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The mean flow induced by a three-dimensional propagating internal gravity wave beam

in a uniformly stratified fluid, is studied experimentally and theoretically. Previous re-

lated work concentrated on the early stage of mean-flow generation, dominated by the

phenomenon of streaming — a horizontal mean flow that grows linearly in time — due

to resonant production of mean potential vorticity (PV) in the vicinity of the beam. The

focus here, by contrast, is on the long-time mean-flow evolution. Experimental observa-

tions in a stratified fluid tank for times up to t = 120 T0, where T0 is the beam period,

reveal that the induced mean flow undergoes three distinct stages: (i) resonant growth

of streaming in the beam vicinity; (ii) saturation of streaming and onset of horizontal

advection; and (iii) establishment of a quasi-steady state where the mean flow is highly
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elongated and stretches in the along-tank horizontal direction. To capture (i)–(iii), the

theoretical model of Fan, Kataoka & Akylas (J. Fluid Mech., vol. 838, 2018, R1) is ex-

tended by accounting for the effects of horizontal advection and viscous diffusion of mean

PV. The predictions of the proposed model, over the entire mean-flow evolution, are in

excellent agreement with the experimental observations as well as numerical simulations

based on the full Navier–Stokes equations.

1. Introduction

The interaction of waves with mean flows is an important topic in fluid mechanics with

various geophysical applications (Bühler 2014). While a background mean flow influences

waves through refraction and related effects, it is also possible for waves themselves to

generate mean flows. Specifically, in the case of gravity internal waves in a stratified

fluid, wave dissipation combined with nonlinearity can cause irreversible generation of

potential vorticity (PV), which gives rise to ‘streaming’ — a horizontal mean flow that

grows linearly in time (McIntyre & Norton 1990). Similar phenomena also arise in various

other settings, including acoustics (Lighthill 1978, Sec.4.7), internal tides (Grisouard &

Bühler 2012) and shallow-water waves (Bühler 2000). In addition, waves can generate

mean flows in the absence of dissipation owing to the Reynolds stresses brought about by

wave modulations. Such non-dissipative modulation-induced mean flows and associated

instabilities have been studied extensively for surface waves (e.g. Benney & Roskes 1969)

as well as internal gravity waves (e.g. Bretherton 1969; Grimshaw 1977, 1979; Shrira

1981; Tabaei & Akylas 2007).

Page 2 of 29

Cambridge University Press

Journal of Fluid Mechanics



Long-time dynamics of internal wave streaming 3

A significant body of recent work (see the review article by Dauxois et al. 2018) has

been devoted to the mean flow induced by a three-dimensional internal gravity wave

beam in a stratified fluid. Wave beams are fundamental disturbances that arise from

the inherent anisotropy of internal wave motion (Tabaei & Akylas 2003), and they play

a part in the tidal conversion process in oceans (e.g. Lamb 2004; Peacock et al. 2008;

Johnston et al. 2011) as well as in the generation of gravity waves by thunderstorms in

the atmosphere (e.g. Fovell et al. 1992). Beam-induced mean flows were first studied in

laboratory experiments (Bordes 2012; Bordes et al. 2012) using a novel wave generator

(Mercier et al. 2010) to excite a propagating internal wave beam along a stratified fluid

tank. As the wave generator spanned only part of the tank width, the generated beam was

locally confined in the transverse direction and also decayed in the along-beam direction

due to viscous dissipation. According to the observations, such a three-dimensional wave

beam is accompanied by a circulating horizontal mean flow of the streaming type, as

evidenced by the linear growth in time of the associated mean vertical vorticity.

Motivated by these experiments, Kataoka & Akylas (2015) derived two coupled evo-

lution equations for the beam profile and the induced mean flow assuming a thin beam

(beam width ! transverse extent). Later, Fan et al. (2018) obtained an analogous equa-

tion system for a beam with nearly monochromatic profile whose width is comparable

to its transverse extent, an assumption that mimics more closely the experimental con-

ditions. These asymptotic models confirm that viscous dissipation, combined with non-

linearity and the presence of transverse variations, forces mean PV resonantly, resulting

in streaming as seen in the experiments. In addition, the model of Fan et al. (2018) can

predict the observed feedback of streaming onto the underlying beam, which manifests
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as cross-beam bending, transverse broadening and increased along-beam decay of the

beam profile (Bordes 2012). Furthermore, according to the theoretical models, three-

dimensional beam variations induce an inviscid horizontal mean flow as well. Although

streaming dominates under the experimental flow conditions of Bordes (2012) and Bor-

des et al. (2012), at high enough Reynolds number it is possible for this inviscid mean

flow to trigger modulation instability of steep beams (Kataoka & Akylas 2013, 2016).

