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ABSTRACT

When bars form within galaxy formation simulations in the standard cosmological
context, dynamical friction with dark matter (DM) causes them to rotate rather slowly.
However, almost all observed galactic bars are fast in terms of the ratio between
corotation radius and bar length. Here, we explicitly display an 8σ tension between
the observed distribution of this ratio and that in the EAGLE simulation at redshift 0.
We also compare the evolution of Newtonian galactic discs embedded in DM haloes to
their evolution in three extended gravity theories: Milgromian Dynamics (MOND), a
model of non-local gravity, and a scalar-tensor-vector gravity theory (MOG). Although
our models start with the same initial baryonic distribution and rotation curve, the
long-term evolution is different. The bar instability happens more violently in MOND
compared to the other models. There are some common features between the extended
gravity models, in particular the negligible role played by dynamical friction − which
plays a key role in the DM model. Partly for this reason, all extended gravity models
predict weaker bars and faster bar pattern speeds compared to the DM case. Although
the absence of strong bars in our idealized, isolated extended gravity simulations is in
tension with observations, they reproduce the strong observational preference for ‘fast’
bar pattern speeds, which we could not do with DM. We confirm previous findings
that apparently ‘ultrafast’ bars can be due to bar-spiral arm alignment leading to an
overestimated bar length, especially in extended gravity scenarios where the bar is
already fast.

Key words: gravitation – galaxies: bar – galaxies: evolution – galaxies: kinematics and
dynamics – galaxies: spiral – instabilities

1 INTRODUCTION

The missing gravity problem on galaxy and larger scales is
one of the long-standing challenges in theoretical physics.
After a few early hints, it was put forward almost a cen-
tury ago in the Coma galaxy cluster (Zwicky 1933, 1937)
and in the Local Group (Kahn & Woltjer 1959). From the
1970s onward, it has been taken as a serious problem ap-
pearing on galactic and cosmological scales (Rubin & Ford
1970; Rogstad & Shostak 1972; Roberts & Whitehurst 1975;
Bosma 1981) − for an early review, see Faber & Gallagher
(1979). A related issue is that self-gravitating Newtonian
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discs are unstable (Miller & Prendergast 1968; Hockney &
Hohl 1969; Hohl 1971). After half a century, the solution is
still not known.

The standard hypothesis is haloes of cold dark mat-
ter (CDM) particles surrounding each galaxy (Ostriker &
Peebles 1973). Their microphysical properties are ever more
severely constrained by null detections in sensitive searches
(e.g. Hoof et al. 2020). The CDM hypothesis is a main in-
gredient of ΛCDM, the current standard cosmological model
(White & Rees 1978; Efstathiou et al. 1990; Ostriker &
Steinhardt 1995). Without the contribution of CDM, cosmic
structures cannot be formed in the context of Einstein’s gen-
eral relativity (GR). Even with the assumption of CDM and
a cosmological constant Λ, the ΛCDM paradigm still faces
cosmological tensions, for instance with foreground lensing
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2 M. Roshan et al.

of the cosmic microwave background (CMB, Di Valentino
et al. 2019) or the present expansion rate of the Universe
(e.g. Di Valentino 2021, and references therein).

On the smaller scale of individual galaxies, high-
resolution hydrodynamical simulations of structure forma-
tion reveal several additional challenges (e.g. Kroupa et al.
2010; Weinberg et al. 2015; Bullock & Boylan-Kolchin 2017).
Depending on their central baryonic surface density, ob-
served spiral galaxies display a wide diversity of rotation
curve shapes at a fixed mass scale, which would imply a
large variety of central dark matter (DM) profiles ranging
from cusps to cores (Oman et al. 2015). It is very difficult to
explain this diversity through stochastic feedback processes
(Ghari et al. 2019) while maintaining other observed reg-
ularities such as the radial acceleration relation (RAR), a
very tight relation between the gravity inferred from galaxy
rotation curves and that expected from the baryons alone
(McGaugh et al. 2016; Lelli et al. 2017). The dynamics of
elliptical galaxies appear to delineate the same RAR as spi-
rals (Chae et al. 2020; Shelest & Lelli 2020).

One of the most persistent small-scale challenges to
ΛCDM is the plane of satellite galaxies around the Milky
Way (MW, Kroupa et al. 2005). In the last decade, the
situation has dramatically worsened with the discovery of
similar planes around M31 (Ibata et al. 2013) and Centaurus
(Müller et al. 2018a, 2021), with hints of a plane around
M83 (Müller et al. 2018b). Gaia data on members of the
MW satellite plane confirm its existence at extremely high
significance (Pawlowski & Kroupa 2020), while the only two
M31 satellite plane members with known proper motions
also suggest the dynamical coherence of this structure (Sohn
et al. 2020). A comprehensive review of possible solutions in
ΛCDM failed to find any that were viable (Pawlowski et al.
2014). Such thin planes of satellite galaxies can actually be
most naturally explained as tidal dwarfs formed out of the
debris expelled by a previous galactic interaction (Pawlowski
et al. 2012). Such tidal dwarf galaxies are expected to be
free of CDM, as shown using idealized simulations (Barnes
& Hernquist 1992; Wetzstein et al. 2007) and in the Illus-
trisTNG (Pillepich et al. 2018) cosmological hydrodynamical
simulation (Haslbauer et al. 2019). Without the presence of
CDM, some other explanation must be found for the high
internal velocity dispersions of the MW and M31 satellites
(McGaugh & Wolf 2010; McGaugh & Milgrom 2013), and
extended or modified gravity can be a solution.1

Another less commonly discussed problem is the fact
that observed spiral galaxies harbour non-axisymmetric fea-
tures like central bars and grand-design spirals, which are

1 Throughout this paper, we use modified gravity or extended

gravity interchangeably when discussing alternatives to GR. How-

ever, extended gravity may have a firmer terminological basis
because nature does not modify a law, but rather follows one

particular law. More importantly, the original formulation of grav-
itation by Newton and Einstein was based only on the empirical

data then available, i.e. for Solar System objects. With the avail-

ability of dynamical data on the scale of galaxies in the late 1970s
and early 1980s, it became established that this description of

gravitation fails, unless additional DM is hypothesized to exist.

A plausible solution to this missing gravity problem is that the
original classical formulation of gravitation needs to be extended,

perhaps to include quantum corrections (Milgrom 1999).

often difficult to fully reproduce with galaxy formation sim-
ulations in a cosmological context. Such simulations (e.g.
Hopkins et al. 2018) sometimes almost completely lack bars
in non-quenched galaxies at redshift z = 0, probably related
to their sub-grid feedback recipes being too efficient. Such
efficient feedback is however needed in the simulations to
get roughly the right baryon fraction in galaxies. However,
other cosmological simulation projects like IllustrisTNG and
Auriga do reproduce some properties of barred galaxies like
the bar fraction, bar sizes, and luminosities (Blázquez-Calero
et al. 2020; Fragkoudi et al. 2020; Rosas-Guevara et al. 2020).

When bars do form in such simulations, dynamical fric-
tion with CDM particles causes them to rotate rather slowly
(Tremaine & Weinberg 1984), while almost all observed bars
are fast (Debattista & Sellwood 2000; Aguerri et al. 2015;
Algorry et al. 2017; Guo et al. 2019). This problem was
recently revisited by Peschken &  Lokas (2019), who applied
the so-called Tremaine & Weinberg (1984) method to find
the pattern speeds of bars in the Illustris cosmological sim-
ulation (Vogelsberger et al. 2014). Figure 8 of Peschken &
 Lokas (2019) shows that most of the bars are slow. Also,
flocculent spirals are much more common in those simula-
tions than regular grand-design spiral arms, even though the
latter are observed in most disc galaxies (Hart et al. 2017).

All this means that it is extremely valuable to seriously
consider the other major approach to the missing gravity
problem − modifying gravity or inertia in the weak-field
regime, hence modifying Newtonian dynamics. In this ap-
proach, there is in principle no need for DM particles, at
least on galaxy scales. Introducing modifications to standard
gravity has a long history dating back to Einstein when he
tried to find a Palatini approach to GR. Attempts to modify
GR were continued by others like Eddington, Schrödinger,
and Cartan. Their motivations were generally theoretical in
nature. Most extended theories of gravity that are currently
explored are instead motivated by observations, usually in
order to resolve cosmological issues like the nature of dark
energy, inflation, and other problems (for comprehensive re-
views, see Clifton et al. 2012; Baker et al. 2019).

Modifications to the gravitational law specifically to
address the missing gravity in galaxies started with Finzi
(1963) and were continued by e.g. Tohline (1983). These
works did not gain serious attention from the astrophysics
community. For the latter work, this is partly because in
the same year, Milgrom (1983) presented another more suc-
cessful approach in which the modification arises specifically
at low acceleration. After almost 40 years, it is now well-
known that this Milgromian dynamics (MOND) approach
is remarkably successful at explaining spiral galaxy rotation
curves and many other relevant observations (Famaey & Mc-
Gaugh 2012). Indeed, galactic-scale dynamical discrepancies
arise below a certain acceleration rather than beyond a fixed
distance (e.g. their figure 10). The most interesting point
about MOND is the introduction of a single new constant of
nature with dimensions of acceleration. We will discuss the
main features of MOND in Section 2.1. Its unique relativis-
tic completion (sometimes dubbed FUNDAMOND) is still
unknown, though the recently developed theory of Skordis
& Z lośnik (2019) is promising because the model predicts
that tensor mode gravitational waves propagate at the speed
of light c, even in the presence of structure. Moreover, it
can in principle provide a term decoupled from the baryon-

MNRAS 000, 1–30 (2021)



Barred spiral galaxies in modified gravity 3

photon plasma in the early Universe to explain the CMB
angular power spectrum and obtain a standard late-time
matter power spectrum (Skordis & Z losnik 2020). Further
exploration of this and other relativistic MOND theories
would help to check their viability in a cosmological context,
which is the single most important next step for MOND in
general.

In this regard, the recent study of Haslbauer, Banik &
Kroupa (2020) describes a viable MOND cosmology where
CDM is replaced by the same total mass in light sterile neu-
trinos, as originally proposed by Angus (2009). This leads
to the same behaviour as ΛCDM with regards to the CMB
anisotropies, primordial light element abundances, and over-
all expansion history. The use of MOND for structure for-
mation leads to significant differences, in particular by al-
lowing us to reside in a very large and deep void with en-
hanced apparent Hubble constant. Such a void is actually
observed (Keenan et al. 2013) and contradicts ΛCDM at
6.04σ, which rises to 7.09σ in combination with the Hub-
ble tension (Haslbauer et al. 2020). However, those au-
thors showed that these and other important local Universe
observables can be explained with only 2.53σ tension in
MOND. The use of hot dark matter (HDM) in this so-called
νHDM model also allows the dynamics of galaxy clusters
to be explained in a MOND context (Angus et al. 2010)
without much affecting galaxies (Angus 2010). νHDM also
better explains the formation of galaxy clusters like the
massive high-redshift interacting pair known as El Gordo
(Menanteau et al. 2012), whose properties arise naturally
at about the right frequency in cosmological νHDM simu-
lations (Katz et al. 2013). El Gordo would be an extremely
unlikely 6.16σ outlier in ΛCDM cosmology (Asencio, Banik
& Kroupa 2021), indicating that it underpredicts both over-
densities and underdensities on large scales little affected by
baryonic physics in galaxies.

Moffat’s scalar-tensor-vector theory of gravity (known
as MOG in the literature) is another modification to GR
(Moffat 2006). This theory uses two scalar fields and a vec-
tor field to address the missing gravity problem. MOG is
a covariant generalization of GR whose consequences can
in principle be investigated in cosmology, which is possi-
ble in MOND only if some particular relativistic extension
is adopted. Another interesting extended gravity theory is
non-local gravity (NLG, Hehl & Mashhoon 2009b). NLG
uses the metric tensor without any other gravitational field.
It provides some modifications to GR originating from the
non-local features of gravity. Interestingly, these non-local
corrections can mimic the behaviour of CDM, at least on
galactic scales. In all cases, the parameters of these theories
must be tuned so that the galaxy rotation curves − which
are well predicted by MOND − become close enough to the
MOND phenomenology, and thus reproduce the observed
RAR. The detailed secular evolution of spiral galaxies might
however be different in these various frameworks, especially
the development of bar instabilities.

Therefore, our purpose in this paper is to compare the
traditional CDM model with MOND, NLG, and MOG in
simulated barred spiral galaxies, as pioneered by Tiret &
Combes (2007) in MOND. These theories are among the
main approaches presented in the literature to solve the
missing gravity problem in galaxies. Where a galaxy’s miss-

ing gravity comes from likely has serious implications for its
secular evolution.

The outline of this paper is as follows: In Section 2,
we briefly introduce MOND, NLG, and MOG. In Section
3, we describe our numerical codes and procedures for con-
structing the initial conditions. The results of our simula-
tions are presented in Section 4, where we also use them
to compare the above-mentioned theories. Although we are
mainly interested in comparing theories with each other in a
non-cosmological context, we also consider the latest obser-
vational constraints, especially for the more mature ΛCDM
simulations. In particular, Section 4.6 quantifies a significant
tension between the statistical properties of bars in the EA-
GLE simulations and in observed galaxies. We discuss our
results in Section 5 and summarize them in Section 6.

2 ALTERNATIVE THEORIES OF GRAVITY WITHOUT
PARTICLE DARK MATTER

In this paper, we compare the evolution of isolated spiral
galaxies in the context of three well-known extended gravity
theories, and compare them with the standard CDM halo
models. In the following, we briefly introduce the extended
gravity theories.

2.1 Milgromian Dynamics (MOND)

MOND (Milgrom 1983) is the main alternative to galactic
DM. It postulates that the gravitational field strength g at
distance r from an isolated point mass M transitions from
the Newtonian GM/r2 law at short range to:

g =

√
GMa0

r
for r �

√
GM

a0

. (1)

MOND introduces a0 as a fundamental acceleration scale of
nature below which the deviation from Newtonian dynamics
becomes significant. Empirically, a0 ≈ 1.2 × 10−10 m/s2 to
match galaxy rotation curves (Begeman et al. 1991; Gen-
tile et al. 2011). With this value of a0 , MOND continues
to fit galaxy rotation curves very well using only their di-
rectly observed baryonic matter (e.g. Li et al. 2018; Kroupa
et al. 2018; Sanders 2019). In particular, observations con-
firm the a priori MOND prediction of very large departures
from Newtonian dynamics in low surface brightness galaxies
(LSBs, e.g. de Blok & McGaugh 1997; McGaugh & de Blok
1998). More generally, there is a very tight empirical relation
between the gravity inferred from rotation curves and that
expected from the baryons alone in Newtonian dynamics
(McGaugh et al. 2016; Lelli et al. 2017). This RAR confirms
the central prediction of Milgrom (1983). One important
consequence is that the asymptotic rotational velocity vf
far from an isolated galaxy is related to its total baryonic
mass according to

vf = 4
√
GMa0 . (2)

This relation is known as the baryonic Tully-Fisher relation
(BTFR), which extends the work of Tully & Fisher (1977)
and has been reviewed elsewhere (e.g. McGaugh 2020). More
complicated geometries should be handled using Equation
13.

