. The

consistency measure is then defined as the entropy of the set of

normalized frequencies of such features, 𝑎 𝑗 , 𝑗 = 1, 2, . . .:

𝐻

(
𝐴∪
𝑡,𝑤

)
= −

∑
𝑗

𝑝 (𝑎 𝑗) log2 𝑝 (𝑎 𝑗), 𝑎 𝑗 ∈ A∪
𝑡,𝑤

𝑝 (𝑎 𝑗) = 1A∪
𝑡,𝑤

(
𝑎 𝑗
)
/
��A∪

𝑡,𝑤

��
Where 1A∪

𝑡,𝑤

(
𝑎 𝑗
)
is here an indicator function that counts the

occurrences of a feature in a multiset. For capturing consistency,

our choice of entropy is motivated by information theory that a set

of explanations that lack consistency will require using more bits

to encode, hence a larger entropy value. In the ideal case, all expla-

nations, {𝐹 (𝑖)
𝑡,𝑤}, are identical, and its entropy takes the minimum

value 0 if the size of the explanation is 1 (denoted as 𝐻1), the value

1 if the size is 2 (𝐻2), or the value 1.58 if the size is 3 (𝐻3).

Concordance (ED2) is the customized consistency measure for

ED2. Here, it means that the anomalies of the same type are ex-

pected to have consistent explanations, subject to larger amounts

of deviation in data due to different time periods in the same run of

a Spark application, different runs of the application, or even differ-

ent Spark applications. Formally, we are given a set of anomalies,

{𝑋𝑡𝑖 ,𝑤𝑖
}. Denote their corresponding explanations as {𝐹𝑡𝑖 ,𝑤𝑖

}. The
consistency measure of this set of explanations is computed simi-

larly to ED1, except that we are replacing the subsampled anomalies,

{𝑋 (𝑖)
𝑡,𝑤}, with the given set of anomalies, {𝑋𝑡𝑖 ,𝑤𝑖

}.
However, one may notice that the conciseness measure also has

an impact on consistency. To factor out this impact, we further

define Normalized Consistency as 2
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

𝐶𝑜𝑛𝑐𝑖𝑠𝑒𝑛𝑒𝑠𝑠
, which captures the

variability of the explanations conditioned on their average size.

3. Accuracy: The last property, which is also the hardest to achieve,

is to view an explanation of an anomaly as a predictive model,

apply it to other similar instances (defined above for ED1 and ED2,

respectively), and then evaluate accuracy of such predictions.

Note that not all explanations can serve as a predictive model.

Only those that are a function mapping a given data item to 0/1,

𝐹𝑡,𝑤 : 𝒙𝑡 ∈ R𝑚 → {0, 1}, can offer predictive power over test data.

For example, a logical formula [3, 45, 58] or a decision tree [55] can

be used to run prediction on new data items, but feature importance

scores or SHAP scores [37] cannot. Even with those ED methods

that return a predictive explanation, it is only a point-based pre-

dictive model. The literature largely lacks ED methods that can

return explanations that characterize a temporal pattern. For this

reason, Exathlon evaluates the accuracy of such explanations using

point-based precision and recall.

In the case of ED1, we are given a particular anomaly 𝑋𝑡,𝑤 . To

measure the accuracy of an ED method, we subsample from 𝑋𝑡,𝑤 ,

yielding a sample, 𝑋
(𝑖)
𝑡,𝑤 . We run the ED method to generate an

explanation, 𝐹
(𝑖)
𝑡,𝑤 . Then we run 𝐹

(𝑖)
𝑡,𝑤 as a predictive model over

a test dataset that includes the remainder of the anomalous data,

𝑋𝑡,𝑤 −𝑋 (𝑖)
𝑡,𝑤 , as well as some normal data that immediately proceeds

or follows 𝑋𝑡,𝑤 . For each test point, we obtain a 0/1 prediction and

compare it to the ground truth. We repeat this procedure for all test

points to compute the final precision, recall, and F-score.

In ED2, we are given a set of anomalies𝑋𝑡𝑖 ,𝑤𝑖
. We randomly split

this set into a training set and a test set. We can run a suitable ED

method to generate a global explanation from the training set, and

then use it as a predictive model over the test set. For each anomaly

in the test set, we compare the point-wise prediction against the

ground truth and compute precision, recall, F-score, similar to ED1.

4.3 Computational Performance
Exathlon can also be used to evaluate computational performance.

Evaluation Criteria and Metrics.ML algorithm performance is

typically measured in terms of the total time it takes for model

training as well as for using that model for making predictions. For

AD, we define P1 and P2 to evaluate training and inference perfor-

mance, respectively. For ED, the time to discover each explanation,

P3, is our third performance metric.

Experimental Parameters. Exathlon offers scalability tests by

varying the following two data-related parameters:

Dimensionality𝑀 : Our dataset consists of high-dimensional time

series data. The 2,283 metrics (features) may be correlated and

contain a lot of null values, which are representative of real-world

datasets. The benchmark leaves it to each user algorithm as how it

copes with the high dimensionality. The relevant techniques may

include dimensionality reduction using linear transformation (e.g.,

PCA), or feature selection by leveraging the correlation structure

in the data. Such choices are left to the discretion of each user

algorithm, and Exathlon reports on the resulting dimensionality𝑀

used in AD and ED tasks.

Cardinality Factor 𝛼 : Besides high dimensionality, our dataset also

has high cardinality,𝑁 = 2,335,781 data items, which is significantly

higher than the existing Numenta Anomaly Benchmark [34]. If the

training time of an algorithm is too long, a user algorithm can

choose to reduce the cardinality via resampling, i.e., by taking

average of the data items in each 𝑙-second interval, which amounts

to a cardinality factor 𝛼 = 1/𝑙 and reduced data size of 𝛼𝑁 .

4.4 Broader Applicability
The Exathlon benchmark is more broadly applicable beyond our

particular dataset [29].

ADBenchmark.The Exathlon benchmark considers all techniques

that 1) train a model for data normality via learning from undis-

turbed traces, 2) assign outlier scores to new test records, and 3)

derive binary predictions from these scores using a threshold.When

meeting the above conditions, our AD metrics can be used with any

labeled time series anomaly test datasets similar to ours. The four

AD levels can be directly usable if labels are available as ranges (like

for real or synthetic datasets from the discord discovery literature,

also used in [9], [8]), while one would need to set our evaluation

parameters to classical precision and recall if labels are available

only as points (like for classification-oriented datasets tuned to

data points of imbalanced classes, some of which are used in [52]).