In spite of the favourable agreement between theory and experiment noted above,

however, certain observations of Bordes (2012) and Bordes et al. (2012) are beyond the

reach of the models of Kataoka & Akylas (2015) and Fan et al. (2018). Specifically, as

indicated in figure 4(a) of Bordes et al. (2012) and figure 4.6(e) of Bordes (2012), after

some time the resonant growth of streaming saturates, and the induced mean flow which

at first is confined in the beam region begins to advect along the tank. The theoretical

models, by contrast, account only for the production of mean PV in the beam vicinity,

which is responsible for the resonant mean-flow response there. While this is justified at

early times, the experimental observations suggest that the neglected horizontal advection

of mean PV eventually comes into play and halts the resonant growth of streaming.

To address these issues, here we examine the long-time behaviour of the beam–mean-

flow response experimentally and theoretically. Using an experimental set-up similar to

Bordes (2012) and Bordes et al. (2012), we follow the generated wave beam and its

induced mean flow up to time t = 120 T0, where T0 = 2π/ω is the beam period, for three

different driving frequencies ω. These new, long-time observations reveal that, although

the beam has essentially reached steady state by t = 20 T0, the induced mean flow

undergoes three distinct stages characterized by: (i) resonant growth of streaming in the
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Long-time dynamics of internal wave streaming 5

beam vicinity (t/T0 ! 20); (ii) onset of horizontal advection and saturation of streaming

(20 ! t/T0 ! 40); and (iii) establishment of a quasi-steady state where the mean flow is

highly elongated and stretches in the along-tank horizontal direction (t/T0 " 40). As the

model of Fan et al. (2018) fails to capture (ii) and (iii), an extended mean-flow evolution

equation is proposed that accounts not only for the production of mean PV in the beam

vicinity, but also for horizontal advection of mean PV by the induced mean flow and

viscous diffusion of mean PV in the far field. The predictions of this extended theoretical

model are in excellent agreement with our experimental observations as well as numerical

simulations based on the full Navier–Stokes equations.

2. Experiments

2.1. Experimental set-up

The experiments were carried out in a rectangular tank of size L×W ×H = 107×80×40

cm3, filled with water (kinematic viscosity ν∗ = 1.0 × 10−2 cm2/s) to a depth of 38 cm

(see figure 1). The water was linearly stratified with salt and the buoyancy frequency was

chosen as N = 0.91 rad/s. The tank dimensions were large enough to not have significant

effects on the generated internal waves and induced mean flow. Furthermore, the tank

was covered with a transparent plate to avoid parasitic flows due to surrounding air

motion.

Internal waves were forced by a moving-plate generator (Mercier et al. 2010), horizon-

tally centred on the left wall of the tank at a height between 22.2 and 33.7 cm from the

bottom. The origin of the coordinate system O∗x∗y∗z∗ is at the centre of the wave gener-

ator, at a height of 29.8 cm from the bottom, y∗ is the upward vertical coordinate and x∗,
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Figure 1. Schematic view of the experimental set-up. The rectangular tank is of size L×W×H ,

where L is measured from the wave generator which lies against the left wall. Green lines

correspond to the intersection of PIV laser sheets with the generator. Isophase planes of the

generated internal wave beam are tilted downward at an angle θ from the horizontal. The group

velocity cg is in the along-beam (ξ-) direction while the phase velocity cϕ is in the cross-beam

(η-) direction.

z∗ are the along-tank and transverse horizontal coordinates, respectively (figure 1). The

wave generator comprised eighteen 6.3-mm-thick and 13.9-cm-wide plates that moved

horizontally, mimicking an upward propagating transverse wave

x∗ = a sin(ωt − 2πy∗/λ∗) (2.1)

with amplitude a = 1 cm and wavelength λ∗ = 3.83 cm. This forcing generated an internal

wave beam of frequency ω that propagated downward along the tank at an angle θ to the

horizontal specified by the dispersion relation ω = N sin θ (see figure 1). The experiments

focused on three driving frequencies, ω = 0.24, 0.45 and 0.64 rad/s, corresponding to the

propagation angles θ = 15◦, 30◦ and 45◦, respectively.
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Long-time dynamics of internal wave streaming 7

To get a representative view of the three-dimensional velocity field, two separate mea-

surements, in a vertical and a horizontal plane, were performed using particle image

velocimetry (PIV). The tank was seeded with 10-µm silver-coated hollow glass spheres of

density 1.4 kg m−3, illuminated by a vertical/horizontal laser sheet produced by a 532-nm

2-W continuous laser and passing through the centre of the generator (y∗ = z∗ = 0), while

a camera was filming from the side/top toward the −z∗-direction/−y∗-direction. Two

frames per second were recorded with a resolution of 4.51 pixels/mm and 5.66 pixels/mm

for the side and top view, imaging a region of 650×380mm2 and 650×490mm2, respec-

tively. Final windows of the cross-correlation algorithm (Fincham & Delerce 2000) had

a size of 21 × 21 pixels with a 10-pixel grid spacing, corresponding to a 2.2-mm/1.8-mm

mesh size.