MNRAS 000, 1–30 (2021)



4 M. Roshan et al.

In this contribution, we focus on the most common
extended gravity interpretation of MOND. It can also be
interpreted as extended inertia (Milgrom 1994), but the ap-
propriate field equations are not clear. This is partly because
they must be strongly non-local to be consistent with obser-
vations. One of the most pressing issues in this regard is to
understand the barycentric behaviour of a composite body
with high internal accelerations. This issue is completely re-
solved in an extended gravity interpretation of MOND −
gravity follows the standard inverse square law near the Sun
and the Galactic centre, but a different law applies in the
low-acceleration regions in between (Bekenstein & Milgrom
1984).

2.2 Nonlocal gravity (NLG)

In a series of papers, Mashhoon and collaborators have in-
vestigated fundamental issues related to non-locality in spe-
cial relativity (Mashhoon 2017, and references therein). The
idea is that the locality hypothesis is a useful approxima-
tion (Einstein 1950). In principle, it could be violated for
highly accelerated observers. This directly means that non-
local effects should appear in GR as corrections to the field
equations. A novel approach to implement non-local features
into GR has been introduced by Hehl & Mashhoon (2009b).
Their approach exploits the similarity between Maxwell’s
equations and that of the teleparallel equivalent theory of
GR (Hehl & Mashhoon 2009a). In this way, the non-local
corrections to GR can be constructed similarly to those in
electrodynamics. Eventually, by postulating a specific form
for the non-locality tensor Nµν , a non-local version of GR
in the teleparallel formalism has been introduced.2 In this
theory, the gravitational behaviour of the system depends on
its past. For recent developments in the theoretical aspects,
we refer the reader to Puetzfeld et al. (2019) and Puetzfeld
& Obukhov (2020).

In the Newtonian limit, the non-local terms show up as
an extra effective ‘phantom’ density in the right hand side
of Poisson’s equation. This effective density is given by:

ρp(r) =

∫
q
(∣∣r − r′

∣∣) ρb (r′) d3r′ , (3)

where ρb is the density of the baryonic matter, and q is a
kernel which should be found from observations. ρp mimics
the conventional DM density at galactic scales. Using rota-
tion curve fits, a suitable form for the kernel can be written
as (Rahvar & Mashhoon 2014):

q
(∣∣r − r′

∣∣) =

(
1

4πλ0

)
1 + µ0 |r − r′|
|r − r′|2

e−µ0|r−r′| , (4)

where λ0 and µ0 are two free parameters with dimensions
of length and inverse length, respectively. Using this kernel
and the modified version of the Poisson equation, one may
find the mutual gravitational force between two point masses
located at r1 and r2:

gNLG =
(

1 + α− α
[
1 +

µ0

2
|r2 − r1|

]
e−µ0|r2−r1|

)
gN , (5)

where gN is the Newtonian force, and α = 2/ (µ0λ0). These

2 A teleparallel relativistic version of MOND has also been pro-

posed (D’Ambrosio et al. 2020).

X

l

Figure 1. Illustration of the characteristic length l = µ−1
0 (the ra-

dius of the grey circle) on the surface of a galactic disc at location
X beyond which NLG effects first become dominant.

parameters should be obtained from observations like ro-
tation curve data (e.g. Rahvar & Mashhoon 2014). In our
simulations, we use the following parameters obtained by
fitting to our DM numerical model: α = 10.0 and µ0 =
0.0525 kpc−1.

It is clear that there is a characteristic length l = µ−1
0 in

NLG. This length is assumed to be fundamentally related to
the non-local features of gravity. However, one should note
that the existence of this length does not mean that there
is a fixed distance in galaxies beyond which we expect NLG
effects to dominate over conventional gravity. Specifically,
significant NLG effects will appear only at positions X in the
system where the correction to the gravitational force due to
NLG becomes comparable to or larger than the Newtonian
gravitational force. The NLG force is mainly obtained from
the baryonic mass inside radius l = µ−1

0 around the point
X, as schematically shown in Figure 1. Expressed more pre-
cisely, the gravitational field in NLG can be written as:

gNLG(X) = gN(X) + ∆(X;α, µ0) (6)

where ∆(X;α, µ0) is the correction term due to ρp. To de-
termine the length X beyond which NLG effects appear,
one should find the distance where the correction force first
becomes comparable to the Newtonian force. In other words,
we should solve the following equation:

|∆ (X;α, µ0)| & |gN (X)| . (7)

Depending on the value of α and the baryonic matter dis-
tribution, the resulting length X could be completely dif-
ferent from µ−1

0 . Let us assume that the baryonic matter
density has characteristic length rb and characteristic mass
Mb. Then, X would in principle be a function of α, µ0, rb,
and Mb, namely:

X = X(α, µ0, rb,Mb) . (8)

At the phenomenological level, this combination of parame-
ters should mostly reproduce the MOND phenomenology at
equilibrium, although simulated galaxies could evolve differ-
ently from MOND. The current version of NLG respects the
weak equivalence principle in the Newtonian limit. Conse-
quently, the kernel needs to be a universal function and the

MNRAS 000, 1–30 (2021)
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free parameters should be the same for all galaxies (Mash-
hoon 2017). However, a general version of the theory might
not respect the weak equivalence principle. In this case, the
theory does not prevent the parameters α and µ0 from being
mass-dependent.

The energy-momentum tensor Tµν is not conserved in
NLG, i.e. ∇µTµν = Iν , where Iν is a tensor containing the
non-local features of gravity. The main kernel of NLG also
appears in this tensor. In the current version of the theory,
Iν is postulated to be a universal function without any direct
dependence on the physical properties of the underlying self-
gravitating system. It is possible to construct a model of
NLG by postulating a mass-dependent kernel. In this case,
Einstein’s principle of equivalence will be violated because
the right-hand side of the geodesic equation would depend
on the internal structure of the free-falling body (Roshan
2013).

2.3 MOG

MOG is a scalar-tensor-vector theory of gravity (Moffat
2006). The scalar fields in this model are similar in spirit to
the Brans-Dicke theory. Thus, one may say that the gravi-
tational constant is time-dependent and appears as a scalar
field in the field equations. There is also another scalar field
that appears as a dynamical mass for the vector field in
MOG. The existence of these three extra fields enables MOG
to behave differently than GR on galactic and extragalactic
scales.

It has been shown that the theory has a true sequence of
cosmological epochs. In other words, the cosmos starts from
a radiation-dominated universe and then enters a matter-
dominated phase, before finally evolving towards an acceler-
ated de Sitter universe (Jamali et al. 2018). One main issue
which should still be addressed by MOG is cosmic structure
formation. The evolution of cosmic perturbations has been
investigated in Jamali et al. (2020). It turns out that MOG
is consistent with the redshift distortion data.

The CMB power spectrum in MOG has been inves-
tigated in Moffat & Toth (2013). Their work shows that
MOG leads to a serious enhancement of the baryon acoustic
oscillations, which in general is a very important constraint
on any cosmological model (Pardo & Spergel 2020). A sim-
ilar problem was claimed to occur in the relativistic version
of MOND known as TeVeS (Dodelson 2011), but its inher-
ent non-linearity means that modes of different wavelengths
would mix to a substantial extent, likely smoothing these
oscillations in a way that is difficult to determine without
numerical simulations (section 5.2 of McGaugh 2015). In the
MOND context, it is also possible to extend the dynamics
of the k-essence scalar field of TeVeS (Bekenstein 2004) to
play the role of DM in the CMB and in the linear regime
of structure formation (Skordis & Z losnik 2020), or for a
MOND-HDM hybrid model to explain the CMB similarly
to ΛCDM (Angus 2009; Haslbauer et al. 2020). The results
presented in Moffat & Toth (2013) are also based on vari-
ous assumptions and analytic descriptions. Therefore, it is
necessary to modify standard codes like CAMB (Lewis &
Bridle 2002) to find the CMB power spectrum in MOG.
Due to the existence of three extra fields, this is not a simple
task. However, it will be necessary to test the cosmological
viability of such a theory.

On galactic scales, MOG introduces some modifications
to Newtonian gravity. In the weak field limit, the gravita-
tional force between two point masses located at r1 and r2

takes the following form (Roshan & Abbassi 2014):

gMOG =
(

1 + α− α [1 + µ0|r2 − r1|] e−µ0|r2−r1|
)
gN , (9)

where α and µ0 are two free parameters that can be fixed
using rotation curve data (Moffat & Rahvar 2013). These
free parameters are related to the background values of the
scalar fields in the theory. However, in our simulations, these
parameters are fixed at α = 4.7 and µ0 = 0.2125 kpc−1.
In Section 3.3, we describe how these free parameters in
MOG and NLG have been fixed. The consequences of this
extended gravitational law on the evolution of spiral galaxies
have been investigated in Ghafourian & Roshan (2017) and
Roshan (2018). Notice that despite the similarity between
the NLG and MOG point mass force laws (Equations 5 and
9), there is a slight difference because one factor of µ0/2 in
NLG is replaced by µ0 in MOG in a manner distinct from a
redefinition.

On smaller scales like the Solar System, the MOG cor-
rections are very small. This means that the theory remains
valid in the Solar System while leading to significant devia-
tions from Newtonian gravity on galactic scales. However,
the velocity dispersion profile of the ultra-diffuse galaxy
Dragonfly 44 contradicts MOG at 5.49σ confidence (Haghi
et al. 2019). Thus, the MOG theory can be consistent with
observations only if α and µ0 vary in some environment-
dependent way, greatly diminishing the possibility of mak-
ing a priori predictions. This problem is most likely caused
by the fact that galactic-scale dynamical discrepancies arise
below a certain acceleration rather than beyond a fixed
distance. Thus, consistency with observations requires the
MOG length scale µ0

−1 ∝
√
M (equation 10 of Green &

Moffat 2019), making the theory behave rather similarly
to MOND (Equation 1). This also causes severe theoreti-
cal issues since M is not a well-defined covariant quantity,
meaning the theory cannot be fundamental. We nevertheless
explore MOG as representative of a wider class of theories
with an extra Yukawa-like force.

2.4 Phantom dark matter in extended gravity models

The gravitational forces in NLG and MOG are similar
(Equations 5 and 9), so one might naively expect similar
behaviour regarding the disc evolution. This is not true in
detail because although these models lead to similar rotation
curves at z = 0, their effective ‘phantom’ DM density can
be substantially different. We quantify this by rewriting the
Poisson equation in NLG and MOG as:

∇2Φ ≡ 4πG (ρb + ρp) , (10)

where all the corrections to Newtonian gravity are collected
in the extra term ρp. Inspired by Milgrom (1986) in the
MOND context, we call this term the ‘phantom’ DM density
ρp, since combining it with the baryon density ρb gives the
density distribution whose Newtonian gravity equals that of
the baryons alone in some other theory. Using Equation 3,
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Figure 2. Initial effective ‘phantom’ DM density relative to the

Plummer DM density in terms of R as measured at z = 0.05 kpc

(main figure) and z = 3 kpc (inset), shown for an infinitely thin
exponential disc whose scale length is 1 kpc. Densities are shown

on a logarithmic scale. The distribution of ρp for thin exponen-

tial MOND discs was visualized in e.g. Lüghausen et al. (2013,
2015). We avoid the disc mid-plane because of the singular mass

distribution there, which causes the MOND ρp to diverge (see

text).

ρp in NLG is:

ρp (r) =
αµ0

4π

∫
1 + µ0 |r − r′|
|r − r′|2

e−µ0|r−r′|ρb
(
r′
)
d3r′ . (11)

The corresponding result for MOG is (Roshan & Abbassi
2014):

ρp (r) =
αµ0

2

8π

∫
e−µ0|r−r′|
|r − r′| ρb(r

′) d3r′ . (12)

In MOND, it is necessary to first determine gN and then
solve Equation 13. Since the distribution of ρp is not an im-
portant part of our analysis, for simplicity we discuss below
its distribution around an infinitely thin exponential disc
in isolation with the same central surface density as used
elsewhere in this contribution. The gN of this configuration
was derived in Freeman (1970).

ρp is not spherically symmetric for a thin baryonic disc,
but the physical DM in our live Plummer halo (LPH) model
is spherical (Section 3.3). Since the evolution of the bar in-
stability should be closely related to the effective density
(ρb + ρp) near the disc mid-plane, it is instructive to ex-
plore their properties here. Figure 2 shows ρp relative to the
Plummer DM density in our LPH model. The main panel
illustrates ρp at z = 0.05 kpc, while the inset shows ρp at
z = 3 kpc. We have excluded z = 0 because the phan-
tom density in MOND is singular at z = 0. We see that
at z = 0.05 kpc, the effective phantom DM density in the
central regions is much higher in NLG than in MOG, with
MOND giving an intermediate result. In all cases, ρp is much
higher than the physical DM in LPH. At larger z, the effec-
tive phantom density in MOG becomes higher than in NLG,
with MOND giving a much higher result than either theory.
All these theories have a larger ρp than the LPH case out
to at least several disc scale lengths, which for an exponen-
tial disc covers the vast majority of its baryonic mass. This
means that the NLG, MOG, and especially MOND discs are
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Figure 3. The surface density Σp of the phantom disc in MOND,

shown relative to the baryonic surface density Σb. Notice that
Σp � Σb near the centre, a consequence of the high central

gravity relative to a0 (Section 3.3). However, the phantom disc

is dominant further out. There is no phantom disc in any of the
other considered theories (see text).

effectively more massive at z = 0.05 kpc, making them more
prone to the bar instability. From this perspective, one may
expect faster bar growth in NLG and to a lesser extent in
MOG compared to the LPH case, with MOND bars expected
to grow fastest of all for reasons discussed below. This might
explain differences between the early time evolution of the
bar strength in these models (Section 4.3).

