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Long-time dynamics of internal wave streaming

The mean flow induced by a three-dimensional propagating internal gravity wave beam in a uniformly stratified fluid, is studied experimentally and theoretically. Previous related work concentrated on the early stage of mean-flow generation, dominated by the phenomenon of streaming -a horizontal mean flow that grows linearly in time -due to resonant production of mean potential vorticity (PV) in the vicinity of the beam. The focus here, by contrast, is on the long-time mean-flow evolution. Experimental observations in a stratified fluid tank for times up to t = 120 T 0 , where T 0 is the beam period, reveal that the induced mean flow undergoes three distinct stages: (i) resonant growth of streaming in the beam vicinity; (ii) saturation of streaming and onset of horizontal advection; and (iii) establishment of a quasi-steady state where the mean flow is highly

Introduction

The interaction of waves with mean flows is an important topic in fluid mechanics with various geophysical applications [START_REF] Bühler | Waves and mean flows[END_REF]. While a background mean flow influences waves through refraction and related effects, it is also possible for waves themselves to generate mean flows. Specifically, in the case of gravity internal waves in a stratified fluid, wave dissipation combined with nonlinearity can cause irreversible generation of potential vorticity (PV), which gives rise to 'streaming' -a horizontal mean flow that grows linearly in time [START_REF] Mcintyre | Dissipative wave-mean interactions and the transport of vorticity or potential vorticity[END_REF]. Similar phenomena also arise in various other settings, including acoustics (Lighthill 1978, Sec.4.7), internal tides [START_REF] Grisouard | Forcing of oceanic mean flows by dissipating internal tides[END_REF]) and shallow-water waves [START_REF] Bühler | On the vorticity transport due to dissipating or breaking waves in shallowwater flow[END_REF]. In addition, waves can generate mean flows in the absence of dissipation owing to the Reynolds stresses brought about by wave modulations. Such non-dissipative modulation-induced mean flows and associated instabilities have been studied extensively for surface waves (e.g. [START_REF] Benney | Wave instabilities[END_REF] as well as internal gravity waves (e.g. [START_REF] Jamin | On the mean motion induced by internal gravity waves[END_REF][START_REF] Grimshaw | The modulation of an internal gravity-wave packet, and the resonance with the mean motion[END_REF][START_REF] Grimshaw | Mean flows induced by internal gravity wave packets propagating in a shear flow[END_REF][START_REF] Shrira | On the propagation of a three-dimensional packet of weakly non-linear internal gravity waves[END_REF][START_REF] Tabaei | Resonant long-short wave interactions in an unbounded rotating stratified fluid[END_REF].

A significant body of recent work (see the review article by [START_REF] Dauxois | Instabilities of internal gravity wave beams[END_REF] has been devoted to the mean flow induced by a three-dimensional internal gravity wave beam in a stratified fluid. Wave beams are fundamental disturbances that arise from the inherent anisotropy of internal wave motion [START_REF] Tabaei | Nonlinear internal gravity wave beams[END_REF], and they play a part in the tidal conversion process in oceans (e.g. [START_REF] Lamb | Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography[END_REF][START_REF] Peacock | An experimental investigation of internal tide generation by two-dimensional topography[END_REF][START_REF] Johnston | Internal tidal beams and mixing near Monterey Bay[END_REF] as well as in the generation of gravity waves by thunderstorms in the atmosphere (e.g. [START_REF] Fovell | Numerical simulations of convectively generated stratospheric gravity waves[END_REF]. Beam-induced mean flows were first studied in laboratory experiments [START_REF] Bordes | Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant[END_REF][START_REF] Bordes | Experimental observation of a strong mean flow induced by internal gravity waves[END_REF]) using a novel wave generator [START_REF] Mercier | New wave generation[END_REF] to excite a propagating internal wave beam along a stratified fluid tank. As the wave generator spanned only part of the tank width, the generated beam was locally confined in the transverse direction and also decayed in the along-beam direction due to viscous dissipation. According to the observations, such a three-dimensional wave beam is accompanied by a circulating horizontal mean flow of the streaming type, as evidenced by the linear growth in time of the associated mean vertical vorticity.