2.2. Long-time mean-flow evolution

We present detailed experimental observations only for ω = 0.45 rad/s, corresponding

to the wave beam propagation angle θ = 30◦ to the horizontal. The responses for the

other two driving frequencies we considered are qualitatively similar to those discussed

here. Figure 2 shows horizontal velocity fields in the x∗-direction obtained from PIV

measurements in the central vertical plane (z∗ = 0) and in the horizontal plane through

the centre of the wave generator (y∗ = 0), at three different times normalised with the

wave beam period T0 = 2π/ω = 14 sec. Specifically, the three rows of flow images in

figure 2 (a, b, c) correspond to t/T0 = 20, 40 and 100. The left image in each row shows

the wave beam response in the vertical plane, while the middle and right images depict
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the induced mean flow in the vertical and the horizontal plane, respectively. The mean-

flow responses were obtained by averaging the velocity in the x∗-direction over 10 T0.

Figure 2 reveals that the wave-beam response has essentially reached steady state by

t/T0 = 20 and changes very little thereafter. This is in sharp contrast to the induced mean

flow, which at early times is confined in the region of the generated wave beam (figure 2a),

but later starts to spread in the x∗-direction (figure 2b), and eventually reaches a quasi-

steady state that stretches along the x∗-direction far away from the beam (figure 2c).

It should be noted that the mean flow is purely horizontal (i.e. negligible in the y∗-

direction) and also features a component in the z∗-direction (not shown here) as required

by incompressibility. At late times, however, when the mean flow is highly elongated in

the x∗- relative to the z∗-direction (figure 2c), the transverse (z∗-) component is much

smaller than the along-tank (x∗-) component.

Previous experiments using a similar set-up (Bordes 2012; Bordes et al. 2012) con-

centrated on the beam–mean-flow interaction while the induced mean flow still resides

in the vicinity of the wave beam (figure 2a). This early stage is characterized by rapid

growth (linear in time) of the mean PV associated with the horizontal mean flow, which

also affects the underlying internal wave beam as indicated by the cross-beam bending

of the beam profile in figure 2 (left images). The focus here, however, is on the long-time

mean-flow development (figure 2b, c).

3. Extended mean-flow equation

Previous closely related theoretical work (Kataoka & Akylas 2015; Fan et al. 2018)

focused on PV production and its pivotal role in mean-flow generation by a three-
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Long-time dynamics of internal wave streaming 9

Figure 2. PIV measurements of horizontal velocity fields in the x∗-direction at three times,

t/T0, normalised with the wave beam period T0 = 2π/ω = 14 sec: (a) 20; (b) 40; (c) 100. The

left images show the wave beam responses in the vertical plane z∗ = 0, while the middle and

right images depict the induced mean flow in the vertical plane z∗ = 0 and the horizontal plane

y∗ = 0, respectively. These planes are indicated by dashed lines. The thick black line marks the

location of the wave generator. The zero-velocity line around x = 10 cm on the right images is

an experimental artifact due to laser sheet reflection.

dimensional internal wave beam in a stratified Boussinesq fluid. Fan et al. (2018), in

particular, considered a weakly nonlinear nearly monochromatic wave beam and derived

two coupled evolution equations for the beam envelope and the induced mean flow, as-

suming that three-dimensional variations are weak; namely, the ratio of the cross-beam

lengthscale λ∗/2π (where λ∗ is the beam carrier wavelength) to a characteristic transverse
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beam length scale W∗,

ε =
λ∗

2πW∗
, (3.1)

is small (ε ! 1). The mean-flow evolution equation in this model, however, applies only

to the early stage of the mean-flow development, which is dominated by the production of

mean PV in the vicinity of the beam. To capture the mean-flow dynamics at later times,

here we propose an extended mean-flow evolution equation that, in addition, accounts for

the advection of mean PV by the induced mean flow as well as for the viscous diffusion

of mean PV in the far field away from the beam. Although negligible at early times,

these effects control the long-time mean-flow dynamics brought out by the experimental

observations (figure 2 b, c).

3.1. Onset of streaming

We begin by reviewing the model of Fan et al. (2018). Their analysis focused on the

‘distinguished limit’ where the nonlinear beam–mean-flow coupling is as important as

the effects of the along-beam dispersion, transverse dispersion and viscous attenuation

of the beam envelope. For the benefit of readers interested in a detailed discussion of the

scalings appropriate to this flow regime, we shall adopt the same non-dimensionalization

(with 1/N as the time scale, where N is the constant buoyancy frequency, and λ∗/2π

as the length scale, where λ∗ is the beam carrier wavelength set by the wave generator)

and use the same notation as Fan et al. (2018). Here, as our interest centres on the

experiments in § 2, background rotation is ignored (f = 0).