Applying such metrics also helps assess the performance and effi-

ciency of any time series AD technique capable of assigning outlier

scores and binary predictions to each record of a test sequence.

ED Benchmark.While a user study may be the best way to eval-

uate the usefulness of explanations, it is not always available and

may come at a high cost. Therefore, our benchmark aims to provide

automated evaluation of ED methods based on intuitive metrics,

namely, conciseness, consistency, and accuracy, as well as their var-
ious variants in the ED1 and ED2 settings. As further detailed in

our technical report [29], our metrics cover many of the metrics

used in prior ED works, except for specific metrics that depend on a

particular model or algorithm, which Exathlon deliberately avoids

as a general benchmark, or require ground truth features or visual

inspection by domain experts, which are not always available in

complex domains. As the result of sharing metrics with existing

works, the ED metrics of Exathlon can be applied to the datasets

used in [3, 58], as well as those in [33, 45, 55] for the sake of evaluat-

ing the explanation for a classification result, and those in [37, 44]

with sufficient preprocessing on the text or image data used.

Figure 3:Apipeline for explainable AD onmultivariate time series

5 A FULL PIPELINE FOR EXPLAINABLE AD
Besides a curated dataset and an evaluation methodology, Exathlon

also provides a full pipeline for explainable AD on high-dimensional

time series data. Our pipeline is characterized as follows: (i) It

consists of the typical steps in a deep ML pipeline, ranging from

data partitioning, feature engineering, dimensionality reduction, to

AD and ED. (ii) It implements a variety of AD and ED functionalities

and evaluation modules that score them based on the metrics of the

benchmark (see §4). (iii) It provides an open, modular architecture

that allows different methods to be added and combined through

the pipeline. Figure 3 provides an overview.

1. Data Partitioning. The first phase takes as input the 93 raw

traces, described in §3. It performs simple data cleaning, e.g., re-

placing missing data with a default value. It then performs data

partitioning of the 93 traces. In the default setting, we take all undis-

turbed traces as training data, 𝐷train, and all disturbed traces as test

data, 𝐷test. Other implementation choices are left to our report [29].

2. Data Transformation. As ML algorithms require data transfor-

mations to perform well, our pipeline offers the following steps:

(i) Resampling (optional): For the multivariate time series in each

trace, the user can choose to resample, by taking the average of data

points in each 𝑙-second interval. This step reduces the cardinality
factor, 𝛼 = 1/𝑙 , of the time series data, if the training time turns out

to be too long for some ML algorithms.

(ii) Dimensionality reduction: Since our dataset includes𝑀 = 2, 283

raw features, such high dimensionality may affect both model ac-

curacy, known as the “curse of dimensionality", and training time.

To reduce dimensionality, our pipeline offers a PCA-based method

(with a parameter that controls different coverage of the data vari-

ance and the resulting feature set size), as well as a manually curated

feature set with 19 features selected using domain knowledge.

(iii) Rescaling: Most ML algorithms require the features to be scaled

into a range, e.g., between [0, 1], to better align features whose raw

values may differ by orders of magnitude. A unique issue in our

problem is that each test trace may represent a new context, e.g., a

combination of input rate and concurrency not seen in training data.

As a result, rescaling has to take into account this new context. To

simplify this setting, we provide the option of performing rescaling

per trace, as well as a customized scaling method that rescales test

data dynamically as we run an AD model over the data.

3. AD Modeling. The next phase takes the transformed training

data and builds an AD model. Most AD methods build a model

that describes the normal behavior in the data, called a “normality

model", such that any future (test) data that deviates significantly

from it will be flagged as an anomaly. Our pipeline offers an open

architecture to embrace any AD method that builds such a normal-

ity model to detect anomalies. In this paper, we focus on recent

DL-based ADmethods [39, 47, 56], to explore their potential for han-

dling the complexity of our dataset (high-dimensional, with noise),

anomaly patterns (a variety of contextual and collective anomalies),

and learning settings (noisy semi-supervised AD modeling).

(i) Normality modeling: The first step is to train a normality model

based on a DL method of choice. Most DL methods take input

data of fixed window size 𝑠 . Given each of our traces, we create

sliding windows of size 𝑠 and slide 1, and feed them as input to

the model. Different DL methods model the data in the window

by either trying to forecast the data point following the window

(forecasting-based, e.g., LSTM [10]) or reconstructing the window

via a succinct internal representation (reconstruction based, e.g.,

Autoencoder [28, 56] or GANs [47]). To train each specific model,

we divide the transformed 𝐷train set into internal training (𝐷0

train
),

validation (𝐷1

train
), and test (𝐷2

train
) sets. The DL model is trained

on 𝐷0

train
, with early stopping applied based on the model perfor-

mance on 𝐷1

train
. Hyperparameter tuning is performed by choosing

a configuration that maximizes model performance on 𝐷2

train
.

(ii) Outlier score derivation: We next build an initial AD model, 𝑔 :

𝒙 ∈ R𝑚 → R, which maps each data point to an outlier score.

For forecasting models, we compute the difference, 𝑑 , between

the forecast and true values of each data point, and derive the

outlier score 𝑣 based on 𝑑 ; the higher the 𝑑 value, the higher the 𝑣

score. For reconstruction-based models, we treat the reconstruction

error of each window as the 𝑣 score for that window, and then

derive the 𝑣 score of each data point by averaging the scores of its

enclosed sliding windows. Our pipeline implements the LSTM [10];

Autoencoder (AE) [28]; and BiGAN [47] for AD. Details of these

models and the necessary modifications we made to suit our dataset

are deferred to our technical report due to space constraints.

(iii) Threshold selection: The last step aims to find a threshold on

the outlier score to return a 0/1 prediction. It returns a final AD

model, 𝑓 : 𝒙 ∈ R𝑚 → {0, 1}, mapping each data point to 0/1.

Exathlon does not offer labeled data for threshold selection. Hence,

we provide unsupervised threshold selection fit on 𝐷2

train
. Among

the methods listed in a recent survey [57], we choose three most

used automatic techniques: SD, MAD, and IQR, with the possibility

of repeating them multiple times to filter large outlier scores.