Motivated by these experiments, [START_REF] Kataoka | On three-dimensional internal gravity wave beams and induced large-scale mean flows[END_REF] derived two coupled evolution equations for the beam profile and the induced mean flow assuming a thin beam (beam width transverse extent). Later, [START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF] obtained an analogous equation system for a beam with nearly monochromatic profile whose width is comparable to its transverse extent, an assumption that mimics more closely the experimental conditions. These asymptotic models confirm that viscous dissipation, combined with nonlinearity and the presence of transverse variations, forces mean PV resonantly, resulting in streaming as seen in the experiments. In addition, the model of [START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF] can predict the observed feedback of streaming onto the underlying beam, which manifests Timothée Jamin, Takeshi Kataoka, Thierry Dauxois and T. R. Akylas as cross-beam bending, transverse broadening and increased along-beam decay of the beam profile [START_REF] Bordes | Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant[END_REF]. Furthermore, according to the theoretical models, threedimensional beam variations induce an inviscid horizontal mean flow as well. Although streaming dominates under the experimental flow conditions of [START_REF] Bordes | Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant[END_REF] and [START_REF] Bordes | Experimental observation of a strong mean flow induced by internal gravity waves[END_REF], at high enough Reynolds number it is possible for this inviscid mean flow to trigger modulation instability of steep beams [START_REF] Kataoka | Stability of internal gravity wave beams to threedimensional modulations[END_REF][START_REF] Kataoka | Three-dimensional instability of internal gravity wave beams[END_REF].

In spite of the favourable agreement between theory and experiment noted above, however, certain observations of [START_REF] Bordes | Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant[END_REF] and [START_REF] Bordes | Experimental observation of a strong mean flow induced by internal gravity waves[END_REF] are beyond the reach of the models of [START_REF] Kataoka | On three-dimensional internal gravity wave beams and induced large-scale mean flows[END_REF] and [START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF]. Specifically, as 

Experiments

Experimental set-up

The experiments were carried out in a rectangular tank of size L × W × H = 107 × 80 × 40 cm 3 , filled with water (kinematic viscosity ν * = 1.0 × 10 -2 cm 2 /s) to a depth of 38 cm (see figure 1). The water was linearly stratified with salt and the buoyancy frequency was chosen as N = 0.91 rad/s. The tank dimensions were large enough to not have significant effects on the generated internal waves and induced mean flow. Furthermore, the tank was covered with a transparent plate to avoid parasitic flows due to surrounding air motion.

Internal waves were forced by a moving-plate generator [START_REF] Mercier | New wave generation[END_REF], horizontally centred on the left wall of the tank at a height between 22.2 and 33.7 cm from the bottom. The origin of the coordinate system O * x * y * z * is at the centre of the wave generator, at a height of 29.8 cm from the bottom, y * is the upward vertical coordinate and x * , z * are the along-tank and transverse horizontal coordinates, respectively (figure 1). The wave generator comprised eighteen 6.3-mm-thick and 13.9-cm-wide plates that moved horizontally, mimicking an upward propagating transverse wave

x * = a sin(ωt -2πy * /λ * ) (2.1)
with amplitude a = 1 cm and wavelength λ * = 3.83 cm. This forcing generated an internal wave beam of frequency ω that propagated downward along the tank at an angle θ to the horizontal specified by the dispersion relation ω = N sin θ (see figure 1). The experiments focused on three driving frequencies, ω = 0.24, 0.45 and 0.64 rad/s, corresponding to the propagation angles θ = 15 • , 30 • and 45 • , respectively.

To get a representative view of the three-dimensional velocity field, two separate measurements, in a vertical and a horizontal plane, were performed using particle image velocimetry (PIV). The tank was seeded with 10-µm silver-coated hollow glass spheres of density 1.4 kg m -3 , illuminated by a vertical/horizontal laser sheet produced by a 532-nm 2-W continuous laser and passing through the centre of the generator (y * = z * = 0), while a camera was filming from the side/top toward the -z * -direction/-y * -direction. Two frames per second were recorded with a resolution of 4.51 pixels/mm and 5.66 pixels/mm for the side and top view, imaging a region of 650 × 380 mm 2 and 650 × 490 mm 2 , respectively. Final windows of the cross-correlation algorithm [START_REF] Fincham | Advanced optimization of correlation imaging velocimetry algorithms[END_REF] had a size of 21 × 21 pixels with a 10-pixel grid spacing, corresponding to a 2.2-mm/1.8-mm mesh size.