In terms of ε ! 1 defined in (3.1), which controls the assumed weak transverse varia-
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Long-time dynamics of internal wave streaming 11

tions, the beam envelope and the induced mean flow depend on the ‘slow’ spatial variables

X = ε2ξ, Y = εη, Z = εz, (3.2)

where ξ, η and z are the along-beam, cross-beam and transverse coordinates, respectively

(figure 3). Referring to the experimental set-up (figure 1), the coordinate system Oxyz

in figure 3 is the non-dimensional counterpart of O∗x∗y∗z∗, and the (ξ, η) coordinates

are rotated by θ relative to the horizontal and vertical (x, y) coordinates. Furthermore,

the appropriate ‘slow’ time is

T = ε2t, (3.3)

indicating that the initial phase of the mean-flow development lasts O(1/ε2) beam peri-

ods.

At this stage, the disturbance comprises an O(ε) primary harmonic, representing a

weakly nonlinear nearly monochromatic beam, and an O(ε2) mean flow. Specifically,

the velocity components u = (u, v, w) in the (ξ, η, z) coordinate system, the density

perturbation ρ and the pressure perturbation p take the form

u = ε
{
(U, ε2V, εW )eiϕ + c.c.

}
+ ε2(U, V , W ) + · · · , (3.4a)

ρ = ε
{
Reiϕ + c.c.

}
+ ε4R + · · · , p = ε

{
P eiϕ + c.c.

}
+ ε3P + · · · , (3.4b)

where ϕ = η − ω t and ω = sin θ. [These perturbation expansions are somewhat dif-

ferent from (2.11) in Fan et al. (2018) owing to our assumption of no rotation, f = 0;

details of the analysis for 0 # f ! 1 including the scaling of the mean flow above, can

be found in Fan (2017).] The coupled beam–mean-flow dynamics is described via the

various amplitudes in (3.4), which depend on X , Y , Z and T . The equations governing
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Figure 3. Schematic of theoretical model for the generated wave beam. The coordinate system

Oxyz is the non-dimensional counterpart of O∗x∗y∗z∗ (figure 1), y is the upward vertical and

x, z are the along-tank and transverse horizontal coordinates, respectively. The along- and

cross-beam coordinates ξ and η (also marked in figure 1) are rotated by θ relative to (x, y). The

beam has a nearly monochromatic profile. Dotted lines indicate lines of constant phase of the

sinusoidal carrier whose wavelength (set by the wave generator) has been normalized to 2π in

the asymptotic analysis. The envelope scale is O(ε−2) along the ξ- and O(ε−1) along the η- and

z-directions, in keeping with the scalings (3.2)

these amplitudes are obtained by imposing incompressibility, mass conservation and mo-

mentum balance. Specifically, upon substituting (3.4) into these fundamental equations

and collecting terms ∝ exp(iϕ), the beam amplitudes can be expressed in terms of the

along-beam velocity amplitude U

V = iUX + cot θ UZZ , W = −i cot θ UZ , R = −iU, P = cos θ U. (3.5)

Thus, in view of (3.2) and (3.4a), the beam response obeys incompressibility correct
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Long-time dynamics of internal wave streaming 13

to O(ε3). Furthermore, to the same order of approximation, U satisfies the evolution

equation

UT + iV U + cos θ

(
UX − i

2
cot θUZZ

)
+

β

2
U = 0. (3.6)

The second term in (3.6) is the feedback of the induced mean flow to the beam dynamics,

while the third and the fourth term, respectively, accounts for the effects of (along-beam

and transverse) dispersion and viscous attenuation of the beam envelope. This balance

of dissipation with nonlinear coupling and dispersion assumes that the inverse Reynolds

number ν = 4π2ν∗/Nλ∗
2 scales like

ν = βε2, (3.7)

where β = O(1).

Turning next to the induced mean flow, from mass conservation it is deduced that the

vertical velocity is O(ε4). Thus, to leading order, the mean flow is purely horizontal,

U = V cot θ. (3.8)

Furthermore, as along-beam variations are weaker than cross-beam and transverse vari-

ations in view of (3.2), incompressibility to leading order requires

V Y + WZ = 0. (3.9)

Finally, to complete the description of beam–mean-flow interaction, we find it convenient

to utilize the transport equation

qt + u ·∇q = ν
(
∇2ζ −∇ρ ·∇2(∇× u)

)
, (3.10)
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for the PV

q = ζ −∇ρ · (∇× u), (3.11)

where ζ = (∇×u) · j is the vertical vorticity and j denotes the vertical (y-) unit vector.