4. AD Inference. Once the AD model is built, the next phase of the

pipeline runs the AD model over each test trace to detect anomalies.

In the context of range-based AD, predicted anomalies for a test

trace are defined as sequences of positive predictions within that

trace, denoted as 𝑋𝑡,𝑤 , which starts at 𝑡 and has duration𝑤 .

5. AD Evaluation. The last AD phase evaluates the AD model for

a given set of requirements. We evaluate both a model’s ability to

separate normal from anomalous data in the outlier score space and

its final AD ability based on threshold selection. The separation

ability (𝑔) is assessed at the trace, application, and global levels.

Global separation is reported as the AUPRC computed on all test

data, while the application/trace-level separation is reported by

computing an AUPRC for each application/trace, and averaging the

results. The detection ability (𝑓) is assessed by reporting its range-

based precision, recall, and F-score, with parameters specified by

the AD functionality. Recall is also reported by anomaly type.

6. ED Execution. For each test trace, AD inference reports a set of

anomalies, and for each reported anomaly, the ED module returns

an explanation for it. Our pipeline supports two families of EDmeth-

ods. (i) Model-free ED methods do not require the access to an ML

model. Instead, they only require the anomalous instance,𝑋𝑡,𝑤 , and

a reference dataset, to generate an explanation. Examples include

EXstream [58] and MacroBase [3] (§2). Our implementation sets the

reference dataset as the subset of data that immediately proceeds

the detected anomaly, denoted by 𝑋𝑡,−𝑤′ , and was classified as nor-

mal. Then the pair of datasets, (𝑋𝑡,𝑤 , 𝑋𝑡,−𝑤′), are provided to the

ED method to generate an explanation, 𝐹𝑡,𝑤 . (ii) Model-dependent
ED methods take not only the anomalous instance, 𝑋𝑡,𝑤 , but also an

AD model, 𝑓 : 𝒙 ∈ R𝑚 → {0, 1}. Examples include LIME [44], An-

chors [45], and SHAP [37] (§2). In our implementation, we provide

the AD model used in inference to the ED method.

7. ED Evaluation. After processing each test trace, we obtain a

set of anomalies with their corresponding explanations. We then

collect the explanations from all the test traces to run the final ED

evaluation and compute conciseness, consistency, accuracy, and

time metrics. Further details are given in our technical report [29].

6 EXPERIMENTAL STUDY
In this section, we apply our benchmark to a select set of AD and

ED methods. While a comprehensive comparison of related AD

and ED methods is beyond the scope of this paper, analyzing the

select methods allows us to demonstrate the value of our dataset

and benchmark. Our analyses include the strengths and limitations

of these AD and ED methods, challenges posed by our dataset and

evaluation criteria, and some potential directions of future research.

6.1 Experimental Setup
In our experimental setup, we integrated into our pipeline three

DL-based AD methods: LSTM [10], AE [28], and BiGAN [47]. We

also integrated three recent ED methods: EXstream [58] and Mac-

roBase [3], from the DB community for outlier explanation in data

streams, and LIME [44], an influential method from the ML com-

munity. Details of these methods can be found in our report [29].

Besides the methods, our pipeline also needs to be configured

with the following options: (a) Data Size and Feature Set (FS):
Since some of the DL models (e.g., GANs) could not complete train-

ing on our cluster using the full dataset, we reduced the data size

by setting the cardinality factor, 𝛼 = 1/15. We also used a reduced

feature set of 19 features,𝑚 = 19, produced by either manual selec-

tion based on domain knowledge, denoted as FScustom, or by PCA

with the same number (19) of features, denoted as FSpca. For each

given training set, we allowed each DL algorithm to train for 1.5

days (including hyperparameter tuning) to obtain an AD model.

(b) Level of AD Evaluation (AD1-4), as described in Table 2, with
a default setting of AD2 (range detection).

6.2 AD Evaluation Results and Discussion
We begin by applying the LSTM [10], AE [28], and BiGAN [47]

methods on our benchmark dataset and report on the AD metrics.

Sep Lvl Method Ave AUPRC for Anomaly Types T1→T6

Trace
LSTM 0.60 0.69 0.81 0.43 0.45 0.77 0.44

AE 0.73 0.83 0.81 0.64 0.76 0.89 0.44

BiGAN 0.61 0.91 0.76 0.15 0.70 0.64 0.51

App
LSTM 0.47 0.57 0.37 0.56 0.38 0.60 0.35

AE 0.57 0.65 0.40 0.63 0.55 0.79 0.43

BiGAN 0.52 0.81 0.36 0.25 0.54 0.69 0.48

Global
LSTM 0.41 0.56 0.32 0.53 0.25 0.53 0.27

AE 0.50 0.60 0.36 0.54 0.47 0.68 0.37

BiGAN 0.49 0.68 0.32 0.39 0.52 0.65 0.39

Table 3: Separation abilities of AD methods (FScustom, AD2)

Experiment 1 (FScustom, AD2). The first experiment compares

the three ADmethods under a default setting, (FScustom, AD2). Here,

we focus on the model’s ability to separate anomalous data from

normal data, via the analysis of trace-level, application-level, and

global AUPRC results summarized in Table 3.

(1) Trace-level Separation: We first consider trace-level separation.

All three methods achieved decent AUPRC scores for most (or a

subset) of anomaly types, with AE achieving the highest score of

0.73. Figure 4(a) shows the distribution of outlier scores assigned by

the AEmethod to the records in the T2 trace of Application 2. In this

example, the normal records are separated from anomalous ones

for most the data. This shows that our data indeed carries useful

signals that can be picked up by the AD method, which allows the

AD method to perform better than naive classifiers that randomly

assign a normal or abnormal label, or assign each instance to the

majority (normal) class – we refer to this remark as R1.
(2) Application-level and Global Separation: Moving from the

trace- to application- to global level separation, the AUPRC scores

gradually decrease. This is because the separation of normal from

anomalous instances in outlier score becomes increasingly harder

as we broaden the contexts in which data is generated. Figure 4(b)

shows the distributions of outlier scores assigned by the AE method

to all disturbed traces of Application 2.
1
At the application level, the

outlier scores assigned to normal instances spread further, and start

to mix with the outlier scores assigned to T2 anomaly instances,

hence decreasing the model’s separation ability. At the global level,

this trend is aggravated, as we can see in Figure 4(c).