Long-time mean-flow evolution

We present detailed experimental observations only for ω = 0.45 rad/s, corresponding to the wave beam propagation angle θ = 30 • to the horizontal. The responses for the other two driving frequencies we considered are qualitatively similar to those discussed here. Figure 2 Figure 2 reveals that the wave-beam response has essentially reached steady state by t/T 0 = 20 and changes very little thereafter. This is in sharp contrast to the induced mean flow, which at early times is confined in the region of the generated wave beam (figure 2a), but later starts to spread in the x * -direction (figure 2b), and eventually reaches a quasisteady state that stretches along the x * -direction far away from the beam (figure 2c).

It should be noted that the mean flow is purely horizontal (i.e. negligible in the y *direction) and also features a component in the z * -direction (not shown here) as required by incompressibility. At late times, however, when the mean flow is highly elongated in the x * -relative to the z * -direction (figure 2c), the transverse (z * -) component is much smaller than the along-tank (x * -) component.

Previous experiments using a similar set-up [START_REF] Bordes | Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant[END_REF][START_REF] Bordes | Experimental observation of a strong mean flow induced by internal gravity waves[END_REF]) concentrated on the beam-mean-flow interaction while the induced mean flow still resides in the vicinity of the wave beam (figure 2a). This early stage is characterized by rapid growth (linear in time) of the mean PV associated with the horizontal mean flow, which also affects the underlying internal wave beam as indicated by the cross-beam bending of the beam profile in figure 2 (left images). The focus here, however, is on the long-time mean-flow development (figure 2b,c).

Extended mean-flow equation

Previous closely related theoretical work [START_REF] Kataoka | On three-dimensional internal gravity wave beams and induced large-scale mean flows[END_REF][START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF] focused on PV production and its pivotal role in mean-flow generation by a three-
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Onset of streaming

We begin by reviewing the model of [START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF]. Their analysis focused on the 'distinguished limit' where the nonlinear beam-mean-flow coupling is as important as the effects of the along-beam dispersion, transverse dispersion and viscous attenuation of the beam envelope. For the benefit of readers interested in a detailed discussion of the scalings appropriate to this flow regime, we shall adopt the same non-dimensionalization (with 1/N as the time scale, where N is the constant buoyancy frequency, and λ * /2π

as the length scale, where λ * is the beam carrier wavelength set by the wave generator)

and use the same notation as [START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF]. Here, as our interest centres on the experiments in § 2, background rotation is ignored (f = 0).

In terms of ε 1 defined in (3.1), which controls the assumed weak transverse varia-tions, the beam envelope and the induced mean flow depend on the 'slow' spatial variables

X = ε 2 ξ, Y = εη, Z = εz, (3.2)
where ξ, η and z are the along-beam, cross-beam and transverse coordinates, respectively (figure 3). Referring to the experimental set-up (figure 1), the coordinate system Oxyz in figure 3 is the non-dimensional counterpart of O * x * y * z * , and the (ξ, η) coordinates are rotated by θ relative to the horizontal and vertical (x, y) coordinates. Furthermore, the appropriate 'slow' time is

T = ε 2 t, (3.3)
indicating that the initial phase of the mean-flow development lasts O(1/ε 2 ) beam periods.

At this stage, the disturbance comprises an O(ε) primary harmonic, representing a weakly nonlinear nearly monochromatic beam, and an O(ε 2 ) mean flow. Specifically, the velocity components u = (u, v, w) in the (ξ, η, z) coordinate system, the density perturbation ρ and the pressure perturbation p take the form

u = ε (U, ε 2 V, εW )e iϕ + c.c. + ε 2 (U, V , W ) + • • • , (3.4a) ρ = ε Re iϕ + c.c. + ε 4 R + • • • , p = ε P e iϕ + c.c. + ε 3 P + • • • , (3.4b)
where ϕ = ηω t and ω = sin θ. [These perturbation expansions are somewhat different from (2.11) in [START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF] owing to our assumption of no rotation, f = 0; details of the analysis for 0 f 1 including the scaling of the mean flow above, can be found in [START_REF] Fan | On three-dimensional internal wavepackets, beams, and mean flows in a stratified fluid[END_REF].] The coupled beam-mean-flow dynamics is described via the various amplitudes in (3.4), which depend on X, Y , Z and T . The equations governing 

V = iU X + cot θ U ZZ , W = -i cot θ U Z , R = -iU, P = cos θ U. (3.5)
Thus, in view of (3.2) and (3.4a), the beam response obeys incompressibility correct to O(ε 3 ). Furthermore, to the same order of approximation, U satisfies the evolution equation

U T + iV U + cos θ U X - i 2 cot θU ZZ + β 2 U = 0. (3.6)
The second term in (3.6) is the feedback of the induced mean flow to the beam dynamics, while the third and the fourth term, respectively, accounts for the effects of (along-beam and transverse) dispersion and viscous attenuation of the beam envelope. This balance of dissipation with nonlinear coupling and dispersion assumes that the inverse Reynolds

number ν = 4π 2 ν * /N λ * 2 scales like ν = βε 2 , (3.7)
where β = O(1).