From (3.11), upon making use of (3.4)–(3.5), it follows that q = ε3Q + · · · , where

Q = Ω − 2(UU∗)Z (3.12)

is the mean PV amplitude and

Ω =
1

sin θ
V Z − sin θ WY (3.13)

is the amplitude of the mean vertical vorticity, ζ = ε3Ω + · · · . Thus, taking into account

(3.4), (3.7), (3.12) and (3.13), the balance of mean terms in the PV transport equation

(3.10), correct to O(ε5), yields

ΩT = 2
(

∂

∂T
+ β

)
(UU∗)Z . (3.14)

This evolution equation along with (3.6), (3.9) and (3.13), which govern the beam–mean-

flow interaction for T = O(1), are the end results of Fan et al. (2018).

It should be noted that the vertical vorticity associated with the induced mean flow

derives from two separate sources, one of inviscid and the other of viscous origin, corre-

sponding to the two contributions to the forcing term on the right-hand side of (3.14). The

focus here is on the mean flow due to the viscous source of vertical vorticity: this mean

flow component, referred to as streaming, is forced resonantly and eventually overwhelms

its inviscid counterpart. Specifically, for T = O(1), the beam amplitude U , governed by

(3.6), reaches a quasi-steady state. Thus, in response to the viscous forcing term in (3.14),
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Long-time dynamics of internal wave streaming 15

Ω grows linearly in T ,

Ω ∼ 2βT (UU∗)Z , (3.15)

and so do V and W . As a result, the convective derivative term on the left-hand side of

the PV transport equation (3.10), which does not partake in the O(ε5) dominant balance

leading to (3.14), eventually comes into play.

3.2. Saturation of streaming

As noted above, the dominant balance of O(ε5) terms in (3.10) that provides the mean

vorticity equation (3.14) eventually is invalidated owing to the resonant growth of stream-

ing. Specifically, this breakdown occurs at T = O(ε−1/2), when V and W are of O(ε−1/2)

so the convective derivative term is as important as the time evolution term in (3.10).

Thus, to bring out the proper balance of mean terms in (3.10) when T = O(ε−1/2), we

introduce the re-scaled mean-flow variables

(V , W ) → ε−1/2(V , W ), Ω → ε−1/2Ω, (3.16)

which depend on X , Y , Z defined in (3.2) and the re-scaled slow time

T̂ = ε1/2 T. (3.17)

Upon implementing these scalings in the PV transport equation (3.10), equation (3.14)

for the mean vertical vorticity is replaced by

(
∂

∂T̂
+ V

∂

∂Y
+ W

∂

∂Z

)
Ω = 2β(UU∗)Z . (3.18)

In this evolution equation, the advection by the induced mean flow counterbalances the

viscous forcing of Ω. Thus, the resonant growth (3.15) predicted at early times (T̂ ! 1)

is expected to saturate for T̂ = O(1) and, as a result, the mean flow would level off
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and start being transported away from the beam region. Qualitatively, this scenario is

consistent with the experimental observations presented in § 2.2: the growth of streaming

in the beam vicinity is essentially complete after 20 beam periods (figure 2a), and by

40 periods (figure 2b) the effects of advection are clearly visible. Detailed comparison

between theory and experiment will be made in § 4.

3.3. Far-field flow regime

As the mean vertical vorticity continues to be transported away from the beam, the ef-

fect of the forcing term on the right-hand side of (3.18) gradually diminishes. Thus, for

T̂ ( 1 the mean flow far from the beam reaches a quasi-steady state due to the balance

of horizontal advection with viscous diffusion in the PV transport equation (3.10). In this

far-field regime, as revealed by the experimental observations (figure 2c), the mean flow

is highly elongated in the horizontal (x-) direction. This suggests replacing the beam-

oriented variables X = ε2ξ and Y = εη in (3.2) with x and y (see figure 3), scaled

such that x-variations are weaker than vertical (y-) and transverse (z-) variations. Addi-

tionally, the far-field flow scalings should bring out the anticipated balance of horizontal

advection with viscous diffusion of the mean PV.

The scaled spatial variables appropriate to the far field are

X̃ = ε5/2x, Ỹ = εy, Z = εz. (3.19)

It should be noted that X̃ is ‘slower’ than Ỹ and Z in keeping with the observed far-

field characteristics of the mean flow (figure 2c), while Z remains as in (3.2) to permit

matching with the near field as X̃ → 0. Furthermore, as X̃ is scaled differently from Z,
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it becomes necessary to rescale the transverse (z-) mean-flow velocity,

W → ε3/2W, (3.20)

so as to satisfy incompressibility

1
sin θ

V X + WZ = 0. (3.21)