The DM halo in our LPH model does not have a singular
disc component, even though the baryons are distributed in
an infinitely thin disc. Similarly, MOG and NLG also have
a finite ρp at z = 0 because these both involve a distance-
dependent modification to gravity. Since the gravity at some
location A just outside the plane of a thin disc is domi-
nated by baryons very close to A, there is no modification
to the effective surface density of the disc as perceived by
a Newtonian observer. However, the modification to gravity
is acceleration-dependent in MOND (Equation 14), so in
this case there is a phantom DM disc with surface density
Σp > 0. This is readily calculated from the local value of ν,
which as discussed in Section 3.3.1 must include an allowance
for the vertical gravity just outside the disc. We use Figure
3 to show the ratio between Σp and the baryonic surface
density Σb. The latter dominates at the very centre due
to the rather strong gravity there (Section 3.3). However,
the phantom disc rapidly becomes dominant further out.
We expect it to have a destabilizing effect on the disc, as
captured approximately by the factor of ν in the Toomre
stability condition (Equation 21). Since the rotation curve
and thus radial epicyclic frequency are rather similar in all
our considered models, the MOND phantom disc could have
important implications for the overall stability. Its impor-
tance would be much greater still for a galaxy with lower Σb
(Milgrom 1989).
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3 NUMERICAL METHODS

Two different codes have been used in this paper: one for the
MOND simulations, and the other for DM, MOG, and NLG
simulations. In the following, we briefly introduce them.

3.1 MOND simulations with Phantom of RAMSES

Our MOND simulations use its rather computer-friendly
quasi-linear formulation known as QUMOND (Milgrom
2010):

∇ · g = ∇ · (νgN) . (13)

The function ν is the MOND boost to the Newtonian gravity
gN for a spherically symmetric problem, where g ≡ νgN. In
our notation, p ≡ |p| for any vector p. We choose the ‘sim-
ple’ form of the interpolating function (Famaey & Binney
2005) to transition between the Newtonian and deep-MOND
regimes:

ν =
1

2
+

√
1

4
+
a0

gN
. (14)

This provides a good fit to a variety of data on galactic and
extragalactic dynamics (Gentile et al. 2011; Banik & Zhao
2018b). It is rather similar to the function used by McGaugh
et al. (2016) to fit the Spitzer Photometry and Accurate
Rotation Curve dataset (SPARC, Lelli et al. 2016). In the
QUMOND approach, ν depends only on gN and is thus read-
ily computable once standard techniques are used to obtain
gN. The approach is quasi-linear because it requires only a
linear grid relaxation stage to solve the standard Poisson
equation, minimising the computational cost and the modi-
fications required to existing Newtonian codes.

Our simulations implement Equation 13 using the
Phantom of RAMSES N -body and hydrodynamics solver
(por, Lüghausen et al. 2015). por adapts the potential
solver of the grid-based code ramses, which uses adaptive
mesh refinement to improve efficiency (Teyssier 2002). por
has previously been used to investigate polar ring galaxies
(Lüghausen et al. 2013), shell galaxies (B́ılek et al. 2015),
and the tidal streams of Sagittarius (Thomas et al. 2017)
and Palomar 5 (Thomas et al. 2018). Recently, it was used
in hydrodynamical simulations of collapsing gas clouds to
naturally yield exponential disc galaxies (Wittenburg et al.
2020), and to obtain a quite realistic morphology for M33
after secularly evolving it for 10 Gyr (Banik et al. 2020).
Galaxy interactions have also been simulated in por with
hydrodynamics (Renaud et al. 2016) and without it (B́ılek
et al. 2018).

For this project, we conduct pure N -body simulations
by disabling the hydrodynamics mode (the flag hydro is set
to false). Self-gravity is enabled by setting gravity type = 0
and activating poisson so the Poisson solver is utilised. Since
the potential is solved on a grid but is generated by a fi-
nite number of particles, we enable the flag pic to activate
the particle-in-cell solver. The simulation is advanced in a
cubic Cartesian grid with side length of 256 kpc. This is
much larger than the simulated galaxy, making it accurate
to assume both the deep-MOND limit and spherical sym-
metry of the potential on our computational boundary. To
provide adequate spatial resolution, we use 7 − 12 levels of
refinement, i.e. the highest resolution is 256/212 = 0.0625

kpc. We set the m refine parameter to 20 for all levels,
forcing por to further refine a cell if it has > 20 particles.
This is the only refinement condition because mass sph is
set to 0. Since we do not set the nsubcycle parameter, the
default value of 2 is used, causing the timestep to be halved
with each level of refinement. Further details of the ramses
package can be found in Teyssier (2002), along with default
values of parameters that we do not set.

We convert the output files into human-readable text
files using an algorithm that we have made publicly avail-
able.3 por is the most widely used publicly available N -body
solver for MOND. Banik et al. (2020) provides further de-
tails regarding por and its application to thin disc galaxies,
including links to download the algorithms used to prepare
the initial conditions for both hydrodynamical and stellar-
only thin disc simulations (Section 3.3.1). A user guide for
por simulations has recently been published, including de-
tails on how to initialize isolated or interacting disc galaxy
simulations consisting of only stars or also including hydro-
dynamics (Nagesh et al. 2021). The guide also describes the
extraction of both particle and gas data into human-readable
form.

Recently, the raymond algorithm has also been released
(Candlish et al. 2015).4 It can solve both QUMOND and
the original aquadratic Lagrangian formulation of MOND
(AQUAL, Bekenstein & Milgrom 1984). It is anticipated
that discs which are stable in QUMOND would also be stable
in AQUAL as the stability conditions are numerically quite
similar (Banik et al. 2018b).

3.2 galaxy code for simulations other than MOND

The galaxy code is a standard and well-developed N -
body code for galactic simulations in the conventional CDM
picture (Sellwood 2014). It is capable of constructing the
equilibrium initial conditions for a variety of different halo,
bulge, and disc combinations. It uses standard algorithms
developed over almost four decades. The time evolution is
obtained by calculating the gravitational field at each time
step. This can be done with different methods already im-
plemented in the code; however, the main one is the grid
method.

It is not easy to modify this code to include extended
gravity effects. All scripts for setting initial conditions and
the evolution are based on Newtonian gravity. Fortunately,
different grid coordinate systems use different approaches to
compute the time evolution. It is straightforward to imple-
ment MOG and NLG effects in galactic models which use
the cylindrical polar three-dimensional mesh (P3D). This
grid is constructed by Nr coaxial cylinders with logarithmi-
cally spaced radii, Nφ equally spaced azimuthal planes, and
Nz planes spaced equally in the vertical z direction. The
intersection of these planes gives Nr×Nφ×Nz mesh points.
The Fourier method is used to determine g in the azimuthal
and vertical directions. The Plummer softening kernel P (ξ)
is used to prevent singularities, where ξ ≡ |r − r′|. This
kernel recovers the Newtonian inverse distance potential
at distances much larger than the softening length, when

3 github.com/GFThomas/MOND/tree/master/extract por
4 ifa.uv.cl/sites/graeme/codes.html
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P (ξ) ∝ −1/ξ. However, P (ξ) tapers smoothly to zero at
short distances. Since we are simulating a collisionless sys-
tem, the exact form of the kernel at short distances does not
matter.

As discussed in Sections 2.2 and 2.3, the effects of NLG
and MOG appear at large separations. Therefore, we only
need to modify the Plummer softening kernel at large dis-
tances by replacing −1/ξ with the potential of a point mass
obtained in each theory. In particular, one needs to apply
this change to the following subroutines in the galaxy code:
sftpot, radfor, azifor, vrtfor.

For the DM galactic models, we use a hybrid mesh −
a spherical three-dimensional (S3D) system is used for the
DM halo, and a P3D mesh for the baryonic exponential disc
(for more details, see Roshan 2018; Roshan & Rahvar 2019).

3.3 Initial conditions

Every model we run contains an exponential disc with mass
md and scale length rd. The surface density

Σ(R) =
md

2πr2d
exp

(
−R
rd

)
. (15)

The disc has a sech2 (z/ (2z0)) density profile in the ver-
tical direction z with scale height z0. Table 1 summarizes
this and other properties of the models like their mass,
scale length, and grid properties. For a single-component
exponential disc with known aspect ratio, the only dimen-
sionless parameter in MOND is the surface density. We
use a model where the vertical Newtonian gravity at the
disc centre is gN,z = 2πGΣ0 = 10 a0 , where Σ0 is the
central surface density of the disc. The MW parameters
in table 1 of Banik & Zhao (2018a) give gN,z = 15 a0 at
the disc centre. For M31, the flatline rotation curve level
of vf = 225 km/s (Carignan et al. 2006) implies a MOND
mass of vf

4/ (Ga0) = 1.6× 1011M� (Equation 2), which for
a disc scale length of 5.3 kpc (Courteau et al. 2011) implies
the central gN,z = 7 a0 . Therefore, our adopted value of
10 a0 corresponds to a galaxy whose surface density is inter-
mediate between the major Local Group galaxies. However,
these galaxies are larger than in our model, increasing their
dynamical time − they would evolve slower than our sim-
ulated Milgromian disc. It is possible to scale the results
of our MOND model to other disc parameters provided the
central surface density is fixed (Section 5.2).

For the DM case, we have two models − one with a live
Plummer halo (LPH), and the other with a rigid Hernquist
halo (RHH). The latter is unphysical in the ΛCDM context,
but interestingly is rather similar to the expected behaviour
for superfluid DM since dynamical friction would be negligi-
ble in this case (Berezhiani & Khoury 2016; Berezhiani et al.
2019). The Plummer halo density profile is:

ρLPH (r) =
3mh

4πrh3

[
1 +

(
r

rh

)2
]−5/2

. (16)

The analogous result for the Hernquist profile is:

ρRHH (r) =
mh

2πr3h

(rh
r

)[
1 +

(
r

rh

)]−3

. (17)

To perform a meaningful comparison between galactic
simulations in different theories, it is necessary to start with

the same initial conditions. Specifically, the distribution and
velocity profile of the baryonic matter should be the same
in all models, which therefore need to have the same rota-
tion curve. This is the main reason for using the Plummer
and Hernquist models. Our experience shows that fitting ex-
tended gravity with Plummer and Hernquist haloes is much
simpler than other known haloes. The Plummer halo has
also been used in previous MOND simulations (e.g. Tiret &
Combes 2007).

The rotation curves of our models are shown in Figure 4.
We take the MOND model as our main model, and try to
fit the NLG and MOG models by choosing appropriate free
parameters α and µ0. In the DM case, we change the halo
properties to find a proper fit. As is clear from Figure 4, the
rigid halo gives a suitable fit for the MOND curve. However,
this is not the case for the live halo. One should note that in
LPH, we adiabatically compress the Plummer halo to find
a suitable equilibrium model. To do so, we use the original
procedure already implemented in the galaxy code (Sell-
wood & McGaugh 2005). Consequently, the halo’s properties
are in principle different from the rigid case. At intermediate
radii, the live halo model is thus unable to exactly reproduce
the MOND model. Of course, one cannot expect exactly the
same initial conditions for different theories as it is not math-
ematically possible. Though the halo is important at large
radii, the baryonic disc provides the dominant contribution
to the total rotation curve in the central regions, indicating
that we are dealing with maximal discs in a standard con-
text. This can be quantified with the ratio between the total
rotational velocity vc measured at 2.2 rd and the Newtonian
circular velocity vN due to the disc alone. For our models,
this ratio is vN /vc ≈ 0.91.

It is also necessary to ensure that internal properties
like the velocity dispersions are similar for different models.
We use Figure 5 to show the initial surface density Σ and the
radial, azimuthal, and vertical velocity dispersions (σr, σφ,
and σz, respectively). The internal properties are very simi-
lar for all models constructed by the galaxy code. Thus, we
plot only LPH and MOND. As expected, the surface density
of both models is the same exponential disc law. It is clear
that the velocity dispersions of both models are appropri-
ately consistent except at very small and large radii, where
the Milgromian model predicts modestly higher σr and σφ.
This is because the gravity in the disc mid-plane becomes
quite weak in these regions, enhancing the ν factor in MOND
(Equation 14). However, the gravity at the disc surface is rel-
atively strong at the disc centre, suppressing ν and therewith
σz. At intermediate radii, the lower gravity implies a phan-
tom dark disc (Section 2.4), which very slightly increases
σz. At even larger radii, the very low surface density of an
exponential disc means the vertical restoring force is mostly
a geometric one that can be understood by considering the
potential as spherically symmetric. Since the rotation curve
is similar in all our models by construction, we expect the
initial σz to be very similar at large radii in all cases.

The above discussion shows that our models can be
compared with each other. For a comparison with real galax-
ies, it is also important for the velocity dispersion profile
to broadly agree with observations. We therefore compare
our assumed σr (R) with the observationally inferred profile
σ∗r (R) as deduced from observations (Leroy et al. 2008).

MNRAS 000, 1–30 (2021)
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Table 1. The properties of our galactic models. Column 1: Acronym used to identify the simulation. Column 2: rd is the radial scale length
of the exponential disc. Column 3: Vertical scale height z0 in terms of rd. Column 4: Initial disc mass md in units of 8.57 × 109M�.

Column 5: Type of DM halo (if any). Column 6: The halo mass scaled by md. Column 7: Radial scale length of the halo in units of

rd. The outer radius of the Plummer halo is 24 rd and the corresponding value for the rigid Hernquist model is 15.42 rd. Column 8: the
basic time step in units of τ = 5.095 Myr. Column 9: number of rings, spokes, and planes in the cylindrical polar grid. Column 10: the

number of shells in the spherical grid. Column 11: the gravity softening length in units of rd. The MOND models are advanced using
the Phantom of RAMSES solver (Lüghausen et al. 2015), which adapts the potential solver of RAMSES (Teyssier 2002) to implement

QUMOND (Section 3.1) on a Cartesian grid with adaptively refined mesh.

Run rd (kpc) z0/rd md Halo mh/md rh/rd δt Cylindrical polar grid Spherical grid Softening length

MOND 1 0.15 1 None . . . . . . . . . Cell size ranges from (0.0625− 2) kpc in powers of 2

LPH 1 0.15 1 Plummer 8 12 0.01 193× 224× 45 1001 0.16 rd
RHH 1 0.15 1 Hernquist 13.53 11.87 0.01 193× 224× 45 1001 0.16 rd
NLG 1 0.15 1 None . . . . . . 0.01 193× 224× 45 1001 0.16 rd
MOG 1 0.15 1 None . . . . . . 0.01 193× 224× 45 1001 0.16 rd

0 2 4 6 8 10

R (kpc)

0

50

100

150

MOND
NLG

0

50

100

150

R
o
t
a
t
i
o
n
 
C
u
r
v
e
 
(
k
m
/
s
)

MOND
MOG

0

50

100

150

MOND
RHH

0

50

100

150

MOND
LPH

Figure 4. Initial rotational velocities for (top to bottom): LPH

(red), RHH (orange), MOG (green), and NLG (blue). All panels
also show the Milgromian model (black). In the DM models, the

dashed and dotted curves indicate the contributions of the disc

and halo, respectively. The scale length is 1 kpc (Table 1).