To understand why, Figures 4(e) and 4(f) show the outlier scores

of the T1 and T2 traces of Application 2. The outlier scores assigned

to some normal points in the T1 trace are in fact higher than the

T2 anomalies, due to two reasons: (a) Different contexts: T1 and T2

traces were generated under different input rates, with the rate

increase in T1 events around 2.5 times higher than in the T2 events.

(b) Noisy training data: The normal data in T1 is “noisy". In fact, the

normal records in the T1 trace that obtained higher outlier scores

than the T2 anomaly exactly match the high processing delay due

to Spark checkpointing activities. This indicates that the model has

failed to capture these activities as normal behavior.

The above analyses show that our dataset carries a great deal

of variability across traces (e.g., different input rates, concurrency

among programs), and a small amount of noise. Such variability

and noise make our dataset challenging for the three DL-based AD

methods tested in this study (R2).

1
For readability, outlier scores greater than 3 times the IQR were grouped together

and shown separately in the right plot, which shows the proportion of records with

outlier scores beyond 3∗IQR for each anomaly type.

(a) Trace-wise separation: T2 trace of Application 2 (b) App-level separation: all disturbed traces of Application 2

(c) Global-level separation: all disturbed traces with “best" AD2 threshold (d) Modeling test samples with “best" AD2 threshold

(e) Record-wise outlier scores on a T1 trace of Application 2 (f) Record-wise outlier scores on a T2 trace of Application 2

Figure 4: Outlier score distributions and record-wise outlier scores using the AE method (FScustom)

AD1 F1 Prec Rcl Rcl for Anomaly Types T1→T6

LSTM 0.77 0.67 0.96 1.00 1.00 1.00 1.00 1.00 0.67

AE 0.59 0.54 0.76 1.00 0.88 1.00 0.57 1.00 0.31

BiGAN 0.28 0.90 0.19 0.59 0.00 0.00 0.10 0.17 0.06

AD2 F1 Prec Rcl Rcl for Anomaly Types T1→T6

LSTM 0.38 0.67 0.29 0.42 0.11 0.55 0.16 0.60 0.10

AE 0.52 0.54 0.60 0.97 0.15 0.67 0.40 1.00 0.15

BiGAN 0.17 0.90 0.10 0.30 0.00 0.00 0.06 0.17 0.00

AD3 F1 Prec Rcl Rcl for Anomaly Types T1→T6

LSTM 0.29 0.67 0.20 0.27 0.04 0.37 0.10 0.58 0.08

AE 0.51 0.54 0.57 0.96 0.06 0.62 0.37 1.00 0.14

BiGAN 0.14 0.90 0.08 0.23 0.00 0.00 0.05 0.17 0.00

AD4 F1 Prec Rcl Rcl for Anomaly Types T1→T6

LSTM 0.13 0.67 0.08 0.00 0.00 0.07 0.00 0.58 0.06

AE 0.49 0.52 0.56 0.94 0.06 0.58 0.37 1.00 0.14

BiGAN 0.14 0.86 0.08 0.23 0.00 0.00 0.05 0.17 0.00

Table 4: Median anomaly detection results (FScustom, AD1:4)

(3) Anomaly Type Comparison: For different anomaly types, Ta-

ble 3 shows that at the global level, the best separated types are T1,

T3 and T5 for LSTM and AE, and T1, T4 and T5 for BiGAN. The good

performance for T1 (bursty input) and T5 (driver failure) across all

methods are largely due to the fact these types have very visible

impacts on many of the features output by FScustom, e.g., features

relating to the input rate, application delays and memory usage for

bursty input, and virtually all features for driver failure. However,

most methods offer poor separation for T6 (executor failure) anom-

alies, due to the limited impact such anomalies have on the FScustom

features, where the 6 executor features are averaged across active ex-
ecutor spots. As such, the impact of an executor going down is only

visible during the (short) period of time for which it shuts down

and is potentially replaced. The above discussion shows that the

variety of our anomaly types present signals of different strength

levels in the data. They offer challenges for designing, as well as

opportunities for analyzing, different AD methods, and feature en-

gineering in the AD method will play a key role in preserving the

signals for each anomaly type. (R3).

(4) Method Comparison: Regarding the separation ability, the

best performing method is AE, followed by BiGAN, then LSTM

for all levels. AE (and BiGAN) typically produce smooth point-

wise outlier scores, by taking averages over overlapping windows.

The outlier scores produced by the LSTM, however, often exhibit

discontinuous spikes. For the task of range detection (AD2), such

frequent mixes of high and low values make it hard to produce

continuous ranges of high outlier scores, penalizing recall when

the outlier threshold is set high or precision when the threshold

is set low. Hence, we observe differences among AD methods as

follows: for range detection (AD2), AE works the best while LSTM

is the worse, mostly because the non-smooth outlier scores of LSTM

make it hard to handle range anomalies (R4).
Experiment 2 (FScustom, AD2).We next examine how the sepa-

ration abilities translate into actual AD performance via threshold

selection. Detection metrics for AD2 (range detection) are reported

in the second section of Table 4. To generate the results, we ran

each of the STD, IQR and MAD thresholding techniques, leading to

different AD performance results for each AD method, for which

we report the median performance in Table 4.

Among the three methods, AE provided the best median F1-

score, due to its best separation ability reported in the previous

experiment. However, this F1-score of AE is not very high (0.52).

This is due to the difficulty in choosing a single threshold 𝑇 on the

outlier score for all traces and anomaly types in an unsupervised
setting, where we select 𝑇 by using part of the training data, 𝐷2

train
.

Figure 4(d) shows the distribution of the outlier scores assigned to

the 𝐷2

train
samples (the 3% largest were cut for readability), along

with the best threshold found on them. This threshold is then used

to flag anomalies in the test (disturbed) traces, as shown in Fig-

ure 4(c). We see that the anomalies whose scores lie left to𝑇 will be

missed, penalizing recall, and the normal records whose scores lie

right to 𝑇 will lead to false positives, hurting precision. The above

discussion shows that besides data characteristics, our benchmark

Figure 5: Median F1-score as training data increases for the three
methods (FScustom, AD2)

poses another challenge on AD methods due to the requirement of

unsupervised threshold selection (R5).
Experiment 3 (FScustom, AD2). To better understand the reasons
behind the low F1-scores, we study the effect of the amount of

training data on each method in Figure 5. The amount of training

data was varied by starting from the largest undisturbed trace, and

then randomly adding one undisturbed trace at a time until reaching

the full set of undisturbed traces (except for the BiGAN method

for which multiple traces could be added at once due to its longer

training time). For each method, the above process was repeated 5

times. The average performance is reported in Figure 5 using solid

lines, while the shaded areas correspond to the confidence region

with width of one standard deviation.