In view of the rescaling (3.20), in the far field the z-velocity component ε3W is smaller

than the x-velocity component ε3/2V / sin θ, which as noted in § 2.2 is also consistent

with our experimental observations. Thus, the amplitude of the mean vertical vorticity

to leading order is given by

Ω =
V Z

sin θ
. (3.22)

Finally, returning to (3.10), in view of (3.19) and (3.20), the dominant balance of mean

PV terms in the far field yields

(
∂

∂T̃
+

V

sin θ

∂

∂X̃
+ W

∂

∂Z
− β

(
∂2

∂Ỹ 2
+

∂2

∂Z2

))
Ω = 0, (3.23)

where

T̃ = ε3/2T̂ = ε2T = ε4t (3.24)

is the ‘very slow’ time appropriate to the mean-flow dynamics at this late stage. As

expected, the evolution equation (3.23) accounts for the horizontal advection and viscous

diffusion of Ω, which are the main controlling factors in the far field.

3.4. Combined mean-flow equation

To investigate quantitatively the three stages of mean-flow dynamics identified above, it

would be necessary to solve the evolution equations (3.14), (3.18) and (3.23), subject to
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appropriate initial and matching conditions. Considering that these problems would have

to be tackled numerically, we find it more convenient instead to work with a single mean-

flow evolution equation that combines the dominant effects in the three flow regimes.

This extended equation reduces asymptotically to the simpler evolution equation (3.14),

(3.18) and (3.23), respectively, under the appropriate flow scalings for T , T̂ and T̃ = O(1).

Specifically, since the mean flow is horizontal to leading order, we introduce a stream-

function Ψ(χ, Ỹ , Z, T ), where (χ, Ỹ , Z) = ε(x, y, z) and T = ε2t, such that the mean-flow

velocity components in (3.4a) are given by

V = sin θ ΨZ , W = −Ψχ, (3.25)

with U = cos θ ΨZ according to (3.8). Thus,

1
sin θ

V χ + WZ = 0, (3.26)

which ensures that the incompressibility equations (3.9) and (3.21) are satisfied auto-

matically in the corresponding flow regimes. Furthermore, in view of (3.25), the mean

vertical vorticity takes the form

Ω =
1

sin θ
V Z − Wχ = Ψχχ + ΨZZ , (3.27)

which reduces asymptotically to expressions (3.13) and (3.22) under the corresponding

flow scalings. Finally, the evolution equations (3.14), (3.18) and (3.23) can be combined

to the following transport equation for Ω

ΩT + εJ(Ω,Ψ) − ε2β

(
∂2

∂Ỹ 2
+

∂2

∂Z2

)
Ω = 2

(
∂

∂T
+ β

)
(UU∗)Z , (3.28)

where J(a, b) ≡ aχbZ − aZbχ.

Setting ε = 0 in (3.28) recovers the evolution equation (3.14) derived in Fan et al.
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(2018) that is valid at the early stage of mean flow generation, T = O(1), when the

production of mean PV due to the underlying modulated beam is the dominant effect.

At the later times T̂ = O(1) and T̃ = O(1), the O(ε) and O(ε2) terms in (3.28), which

account for the effects of advection and viscous diffusion of mean PV, respectively, come

into play as discussed above. The extended mean-flow equation (3.28) along with (3.25),

(3.27) and the beam evolution equation (3.6) comprise the theoretical model to be used

below for quantitative comparison against our experimental observations and numerical

Navier–Stokes simulations.

4. Comparison of theory with experiment

The proposed theoretical model of beam–mean-flow dynamics is now applied to the

experiments in § 2. As in Fan et al. (2018), we choose the transverse width (= 3.7λ∗) of

the wave generator as W∗ in (3.1) so ε = 0.043. Thus, in view of (3.2), the wave generator

width is normalised to Z = 1 while the generator height (= 3λ∗) is equal to 0.8 in terms

of Y , and the viscous parameter β = 15.6 according to (3.7). Furthermore, to account

for the forcing due to the horizontally moving plates of the generator at the left wall of

the tank, we prescribe at X = 0 the envelope of the along-beam wave beam velocity, in

the form

U = A0 {tanh [15(Y + 0.4)] − tanh [15(Y − 0.4)]}

× {tanh [5(Z + 0.5)] − tanh [5(Z − 0.5)]} /4, (4.1)

where A0 controls the peak forcing amplitude. The smoothing coefficients in tanh func-

tions are the same as in Fan et al. (2018) and correspond to the best agreement with
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experiments. The boundary forcing (4.1) is applied at T = 0, and the resulting beam–

mean-flow response for T > 0 is determined by integrating the evolution equations (3.6)

and (3.28) along with (3.25) and (3.27), starting from the quiescent state U = Ω = 0.

The above initial–boundary-value problem is solved numerically via pseudo-spectral

discretization in −4.0 < Y < 4.0, −3.0 < Z < 3.0 and second-order centred finite

differences in 0 < X < 0.32, combined with fourth-order Runge–Kutta time stepping.