According to their equation B3,

σ∗r (R) ≈ 0.62

√
mdG

rd
exp (−R/rd) . (18)

This relation is shown as a thin dotted line in the upper
right panel of Figure 5. Considering that it overestimates σr
(Mogotsi & Romeo 2019), it is clear that our adopted σr (R)
is reasonably consistent with observations.

3.3.1 Initializing a Milgromian disc

We set up a Milgromian disc using a code we make publicly
available.5 The method was previously used to simulate M33
(Banik et al. 2020), but we briefly describe it here. We use an
adapted version of the Newtonian code Disk Initial Condi-
tions Environment (dice, Perret et al. 2014). dice offers the

5 github.com/GFThomas/MOND/tree/master/init conditions/disc
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surface density of the Milgromian model, shown for LPH and
MOND. Other panels: the initial velocity dispersion profiles of

these models, expressed in km/s. The dotted curve in the panel

for σr shows an observational estimate (Equation 18).

advantage that the Jeans equations are not solved using the
potential, which is difficult to define for an isolated system in
MOND. dice uses only the Newtonian gravity gN, which it
calculates using the principle of superposition accelerated by
a fast Fourier transform. We approximately MONDify this
using the algebraic MOND approximation, which states that
the true gravity

g ≈ νgN . (19)

This approximation is exactly correct in spherical symme-
try and works rather well in axisymmetric problems (Angus
et al. 2012; Jones-Smith et al. 2018). It is expected to work
particularly well just outside the disc (Banik et al. 2018b).
However, it becomes inaccurate within the disc due to the
steep vertical gradient in ν caused by that in gN,z . Naively
applying Equation 19 would imply a rapid change in gr with
z, something that is physically unrealistic as it would cause
∇ × g 6= 0, allowing energy to be gained around a closed
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loop.6 To avoid this, we fix the value of gN,z entering the
calculation of ν (Equation 14) to 2 tanh (2)πGΣ if |z| is small
enough that the fraction of the local column density Σ (r)
at even smaller |z| falls below tanh (2). This is based on the
assumption that gN,z = 2πGΣ at the disc ‘surface’, which
is valid for a thin disc. Once ν is calculated in this revised
way, we set g = νgN.

3.3.2 Local stability

Although we are mainly interested in the global stability and
evolution of galactic discs, it is useful to mention some points
about their local stability in extended gravity theories. To
suppress local fragmentation of our galaxy models, we set
the Toomre parameter Q > 1 (Toomre 1964), with Q defined
as:

Q ≡ σrκ

3.36GΣ
. (20)

The rotation curve must be known to find κ, the radial
epicyclic frequency.

The local stability of discs in MOG has been investi-
gated in Roshan & Abbassi (2015). They derived the dis-
persion relation for local perturbations and presented a gen-
eralized version of the Toomre criterion. Fortunately, the
correction terms induced by MOG are negligible in spiral
galaxies. This is reasonable because MOG effects appear at
long distances − we do not expect them in small scale local
perturbations. Consequently, the standard Toomre criterion
(Q > 1) works very well for MOG galactic models. Due to
the similar weak field limits of MOG and NLG, one may
expect the same criterion for NLG models.

In the case of MOND, the appropriate generalization
was derived in Banik et al. (2018b). Briefly, it states that
Equation 20 should be modified to:

Q ≡ σrκ

3.36Gν
(
1 + K0

2

)
Σ
, where (21)

ν = ν
(√

gN,r2 + gN,z2
)
, and (22)

K0 ≡ ∂ ln ν

∂ ln gN
. (23)

Notice that the MOND boost factor ν depends on the total
Newtonian gravity gN just outside the disc plane, i.e. both
the radial Newtonian gravity gN,r and the vertical compo-
nent gN,z ≡ 2πGΣ must be added in quadrature to yield
gN . In the deep-MOND limit, K0 ≡ − 1

2
, while in the New-

tonian limit K0 ≡ 0. Apart from an order unity correction
due to K0, disc stability in QUMOND works similarly to
Newtonian gravity with the local value of G enhanced by
the factor ν. Note that ν can be arbitrarily large in MOND,
especially in LSBs.

The local stability criterion is satisfied in all our models,
as evident from the Q parameter when t = 0 and t = 4 Gyr
(Figure 6). Since MOND predicts higher σr when t = 0,
we see that Q � 1 in the outer regions. At the end of the
simulation, the solid curves show that the bar’s activity has

6 This problem does not arise if rigorously implementing
QUMOND by applying Equation 13 rather than the approximate

Equation 19.

0 2 4 6 8 10

R (kpc)

0

5

10

15

20

Q
 
p
a
r
a
m
e
t
e
r

MOND
MOG
NLG
RHH
LPH

Figure 6. Toomre Q parameter (Equation 20 or 21) at t = 0
(dashed curves) and t = 4 Gyr (solid curves). The solid grey

line shows Q = 1.

substantially increased Q, so all the discs remain locally sta-
ble throughout our simulations. In what follows, we therefore
deal with their global stability.

4 RESULTS

We now discuss the time evolution of our models. As already
mentioned, the bar instability and the bar pattern speed
are two of the most important quantities directly related
to the missing gravity problem. The buckling instability is
another important feature in spiral galaxies. We compare
these phenomena in our different models.

4.1 Face-on and edge-on views

The face-on projected positions of particles at different times
are shown as snapshots in Figure 7 for the models with
N = 106 particles. The first snapshot in each model shows
the time at which the bar magnitude reaches its maximum
(Section 4.3) and we see a two-fold symmetric spiral arm.
It is interesting that in all models, the spiral arms are not
permanent patterns (Lin & Shu 1964) − they rapidly fade
to a stable pressure-dominated bar. The second snapshot for
each model is roughly when the buckling instability occurs,
causing the disc thickness to significantly grow. The last
snapshot illustrates the end of each simulation.

The corresponding edge-on views are shown in Figure 8,
with two rows used for each model to show xz and yz
projections. The first six rows belong to extended gravity
models, while the last four rows illustrate the DM models.
Clearly, there are meaningful differences between the radial
and vertical properties of the discs in extended gravity and
DM models. We discuss these differences in the subsequent
sections.

The results remain similar if N = 5 × 106, so we show
only the final face-on and edge-on projections in this case
(Figures 9 and 10, respectively). Differences due to resolu-
tion are discussed further in Section 5.1.
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Figure 7. Evolution of the disc with 106 particles projected on the xy plane for each model (from top to bottom: MOND, MOG, NLG,
RHH, and LPH). Radial expansion is apparent in all the extended gravity models, but not in the DM models. These plots are constructed
using yt (Turk et al. 2011).
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Figure 8. Edge on (xz and yz) views of the N = 106 models at the same times used in Figure 7. Two successive rows are used for each

model, showing the xz and then the yz view. The first six rows belong to our extended gravity models (in order: MOND, MOG, and

NLG). The bottom four rows belong to the DM models (in order: RHH and LPH).

4.2 Radial expansion

An interesting feature of all extended gravity models is that
the final discs are more radially extended compared to the
DM case. It seems that a halo (if present) suppresses global
radial expansion of the disc. This is probably linked to the
enhanced role of disc self-gravity in extended gravity theo-
ries, which promotes the redistribution of angular momen-
tum within the disc.

To quantify the radial expansion, we use Figure 11 to
show the Lagrange radius R (X) at different times, where X
is the fraction of the baryonic mass inside spherical radius
R, e.g. R (0.5) denotes the half mass radius (rhalf) of the

disc. It is helpful to show the time evolution of R (X) for
two particular values of X, namely X = 0.5 and X = 0.95.
It is clear that there are rapid variations in R (X) near the
beginning. This is expected as the discs are globally unstable
in the early stages, most likely due to the initial conditions
not being exactly in equilibrium. We see that in all models,
R (0.5) decreases in the time interval when the bar instability
happens (Section 4.3), indicating contraction of the central
region. There is no significant difference between extended
gravity and DM models regarding the final magnitude of
rhalf. However, R (0.95) grows with time, as expected from
angular momentum conservation. This growth is tangibly
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Figure 9. Face-on (xy) projections of the models with N = 5 × 106 particles at the end of the simulations (t = 4 Gyr). Similarly to the

low-resolution simulations, the extended gravity discs end up larger than the DM models (Figure 7).

Figure 10. The final projected positions of particles in our models with N = 5× 106. All the extended gravity models look thicker than

the DM models, especially at large radii. The peanut shape evident in the LPH model is weaker in the extended gravity discs.

higher in the extended gravity models. It is evident that
R (0.95) at the end of the MOND and NLG models is > 40%
larger than for the LPH model. These changes arise mostly
in the first half of the simulations − in the second half, there
is no substantial change in R (X).

To understand the radial expansion in extended grav-
ity models, we explore the angular momentum transfer in
different parts of the disc. Let us define the inner disc as
that part of the disc inside radius rmax. In all our models,

we measure the angular momentum exchange between the
inner and outer disc, with the boundary at rmax = 5 kpc.
It is clear from the top and middle panels of Figure 12 that
angular momentum exchange between the inner and outer
discs is much more effective in extended gravity models com-
pared to the DM case. In the LPH model, the halo absorbs
angular momentum from the disc, so its angular momentum
increases significantly. This disc to halo transfer does not
exist in extended gravity models, where we instead see more
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Figure 11. Spherical Lagrange radii R (X) in kpc as a function of

time. The top and bottom panels belong to X = 0.5 and X =

0.95, respectively.

effective angular momentum transfer throughout the disc.
This is almost certainly related to the greater amount of
phantom DM close to the disc compared with the amount
of physical DM in the LPH model (Section 2.4).

Although the greater amount of radial expansion in all
our extended gravity models appears to be a clear signature
of a departure from Newtonian dynamics, real galaxies in a
cosmological context would expand due to additional pro-
cesses not considered here, including accretion of gas from
their environment. Such processes need to be considered be-
fore a comparison is possible with the observed size evolution
of galaxies (e.g. van Dokkum et al. 2010; Mowla et al. 2019;
Yang et al. 2021). Once both secular evolution and gas ac-
cretion are considered, extended gravity theories in the cos-
mological context may predict even more radial expansion
for galaxy discs than calculated here. Additionally, if the
memory effect in NLG fades over cosmic time, the phantom
DM fraction monotonically decreases (Mashhoon 2017). As
a consequence of the weaker gravitational interaction, the
size of galaxies would grow as a1.4, where a is the cosmic
scale factor (section 10.6 of Mashhoon 2017). This is rather
similar to the observed size evolution of a1.05±0.37 (Yang
et al. 2021). In Section 5.5, we discuss how our results might
differ once the cosmological context is considered.

4.3 Bar instability

4.3.1 Fourier amplitude

As a suitable representative for the existence and intensity
of the bar instability, we measure the bar amplitude A2(t).
This is the third coefficient in the Fourier decomposition of
the surface density in terms of azimuthal angle φ. Therefore,
A2/A0 > 0 indicates the existence of two-fold symmetric
features (e.g. bar and spiral density waves) propagating in
the system.

We measureA2 as a function of time for our models. The
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Figure 12. The top and middle panels indicate the angular mo-

mentum change ∆Lz/Lz0 in the outer (radii larger than 5 kpc,
top panel) and inner regions of the disc (middle panel). Lz is the

angular momentum along the z axis, and Lz0 is the initial angular

momentum of the specified region (‘ID’, ‘OD’, and ‘LPH’ stand
for the inner disc, outer disc, and live Plummer halo, respectively).

The bottom panel shows the angular momentum change of the

DM halo in the LPH model.

time evolution of this parameter is illustrated in Figure 13.
Both panels show that none of the models can prevent the
bar instability. However, the stabilizing effect of the rigid
halo is clear (orange curves). This has been known since the
seminal paper of Ostriker & Peebles (1973). It is also well-
known that a live halo cannot suppress the bar instability,
as is clear from the evolution of the bar amplitude for our
LPH model (red curves).

The bar growth rate is substantially higher in MOND
compared to other extended gravity models as well as the
DM models. A rapid bar instability in MOND has also been
reported by Tiret & Combes (2007). In their model, the
bar retains its maximum strength for a long duration (≈ 4
Gyr) compared to the age of the Galaxy (e.g. Knox et al.
1999). After that, they report a sharp reduction in the bar
magnitude. In our simulations, we see that the bar amplitude
starts to decrease after a sharp maximum, and then stays
almost constant. Observationally, this means that MOND
predicts very strong bars for some spiral galaxies, but weakly
barred galaxies are also expected (see also Banik et al. 2020).

As is clear from Figure 13, bars are stronger in the DM
case (the LPH model). The bar amplitude first experiences a
minimum and then gradually starts to grow. This is not the
case for any of the other models, implying that a live halo
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Figure 13. The bar amplitude A2/A0 in our five different models.

For better visualization, the vertical axis is shown in logarithmic
scale. The top (bottom) panel shows our low (high) resolution

simulation.

actually promotes a bar (Athanassoula & Misiriotis 2002).
At the end of our simulations, we see that the live DM model
leads to the strongest bar, which is consistent with e.g. the
simulations of M33 conducted by Sellwood et al. (2019).

It is interesting that the NLG model is somewhat similar
to the MOND model and predicts a fast bar instability. On
the other hand, the growth rate in MOG is very similar to
the LPH model. Though the growth rate in MOND and NLG
is much higher than in the standard LPH model, it would
be seriously difficult to find evidence for this. The main rea-
son is that we observe a single moment in the dynamical
evolution of a galaxy rather than a time interval.

There are clear oscillations in the bar magnitude for
all extended gravity models, while the DM case leads to
smoother behaviour. These oscillations are not numerical
artefacts related to the determination of the galactic centre
(see also Roshan 2018; Roshan & Rahvar 2019). Further-
more, they have been observed in lower resolution simula-
tions of extended gravity which used a different approach
for the time evolution of the system and an independent
method for calculating the galactic centre (Ghafourian &
Roshan 2017). These oscillations are discussed further in
Section 5.3.

Figure 14. The power spectrum for density waves in the LPH

model (upper left), NLG (upper right), MOND (lower left), and
MOG (lower right). The vertical axis is frequency in units of

192 km s−1 kpc−1. The horizontal axis is the radius in kpc. Except

the MOND case, the other panels were produced by the galaxy
code.

4.3.2 Power spectrum

The surface density is a function of φ, r, and t. Therefore the
Fourier transform with respect to φ and t gives Fourier co-
efficients B(ω, r), which are functions of the wave frequency
ω and radius r. By looking at the power spectrum |B(ω, r)|2
of the density waves, it turns out that the extended gravity
models host more density waves with different frequencies
propagating throughout the disc. Differences with the DM
models may result in observational discriminants, especially
in LSB galaxies.

