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We present an experimental and numerical study of the non-linear dynamics of an
inertial wave attractor in an axisymmetric geometrical setting. The rotating ring-shaped
fluid domain is delimited by two vertical coaxial cylinders, a conical bottom, and a
horizontal wave generator at the top: the vertical cross-section of the fluid volume
is a trapezium, while the horizontal cross-section is a ring. Forcing is introduced via
axisymmetric low-amplitude volume-conserving oscillatory motion of the upper lid. The
experiment shows an important result: at sufficiently strong forcing and long time scale,
a saturated fully non-linear regime develops as a consequence of an energy transfer
draining energy towards a slow two-dimensional manifold represented by a regular
polygonal system of axially-oriented cyclonic vortices undergoing a slow prograde motion
around the inner cylinder. We explore the long-term non-linear behaviour of the system
by performing a series of numerical simulations for a set of fixed forcing amplitudes.
We observe a rich variety of dynamic regimes, including a linear behaviour, a Triadic
Resonance Instability (TRI), a progressive frequency enrichment reminiscent of weak
inertial Wave Turbulence (WT), and the generation of a slow manifold in the form of
a Polygonal Vortex Cluster (PVC). This vortex cluster is discussed in detail, and we
show that it stems from the summation and merging of wave-like components of the
vorticity field. The nature of these wave components, the possibility of their detection
under general conditions and the ultimate fate of the vortex clusters at even longer time
scale remain to be explored.
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1. Introduction

Energy transfer in rotating fluids has received significant attention due to its relevance
to geo- and astrophysical fluid dynamics and due to the rich complexity of the non-linear
multi-scale interplay between coherent vortical structures, inertial waves and background
small-scale nearly isotropic turbulence (Greenspan 1968; Hopfinger & van Heijst 1993;
Davidson 2013; Godeferd & Moisy 2015). Inertial waves supported by rotating fluids, with
the Coriolis force acting as restoring force, represent an essential ingredient of the transfer.
The crucial role of inertial waves is assured by [i] the specific form of the dispersion
relation, which contains no length scale, and [ii] the possibility of a cascade of wave-
wave interactions due to non-linear terms in the Navier-Stokes equations governing the
dynamics of rotating fluids.

The dispersion relation of inertial waves obtained by seeking plane-wave solutions of
the linearized inviscid Navier-Stokes equations reads ω = fkz/k = f cosα, where ω is the
wave frequency, f = 2Ω is the Coriolis parameter with Ω the rate of the background rigid-
body rotation of the fluid, and kz (respectively k) is the vertical component (respectively
magnitude) of the wave vector k inclined at angle α to the vertical z-axis, which is
taken as the axis of rotation. A similar type of dispersion relation ω = Nkh/k = N sinα
holds for internal waves in a stratified fluid, with the buoyancy frequency N replacing
f , and kh the horizontal wave number. The absence of any length scale in the dispersion
relation for inertial and internal waves implies that the global large-scale wave pattern
depends on the geometry of wave generators and on the geometry that delimits the
fluid volume –in particular, for the ocean, its bathymetry. Therefore, a rich variety
of wave motions is encountered in rotating and stratified fluids as identified in early
pioneering studies, and explored in detail in the subsequent literature: normal modes in
bounded domains of simple geometry (sphere, axial cylinder, rectangular box) (Aldridge
& Toomre 1969; McEwan 1970, 1971; Maas 2003; Bewley et al. 2007; Lamriben et al. 2011;
Boisson et al. 2012), wave beams emanating from isolated oscillatory sources (Görtler
1943; Hendershott 1969; Thomas & Stevenson 1972; Mowbray & Rarity 1967), and webs
of wave beams (wave attractors) in bounded domains with sloping walls (Stern 1963;
Bretherton 1964; Stewartson 1971, 1972; Maas & Lam 1995; Maas et al. 1997; Manders
& Maas 2003; Klein et al. 2014; Wu et al. 2020b). Of particular interest is the latter
configuration in the context of the present paper.