The parameter A0 in (4.1) is chosen such that the integral in the central vertical plane

(Z = 0) of the x-component of mean flow at 20 beam periods matches the value of this

integral obtained from the experimental mean flow data at the same time. The results

reported here were computed using 128× 64 Fourier modes in Y ×Z, 128 grid points in

X and ∆T = 8.0 × 10−4.

Apart from the experimental results, the proposed theoretical model is also compared

against numerical simulations based on the full Navier–Stokes equations. Referring to the

experimental set-up (figure 1), these simulations use no-slip boundary conditions on the

tank bottom and walls, except the left wall (x∗ = 0), where at t = 0 we apply the forcing

due to the wave generator (located in −5.7 cm < y∗ < 5.7 cm, −7.0 cm < z∗ < 7.0 cm).

This is done by prescribing the x∗-horizontal velocity in the form

u∗ = U0
dx∗

dt
{tanh [2.2 (y∗ + 5.7)] − tanh [2.2(y∗ − 5.7)]}

× {tanh [2.2(z∗ + 7.0)] − tanh [2.2(z∗ − 7.0)]} /4 (x∗ = 0), (4.2)

with dx∗/dt determined from (2.1). Furthermore, similar to A0 in (4.1), the forcing

amplitude parameter U0 in (4.2) is chosen such that the integral in the central vertical

plane (z∗ = 0) of the numerically computed x∗-mean-flow velocity at 20 beam periods
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matches the value of this integral based on the experimental mean flow data at the same

time. The Navier–Stokes equations are solved numerically by adapting to the present

three-dimensional geometry the procedure outlined in Kataoka & Akylas (2020) for two-

dimensional reflection of an internal wave beam from a rigid slope. The results reported

here were obtained using the computational domain x∗ × y∗ × z∗ = 107 × 38 × 80 cm3

with 120 × 150 × 100 grid points and the time step ∆t = 0.07s. The grid points were

more concentrated near the wave generator in order to achieve higher resolution there.

Finally, results are unchanged when using larger values of coefficients in tanh functions

in (4.2).

Figures 4 and 5 show horizontal velocity fields in the x∗-direction obtained from the

theoretical model and Navier–Stokes simulations under the same flow conditions as the

experimental results in figure 2. These plots of beam and mean-flow responses allow direct

comparison of the theoretical (figure 4) and numerical (figure 5) predictions against the

experimental observations (figure 2) at t/T0 = 20, 40 and 100. These snapshots are

representative of the three regimes of beam–mean-flow dynamics discussed in § 3 — the

genesis of streaming in the beam vicinity (figures 2a, 4a, 5a), the beginning of mean-

flow advection along the horizontal (figures 2b, 4b, 5b) and the balance of horizontal

advection with viscous diffusion in the far-field mean-flow response (figures 2c, 4c, 5c).

The theoretical model reproduces these flow regimes and captures all the salient features

of the observations and simulations. The time instants t/T0 = 20, 40 and 100 chosen

above also are consistent with the characteristic time scales t ∼ 1/ε2, 1/ε5/2 and 1/ε4

of the three mean-flow regimes discussed in § 3, if the cross-beam length scale λ∗/2π is

replaced with λ∗ in the definition of ε in (3.1), so that ε = 0.27 instead of 0.043. [The
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Figure 4. Horizontal velocity fields in the x∗-direction obtained from the theoretical model

at three time instants: (a) t/T0 = 20; (b) t/T0 = 40; (c) t/T0 = 100. The flow snapshots

here are direct counterparts of the experimental images displayed in figure 2 and the numerical

simulations in figure 5.

lengthscale λ∗/2π is used here in order to match the non-dimensional variables of Fan

et al. (2018); while 2π is an O(1) constant asymptotically, it can make an appreciable

difference numerically when computing order-of-magnitude estimates.]

It should be noted that in the theoretical model the boundary forcing (4.1) is applied

in terms of the (scaled) cross-beam coordinate Y = εη, which is rotated relative to the

vertical y by θ (figure 3), and the tank bottom is ignored. This explains the small gap of
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Figure 5. Horizontal velocity fields in the x∗-direction obtained from Navier–Stokes numerical

simulations at three time instants: (a) t/T0 = 20; (b) t/T0 = 40; (c) t/T0 = 100. The flow

snapshots here are direct counterparts of the experimental images displayed in figure 2 and the

theoretical model predictions in figure 4.

the theoretical responses near the wave generator and the absence of beam reflections at

the tank bottom in figure 4. These minor discrepancies, however, do not detract from the

overall excellent agreement of the theoretical model with the experiment and simulations.