Turning next to the induced mean flow, from mass conservation it is deduced that the vertical velocity is O(ε 4 ). Thus, to leading order, the mean flow is purely horizontal,

U = V cot θ. (3.8)
Furthermore, as along-beam variations are weaker than cross-beam and transverse variations in view of (3.2), incompressibility to leading order requires

V Y + W Z = 0. (3.9)
Finally, to complete the description of beam-mean-flow interaction, we find it convenient to utilize the transport equation

q t + u • ∇q = ν ∇ 2 ζ -∇ρ • ∇ 2 (∇ × u) , (3.10)
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for the PV q = ζ -∇ρ • (∇ × u), (3.11) 
where ζ = (∇ × u) • j is the vertical vorticity and j denotes the vertical (y-) unit vector.

From (3.11), upon making use of (3.4)-(3.5), it follows that q = ε 3 Q + • • • , where

Q = Ω -2(U U * ) Z (3.12)
is the mean PV amplitude and

Ω = 1 sin θ V Z -sin θ W Y (3.13)
is the amplitude of the mean vertical vorticity, 

ζ = ε 3 Ω + • • • . Thus,

Saturation of streaming

As noted above, the dominant balance of O(ε 5 ) terms in (3.10) that provides the mean vorticity equation (3.14) eventually is invalidated owing to the resonant growth of streaming. Specifically, this breakdown occurs at T = O(ε -1/2 ), when V and W are of O(ε -1/2 ) so the convective derivative term is as important as the time evolution term in (3.10).

Thus, to bring out the proper balance of mean terms in (3.10) when T = O(ε -1/2 ), we introduce the re-scaled mean-flow variables

(V , W ) → ε -1/2 (V , W ), Ω → ε -1/2 Ω, (3.16)
which depend on X, Y , Z defined in (3.2) and the re-scaled slow time

T = ε 1/2 T.
(3.17)

Upon implementing these scalings in the PV transport equation (3.10), equation (3.14)

for the mean vertical vorticity is replaced by

∂ ∂ T + V ∂ ∂Y + W ∂ ∂Z Ω = 2β(UU * ) Z . (3.18)
In this evolution equation, the advection by the induced mean flow counterbalances the viscous forcing of Ω. Thus, the resonant growth (3.15) predicted at early times ( T 1)

is expected to saturate for T = O(1) and, as a result, the mean flow would level off Timothée Jamin, Takeshi Kataoka, Thierry Dauxois and T. R. Akylas and start being transported away from the beam region. Qualitatively, this scenario is consistent with the experimental observations presented in § 2.2: the growth of streaming in the beam vicinity is essentially complete after 20 beam periods (figure 2a), and by 40 periods (figure 2b) the effects of advection are clearly visible. Detailed comparison between theory and experiment will be made in § 4.

Far-field flow regime

As the mean vertical vorticity continues to be transported away from the beam, the effect of the forcing term on the right-hand side of (3.18) gradually diminishes. Thus, for T 1 the mean flow far from the beam reaches a quasi-steady state due to the balance of horizontal advection with viscous diffusion in the PV transport equation (3.10). In this far-field regime, as revealed by the experimental observations (figure 2c), the mean flow is highly elongated in the horizontal (x-) direction. This suggests replacing the beamoriented variables X = ε 2 ξ and Y = εη in (3.2) with x and y (see figure 3), scaled such that x-variations are weaker than vertical (y-) and transverse (z-) variations. Additionally, the far-field flow scalings should bring out the anticipated balance of horizontal advection with viscous diffusion of the mean PV.