We can see that the three methods behave quite differently as

training data increases. First, the AE method benefits a lot from the

first few traces that it obtains for training, but quickly reaches a

performance plateau afterwards. This seems to indicate that what is

holding back the AE performance is not simply the lack of training

data, but rather the actual challenges posed by our benchmark (see

remarks R2, R3, R5). On the other hand, the LSTM method and the

BiGANmethod to some extent seem to requiremore data to perform

well. While LSTM exhibits roughly a linear trend, BiGAN appears

less stable, which probably arises from the fact that GANs typically

require more manual and calibrated tuning in order to converge to

a good solution. For both these methods, adding more data could

be beneficial, along with more tuning and experimentation to try

to improve performance. Overall, this experiment suggests that

the F1-score observed for AE could be primarily due its technical

limitations for handling complex data, extracting most informative

features for different anomaly types, and unsupervised threshold

selection, while LSTM and BiGAN can further benefit from more

training data and extensive hyperparameter tuning (R6).
Experiment 4 (FScustom). We next evaluate the AD methods un-

der different AD levels, AD1-4, of our benchmark. Results are re-

ported in Table 4. (AD1) Given our range-based anomalies, a good

recall score is easier to reach under AD1. We observe a general

increase in performance for all methods. LSTM becomes the best

method, because its spikes inside a real anomaly range are now suf-

ficient for getting a good recall score, while using a high threshold

to ensure good precision. (AD3) As AD3 awards less recall scores

for late detection, AE maintains its performance, indicating that

its reported range anomaly is not concentrated at the end of the

true range. For LSTM, the performance drops because the early

detections it makes are more scattered and hence weigh less in

recall. (AD4) In AD4, reporting the same anomaly multiple times

reduces the recall score. AE and BiGAN can maintain their perfor-

mance while LSTM degrades significantly. Again, the tendency of

(a) EXstream (b) MacroBase (c) LIME

Figure 6: Example explanations given by EXstream, MacroBase,
and LIME for two instances of stalled input (T3) anomaly

LSTM to produce outlier scores in discontinuous spikes makes it

more likely to report multiple anomalies where only one is needed.

Hence, we see that the different AD levels in our benchmark indeed

pose varying levels of challenges to the AD methods (R7).

6.3 ED Evaluation Results and Discussion
Next, we report results of running MacroBase [3], EXstream

[58], LIME [44] on our benchmark dataset to generate anomaly

explanations. For each anomaly, MacroBase and EXstream tried to

explain its separation from a reference dataset, while LIME tried to

explain the reason behind the high record outlier scores assigned

by an AD model (AE in our case). Since LIME only explained the

predictions of window size 𝑠 of our AE model, if an anomaly was

larger than 𝑠 , we created multiple windows for LIME to explain.

Table 5 summarizes conciseness, consistency, normalized consis-
tency, accuracy, and running time for local (ED1) or global (ED2)
explanations using the three ED methods. We also show example

explanations in Figure 6, which are the explanations returned for

two instances of stalled input anomaly (T3). Only feature indices are

reported here (for feature names, see [29]). Figure 6(a) reports the

complete explanations returned by EXstream, while showing the

features appearing in the explanations for the others due to limited

space. For each method, we also show the features returned when

explaining 5 different samples of anomaly instance #12 (stability).

Explanations. The explanations shown highlight the impact of

feature correlation. Although MacroBase and EXstream output dif-

ferent features (Figure 6(a) and 6(b)), they might both be correct.

For example, features 4, 5 and 14 are related to processed records,

received records, and CPU time [29]. For a human user, it makes

sense for these three features to be used for a stalled input anom-

aly. EXstream picks up only one most important feature among

the correlated ones. MacroBase returns all important features no

matter whether they are correlated or not. LIME is known to have

inconsistency issues [41], which is also illustrated here.

Algorithm Analyses.We discuss the results for each algorithm.

MacroBase. (1) MacroBase generated explanations of 3.16 features

on avg. across anomaly types. For some anomaly types, e.g., T3, it

generated longer explanations (6-7 features). The algorithm does

not consider compactness, outputting longer explanations in pres-

ence of correlated features. (2) The explanations it provided were

not very locally stable (ED1 consistency), with an entropy score

outside the ideal range of 𝐻1 = 0 and 𝐻3 = 1.58. This relates to a

correlation between conciseness and stability: as Table 5 shows for

different anomaly types, longer explanations tend to be less stable.

For global consistency, its concordance value further degrades, us-

ing inconsistent features for explanations of the same anomaly type.

MacroBase EXstream LIME

Concise Consistency Norm.Cons Prec Rel Time (sec) Concise Consistency Norm.Cons Prec Rel Time (sec) Concise Consistency Norm.Cons Time (sec)

ED1 ED2 ED1 ED2 ED1 ED2 ED1 ED2 ED1 ED2 ED1/2 ED1 ED2 ED1 ED2 ED1 ED2 ED1 ED2 ED1 ED2 ED1/2 ED1 ED2 ED1 ED2 ED1 ED2 ED1/2

T1 2.36 2.10 1.41 2.12 1.23 2.06 0.96 0.81 0.92 0.84 0.87 2.25 2.17 1.59 3.36 1.56 4.74 0.88 0.82 0.75 0.45 0.0162 3.58 5.86 3.04 3.82 2.33 2.41 259

T2 1.94 1.71 0.98 1.33 1.11 1.46 0.97 0.79 0.97 0.90 1.05 3.89 3.71 2.13 3.59 1.37 3.25 0.71 0.87 0.53 0.51 0.0087 3.74 9.29 3.42 4.16 2.88 1.93 237

T3 6.08 4.83 2.98 3.07 1.37 1.74 0.97 0.88 0.91 0.51 8.75 3.35 3.75 2.13 3.67 1.57 3.40 0.82 0.78 0.65 0.18 0.0156 3.83 6.58 3.28 3.93 2.59 2.32 254