Furthermore, similar agreement among theoretical, experimental and numerical responses

is found for the other two driving frequencies we considered, which correspond to θ = 15◦

and 45◦.
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We also made quantitative comparison between theory and experiment of the time

evolution of the induced mean flow, for the three driving frequencies corresponding to

the beam propagation angles θ = 15◦, 30◦ and 45◦. Specifically, figure 6 shows plots for

0 < t/T0 < 120 (where T0 is the beam period) of the maximum mean-flow velocity in

the x∗-direction (figure 6a) and the integrated mean vertical vorticity in the horizontal

quarter plane 0 < x∗ < ∞, 0 < z∗ < ∞ through the centre of the wave generator

(figure 6b). These plots compare the predictions of the present theoretical model against

those of the model by Fan et al. (2018) as well as our experimental observations and

Navier–Stokes simulations. In all cases, the integrated mean vertical vorticity is estimated

by computing the integral of the x∗-horizontal mean flow along the centre line y∗ = z∗ = 0

and 0 < x∗ < 65 cm.

According to figure 6, there is overall excellent agreement of the present model with

the experiment and numerical simulations. In contrast, the model of Fan et al. (2018)

is reliable for limited time only. This discrepancy is more pronounced for the maximum

mean-flow velocity in figure 6(a), which clearly highlights the three stages of mean-flow

dynamics: (i) onset of streaming (t/T0 ! 20), when the maximum mean-flow velocity

grows resonantly (linearly in time); (ii) saturation of streaming (20 ! t/T0 ! 40); and

(iii) establishment of a quasi-steady state (t/T0 " 40). As expected, the model of Fan

et al. (2018) captures only (i). Furthemore, figure 6(a) reveals that for θ = 15◦ the

maximum mean-flow velocity saturates to about half the value it reaches for θ = 30◦ and

45◦. This explains why in previous experiments the refraction effects on the wave beam

due to the mean flow were less apparent for θ = 15◦ (Bordes et al. 2012) than θ = 28◦

(Bordes 2012).

Page 24 of 29

Cambridge University Press

Journal of Fluid Mechanics



Long-time dynamics of internal wave streaming 25

Figure 6. Time evolution of induced mean flow for 0 < t/T0 < 120, where T0 = 2π/ω is the

beam period, for the driving frequencies ω = 0.24, 0.45 and 0.64 rad/s, corresponding to the beam

propagation angles θ = 15◦, 30◦ and 45◦, respectively. Comparison of the present theoretical

model (——) against the model of Fan et al. (2018) (·········), Navier–Stokes simulations (– – –)

and experiment (◦). (a) maximum mean-flow velocity (mm/s) in the along-tank (x∗-) direction;

(b) integrated mean vertical vorticity (cm2/s).

5. Concluding remarks

Mean-flow generation by a three-dimensional internal gravity wave beam in a stratified

fluid hinges on two distinct mechanisms: viscous production of mean PV which gives rise

to streaming, and material conservation of mean PV which is responsible for an inviscid
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modulation-induced mean flow. Under the experimental flow conditions of Bordes (2012)

and Bordes et al. (2012), production of mean PV in the beam vicinity dominates, and

the observed mean flow is of the streaming type as evidenced by the mean vertical

vorticity which grows linearly in time. In addition, however, these experiments suggest

that horizontal advection of mean PV plays a part in the mean-flow dynamics after some

time, leading to saturation of streaming, an effect beyond the reach of the model of Fan

et al. (2018).

With this hint as our motivation, we conducted experiments using a similar set-up

to Bordes (2012) and Bordes et al. (2012), but with forcing acting for longer times, in

order to understand the ultimate fate of streaming. The new observations confirm that

horizontal advection of mean PV by the growing mean flow eventually does come into

play and causes streaming to saturate. Furthermore, as a result of the mean flow being

advected away from the beam region, finally a quasi-steady state is established in the

far field. The mean flow in this far-field response is highly elongated in the along-tank

horizontal direction due to a balance of horizontal advection with viscous diffusion of

mean PV.

To explain theoretically the mean-flow development revealed by our experiments, we

re-visited the asymptotic model of Fan et al. (2018) and included the effects of horizon-

tal advection and viscous diffusion of mean PV which control the long-time mean-flow

dynamics. The extended asymptotic analysis confirms the three stages of mean-flow dy-

namics brought out by the experiments: genesis of streaming due to resonant mean PV

production in the beam vicinity at early times, followed by saturation of streaming due to

horizontal advection of mean PV, and finally the establishment of a quasi-steady state in
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the far field due to viscous diffusion of mean PV. The predictions of the revised model are

in remarkably good agreement with the experimental observations and numerical simu-

lations based on the full Navier–Stokes equations. Thus, for an internal wave beam, it is

possible to trace theoretically the entire evolution of streaming observed experimentally.
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