The scaled spatial variables appropriate to the far field are

X = ε 5/2 x, Y = εy, Z = εz. (3.19)
It should be noted that X is 'slower' than Y and Z in keeping with the observed farfield characteristics of the mean flow (figure 2c), while Z remains as in (3.2) to permit matching with the near field as X → 0. Furthermore, as X is scaled differently from Z,
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W → ε 3/2 W ,
1 sin θ V X + W Z = 0. (3.21)
In view of the rescaling (3.20), in the far field the z-velocity component ε 3 W is smaller than the x-velocity component ε 3/2 V / sin θ, which as noted in § 2.2 is also consistent with our experimental observations. Thus, the amplitude of the mean vertical vorticity to leading order is given by

Ω = V Z sin θ . (3.22)
Finally, returning to (3.10), in view of (3.19) and (3.20), the dominant balance of mean PV terms in the far field yields

∂ ∂ T + V sin θ ∂ ∂ X + W ∂ ∂Z -β ∂ 2 ∂ Y 2 + ∂ 2 ∂Z 2 Ω = 0, (3.23)
where

T = ε 3/2 T = ε 2 T = ε 4 t (3.24)
is the 'very slow' time appropriate to the mean-flow dynamics at this late stage. As expected, the evolution equation (3.23) accounts for the horizontal advection and viscous diffusion of Ω, which are the main controlling factors in the far field.

Combined mean-flow equation

To investigate quantitatively the three stages of mean-flow dynamics identified above, it would be necessary to solve the evolution equations (3.14), (3.18) and (3.23), subject to Timothée Jamin, Takeshi Kataoka, Thierry Dauxois and T. R. Akylas appropriate initial and matching conditions. Considering that these problems would have to be tackled numerically, we find it more convenient instead to work with a single meanflow evolution equation that combines the dominant effects in the three flow regimes.

This extended equation reduces asymptotically to the simpler evolution equation (3.14),

(3.18) and (3.23), respectively, under the appropriate flow scalings for T , T and T = O(1).

Specifically, since the mean flow is horizontal to leading order, we introduce a streamfunction Ψ(χ, Y , Z, T ), where (χ, Y , Z) = ε(x, y, z) and T = ε 2 t, such that the mean-flow velocity components in (3.4a) are given by (3.25) with U = cos θ Ψ Z according to (3.8). Thus, (3.26) which ensures that the incompressibility equations (3.9) and (3.21) are satisfied automatically in the corresponding flow regimes. Furthermore, in view of (3.25), the mean vertical vorticity takes the form (3.27) which reduces asymptotically to expressions (3.13) and (3.22) under the corresponding flow scalings. Finally, the evolution equations (3.14), (3.18) and (3.23) can be combined to the following transport equation for Ω

V = sin θ Ψ Z , W = -Ψ χ ,
1 sin θ V χ + W Z = 0,
Ω = 1 sin θ V Z -W χ = Ψ χχ + Ψ ZZ ,
Ω T + εJ(Ω, Ψ) -ε 2 β ∂ 2 ∂ Y 2 + ∂ 2 ∂Z 2 Ω = 2 ∂ ∂T + β (UU * ) Z , (3.28) 
where

J(a, b) ≡ a χ b Z -a Z b χ .
Setting ε = 0 in (3.28) recovers the evolution equation (3.14) derived in Fan et al.
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Comparison of theory with experiment

The proposed theoretical model of beam-mean-flow dynamics is now applied to the experiments in § 2. As in [START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF], we choose the transverse width (= 3.7λ * ) of the wave generator as W * in (3.1) so ε = 0.043. Thus, in view of (3.2), the wave generator width is normalised to Z = 1 while the generator height (= 3λ * ) is equal to 0.8 in terms of Y , and the viscous parameter β = 15.6 according to (3.7). Furthermore, to account for the forcing due to the horizontally moving plates of the generator at the left wall of the tank, we prescribe at X = 0 the envelope of the along-beam wave beam velocity, in the form The above initial-boundary-value problem is solved numerically via pseudo-spectral discretization in -4.0 < Y < 4.0, -3.0 < Z < 3.0 and second-order centred finite differences in 0 < X < 0.32, combined with fourth-order Runge-Kutta time stepping.

U = A 0 {tanh [15(Y + 0.4)] -tanh [15(Y -0.4)]} × {tanh [5(Z + 0.5)] -tanh [5(Z -0.5)]} /4, ( 4 
The parameter A 0 in (4.1) is chosen such that the integral in the central vertical plane (Z = 0) of the x-component of mean flow at 20 beam periods matches the value of this integral obtained from the experimental mean flow data at the same time. The results reported here were computed using 128 × 64 Fourier modes in Y × Z, 128 grid points in X and ∆T = 8.0 × 10 -4 .