T4 1.51 1.55 1.11 2.90 1.59 4.82 0.73 0.52 0.77 0.42 0.14 3.41 3.80 1.80 3.78 1.27 3.62 0.61 0.51 0.33 0.11 0.0106 4.03 6.10 3.34 3.97 2.56 2.57 241

T5 4.63 1.71 2.79 2.79 1.77 4.04 0.13 0.29 0.11 0.40 0.96 1.66 1.71 1.08 2.52 1.47 3.35 0.34 0.40 0.34 0.41 0.0067 4.57 4.33 3.53 3.72 2.55 3.04 242

T6 2.42 1.75 1.55 2.22 1.29 2.66 0.80 0.17 0.82 0.50 0.24 2.75 2.88 1.20 3.50 1.30 3.94 0.72 0.30 0.59 0.27 0.0088 4.20 4.43 3.44 3.65 2.66 2.84 239

Ave 3.16 2.28 1.80 2.40 1.39 2.80 0.76 0.58 0.75 0.59 2.00 2.88 3.00 1.66 3.41 1.42 3.72 0.68 0.61 0.53 0.32 0.0111 3.99 6.10 3.34 3.88 2.60 2.52 245

Table 5: Results of ED methods, MacroBase, EXstream, and LIME, in terms of conciseness, consistency, accuracy, and running time

This issue was alleviated by measuring normalized consistency. In

the example of Fig. 6(b), the stability of MacroBase for instance #12

is 3.09, while its normalized stability is 1.03, almost perfect. The

latter value is in accordance with human intuition, since across

the 5 runs, the reported features were almost the same. (3) Its ED1

accuracy is good for some anomaly types (e.g., T1-3), but poor for

some others (e.g., T5). As expected, its accuracy degraded from ED1

to ED2. (4) Its execution time is around 1 sec, except for T3.

EXstream. (1) EXstream provided more concise explanations, us-

ing multiple techniques to prune marginally related features. (2) It

achieved good explanation stability, with an average entropy score

of 𝐻3 = 1.58, but worse explanation concordance, be it normalized

or not. This is likely due to our exclusion of the false positive filter-

ing step, requiring additional labels. Thus, some features standing

out as different during anomalous periods might not be related to

the anomaly but to normal changes between two contiguous peri-

ods. Such features are likely to be more distinct between instances

of different contexts than for perturbations of the same instance,

hence the greater effect on concordance. (3) Its ED1 accuracy is

good for some anomaly types (e.g., T1-3), but not for others (e.g., T3-

6), especially in recall. Its accuracy degraded for ED2, as expected.

(4) Its execution time is very short, being a streaming algorithm.

LIME. (1) LIME generated longer explanations, e.g., for anomaly

types T1-T3. (2) Its consistency scores were better maintained from

ED1 to ED2, with normalized metrics alleviating the observed cor-

relations between size and consistency. Accuracy measures do not

apply to LIME, since it could not be compared to the others for

prediction. (4) Its execution time is very long, up to 245 sec on avg.

Comparison.We next compare the three methods, first in concise-
ness and stability. MacroBase lacks a mechanism for minimizing the

size of an explanation, while LIME relies on sparse linear regression

to select few features. Neither was as effective as EXstream, which

eagerly prunes marginally related features through its heuristic to

a non-monotone submodular optimization problem. Stability being

positively correlated to conciseness, the longer explanations of Mac-

roBase and LIME are also less stable. For global explanations, concor-
dancewas harder to achieve than stability for all methods, i.e., a user

is likely to see explanations built on different features for anomalies

of the same type, which is undesirable. This lack of concordance

indicates a direction for future ED research. For local accuracy, the
logical formulas derived by MacroBase and EXstream on a subset

of each instance could be evaluated for AD on their remaining part

and neighboring normal data. MacroBase was more accurate, pay-

ing the cost of evaluating a large number of feature combinations,

while EXstream suffered in recall, “overfitting" each anomalous

instance. LIME, returning only feature importance scores, could not

be evaluated for accuracy. In the global setting, accuracy degraded

for all methods. By hard-coding context-dependent constants in

predicates, the explanations of MacroBase and EXstream did not

generalize well to other contexts (e.g., different input rates). This

phenomenon is intrinsic to point-based explanations. In order to

free explanations from such context-dependent predicates, transi-

tioning from point-based to temporal explanations, capturing causal

and context-free relationships between events, could be a direction

for future research. In efficiency, EXstream was the fastest, taking

0̃.01 sec to generate explanations, against 0.2-9 sec for MacroBase

and > 4 min for LIME. As such, LIME is unsuitable for stream pro-

cessing use cases, with its high latency preventing timely corrective

actions, e.g., avoiding an application crash or denial of service.

7 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we presented Exathlon – a novel public benchmark for

explainable AD, and demonstrated its utility through an experimen-

tal analysis of selected AD and ED algorithms from recent literature.

Our AD results show that Exathlon’s dataset is valuable for evalu-

ating AD algorithms due to rich signals and diverse anomaly types

included in the data. Yet more importantly, our results reveal the

limitations of these AD methods for semi-supervised learning un-

der noisy training data and mixed anomaly types. On the ED front,

the literature lacked comparative analysis tools and studies. Our

benchmark fills this gap by providing a common framework for

analyzing the strengths and limitations of diverse ED methods in

their conciseness, consistency, accuracy, and efficiency. These re-

sults call for new research to advance the current state of the art of

AD and ED, as well as integrated solutions to anomaly and expla-

nation discovery. For a true integration, ED methods should first

become capable of discovering range-based explanations, which

is also a key step towards automated root cause analysis (a.k.a.,

“why explanations"). Exathlon’s dataset and extensible design are

well-positioned to support research progress towards these goals

in the long term. Going forward, we envision Exathlon to develop

into a collaborative community platform for fostering reproducible

research and experimentation in the area. We intend to actively

maintain and extend this platform, as well as welcoming feedback

and contributions from the AD and ED communities.

ACKNOWLEDGMENTS
This work was supported by the European Research Council (ERC)

Horizon 2020 research and innovation programme (grant n725561).