The dominant mode in the DM model is the bar mode
(m = 2). To quantify its strength, we plot contours of the
power spectrum for m = 2 (Figure 14). In the case of LPH,
NLG, and MOG models, the Fourier transform has been
taken over t = (1.5− 4) Gyr to ensure that the density waves
have been excited. Accordingly, for the MOND model, the
interval t = (3− 4) Gyr has been used. Any horizontal line
with contours concentrated around it indicates the existence
of a density wave whose frequency is shown on the vertical
axis. The upper left panel belongs to the standard LPH
model. We see that there is one dominant m = 2 mode
with a time-varying frequency. We will discuss this case in
more detail in subsequent sections. The other panels use
red dashed lines to show the frequency of density waves
for the NLG, MOG, and MOND models. We see that in
NLG there are two waves and in MOG three waves with
different intensities. The MOND model is even noisier. It
seems that unlike in extended gravity, the DM halo sup-
presses the excitation of several modes on the surface of the
disc, even though it cannot suppress the main bar instability
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Figure 15. rms height in kpc computed using particles with |z| <
2 kpc for all models, measured at R = 1.1 kpc where the buckling

instability happens more effectively.

mode. From this perspective, we see the expected stabilizing
behaviour caused by the halo.

The above-mentioned features do not change with the
number of particles (bottom panel of Figure 13). We see that
by increasing the particle number N , the time evolution of
the LPH model becomes a bit slower. Therefore, we extend
the simulation duration to see the second increasing phase
of the bar magnitude.

4.4 Buckling instability

It is also instructive to compare the buckling instability in
different models. The top panel in Figure 13 shows that
for our NLG and LPH models, the bar amplitude starts
to decrease around t ≈ 0.5 Gyr. It is well known that a
rapid thickening of the disc can substantially weaken the
bar. To see this behaviour, we have plotted the root-mean-
square (rms) thickness at R = 1.1 kpc with respect to time
(Figure 15). Some particles escape to large vertical distances
and artificially increase the rms height. Therefore, we ignore
the contribution of particles with |z| > 2 kpc. The top and
bottom panels belong to N = 106 and N = 5× 106, respec-
tively. We see the step-like behaviour for our NLG, LPH, and
MOND models. This is related to the buckling instability
through which the disc thickness increases rapidly.

It is interesting that although NLG and MOG lead to
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Figure 16. The mean and rms height as a function of radius at
t = 4 Gyr. The left (right) column belongs to the N = 106 (N =

5× 106) models. Distances are given in kpc, and the contribution

of particles with |z| > 2 kpc is ignored.

almost the same form for the point mass gravitational force,
the evolution of galactic discs differs. For example, the buck-
ling instability is postponed in MOG (Figure 15). The less
violent buckling instability in MOG has also been reported
in Roshan (2018). It is clear that the rigid halo model is
more stable against both bar and buckling instabilities.

In the MOND simulation, the buckling instability hap-
pens earlier. However, the growth rate of this instability
is higher in the LPH DM model. Also, the rms height at
R = 1.1 kpc in the LPH model is larger than for the ex-
tended gravity models for most of the simulation duration.
Among these models, MOND mimics the DM behaviour
more closely at small radii (see also Figure 16). Overall,
we conclude that not only are stellar bars in spiral galaxies
stronger in the LPH model, the rms height of discs at small
radii is also larger in the CDM paradigm. Of course, a statis-
tical investigation using cosmological simulations is required
to reliably verify if extended gravity models predict a differ-
ent morphology for the vertical structures of disc galaxies.

To get a better understanding of the vertical behaviour
of the discs under the effect of different gravity laws, it is
helpful to plot the mean height (along z) and rms height as a
function of radius at the end of our simulations. In Figure 16,
we plot these quantities for each model with N = 106 and
N = 5 × 106. Recall that at t = 0, the mean height of all
simulated discs is exactly 0 by construction (within numer-
ical noise). The top panels in Figure 16 show an increasing
mean height for the NLG disc, directly proving that the
disc is warped. The same behaviour also appears in our low-
resolution MOND model (see also the edge-on projections in
Figure 8). The existence of a warp in low-resolution MOND
simulations has already been reported in Tiret & Combes
(2007), where 2×105 particles were used for the stellar disc.
However, no warp is excited in our higher resolution MOND
model. This is most apparent in the edge-on views of the
final disc state in our high-resolution models (Figure 10).
The other three models do not present a considerable change
in mean height at either resolution setting.

The bottom panels of Figure 16 show the rms height
of each model, confirming that the vertical structure of the
discs changes. Specifically, the inner region in the LPH DM
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model is thicker compared to all other models, though the
thickness in MOND rather closely mimics LPH. According
to this figure, a region of increased thickness is present
in the LPH models around R ≈ (1− 1.5) kpc, mirroring
the peanut shape that appears in these models (readily
apparent in edge-on projections, see Figure 10). Weaker
and shorter peanuts appear in NLG and MOG around
R ≈ (0.5− 1) kpc. The MOND peanuts look longer − in
the high-resolution MOND model, the peanut appears at
R ≈ 2.5 kpc. In the low-resolution MOND model, although
the rms height varies rather smoothly, the peanut is clearly
visible in Figure 8. In both cases, there is no rapid change
(or a sharp local maximum as in LPH) in the rms height.
Therefore, we infer that the peanut is weak in MOND, which
is consistent with the results of Tiret & Combes (2007).

Another important feature is that although the inner
regions in the LPH model are thicker, the outer disc (R & 4
kpc) is substantially thicker in extended gravity models,
especially in MOND and NLG. Different behaviour in the
vertical structure is expected − starting with the same ini-
tial rotation curve means that at least on the disc surface,
extended gravity and particle DM models lead to the same
radial acceleration. However, in the vertical direction, the
accelerations are not necessarily the same. For example, the
NLG effects appear as an effective phantom ρp surrounding
the baryonic matter (Figure 2). One can easily verify that
ρp is not spherically symmetric for an exponential baryonic
distribution. This will lead to differences with a DM model
that has a spherical halo component. Indeed, the presence of
a phantom DM disc (Figure 3) is an important prediction of
MOND (Bienaymé et al. 2009). Since the vertical restoring
force at large radii is mostly fixed by the rotation curve
due to the low disc surface density, the thicker outer disc
in MOND may indicate stronger secular disc heating due to
enhanced self-gravity, which is evident in that Σp > 0 unlike
the other models. However, it is not clear why the NLG
model should flare so strongly. A complementary study is
required to carefully investigate ρp and its time evolution,
and to relate this to the vertical structure of the disc. We
leave this as a subject for future studies, though the initial
ρp and Σp are discussed in Section 2.4 for an infinitely thin
exponential disc.

4.5 Pattern speed Ωp

The bar pattern speed Ωp is another important quantity
which may help to discriminate between DM and extended
gravity. Its evolution is directly correlated with the prop-
erties of any DM halo. Knowing Ωp would help us under-
stand how the stellar bar redistributes angular momentum
throughout the disc and influences the secular evolution of
the galaxy. Furthermore, the location of resonances depends
on Ωp.

Ωp can be measured rather precisely in simulations by
finding the position angle of the bar axis at different times.
Measuring Ωp for real galaxies is not a simple task. There
are several model-dependent methods (e.g. Pérez et al. 2004;
Rautiainen et al. 2008). The so-called Tremaine & Weinberg
(1984) method is the only one that is model-independent.
For its limitations and practical difficulties, we refer the
reader to Garma-Oehmichen et al. (2020).

Observations indicate that spiral galaxies host fast bars

(Aguerri et al. 2015). This is inconsistent with standard
CDM-based isolated and cosmological simulations (Debat-
tista & Sellwood 2000; Algorry et al. 2017). It is well un-
derstood that dynamical friction between DM particles and
baryonic discs substantially damps Ωp, causing a gross dis-
agreement with observations. This issue is considered a chal-
lenge for the CDM paradigm in small scale systems (. 10
kpc). We explore this further in Section 4.6.

These arguments do not necessarily challenge the exis-
tence of DM on galactic scales. In particular, superfluid DM
haloes around galaxies would create very little dynamical
friction (Berezhiani & Khoury 2016; Berezhiani et al. 2019).
We discuss this model further in Section 5.6. A similar argu-
ment applies to ultralight (m ≈ 10−22 eV/c2) bosonic DM
particles because they have a long de Broglie wavelength
λ ≈ 1 kpc. Consequently, their wave-like behaviour would
appear on a galactic scale, preventing them from causing
significant dynamical friction in spiral galaxies (Hui et al.
2017). Moreover, it is claimed that this model can lead to
a viable cosmic structure formation scenario (Mocz et al.
2019). Those authors showed that it predicts serious devia-
tions from ΛCDM at the large redshifts when the first stars
formed. This is a smoking gun that should be tested by
future telescopes like JWST.

In extended gravity theories for the missing gravity
problem, there is no DM slowing down the pattern speed.
Therefore, one may expect fast stellar bars in extended grav-
ity simulations. Bearing this in mind, we discuss the evolu-
tion of Ωp in our simulations. The result is illustrated in
Figure 17. In the top panel, we present Ωp for N = 106,
while the bottom panel belongs to N = 5 × 106. There are
other density waves excited in the discs, e.g. the m = 3 mode
excited at t ≈ 300 Myr in the MOND model (Figure 7).
To ensure that we have a well-settled bar rotating almost
uniformly within the disc, we concentrate on t > 1 Gyr. We
see that when the halo is rigid (the RHH model), the pattern
speed remains constant with time. This is as expected since
a perturber moving in a rigid halo potential cannot induce a
perturbation to the halo density and pressure. Consequently,
there is no wake behind the perturber to cause dynamical
friction.

On the other hand, it is clear from both panels of Fig-
ure 17 that the pattern speed decreases in the LPH model.
This is because dynamical friction transfers angular momen-
tum between the live halo and the stellar bar, as confirmed
directly in the bottom panel of Figure 12. The pattern speed
for the LPH model decreases almost linearly with time as
Ωp(t) ≈ −at + b, where a and b are positive. In the model
with N = 106 we have a = 4.775/Gyr2, b = 42.632/Gyr.
For a point mass perturber moving inside a uniformly dis-
tributed medium, the dynamical friction can be expressed
as Chandrasekhar’s formula. It is not possible to find an
exact analytic expression for the case of a stellar bar inside a
differentially rotating disc and halo. However, as the pattern
speed varies roughly linearly with time, we can estimate the
magnitude of the friction. For a very crude estimation of the
dynamical friction force, let us assume that the bar is rigid
with length Rb and mass mb. Using Newton’s second law,
one may infer that the friction force is almost constant and
given by Fd ≈ Rbmba.

As expected, the lack of a halo causes Ωp to remain
nearly constant with time in all considered extended gravity
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Figure 17. Time evolution of the bar pattern speed Ωp for all our

models. Different panels show results for a different number N
of particles. The inset in the lower panel shows Ωp in the LPH

model over a longer duration.

models. Furthermore, we see that NLG has the highest Ωp.
MOND gives a relatively low Ωp. A similar result for the
time evolution of Ωp in MOND has already been reported
(Tiret & Combes 2007). The MOND model also shows small
oscillations in Ωp by up to ≈ 10% due to the coupling with
other modes in the disc. This phenomenon was noted in the
CDM context by Hilmi et al. (2020), and is also apparent in
our LPH model.

Despite clear differences in the time evolution of Ωp,
the long timescale involved makes this difficult to directly
constrain. The present value of Ωp can be determined, but
by itself this is not enough to compare galaxies with different
properties and dynamical timescales. Instead, the ratio of
the corotation radius Rc over the bar semi-major axis Rb
provides an appropriate measure to compare the bar pattern
speed in different galaxies. We next discuss this parameter
for our simulations.

4.6 R parameter

Bar pattern speed measurements help to find the corotation
radius Rc. Combined with measurements of the bar length
(semi-major axis) Rb, we can find the R parameter, defined
as:

R ≡ Rc
Rb

. (24)

From an observational point of view,R has great importance
since it reveals the above-mentioned contradiction between
observations and ΛCDM simulations. The bar is ‘fast’ when
R . 1.4, while it is ‘slow’ otherwise (Binney & Tremaine
2008).

To measure R at a given time t, we first calculate the
corotation radius. To do so, we use the pattern speed Ωp (t)
to find the radius at which this matches the angular velocity
Ω (R) from the rotation curve. Since both can be obtained
very simply in our simulations, the corotation radius is mea-
sured with appropriate precision.

Unfortunately, measuring the bar length is not a trivial
task. Various methods have been introduced in the literature
to determine Rb (Erwin 2005; Aguerri et al. 2009, 2015, and
references therein). The method applied in this work makes
use of the Fourier decomposition of the galaxy’s surface den-
sity profile (Elmegreen & Elmegreen 1985; Ohta et al. 1990;
Aguerri et al. 2000). The bar radius is computed using the
ratio of intensity in the bar (Ib) and inter-bar (Iib) regions,
where:

Ib = I0 + I2 + I4 + I6 , (25)

Iib = I0 − I2 + I4 − I6 . (26)

Here, Im stands for the mth component of the azimuthal
Fourier decomposition of the intensity, which depends on R.
According to the definition of Aguerri et al. (2000), the bar
length would be the outer radius beyond which

Ib
Iib

< 0.5

[(
Ib
Iib

)
max

+

(
Ib
Iib

)
min

]
. (27)

In this definition, the surface density profile is also consid-
ered. The error of using this method in numerical simula-
tions has been reported as . 4% except for very thin bars,
where it reaches ≈ 8% (Athanassoula & Misiriotis 2002).

The results for N = 106 and N = 5 × 106 are shown
in the left and right panels of Figure 18, respectively. The
fast bar regime is shown with horizontal dashed lines. In
both panels, we see that R in the live DM model (LPH)
is always above this regime. As already mentioned, this is
a well-known fact formerly reported in several papers (e.g.
Debattista & Sellwood 2000). This is because R increases
with time under the direct influence of dynamical friction.
As expected, due to the absence of dynamical friction in the
RHH model, bars are faster in this case. For MOND and
MOG, we see almost the same behaviour as for RHH − the
bars lie in the desired fast bar regime. This is also true for
NLG bars, though they are relatively slower.

Although the majority of spiral galaxies host fast bars
(see figure 8 in Garma-Oehmichen et al. 2020), some appear
to have the predicted ultrafast bars (R < 1, Guo et al.
2019). In Section 5.3, we discuss in more detail how we are
able to get apparently ultrafast bars in our extended grav-
ity models despite theoretical arguments that they should
be unstable (e.g. Contopoulos 1980). We caution that for a
meaningful comparison with observations, we still need more
realistic simulations including gas components and a bulge.
One should also use different techniques for measuring the
bar length to derive an average value. We have used only
one method that is rather precise, but it estimates a slightly
larger value for Rb compared to other methods (Aguerri
et al. 2015). However, we emphasize again that our main
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Figure 18. Time evolution of theR parameter (Equation 24) for simulations with N = 106 (left panel) and N = 5×106 (right panel). From

top to bottom, the panels belong to RHH, NLG, MOG, and MOND. In all panels, we show the DM case (LPH) for better comparison.