Apart from the experimental results, the proposed theoretical model is also compared against numerical simulations based on the full Navier-Stokes equations. Referring to the experimental set-up (figure 1), these simulations use no-slip boundary conditions on the tank bottom and walls, except the left wall (x * = 0), where at t = 0 we apply the forcing due to the wave generator (located in -5.7 cm < y * < 5.7 cm, -7.0 cm < z * < 7.0 cm). This is done by prescribing the x * -horizontal velocity in the form with 120 × 150 × 100 grid points and the time step ∆t = 0.07s. The grid points were more concentrated near the wave generator in order to achieve higher resolution there.

u * = U 0 dx * dt {tanh [2.2 (y * + 5.7)] -tanh [2.2(y * -5.7)]} × {tanh [2.2(z * + 7.0)] -tanh [2.2(z * -7.0)]} /4 (x * = 0), ( 4 
Finally, results are unchanged when using larger values of coefficients in tanh functions in (4.2). Timothée Jamin, Takeshi Kataoka, Thierry Dauxois and T. R. Akylas

We also made quantitative comparison between theory and experiment of the time evolution of the induced mean flow, for the three driving frequencies corresponding to the beam propagation angles θ = 15 • , 30 • and 45 • . Specifically, figure 6 shows plots for 0 < t/T 0 < 120 (where T 0 is the beam period) of the maximum mean-flow velocity in the x * -direction (figure 6a) and the integrated mean vertical vorticity in the horizontal quarter plane 0 < x * < ∞, 0 < z * < ∞ through the centre of the wave generator (figure 6b). These plots compare the predictions of the present theoretical model against 
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Concluding remarks

  indicated in figure4(a) of[START_REF] Bordes | Experimental observation of a strong mean flow induced by internal gravity waves[END_REF] and figure 4.6(e) of[START_REF] Bordes | Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant[END_REF], after some time the resonant growth of streaming saturates, and the induced mean flow which at first is confined in the beam region begins to advect along the tank. The theoretical models, by contrast, account only for the production of mean PV in the beam vicinity, which is responsible for the resonant mean-flow response there. While this is justified at early times, the experimental observations suggest that the neglected horizontal advection of mean PV eventually comes into play and halts the resonant growth of streaming.To address these issues, here we examine the long-time behaviour of the beam-meanflow response experimentally and theoretically. Using an experimental set-up similar to[START_REF] Bordes | Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant[END_REF] and[START_REF] Bordes | Experimental observation of a strong mean flow induced by internal gravity waves[END_REF], we follow the generated wave beam and its induced mean flow up to time t = 120 T 0 , where T 0 = 2π/ω is the beam period, for three different driving frequencies ω. These new, long-time observations reveal that, although the beam has essentially reached steady state by t = 20 T 0 , the induced mean flow undergoes three distinct stages characterized by: (i) resonant growth of streaming in theCambridge University PressJournal of Fluid Mechanics beam vicinity (t/T 0 20); (ii) onset of horizontal advection and saturation of streaming (20 t/T 0 40); and (iii) establishment of a quasi-steady state where the mean flow is highly elongated and stretches in the along-tank horizontal direction (t/T 0 40). As the model of[START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF] fails to capture (ii) and (iii), an extended mean-flow evolution equation is proposed that accounts not only for the production of mean PV in the beam vicinity, but also for horizontal advection of mean PV by the induced mean flow and viscous diffusion of mean PV in the far field. The predictions of this extended theoretical model are in excellent agreement with our experimental observations as well as numerical simulations based on the full Navier-Stokes equations.

Figure 1 .

 1 Figure 1. Schematic view of the experimental set-up. The rectangular tank is of size L×W ×H,where L is measured from the wave generator which lies against the left wall. Green lines correspond to the intersection of PIV laser sheets with the generator. Isophase planes of the generated internal wave beam are tilted downward at an angle θ from the horizontal. The group velocity cg is in the along-beam (ξ-) direction while the phase velocity cϕ is in the cross-beam (η-) direction.

  figure 2 (a, b, c) correspond to t/T 0 = 20, 40 and 100. The left image in each row shows the wave beam response in the vertical plane, while the middle and right images depict

Figure 2 .