REFERENCES
[1] Arvind Arasu, Mitch Cherniack, Eddie F. Galvez, David Maier, Anurag Maskey,

Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear Road:

A Stream Data Management Benchmark. In VLDB Conference. 480–491.
[2] Anthony J. Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large,

Aaron Bostrom, Paul Southam, and Eamonn J. Keogh. 2018. The UEA Multi-

variate Time Series Classification Archive, 2018. CoRR abs/1811.00075 (2018).

arXiv:1811.00075 http://arxiv.org/abs/1811.00075 Accessed: 2021-07-27.

[3] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and

Sahaana Suri. 2017. MacroBase: Prioritizing Attention in Fast Data. In ACM
International Conference on Management of Data (SIGMOD). 541–556.

[4] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan

Gutfreund, Josh Tenenbaum, and Boris Katz. 2019. ObjectNet: A Large-Scale

Bias-controlled Dataset for Pushing the Limits of Object Recognition Models.

In Annual Conference on Neural Information Processing Systems (NeurIPS). 9453–
9463.

[5] Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski,

Justin Reynolds, and Casey Rosenthal. 2016. Chaos Engineering. IEEE Software
33, 3 (2016), 35–41.

[6] Leopoldo E. Bertossi, Jordan Li, Maximilian Schleich, Dan Suciu, and Zografoula

Vagena. 2020. Causality-based Explanation of Classification Outcomes. In Fourth
Workshop on Data Management for End-To-End Machine Learning (DEEM). 6:1–
6:10.

[7] Ana Maria Bianco, Marta Garcia Ben, Eunie Jr. Martinez, and Victor J. Yohai.

2001. Outlier Detection in Regression Models with ARIMA Errors using Robust

Estimates. Journal of Forecasting 20, 8 (2001), 565–579.

[8] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas. 2020.

Automated Anomaly Detection in Large Sequences. In IEEE 36th International
Conference on Data Engineering (ICDE). 1834–1837.

[9] Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-Based Subsequence

Anomaly Detection for Time Series. Proceedings of the VLDB Endowment (PVLDB)
13, 12 (2020), 1821–1834.

[10] Loïc Bontemps, Van Loi Cao, James McDermott, and Nhien-An Le-Khac. 2016.

Collective Anomaly Detection Based on Long Short-Term Memory Recurrent

Neural Networks. In International Conference on Future Data and Security Engi-
neering (FDSE), Vol. 10018. 141–152.

[11] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.

LOF: Identifying Density-based Local Outliers. In ACM International Conference
on Management of Data (SIGMOD). 93–104.

[12] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep Learning for Anomaly

Detection: A Survey. CoRR abs/1901.03407 (2019). arXiv:1901.03407 http://arxiv.

org/abs/1901.03407 Accessed: 2021-07-27.

[13] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:

A Survey. ACM Computing Surveys 41, 3 (2009), 15:1–15:58.
[14] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian

Zhang, Peter Bailis, Kunle Olukotun, Christopher Ré, and Matei Zaharia. 2019.

Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance

Benchmark. ACM SIGOPS Operating Systems Review 53, 1 (2019), 14–25.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-

sell Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In ACM
Symposium on Cloud Computing (SoCC). 143–154.

[16] The Standard Performance Evaluation Corporation. [n.d.]. SPEC Benchmarks.

https://www.spec.org/ Accessed: 2021-07-27.

[17] The Transaction Processing Council. [n.d.]. TPC Benchmarks. http://www.tpc.

org/ Accessed: 2021-07-27.

[18] Hoang Anh Dau, Anthony J. Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan

Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn J.

Keogh. 2018. The UCR Time Series Archive. CoRR abs/1810.07758 (2018).

arXiv:1810.07758 http://arxiv.org/abs/1810.07758 Accessed: 2021-07-27.

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Ima-

geNet: A Large-Scale Hierarchical Image Database. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 248–255.

[20] Dheeru Dua and Casey Graff. [n.d.]. The UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml/ Accessed: 2021-07-27.

[21] Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Divesh Srivastava.

2014. Interpretable and Informative Explanations of Outcomes. Proceedings of
the VLDB Endowment (PVLDB) 8, 1 (2014), 61–72.

[22] Andrew F. Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-

Keen Wong. 2013. Systematic Construction of Anomaly Detection Benchmarks

from Real Data. In ACM SIGKDD Workshop on Outlier Detection and Description
(ODD). 16–21.

[23] FICO. 2018. Explainable Machine Learning Challenge. https://community.fico.

com/s/explainable-machine-learning-challenge Accessed: 2021-07-27.

[24] Nicholas Frosst and Geoffrey E. Hinton. 2017. Distilling a Neural Network

Into a Soft Decision Tree. In International Workshop on Comprehensibility and
Explanation in AI and ML.

[25] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain

Crolotte, andHans-Arno Jacobsen. 2013. BigBench: Towards an Industry Standard

Benchmark for Big Data Analytics. In ACM SIGMOD International Conference on
Management of Data. 1197–1208.

[26] Jim Gray. 1993. The Benchmark Handbook for Database and Transaction Systems.
Morgan Kaufmann.

[27] Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. 2014. Outlier

Detection for Temporal Data: A Survey. IEEE Transactions on Knowledge and

Data Engineering 26, 9 (2014), 2250–2267.

[28] Geoffrey Hinton and Ruslan Salakhutdinov. 2006. Reducing the Dimensionality

of Data with Neural Networks. Science 313, 5786 (2006), 504 – 507.

[29] Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime

Tatbul. 2021. Exathlon: A Benchmark for Explainable Anomaly Detection over

Time Series. CoRR abs/2010.05073 (2021). arXiv:2010.05073 http://arxiv.org/abs/

2010.05073 Accessed: 2021-07-27.

[30] Vimalkumar Jeyakumar, Omid Madani, Ali Parandeh, Ashutosh Kulshreshtha,

Weifei Zeng, and Navindra Yadav. 2019. ExplainIt! - A Declarative Root-cause

Analysis Engine for Time Series Data. In ACM International Conference on Man-
agement of Data (SIGMOD). 333–348.

[31] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal, Jitu Padhye,

and Victor Bahl. 2009. Detailed Diagnosis in Enterprise Networks. In ACM
SIGCOMM Conference. 243–254.

[32] Martin Kopp, Tomás Pevný, and Martin Holena. 2020. Anomaly Explanation

with Random Forests. Expert Systems with Applications 149 (2020), 113187.
[33] Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. 2016. Interpretable

Decision Sets: A Joint Framework for Description and Prediction. InACM SIGKDD
Conference. 1675–1684.