We divide the evolution period into time intervals of ∆t ≈ 200 Myr and choose the timestep closest to the middle of the interval as
representative of the whole ∆t interval. The simulation duration is 4 Gyr except in the top right panel, which covers 6 Gyr. The rising

R in the LPH model is due to a decreasing pattern speed (Figure 17).

purpose in this paper is to compare different theories with
each other, and not with real observations. Consequently,
from the above discussion, we only conclude that bars are
faster in extended gravity models.

To quantify the distribution of R more precisely, we
assume R̃ ≡ log10R is distributed as a Gaussian with mean

R̃ and intrinsic dispersion σR̃, thereby imposing the physical
prior thatR > 0 despite a completely uninformative prior on

R̃. We infer the population parameters
(
R̃, σR̃

)
from obser-

vations and using different theoretical models. Values of R
calculated from barred galaxies in the EAGLE cosmological
simulation at redshift z = 0 should be directly comparable
to observations of nearby barred galaxies. As an example,
the MW has a fast bar with R = 1.22 ± 0.11 (section 10.1
of Portail et al. 2017). 7

The likelihood P of any
(
R̃, σR̃

)
combination is:

P
(
R̃, σR̃

)
=
∏
i

1√
σR̃

2 + σi2
exp

−
(
R̃ − R̃i

)2
2
(
σR̃

2 + σi2
)
 , (28)

where i runs over different simulated or observed galaxies. In
the simulations, we assume no measurement error σi in the

7 The corotation radius of 6.1± 0.5 kpc in Portail et al. (2017) is
consistent with the 6.6± 0.2 kpc reported by Chiba & Schönrich
(2021). Note also that, as evident from our Figure 17, the bar

pattern speed can oscillate over time by up to ≈ 10% in extended
gravity theories due to couplings with other modes in the disc

(see also Hilmi et al. 2020).

Table 2. Top: The observational sample of galaxies that we use to
quantify the distribution of R (Equation 24). For Aguerri et al.

(2015), we read off the results in figure 9 of Algorry et al. (2017).

Much of our data comes from Guo et al. (2019) − we use the
right panel of their figure 11. Bottom: Number of galaxies in the

EAGLE simulation used to quantify the expected distribution

of R at the indicated redshift. We use all the EAGLE galaxies
analysed by Algorry et al. (2017).

Reference Number Number used

of galaxies in our analysis

Corsini (2011) 17 9

Cuomo et al. (2019) 16 2
Aguerri et al. (2015) 15 5

Guo et al. (2019) 17 13

EAGLE (z = 0) 48
EAGLE (z = 0.27) 41

EAGLE (z = 0.5) 32

value of R̃, since any such uncertainty is expected to be very
small compared to other uncertainties. We apply a similar
analysis to the observational sample summarized in Table 2.
To begin with, we average the low and high error bars to
come up with a single uncertainty δRb for each measured
length. We then require Rb to have a fractional uncertainty

δRb
Rb

< ε , (29)

where the quality control parameter ε = 1
3
. The analo-

gous criterion is imposed on the corotation radius Rc and
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Figure 19. The posterior inference on R and the intrinsic disper-
sion of log10R, found by applying Equation 28 to our compilation

of observational results (Table 2) and to the EAGLE simulation

at z = 0 based on figure 9 of Algorry et al. (2017). Although the
calculations are done in the space of log10R, we change the x-axis

to a linear scale when plotting so the results are more intuitive

(i.e. we plot 10R̃). The black (blue) contours correspond to 1σ,

3σ, and 5σ outliers from the observed (EAGLE) posterior. Due
to the significant mismatch, the 6σ contour is also shown for the

EAGLE simulation.

its uncertainty δRc. We find that ε = 1
3

achieves a good
compromise between the quality and quantity of data, with
observational difficulties lying mainly in the determination
of Rc. We then estimate the fractional uncertainty in R as:

α ≡ δR
R =

√(
δRb
Rb

)2

+

(
δRc
Rc

)2

. (30)

To further assure the quality of our dataset, we require that:

α < ε . (31)

Despite this, α is sometimes not very small. Thus, we assume
that a good estimate for σi is:

σi =
1

2
log10

(
1 + α

1− α

)
. (32)

Figure 19 shows our posteriors on
(
R̃, σR̃

)
based on

a high-resolution grid in both parameters, with the result-
ing array then normalised to a sum of 1. There is a very
significant mismatch between the EAGLE (Algorry et al.
2017) and observational posteriors, mainly because obser-
vations prefer R ≈ 1 while EAGLE galaxies prefer R ≈ 3
with more scatter. The 5σ allowed regions consistent with
EAGLE and with observations represent distinct parts of
parameter space, demonstrating that the two are incompat-
ible at > 5σ. Thus, we also show the 6σ confidence interval
for the EAGLE galaxies. This still does not intersect the 5σ
observational contour. Therefore, we expect that the level of
disagreement is slightly above

√
52 + 62 = 7.8σ.

To quantify the probability that EAGLE galaxy bars

are compatible with observations, we pick some
(
R̃, σR̃

)
and draw the EAGLE contour through that point. We then
find the probability that the EAGLE population parame-
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Figure 20. Similar to Figure 19, but now showing only the 1σ
allowed region observationally and in different theories for our

higher resolution simulations. Different snapshots are assumed to

represent the diversity of galaxies at the same cosmic time. Our
simulations are most comparable to EAGLE at z = 0.5 (see text).

Notice that the EAGLE region moves to higher R as time passes,

a consequence of dynamical friction. This is also evident in our
LPH model, results of which are shown separately for different

periods in the simulation (solid and dashed red ellipses). Our

RHH and extended gravity models lack this process as there is
no live halo, leading to significantly faster bars (lower R) whose

pattern speed changes little with time (Figure 18).

ters lie outside this contour, yielding a P -value. Since the

observations do not uniquely specify
(
R̃, σR̃

)
, we repeat

this calculation for all different parameter combinations. Our
final result is obtained by averaging the individual P -values,
each weighted according to the observational probability of

the corresponding
(
R̃, σR̃

)
. In this way, we find that the

EAGLE results shown in figure 9 of Algorry et al. (2017) are
incompatible with observations at 7.96σ confidence, in line
with our previous estimate of slightly above 7.8σ. Clearly,
this ΛCDM model does not provide a good explanation for
the observed distribution of R in barred spiral galaxies. The
disagreement is so serious that we had to modify our algo-
rithm so the P -value is not numerically rounded down to
0.

To compare EAGLE data with observations of nearby
galaxies, one should consider simulated galaxies at z = 0,
when the age of the universe is 13.8 Gyr (Planck Collabo-
ration XIII 2016). Due to their 4 Gyr duration, our LPH
simulations are expected to be most comparable to EA-
GLE galaxies at z = 0.5, when the age of the universe is
≈ 8.9 Gyr. This is based on the average behaviour of bars in
EAGLE (figure 6 of Algorry et al. 2017) − the bar instability
happens around z ≈ 1.3 (t ≈ 5 Gyr), after which the bars
enter a smooth and stable phase. Our 4 Gyr long simulations
thus take us up to t ≈ 9 Gyr. To make the comparison
with observations more accurate, we also extend the high-
resolution LPH simulation to 6 Gyr, confirming that the bar
continues to slow down (Figure 18).

We treat R at different times in our simulations as
representing the diversity of R in different galaxies at the
same time. This is only an approximate approach, so a de-
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tailed comparison of our simulations with observations is
not meaningful − our main objective is to compare theories
with each other. For this purpose, we use Figure 20 to show
the 1σ allowed regions of

(
R, σR̃

)
for different theories and

for EAGLE at z = 0, 0.27, and 0.5. As expected, our LPH
model yields a similar R to EAGLE at z = 0.5, though with
less dispersion because we use only one galaxy sampled at
different times. The effect of dynamical friction is apparent
in that the EAGLE-preferred R increases with time, as also
occurs in our LPH model (solid and dashed red contours in
Figure 20).

The LPH model is a clear outlier to both observations
and the extended gravity models (Figure 20). This is due
to its unique increasing behaviour of R at later times (top
panel in Figure 18), which is related to the long-term decline
in Ωp (inset to Figure 17). Using more massive haloes (which
makes the disc sub-maximal) would makeR grow even faster
since a higher DM density causes stronger dynamical fric-
tion. We check this by performing another simulation where
rh is reduced from 12 kpc to only 8 kpc, but the truncation
radius and halo mass are left unchanged. In this case, the bar
is stronger and the dynamical friction is much more effective
than in the maximal disc − at the end of the simulation,
R ≈ 3.5. This agrees with the general intuition that dynam-
ical friction is enhanced when there is more DM.

Dynamical friction is absent in our RHH and extended
gravity models, leading to much lower R. This causes much
better agreement with observations, which implyR ≈ 1 with
little intrinsic scatter (Figure 19). Therefore, our results on
the R parameter strongly suggest that the anomalous rota-
tion curves of galaxies are better understood as arising from
a modification to gravity rather than from haloes of particle
DM capable of exerting dynamical friction. It is important
to mention that the lack of dynamical friction in MOND
also implies galaxies evolve without merging much (Renaud
et al. 2016), which may explain the high observed frequency
of thin bulgeless disc galaxies (Kormendy et al. 2010; Peebles
2020).

5 DISCUSSION

5.1 Numerical consistency tests

To assure the integrity of our results, we checked that the
energy and angular momentum are conserved for the LPH,
RHH, NLG, and MOG models to an accuracy of better
than 5% throughout the full duration of the simulation. One
should also check that the main results are unaffected by
changing the particle number (i.e. N should be large enough
to suppress artefacts and shot noise). As already reported,
changing the particle number from 1 to 5 million keeps the
results consistent (Figure 18). Moreover, we decreased the
time step δt to increase the precision. To ensure that the
results are independent of the adopted grid, we varied the
number of grid points and the softening length (Table 1).
These variations do not affect the overall behaviour of our
models.

Our por simulations use a refinement condition based
on the number of particles per cell (Section 3.1). Thus, using
5× as many particles automatically increases the spatial
resolution used by the potential solver in many parts of
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Figure 21. Similar to Figure 20, but now showing the effect of
numerical resolution. The 1σ allowed regions for simulations with

N = 106 are shown as dashed contours, while the corresponding

simulation with N = 5×106 is shown using a solid contour of the
same colour. For reference, the observationally allowed 1σ region

is shown as a thin solid green line.

the simulated volume. Since the por results are not much
changed by quintupling the number of particles, they appear
to be numerically converged.

The main aim of this paper is to see if using an extended
gravity theory to replace the role of CDM can reduce the
typical value of R from ≈ 3 to ≈ 1, as required to explain
observations. Figure 21 shows that our statistical analysis
of the R parameter is not much affected by the choice of
N for any of our explored models. Thus, our main results
are not dependent on the resolution − though of course we
generally focus on the models with N = 5× 106.

5.2 Scaling results to other parameters

As discussed in Section 3.3, our simulations use a central disc
surface density intermediate between the major Local Group
galaxies. In MOND, the central surface density is the only
dimensionless parameter of the matter distribution once the
aspect ratio is fixed. This allows our results to be scaled to
discs with the same central surface density but a different
size and mass. This is also true for our LPH model because
spiral galaxies fall on a rather tight RAR (Lelli et al. 2017).
As a result, the DM fraction within a fixed number of disc
scale lengths must remain the same. This means that our
LPH model addresses the evolution of maximal discs more
generally than just discs with the parameters given in Ta-
ble 1. The behaviour is more complicated in other extended
gravity theories with a fundamental length scale, so results
for these cannot simply be scaled to a galaxy with different
mass and size.

We consider scaling the distances in our models by
some factor k. Observationally, this is analogous to the ef-
fect of changing the heliocentric distance but keeping the
same angular size. The scaling relations are given below,
with primed (unprimed) variables indicating quantities in
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the scaled (original) version of our model:

r′ ≡ kr (33)

Σ′
(
r′
)

= Σ (r) (34)

M ′ = k2M (35)

v′
(
r′
)

=
√
k v (r) (36)

t′ = =
√
k t (37)

ρ′
(
r′
)

= k−1ρ (r) . (38)

To make the mass MW-like, we consider the case k =
3. The peak rotation velocity then rises from ≈ 150 km/s
(Figure 4) to almost 260 km/s. The 6 Gyr evolution of our
LPH model now corresponds to a longer effective duration of
10.4 Gyr, which covers most of the Hubble time. Since our
results are applicable to maximal discs more broadly, we
argue that the steady increase in bar strength (Figure 13)
and the R parameter (Figure 18) are likely generic features
of maximal discs in ΛCDM, at least if they are not disturbed
too frequently and lie on the empirical RAR.

5.3 Ultrafast bars

The bars in our extended gravity simulations spend some
fraction of their time in the ultrafast regime (Figure 18).
This is unexpected on theoretical grounds as a bar longer
than its own corotation radius should be unstable (Con-
topoulos 1980). Since the bars in extended gravity are al-
ready in the fast regime, even a small error in calculating
R could artificially push it into the ultrafast regime. In par-
ticular, the existence of several modes propagating on the
disc induces apparent oscillations in the bar length (Hilmi
et al. 2020). In other words, the existence of spiral modes
along with the bar in the central part of the disc artificially
increases the bar length at times when they align, leading to
a smaller R parameter − possibly in the ultrafast regime.

This behaviour shows up in the MOND model. We illus-
trate this in Figure 22, where we have shown the complete
time evolution of R and Rb in our LPH and MOND models
− which we choose for illustration as other models behave
similarly. It is clear that there are strong oscillations in Rb,
and consequently in R. To avoid this artefact, it is necessary
to consider only minima in Rb (Hilmi et al. 2020). Therefore,
we divide the evolution into time intervals of ∆t ≈ 200 Myr,
choose the minimum value of Rb in each interval, and com-
pute the R parameter then. Different choices for ∆t do not
change the main result, as long as ∆t is larger than the
oscillation period.

Using Figure 22, one can imagine what happens if we
instead choose the maxima in Rb. In this case, the R param-
eter would artificially drop. Although the bar still remains
slow in the LPH case, in the MOND model the bar enters
deep into the ultrafast regime.

For a better illustration, we also plot face-on projections
of the system at four different times for the MOND model
(Figure 23). The upper row shows that when Rb has a peak
in its time evolution, there are relatively strong spiral arms
in the system. As a result, the calculated Rb is artificially
large. However, as is clear in the lower row, such features
are absent in the snapshots corresponding to minima in Rb.