 2 Figure 2. PIV measurements of horizontal velocity fields in the x * -direction at three times, t/T0, normalised with the wave beam period T0 = 2π/ω = 14 sec: (a) 20; (b) 40; (c) 100. The left images show the wave beam responses in the vertical plane z * = 0, while the middle and right images depict the induced mean flow in the vertical plane z * = 0 and the horizontal plane y * = 0, respectively. These planes are indicated by dashed lines. The thick black line marks the location of the wave generator. The zero-velocity line around x = 10 cm on the right images is an experimental artifact due to laser sheet reflection.

Figure 3 .

 3 Figure 3. Schematic of theoretical model for the generated wave beam. The coordinate system Oxyz is the non-dimensional counterpart of O * x * y * z * (figure 1), y is the upward vertical and x, z are the along-tank and transverse horizontal coordinates, respectively. The along-and cross-beam coordinates ξ and η (also marked in figure 1) are rotated by θ relative to (x, y). The beam has a nearly monochromatic profile. Dotted lines indicate lines of constant phase of the sinusoidal carrier whose wavelength (set by the wave generator) has been normalized to 2π in the asymptotic analysis. The envelope scale is O(ε -2 ) along the ξ-and O(ε -1 ) along the η-and z-directions, in keeping with the scalings (3.2)

  taking into account (3.4), (3.7), (3.12) and (3.13), the balance of mean terms in the PV transport equation (3.10), correct to O(ε 5 ), yields Ω T = 2 ∂ ∂T + β (UU * ) Z . (3.14) This evolution equation along with (3.6), (3.9) and (3.13), which govern the beam-meanflow interaction for T = O(1), are the end results of Fan et al. (2018). It should be noted that the vertical vorticity associated with the induced mean flow derives from two separate sources, one of inviscid and the other of viscous origin, corresponding to the two contributions to the forcing term on the right-hand side of (3.14). The focus here is on the mean flow due to the viscous source of vertical vorticity: this mean flow component, referred to as streaming, is forced resonantly and eventually overwhelms its inviscid counterpart. Specifically, for T = O(1), the beam amplitude U , governed by (3.6), reaches a quasi-steady state. Thus, in response to the viscous forcing term in (3.14), Ω grows linearly in T , Ω ∼ 2βT (UU * ) Z , (3.15) and so do V and W . As a result, the convective derivative term on the left-hand side of the PV transport equation (3.10), which does not partake in the O(ε 5 ) dominant balance leading to (3.14), eventually comes into play.

( 2018 )

 2018 that is valid at the early stage of mean flow generation, T = O(1), when the production of mean PV due to the underlying modulated beam is the dominant effect. At the later times T = O(1) and T = O(1), the O(ε) and O(ε 2 ) terms in (3.28), which account for the effects of advection and viscous diffusion of mean PV, respectively, come into play as discussed above. The extended mean-flow equation (3.28) along with (3.25), (3.27) and the beam evolution equation (3.6) comprise the theoretical model to be used below for quantitative comparison against our experimental observations and numerical Navier-Stokes simulations.

  .1) where A 0 controls the peak forcing amplitude. The smoothing coefficients in tanh functions are the same as in Fan et al. (2018) and correspond to the best agreement with Timothée Jamin, Takeshi Kataoka, Thierry Dauxois and T. R. Akylas experiments. The boundary forcing (4.1) is applied at T = 0, and the resulting beammean-flow response for T > 0 is determined by integrating the evolution equations (3.6) and (3.28) along with (3.25) and (3.27), starting from the quiescent state U = Ω = 0.

  .2) with dx * /dt determined from (2.1). Furthermore, similar to A 0 in (4.1), the forcing amplitude parameter U 0 in (4.2) is chosen such that the integral in the central vertical plane (z * = 0) of the numerically computed x * -mean-flow velocity at 20 beam periodsCambridge University PressJournal of Fluid Mechanics matches the value of this integral based on the experimental mean flow data at the same time. The Navier-Stokes equations are solved numerically by adapting to the present three-dimensional geometry the procedure outlined in[START_REF] Kataoka | Viscous reflection of internal waves from a slope[END_REF] for twodimensional reflection of an internal wave beam from a rigid slope. The results reported here were obtained using the computational domain x * × y * × z * = 107 × 38 × 80 cm 3

Figures 4

 4 Figures 4 and 5 show horizontal velocity fields in the x * -direction obtained from the theoretical model and Navier-Stokes simulations under the same flow conditions as the

Figure 4 .Figure 5 .