Due to the form of the internal and inertial wave dispersion relations, wave reflection
on a solid boundary follows a very specific law and is, in general, non-specular (Phillips
1963; Eriksen 1982; Manders & Maas 2004; Maas 2005). To be more specific, in two-
dimensional domains, this law leads to a focusing or a defocusing effect of wave beams
upon reflection at sloping walls (Dauxois & Young 1999). In bounded or quasi-bounded
two-dimensional domains, focusing prevails: the iterative process of subsequent wave
reflections leads to the formation of a limit cycle, called a wave attractor, where the wave
energy is concentrated (Maas & Lam 1995; Maas et al. 1997; Sibgatullin & Ermanyuk
2019). Relevant to the topic of the present study is the first experimental observation of
an inertial wave attractor in an elongated trapezoidal tank that showed the generation
of a persistent mean flow, right above the location where the attractor was being focused
over the sloping bottom. This mean flow was speculated to be the result of the breaking
of focused inertial waves, leading to the mixing of the background radial stratification
in angular momentum with which the solidly-rotating, homogeneous-density fluid is en-
dowed (Maas 2001). In a three-dimensional setting, the variety of possible configurations
is significantly enriched, involving the possibility of wave-energy trapping on a limit
cycle located at certain preferential planes of motion, provided that there is a billiard
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pathway connecting this plane and the initial direction of the wave-energy propagation
(Hazewinkel et al. 2011; Pillet et al. 2018). The inertial-wave-ray billiard corresponding
to the geophysically important case of a rotating spherical shell favors the formation
of an attractor in the meridional plane (Bretherton 1964; Stewartson 1972; Friedlander
& Siegmann 1982; Maas & Harlander 2007; Rabitti & Maas 2013). Accordingly, the
rich literature on the linear dynamics of inertial wave attractors in rotating spherical
layers considers the motions in ring-shaped meridional slices (Friedlander & Siegmann
1982; Dintrans et al. 1999; Rieutord et al. 2001, 2000; Rieutord & Valdettaro 2010) and
disregards the azimuthal coordinate.

It is noteworthy that the purely geometrical mechanism of iterative focusing, which is
linear, is at the origin of a spectacular forward energy cascade in wave attractors: the
energy injected into the system at global scale (i.e. at the scale of the system itself)
is transferred to the scale corresponding to the width of the attractor branches, which,
even in laboratory experiments, can be an order of magnitude smaller than the global
scale (Brouzet et al. 2017b). This small scale, or width of the inertial and internal wave
beams in the linear regime, is set by the balance between geometric focusing and viscous
dissipation and can be theoretically predicted with good agreement to experimental
observations (Rieutord et al. 2000; Hazewinkel et al. 2008; Grisouard et al. 2008). Other
wave-damping mechanisms such as interaction of waves with convective motions, ohmic
damping in presence of magnetic field in conducting fluids, and non-linear parametric
decay into secondary waves of shorter wavelength have also been proposed by Ogilvie
(2005), where a generic case with a weak inviscid “frictional” damping force has been
considered. Further, it has been shown experimentally that at sufficiently high level
of injected energy, internal wave attractors are prone to Triadic Resonance Instability
(TRI) (Scolan et al. 2013). The replacement of purely viscous damping by the flux
of energy carried by small-scale secondary waves (generated via TRI) away from the
primary waves (i.e. from the beams of attractor) introduces a new non-linear scaling
for the beam width (Brouzet et al. 2017b). Similar effects in inertial waves have been
observed in numerical simulations (Jouve & Ogilvie 2014). Let us note in passing that
Jouve & Ogilvie (2014) considered a two-dimensional setting, physically corresponding
to a torus of infinite radius having a tilted-square “meridional” cross-section, so that any
three-dimensional effects occurring in “equatorial” planes were completely excluded. The
development of the energy cascade in wave attractors with the increase of injected energy
leads to wave turbulence, with a significant occurrence of overturning events generating
irreversible mixing (Brouzet et al. 2016a, 2017a; Davis et al. 2020), and such a cascade
reaches a statistically steady state when a balance is established between the injected
and dissipated energy (Jouve & Ogilvie 2014; Davis et al. 2019). This is to be put in
context with some recent development on the understanding of inertial wave turbulence
in rotating flows (see, for example, the recent works of Le Reun et al. (2019) and Brunet
et al. (2020) on the competition between the saturation of rotating turbulence in 3D
wave turbulence and in 2D geostrophic turbulence).

It should be stressed that the overturning events and subsequent mixing are important
constituents of the full energy cascade in internal wave attractors, and that they clearly
fall apart from the wave turbulence formalism. Similarly, inertial wave turbulence plays
an important but not exclusive role in the non-linear dynamics of inertial wave attractors
described in the present paper. The full scope of dynamic events constituting the energy
transfer in inertial wave attractors extends well beyond the wave turbulence framework
and should be discussed in the rich context of the literature on turbulence in rotating
fluids. The wealth of this literature is such that, in this paper, we restrict ourselves to a
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cursory discussion of effects directly relevant to the present study. The reader interested
in the current state of the art is relegated to Davidson (2013); Godeferd & Moisy (2015).