[34] Alexander Lavin and Subutai Ahmad. 2015. Evaluating Real-Time Anomaly

Detection Algorithms - The Numenta Anomaly Benchmark. In IEEE International
Conference on Machine Learning and Applications (ICMLA). 38–44.

[35] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and Prashant J. Shenoy.

2012. SCALLA: A Platform for Scalable One-Pass Analytics Using MapReduce.

ACM Transactions on Database Systems 37, 4 (2012), 27.
[36] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2012. Isolation-Based Anomaly

Detection. ACM Transactions on Knowledge Discovery from Data 6, 1 (2012),

3:1–3:39.

[37] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to InterpretingModel

Predictions. InAnnual Conference on Neural Information Processing Systems (NIPS).
4765–4774.

[38] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xin-

hao Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu, Feifei Li, Changcheng

Chen, and Dan Pei. 2020. Diagnosing Root Causes of Intermittent Slow Queries

in Large-Scale Cloud Databases. Proceedings of the VLDB Endowment (PVLDB)
13, 8 (2020), 1176–1189.

[39] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. 2015. Long

Short TermMemory Networks for Anomaly Detection in Time Series. In European
Symposium on Artificial Neural Networks (ESANN). 89–94.

[40] George A.Miller. 1995. WordNet: A Lexical Database for English. Communications
of the ACM 38, 11 (1995), 39–41.

[41] Christoph Molnar. 2021. Interpretable Machine Learning: A Guide for Making

Black Box Models Explainable. https://christophm.github.io/interpretable-ml-

book/ Accessed: 2021-07-27.

[42] Tilmann Rabl, Christoph Brücke, Philipp Härtling, Stella Stars, Rodrigo Escobar

Palacios, Hamesh Patel, Satyam Srivastava, Christoph Boden, Jens Meiners, and

Sebastian Schelter. 2019. ADABench - Towards an Industry Standard Benchmark

for Advanced Analytics. In TPC Technology Conference on Performance Evaluation
and Benchmarking (TPCTC). 47–63.

[43] Shebuti Rayana. 2016. Outlier Detection DataSets (ODDS) Library. http:

//odds.cs.stonybrook.edu/ Accessed: 2021-07-27.

[44] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I

Trust You?": Explaining the Predictions of Any Classifier. ACM SIGKDD Confer-
ence, 1135–1144.

[45] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-

Precision Model-Agnostic Explanations. AAAI Conference.
[46] Sudeepa Roy, Laurel Orr, and Dan Suciu. 2015. Explaining Query Answers with

Explanation-Ready Databases. Proceedings of the VLDB Endowment (PVLDB) 9, 4
(2015), 348–359.

[47] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-

Erfurth, and Georg Langs. 2017. Unsupervised Anomaly Detection with Genera-

tive Adversarial Networks to Guide Marker Discovery. In International Conference
on Information Processing in Medical Imaging (IPMI). 146–157.

[48] Nidhi Singh and Craig Olinsky. 2017. Demystifying Numenta Anomaly Bench-

mark. In International Joint Conference on Neural Networks (IJCNN). 1570–1577.
[49] Spark-uses [n.d.]. How are Big Companies using Apache Spark.

https://medium.com/@tao_66792/how-are-big-companies-using-apache-

spark-413743dbbbae Accessed: 2021-07-27.

[50] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic Attribution

for Deep Networks. ICML, 3319–3328.
[51] Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich.

2018. Precision and Recall for Time Series. In Annual Conference on Neural
Information Processing Systems (NeurIPS). 1924–1934.

[52] Luan Tran, Liyue Fan, and Cyrus Shahabi. 2015. Distance Based Outlier Detection

for Data Streams. Proceedings of the VLDB Endowment (PVLDB) 9, 4 (2015), 1089–
1100.

http://arxiv.org/abs/1811.00075
http://arxiv.org/abs/1901.03407
http://arxiv.org/abs/1901.03407
https://www.spec.org/
http://www.tpc.org/
http://www.tpc.org/
http://arxiv.org/abs/1810.07758
http://archive.ics.uci.edu/ml/
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
http://arxiv.org/abs/2010.05073
http://arxiv.org/abs/2010.05073
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://odds.cs.stonybrook.edu/
http://odds.cs.stonybrook.edu/
https://medium.com/@tao_66792/how-are-big-companies-using-apache-spark-413743dbbbae
https://medium.com/@tao_66792/how-are-big-companies-using-apache-spark-413743dbbbae

[53] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.

Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for Natu-

ral Language Understanding. In International Conference on Learning Representa-
tions (ICLR).

[54] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers in

Aggregate Queries. Proceedings of the VLDB Endowment (PVLDB) 6, 8 (2013),

553–564.

[55] Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, and

Finale Doshi-Velez. 2018. Beyond Sparsity: Tree Regularization of Deep Models

for Interpretability. AAAI Conference.

[56] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying

Liu, Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, and Honglin

Qiao. 2018. Unsupervised Anomaly Detection via Variational Auto-Encoder for

Seasonal KPIs in Web Applications. In International World Wide Web Conference
(WWW). 187–196.

[57] Jiawei Yang, Susanto Rahardja, and Pasi Fränti. 2019. Outlier Detection: How to

Threshold Outlier Scores?. In International Conference on Artificial Intelligence,
Information Processing and Cloud Computing (AIIPCC). 37:1–37:6.

[58] Haopeng Zhang, Yanlei Diao, and Alexandra Meliou. 2017. EXstream: Explaining

Anomalies in Event Stream Monitoring. In International Conference on Extending
Database Technology (EDBT). 156–167.

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	3.1 Use Case: Spark Application Monitoring
	3.2 Undisturbed vs. Disturbed Traces

	4 Benchmark Design
	4.1 Anomaly Detection (AD) Functionality
	4.2 Explanation Discovery (ED) Functionality
	4.3 Computational Performance
	4.4 Broader Applicability

	5 A Full Pipeline for Explainable AD
	6 Experimental Study
	6.1 Experimental Setup
	6.2 AD Evaluation Results and Discussion
	6.3 ED Evaluation Results and Discussion

	7 Conclusions and Future Directions
	Acknowledgments
	References