 45 Figure 4. Horizontal velocity fields in the x * -direction obtained from the theoretical model at three time instants: (a) t/T0 = 20; (b) t/T0 = 40; (c) t/T0 = 100. The flow snapshots here are direct counterparts of the experimental images displayed in figure 2 and the numerical simulations in figure 5.

  those of the model by[START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF] as well as our experimental observations and Navier-Stokes simulations. In all cases, the integrated mean vertical vorticity is estimated by computing the integral of the x * -horizontal mean flow along the centre line y * = z * = 0 and 0 < x * < 65 cm.According to figure6, there is overall excellent agreement of the present model with the experiment and numerical simulations. In contrast, the model of[START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF] is reliable for limited time only. This discrepancy is more pronounced for the maximum mean-flow velocity in figure6(a), which clearly highlights the three stages of mean-flow dynamics: (i) onset of streaming (t/T 0 20), when the maximum mean-flow velocity grows resonantly (linearly in time); (ii) saturation of streaming (20 t/T 0 40); and (iii) establishment of a quasi-steady state (t/T 0 40). As expected, the model of Fan et al. (2018) captures only (i). Furthemore, figure 6(a) reveals that for θ = 15 • the maximum mean-flow velocity saturates to about half the value it reaches for θ = 30 • and 45 • . This explains why in previous experiments the refraction effects on the wave beam due to the mean flow were less apparent for θ = 15 • (Bordes et al. 2012) than θ = 28 • (Bordes 2012).

Figure 6 .

 6 Figure 6. Time evolution of induced mean flow for 0 < t/T0 < 120, where T0 = 2π/ω is the beam period, for the driving frequencies ω = 0.24, 0.45 and 0.64 rad/s, corresponding to the beam propagation angles θ = 15 • , 30 • and 45 • , respectively. Comparison of the present theoretical model (--) against the model of Fan et al. (2018) (•••••••••), Navier-Stokes simulations (---) and experiment (•). (a) maximum mean-flow velocity (mm/s) in the along-tank (x * -) direction;

  Mean-flow generation by a three-dimensional internal gravity wave beam in a stratified fluid hinges on two distinct mechanisms: viscous production of mean PV which gives rise to streaming, and material conservation of mean PV which is responsible for an inviscid modulation-induced mean flow. Under the experimental flow conditions of[START_REF] Bordes | Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant[END_REF] and[START_REF] Bordes | Experimental observation of a strong mean flow induced by internal gravity waves[END_REF], production of mean PV in the beam vicinity dominates, and the observed mean flow is of the streaming type as evidenced by the mean vertical vorticity which grows linearly in time. In addition, however, these experiments suggest that horizontal advection of mean PV plays a part in the mean-flow dynamics after some time, leading to saturation of streaming, an effect beyond the reach of the model of[START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF].With this hint as our motivation, we conducted experiments using a similar set-up to[START_REF] Bordes | Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant[END_REF] and[START_REF] Bordes | Experimental observation of a strong mean flow induced by internal gravity waves[END_REF], but with forcing acting for longer times, in order to understand the ultimate fate of streaming. The new observations confirm that horizontal advection of mean PV by the growing mean flow eventually does come into play and causes streaming to saturate. Furthermore, as a result of the mean flow being advected away from the beam region, finally a quasi-steady state is established in the far field. The mean flow in this far-field response is highly elongated in the along-tank horizontal direction due to a balance of horizontal advection with viscous diffusion of mean PV.To explain theoretically the mean-flow development revealed by our experiments, we re-visited the asymptotic model of[START_REF] Fan | On the interaction of an internal wavepacket with its induced mean flow and the role of streaming[END_REF] and included the effects of horizontal advection and viscous diffusion of mean PV which control the long-time mean-flow dynamics. The extended asymptotic analysis confirms the three stages of mean-flow dynamics brought out by the experiments: genesis of streaming due to resonant mean PV production in the beam vicinity at early times, followed by saturation of streaming due to horizontal advection of mean PV, and finally the establishment of a quasi-steady state inCambridge University PressJournal of Fluid Mechanics the far field due to viscous diffusion of mean PV. The predictions of the revised model are in remarkably good agreement with the experimental observations and numerical simulations based on the full Navier-Stokes equations. Thus, for an internal wave beam, it is possible to trace theoretically the entire evolution of streaming observed experimentally.
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