As discussed in Section 4.3.2, the power spectrum is
another powerful way to detect the different modes in a

system. We have plotted the power spectrum of the MON-
Dian disc in the lower left panel of Figure 14. The intensities
indicate that this model is even noisier than LPH and the
other extended gravity models (other panels). The MOND
disc has two prominent modes and two modes with less
intensity. The lowest frequency mode appears in the disc
outskirts, representing the spiral pattern illustrated in Fig-
ure 23. The period of this mode is ≈ 0.2 Gyr, compatible
with the ≈ 0.17 Gyr oscillation period in Figure 22.

We can also consider how our statistical analysis (Sec-
tion 4.6) would be affected if instead of using all snapshots
where R can be calculated, we use only those corresponding
to minima in Rb. This is done in Figure 24. Although uncer-
tainties become larger due to the ≈ 10× smaller amount of
data, it is clear that this procedure removes the preference
for R < 1 in at least some timesteps previously apparent in
Figure 20. Unfortunately, this procedure is very difficult to
mimic in an observational sample, so it is unsuitable if the
goal is to compare simulations with observations.

Our results show that oscillations in Rb provide a plau-
sible explanation for why some galaxies appear to have ul-
trafast bars − though only if the bar is already in the fast
regime. If the bar is deep in the slow regime, then we would
need to very significantly over-estimate Rb, which is not
very likely (Hilmi et al. 2020). Moreover, the oscillations are
much weaker in our LPH model (Figure 22). Thus, the issue
should not affect our previous conclusion that barred spi-
rals in EAGLE disagree very significantly with observations
(Figure 19).

5.4 Higher Toomre parameter in the LPH model

We have argued that slow bars are expected in maximal
ΛCDM discs because this is what happens in the EAGLE
cosmological simulation and in our LPH model. The de-
velopment of a bar could be inhibited by heating up the
disc, which would involve a Toomre parameter Q > 1. Our
nominal LPH models use Q = 1.5, but observationally there
is some evidence that galaxy discs are dynamically over-
heated in the ΛCDM context such that higher values are
appropriate (Fuchs 2003; Saburova 2011; Das et al. 2020). A
dynamically overheated disc withQ = 2 was able to suppress
the bar instability in an idealised CDM-based Newtonian
simulation of M33 (section 4.3 of Sellwood et al. 2019).

We therefore redo our LPH simulation with N = 106

for Q = 2 and Q = 3. We implement a higher Q by using
a higher initial σr (Equation 20). As before, σφ and σz are
set by solving the Jeans equations. Unlike in Sellwood et al.
(2019), we keep the initial vertical scale height unchanged
for models with higher Q.

Figure 25 shows the evolution of the bar strength. All
our LPH models have a rather strong bar by the end of the
simulation. Interestingly, the model with the strongest bar
after 4 Gyr is actually the Q = 3 model, which is the high-
est Q model that we consider. This could be related to the
bar being thicker in this case, which makes it less prone to
the buckling instability (Klypin et al. 2009). Those workers
also found that models with a thicker disc (and presumably
higher Q) have stronger bars. Our models with different Q
indeed exhibit differences in how the rms thickness evolves
with time, but the values are very similar after 4 Gyr in all
three cases considered (Figure 27).
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Figure 22. Time evolution of the R parameter (left panel) and the bar length (right panel) for simulations with N = 5× 106. Solid curves

show the complete time evolution, while dashed curves show the corresponding quantities at only those snapshots when the bar length
is at a local minimum in time. The horizontal dashed lines in the left panel correspond to R = 1 and 1.4, which demarcate the fast bar

regime (ultrafast bars lie below 1).

Figure 23. Face-on projections of four snapshots in the MOND

model. The presence of spiral arms (upper row) is simultaneous
with the appearance of maxima in the right panel of Figure 22.

The two snapshots in the lower row correspond to the minima in

that figure. Distances are given in kpc.

Having demonstrated that our higher Q models also
develop bars, we can analyse their pattern speed Ωp, which
is shown in Figure 26. The bar slows down substantially
in all cases, with a quite similar evolution regardless of the
initial Q. This is consistent with the earlier result of Widrow
et al. (2008).

We are now in a position to obtain the R parameter
in our LPH models with higher Q. The results are shown
in Figure 28. As expected from the decreasing Ωp, the R
parameter rises well above the fast bar regime in all cases.
Indeed, the Q = 3 model consistently has a higher R pa-
rameter than the other models. It is therefore clear that our
LPH model yields a slow bar even if we start with a dynam-
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Figure 24. Similar to Figure 20, but now showing the effect of con-

sidering only times at which the bar length is at a local minimum
in its short-term oscillations. The solid 1σ confidence regions show

results for all snapshots where R could be calculated. The dashed

contours show the effect of considering only minima in Rb, with
the same colour used for each model. Since the amount of data

is ≈ 10× smaller in this case, the error ellipse is much larger.

Nonetheless, it is clear that the shift in R is enough to move the
MOND and MOG models out of the ultrafast regime (R < 1).

ically overheated disc. If anything, starting with higher Q
causes an even more significant tension with observations,
which prefer R ≈ 1 with little intrinsic dispersion between
galaxies (Figure 19). Moreover, self-regulated discs would be
expected to have Q ≈ 1 (Silk 1997).

5.4.1 Comparison to previous isolated CDM models

The bar growth rate is lower in our LPH models with a
higher Q, this being consistent with earlier results using
2D simulations (figure 3 of Athanassoula & Sellwood 1986).
Those authors were able to suppress the bar instability for
Q & 2 − 2.5 (see their section 6.4). In contrast, our results
indicate that higher Q merely delays but does not prevent
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Figure 25. Strength of the m = 2 Fourier mode as a function

of time in our LPH model with N = 106, shown here for three
different values of Q as indicated in the legend.
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Figure 26. Similar to Figure 25, but now showing the pattern speed

Ωp of the bar.

0 1 2 3 4

Time (Gyr)

0

0.1

0.2

0.3

0.4

0.5

R
M
S
 
h
e
i
g
h
t

Q=1.5
Q=2
Q=3

Figure 27. Disc rms thickness in kpc computed for LPH models
with different Q, measured at R = 1.1 kpc.
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Figure 28. Similar to Figure 25, but now showing the R parameter
(Equation 24). The horizontal lines demarcate the fast bar regime

(R = 1− 1.4).

the bar instability, with a strong bar developing after 4 Gyr
in all cases (Figure 25). The difference could be due to mo-
tions out of the disc plane, and perhaps other details of
the numerical implementation. Note also that many of their
models do not have a DM halo.

The subsequent study of Athanassoula (2003) found
that the bar slows down more gradually in models with
higher Q, whereas we find Q has little effect (Figure 26).
However, their figure 4 shows the bar slowdown rate is nearly
the same over the range Q = 1.6−2.2 (higher Q models were
not considered). This is broadly consistent with our LPH
models, which only cover Q > 1.5. By considering models
with even lower Q, Athanassoula (2003) showed that bars
in galaxies with higher Q slow down to a greater extent.
This disagrees with the results of Klypin et al. (2009), pos-
sibly because the latter work used much shorter timesteps
which are necessary to properly capture resonant bar-halo
interactions that are crucial to slowing down the bar.

The halo density profile also plays a key role in the
amount of friction. Unlike in this work, Athanassoula (2003)
did not use a Plummer halo profile (see her equation 22). In
a power-law profile where ρ ∝ r−α with α < 0.5, after a
rapid dynamical friction phase at the beginning of the simu-
lation, the rotating perturber experiences hardly any friction
(Read et al. 2006). As another example for the significance
of the mass profile, we refer the reader to the model ‘LHH’
(a responsive Hernquist halo model) in Ghafourian et al.
(2020). The evolution of the pattern speed in this model is
completely different from other models in the sense that the
friction disappears for a relatively long time, even though
all the models start from almost the same initial equilibrium
state. The reasons for this difference is comprehensively ex-
plored in Ghafourian et al. (2020).

The distribution function of the halo particles also has
a serious impact on the bar instability (Sellwood 2016). This
means that the initial distribution function would indirectly
influence the magnitude of the dynamical friction. In ad-
dition, the dynamical friction force on a moving perturber
generally depends on the size of the host system. The trun-
cation radius of our halos is generally larger than used in

MNRAS 000, 1–30 (2021)



Barred spiral galaxies in modified gravity 25

Athanassoula (2003), since this work typically used 15 disc
scale lengths whereas our LPH models use 24. We note that
artificially truncated CDM haloes are not allowed in the
ΛCDM model, so numerical experiments with CDM haloes
that have such small radii are not physical.

Since our models have a baryonic surface density similar
to the MW, they can be compared to the results of Widrow
et al. (2008), who conducted 25 N -body simulations of MW-
like galaxies. Their figure 19 shows that nearly all their mod-
els do have a strong bar that substantially slows down to a
similar extent regardless of Q, which they varied over the
range 1− 2. This is similar to our results in Figure 26.

Our results are also consistent with the work of Klypin
et al. (2009), who considered models with a range of Q with
corresponding changes to the disc scale height. Those au-
thors were careful to ensure the initial conditions were as
realistic as possible for ΛCDM cosmology, and to use a high
time resolution (see their sections 3.2 and 4.2, respectively).
The main result of their work was that galaxies in dynami-
cally hotter discs end up with longer bars that have a lower
pattern speed and higher R parameter (see their table 2).

This contrasts with the M33 model of Sellwood et al.
(2019), in which raising Q to 2 suppressed the bar instability
(see their figure 5). This could be due to their use of a sub-
maximal disc (see their figure 2), as required in ΛCDM due
to the low baryonic surface density and thus low accelera-
tion. The combined effect of a dominant DM halo and an
overheated disc might be able to suppress the bar, even if
the latter alone cannot. The bar instability is also affected
by the initial thickness of the disc, which was doubled in
section 4.3 of Sellwood et al. (2019) to suppress the insta-
bility. However, we do not increase the initial vertical scale
height. The subsequent evolution of the disc rms thickness is
also similar in all our LPH models (Figure 27), so it may be
that our discs are thinner than in Sellwood et al. (2019).
Another difference is that we have not implemented any
gas component, though the discussion in their section 3.2
suggests that this is not too crucial for a galaxy like M33.

The fact that our initial conditions are designed for con-
sistency with the RAR (Section 3.3) might also underlie why
our LPH model yields slow bars even though some previous
galaxy simulations in the CDM context obtained fast bars
for the maximal discs that we consider (Athanassoula et al.
2013; Athanassoula 2014). Several problems have been iden-
tified with their conclusions (Sellwood & Debattista 2014),
but the most important issue might be related to the halo
properties and whether these are truly what one expects
in the ΛCDM paradigm. Since we use a very similar algo-
rithm to that used by Debattista & Sellwood (2000), it is
quite likely that this is the main reason for our simulations
yielding slow bars for maximal discs. Ultimately, cosmolog-
ical hydrodynamical simulations of ΛCDM must be used to
check whether this model is consistent with the observed
distribution of R. We are currently investigating this using
simulations other than EAGLE (Roshan et al. 2021, in prep).

Due to the complex combination of underlying param-
eters that play a role in dynamical friction, the comparison
between different simulations should be done with care. It
seems that future work is still required to have a better un-
derstanding of how initial random motions affect the pattern
speed of a stellar bar. An important constraint is that the

statistical distribution of the initial conditions should follow
from the cosmological model.

5.5 Relation to cosmological simulations

To fully understand how galaxies would behave in any the-
ory, it is necessary to account for other processes not in-
cluded in our simulations, which ultimately requires the cos-
mological context. Gas accretion from surrounding regions
can rejuvenate the bar, whose strength could also be raised
substantially by interactions with other galaxies (Peschken
&  Lokas 2019). These processes are beyond the scope of our
isolated N -body simulations, but we nonetheless consider
their possible impact.

The amount of DM required in standard gravity is es-
sentially fixed by the observational requirement for galaxies
to lie on the empirical RAR (Lelli et al. 2017). This is prob-
ably why although it may be possible to get fast bars in
a ΛCDM context (Fragkoudi et al. 2021), doing so causes
tension with other constraints such as the stellar mass frac-
tion inferred from abundance matching. Sitting on the RAR
implies following the BTFR, which relates the baryonic mass
Mb to the asymptotic velocity vf according to a power law
of the form Mb ∝ vf

k, with k observationally very near to
4 (McGaugh & Schombert 2015; Lelli et al. 2019). This is
the expected value in MOND (Equation 2). The value of k
in Auriga falls below the observed value (figure 11 of Grand
et al. 2017). Consequently, at lower masses (and lower vf ),
the baryonic mass will be larger than for galaxies on the ob-
served BTFR. In a conventional gravity context, this would
imply a lower amount of DM, which would reduce dynamical
friction on the bar. This is highly relevant to the bar speed
problem highlighted here since many of the galaxies used
to obtain R empirically (listed in Table 2) come from the
study of Guo et al. (2019). This reaches down to vf ≈ 100
km/s, as is evident using circular velocities estimated from
both Jeans anisotropic modelling and spatially resolved Hα
emission line measurements that show “the average of the
outer flat regions” (see their figure 15). However, the Au-
riga galaxies all have vf & 160 km/s (figure 11 of Grand
et al. 2017). Comparing their table 1 to the absolute r-band
magnitudes shown in figure 1 of Guo et al. (2019) paints a
consistent picture − the observational sample in Guo et al.
(2019) reaches less massive galaxies than Auriga. Since less
massive galaxies generally require a higher DM fraction in
ΛCDM, the real challenge for this paradigm is to get fast
bars at such low vf while still sitting on the RAR. Indeed,
ΛCDM should reproduce “fast bars across the Hubble se-
quence” (Aguerri et al. 2015), not just at the high mass end.

A reasonable fraction of strongly barred galaxies is re-
quired to reproduce observations (Laurikainen & Salo 2002;
Garcia-Gómez et al. 2017). Our simulated bars are rather
weak (Figure 13), with the more reliable higher-resolution
runs indicating that the weakest bars occur in LPH for
t < 4 Gyr. However, strong bars are quite common in cos-
mological ΛCDM simulations (Blázquez-Calero et al. 2020).
This is no doubt related to processes like those mentioned
above which are not included in our LPH model. These
processes would also operate in extended gravity theories.
Consequently, it is not presently clear whether the low bar
strength in e.g. our isolated MOND model is a problem for
MOND in general, or an issue that will be resolved with
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a cosmological simulation. Further work is required to ad-
dress this issue, perhaps building on the MOND cosmology
discussed in Haslbauer et al. (2020).

The evolution of the R parameter in our LPH model
broadly agrees with that in the EAGLE cosmological sim-
ulation of ΛCDM (Figure 20). Intuitively, this makes sense
because the bar is like a normal mode in the disc, so exter-
nal perturbations can change its amplitude but not its fre-
quency. This suggests that our idealized LPH model captures
the essence of the bar speed problem faced by ΛCDM, which
we estimated to be at the 8σ level based on our analysis of
results published elsewhere (Section 4.6). We can therefore
postulate that the R parameter would remain similar in our
extended gravity models if moving to a more advanced cos-
mological simulation. If this is correct, then these models
would provide a good explanation for the observed distribu-
tion of R (Figure 21).

It is difficult to draw strong conclusions about the bar
strengths given the significant differences between ΛCDM
cosmological simulations and our idealized LPH model,
which are both trying to represent ΛCDM. The similarity in
bar strengths between ΛCDM and extended gravity theories
(Figure 13) suggests that this is not a very promising way to
distinguish them. On the other hand, the significant differ-
ences between LPH and extended gravity theories suggests
the distribution of the R parameter is a more promising test
(Figure 20). This is especially true given the similar popula-
tion mean R and its rising trend between LPH and EAGLE,
which suggests that our results are reliable with respect
to the distribution of R. In this regard, we conclude that
the properties of galactic bars are likely better explained
if galaxies lack CDM and obey non-Newtonian gravity, but
this conclusion still needs to be checked by means of self-
consistent cosmological simulations. These may reveal prob-
lems such as the bars being too weak, though it is impor-
tant for a viable theory to sometimes produce a weak bar
(as demonstrated in a hydrodynamical MOND simulation of
M33; Banik et al. 2020). Their model may be quite realistic
as gas accretion may have been slowed down by M33 lying
within the virial radius of M31, while a past pericentre (even
if not very close) could have removed most of M33’s satellites
(Patel et al. 2018). Moreover, the external gravitational field
from M31 was included in section 4 of Banik et al. (2020),
which in MOND has a non-trivial effect beyond just moving
M33 as a whole.

Turning to the case of ΛCDM, a somewhat promising
aspect of our LPH models is that the bars are sometimes
strong. This may be due to interactions, but our results in
Figure 13 suggest that it could also arise in an isolated model
if evolved for a long time due to bar-halo angular momentum
exchange (bottom panel of Figure 12, see also Athanassoula
& Misiriotis 2002). In addition to causing tension with iso-
lated galaxies like M33 with a weak bar (Sellwood et al.
2019), it is precisely this bar-halo interaction which causes
the bar to slow down (Figure 17), makingR� 1 and leading
to strong tension with observations. If ΛCDM is the correct
description of nature, some way should be found for the
‘clock’ to be ‘reset’ to avoid a similar fate in real galaxies.
This would prevent the increasing bar strength at late times
evident in Figure 13, so strongly barred galaxies should be
understood in some other way. We note that since such ‘re-
set’ events are presumably caused by interactions and these

are already included in cosmological simulations like EAGLE
and Illustris, it is not at all clear why they would be much
more frequent in a more realistic representation of ΛCDM.
Rather, our results suggest that the problem it faces with
regards to the R parameter is a fundamental consequence of
having a live CDM halo, with the problem reproduced quite
well in our idealized LPH simulation as it includes dynam-
ical friction on the bar. As discussed in Section 5.4.1, this
conclusion relies on choosing halo properties consistent with
the observed rotation curves of galaxies, since otherwise one
can always address the pattern speed problem by reducing
the amount of DM and the resulting dynamical friction.

5.6 Broader implications

As shown in Section 4.6, the properties of galactic bars are
hard to reconcile with the latest cosmological simulations in
a ΛCDM context. This is linked to the significant dynamical
friction that a bar experiences when embedded in a live halo.
Therefore, the slow bar problem is a generic failure of CDM-
based models, as already reported in the literature (e.g.
Algorry et al. 2017; Peschken &  Lokas 2019). Our results
indicate that galaxies formed in the EAGLE simulations are
strongly excluded observationally on the basis of their bar
statistics.

If similar statistics are recovered by other realisations
of the ΛCDM paradigm, then any successes that it achieves
on other scales should be viewed as a coincidence − after all,
an incorrect model with adjustable parameters can always
be expected to match some observables. More generously,
such successes can be viewed as a sign of partial correctness
but with some fundamental missing ingredient(s), especially
on galaxy scales. As an example, let us note that the CMB
anisotropies, primordial nucleosynthesis, and cosmic expan-
sion rate history can be explained in a MOND-based model
with an additional collisionless matter component (e.g. ster-
ile neutrinos) for much the same reasons as in ΛCDM (Angus
2009; Haslbauer et al. 2020).

Another hybrid model is superfluid DM, where galax-
ies have DM haloes but dynamical friction is strongly sup-
pressed for objects moving through the DM halo at subsonic
velocities (Berezhiani et al. 2019). Our results suggest that
such models could also work with regards to bar pattern
speeds. However, it is less clear how the Local Group satellite
planes would be explained in this scenario − the superfluid
core for an MW-like galaxy is expected to have a radius
of only ≈ 75 kpc (equation 18 of Berezhiani & Khoury
2016), with more recent estimates also yielding similar values
(Hossenfelder & Mistele 2020). This is smaller than the ra-
dial extent of the MW satellite plane (Pawlowski & Kroupa
2020; Santos-Santos et al. 2020). If its members are tidal
dwarfs (as required to explain their overall anisotropy), then
any members & 75 kpc away would have extremely small
internal velocity dispersions by virtue of lying outside the
superfluid core. This would contradict the observed high
dispersions (McGaugh & Wolf 2010). A similar problem
would arise around M31 since its satellites also have super-
Newtonian velocity dispersions if they lack DM (McGaugh
& Milgrom 2013), which is very likely for the 15 satellites
which delineate a thin plane (Ibata et al. 2013; Sohn et al.
2020).

Note that the superfluid core size depends only weakly
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on galaxy mass once the theoretical parameters are fixed, so
these results are rather robust. Moreover, a purely baryonic
satellite whose eccentric orbit crosses the boundary of the
superfluid core would have its internal gravity decrease (in-
crease) by a very large factor when going out (in) through
this boundary, likely leading to tidal disruption after a few
orbits. This could be circumvented by altering the theoret-
ical parameters to allow for larger superfluid cores, but it
is not clear whether this is possible given constraints from
other scales, e.g. galaxy clusters (Hodson et al. 2017). In
general, the MW and M31 satellite planes are more naturally
understood in a MOND context as arising from a past MW-
M31 flyby, which is required in MOND (Zhao et al. 2013)
and likely reproduces the observed orientations (Banik et al.
2018a; B́ılek et al. 2018).

6 SUMMARY AND CONCLUSIONS

In this paper, we used high-resolutionN -body simulations to
compare the dynamics of numerical galaxy models evolving
in the context of four different gravity theories. Specifically,
we constructed models in MOND, NLG, and MOG, and
compared their evolution to the standard live DM model
(LPH). Furthermore, we constructed a model with a rigid
DM halo (RHH). The main purpose of this study is to find
a way to discriminate between DM and extended gravity,
especially by considering the bar. To explicitly quantify the
angular speed of the stellar bar in our models, we measured
R (Equation 24) at different times. The decreasing pattern
speed in the LPH model appears as an increasing R. Using
the definition that R > 1.4 indicates a slow bar, the LPH
model predicts slow bars, whilst all the extended gravity
models studied in this paper lead to fast bars. Nearly all
current measurements favour fast bars (Debattista & Sell-
wood 2000; Corsini 2011; Aguerri et al. 2015; Cuomo et al.
2019; Guo et al. 2019). Our main findings can be summarized
as follows:

(i) In the EAGLE implementation of ΛCDM, the aver-
age value of R in present-day barred spiral galaxies is ≈ 3,
whereas observations show ≈ 1. By considering galaxies as
having a log-normal distribution of R with some intrinsic
dispersion, we show that the observationally inferred param-
eters differ from EAGLE at 7.96σ significance (Section 4.6).
If confirmed in other suites of simulations (e.g. Peschken &
 Lokas 2019), this very serious discrepancy would rule out
the ΛCDM paradigm as currently understood.

(ii) The discrepancy could probably be alleviated by any
of our explored extended gravity models without CDM (Fig-
ure 20). This is due to there being no effective dynamical
friction in such models, causing the bar angular speed to
remain constant with time. In the DM model, dynamical
friction between halo particles and the bar (Figure 12) causes
the pattern speed to undergo a clear decline with time (Fig-
ure 17), even if the disc is initialized with a higher Toomre
parameter (Section 5.4). But in extended gravity, there is
no mechanism to remove angular momentum from the disc.
This fact is directly responsible for the fast bars in all stud-
ied extended gravity models, including those which use a
different disc surface density profile to the exponential law
used here (Ghafourian et al. 2020).

(iii) The bar growth rate is higher in MOND and NLG
compared to the DM model, so the bar instability happens
much earlier. Consequently, one may conclude that discs are
globally more unstable in these theories. This is well un-
derstood analytically in the case of MOND (Milgrom 1989;
Banik et al. 2018b), and is related to the phantom DM disc
(Figure 3).

(iv) All extended gravity models predict weaker bars at
the end of the simulations, though the bar spends a short
time in the strong bar regime. Strong bars are frequently
seen in real spiral galaxies (e.g. Laurikainen & Salo 2002;
Garcia-Gómez et al. 2017). Therefore, this result may be
a problem for extended gravity. However, encounters with
other galaxies and more realistic simulations including gas
accretion in a cosmological context are required to reach a
reliable decision on the viability of extended gravity models
(Section 5.5). This work is currently under way for MOND
(Wittenburg et al. 2021, in prep).

(v) The buckling instability happens earlier in the MOND
model. Furthermore, all extended gravity models predict a
smaller thickness for the inner parts of galactic discs com-
pared to the DM case, though this is only marginally true for
MOND (Figure 16). It seems that resonances in the vertical
direction happen more violently in the presence of a DM
halo, even if they take longer to develop. This is related to
disc-halo angular momentum exchange (Figure 12) and the
fact that disc self-gravity is very weak in ΛCDM compared
to models with a completely self-gravitating disc. These
differences are related to the weaker peanuts in extended
gravity models, which may well lead to the weaker bars we
obtain − stronger peanuts seem to appear in the presence
of stronger bars (Martinez-Valpuesta & Athanassoula 2008).
This means that the properties of the effective phantom DM
halo in these models are significantly different from the DM
model (Section 2.4), leading to a different velocity dispersion
at large radii. One consequence of stronger self-gravity is a
thinner disc at fixed σz, or equivalently larger σz at fixed
thickness. Observational evidence for the latter was found
by Das et al. (2020). We also mention that only NLG has
strong flaring in the outskirts in the more reliable 5 million
particle models.

(vi) Galactic discs in extended gravity evolve to a larger
radius than discs in the DM model initialized with the same
baryonic content (Section 4.2). Combined with the above-
mentioned findings, it seems that extended gravity models
predict different morphologies for spiral galaxies. Future cos-
mological simulations in extended gravity should prove this
claim.

(vii) Extended gravity models host more density waves
propagating on the disc surface, especially in MOND (Fig-
ure 14).

Another important point is that bars sometimes appear
to be ultrafast. Indeed, Guo et al. (2019) found some cases
with ultrafast bars, suggesting this may be consistent with
observations. However, it is not expected theoretically (Con-
topoulos 1980). Following Hilmi et al. (2020), we found that
apparently ultrafast bars arise due to bar-spiral arm align-
ment causing an overestimation of the bar length (Section
5.3). We addressed this issue by focusing on minima in the
derived bar length, which undergoes short-term oscillations
as the bar moves into and out of alignment with the spiral
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arms (Figure 23). This showed that our MOND model stays
in the fast bar regime until the end of the simulation, and is
not really ultrafast (Figure 22).

Bar length oscillations due to the existence of differ-
ent density waves should also affect real observations. In
other words, ultrafast bars reported in the literature may
not really be ultrafast (Hilmi et al. 2020). However, since
the observational sample with reliable R measurements is
already small, it would be very difficult to consider only
those galaxies which are at a minimum in their bar length.
Thus, we do not apply this procedure in our statistical com-
parison, which for consistency uses all timesteps where R
can be reliably determined (Section 4.6). Figure 24 shows
that our results would not be much affected by restricting
to only those timesteps where Rb is at a local minimum in
time, but the corresponding adjustment on the observational
side is very unclear.

For a direct comparison with real galaxies, the simu-
lations should include more baryonic physics and feedback.
Important progress in this direction was recently achieved
by the M33 model of Banik et al. (2020) and by Wittenburg
et al. (2020), who simulated exponential disc galaxies form-
ing out of a collapsing gas cloud in MOND. These isolated
simulations are currently being extended to include the cos-
mological context based on a plausible MOND cosmology
(Angus 2009; Haslbauer et al. 2020).

As our final remark in this paper, let us reiterate that
there are serious differences in the evolution of galactic discs
with the same baryonic content and rotation curve depend-
ing on whether they are held together partly by DM par-
ticles or the detectable baryons alone in extended gravity.
These deviations may help to discriminate between DM and
extended gravity theories. As far as the R parameter is con-
cerned, our results suggest a strong preference for the latter
− the EAGLE cosmological simulation in the ΛCDM context
is in 8σ disagreement with observations (see also Algorry
et al. 2017; Peschken &  Lokas 2019), while models where
galaxies lack DM seem to fare much better due to the lack
of dynamical friction on the bar (Figure 20). However, the
absence of strong bars in our extended gravity models is not
a satisfactory feature, an aspect which is better reproduced
in our low-resolution LPH model (though see Sellwood et al.
2019; Banik et al. 2020). This could be due to the idealized
nature of our simulations, which lack processes like gas ac-
cretion and galaxy interactions that work to strengthen bars
(Section 5.5). For the high-resolution LPH model, the strong
bar appears at t > 4 Gyr. To better assess which model is
more consistent with observations, all the above-mentioned
results in our extended gravity models should be carefully
recovered in realistic galactic hydrodynamical simulations
in a CDM-free context, and then compared with relevant
observations. In addition, the EAGLE simulations are not
the only realisations of the ΛCDM paradigm, so the bar
statistics should be carefully investigated in other suites of
simulations (e.g. at least one very fast bar formed in the
simulation of Hilmi et al. 2020). The Illustris suite (Vogels-
berger et al. 2014) would be well suited to this, with existing
results suggesting that bars are slow here too (Peschken &
 Lokas 2019). If these results continue to hold and it turns
out that the ΛCDM paradigm must be replaced, then we
must also bear other constraints in mind when deciding what
the replacement should be (Section 5.6). Such considerations

must be done in an open-minded manner befitting the quest
for the fundamental laws governing our Universe.
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