The focus of the interest in rotating wave turbulence (Galtier 2003; Bellet et al.
2006; Davidson 2013; Godeferd & Moisy 2015) lays at the anisotropy of scales along
the directions parallel and perpendicular to the axis of rotation, the presence of direct
and inverse cascades of the key dynamically important quantities (energy, enstrophy,
etc.), non-linear wave-wave interactions among inertial waves, and the development of
coherent vortex structures aligned with the axis of rotation. The importance of these
issues has been identified in early experimental studies with grid-generated turbulence in
rotating tanks and their numerical counterparts (see for example Hopfinger et al. (1982);
Godeferd & Lollini (1999)).

In order to study in isolation the effect of rotation on (initially isotropic) turbulence,
considerable attention has been focused on theoretical investigations in domains of infinite
extent and numerical simulations in triply periodic boxes (e.g. Waleffe (1993); Cambon
et al. (1997)). It has been shown that the anisotropy develops due to non-linear wave-
wave interactions modified by rotation and concentrates energy in the plane normal
to the rotation axis at a slow two-dimensional manifold (Cambon et al. 1997). The
relevance of the wave turbulence formalism and results of numerical simulations in triply
periodic boxes to the experimental reality involving secondary currents, wall-induced
vorticity, and formation of Ekman and Stewartson boundary layers remains an open
issue. Indeed, various saturated turbulent regimes ranging between quasi-two-dimensional
and wave turbulence can be obtained in numerical simulations in triply periodic domains
depending on the damping mechanism imposed onto the geostrophic component to mimic
the interaction with rigid boundaries (see, e.g. Le Reun et al. (2017)). Therefore, the
experimental and numerical investigation of saturated turbulence regimes in a confined
volume of rotating fluid attracts significant interest. For such studies, the choice of the
range of parameters and of the geometric setup remains a non-trivial issue (see e.g.
Godeferd & Moisy (2015)). Typically, to ensure the development of a fully non-linear
energy cascade one needs to ensure a low value of the Ekman number E = ν/(2ΩL2),
where ν is kinematic viscosity and L is the global length scale, which for the bounded fluid
has the meaning of the container size. Further, the effect of rotation must be sufficiently
strong and therefore the global Rossby number RoL = U/(2ΩL) (here U is a velocity
scale) must be sufficiently low. However, RoL cannot be vanishingly small since it is
responsible for triggering non-linear effects. The micro-dynamics of the emerging vortex
structures can be conveniently quantified by the micro-Rossby number Roξz = ξz/(2Ω),
where ξz is the perturbative vertical vorticity measured in the rotating frame. The
skewness of the Probability Density Functions (PDFs) of micro-Rossby numbers is known
to reflect the symmetry breaking of cyclonic/anticyclonic motions, which is a well-known
property of rotating systems (Bradshaw 1969; Pedley 1969; Hopfinger & van Heijst 1993).

The goal of our joint experimental and numerical investigation is to study the non-
linear fate of an inertial wave attractor in an axisymmetric setting under experimental
conditions which are compatible with the formation of a slow two-dimensional manifold
coupled to the genuinely three-dimensional inertial wave field. This is achieved by
designing a setup in the form of a rotating annulus having a trapezoidal (vertical)
cross-section, thereby admitting a wave attractor structure in meridional planes and
coherent vortex structures in equatorial plane. Note that this geometry is similar to the
one considered in Klein et al. (2014) which describes in great detail the formation of wave
attractors and the role of the Stokes and Ekman boundary layers in an annular rotating
domain with central frustum under forcing due to libration. In the present paper we
chose a configuration with a sloping (conical) bottom since, potentially, it may give rise
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to a topographic β-effect, consisting in the support of topographic Rossby waves (Rossby
1939).

This work has been preceded by a preliminary numerical simulation of Sibgatullin
et al. (2017) performed with the help of the spectral element method. The preliminary
simulation has been run at a relatively weak forcing and qualitatively demonstrated
the loss of axial symmetry and gradual build-up of inertial wave turbulence, but the
saturated state, corresponding to the formation of a slow two-dimensional manifold, has
not been reached. In the present paper, we address precisely this intriguing and previously
overlooked issue. This manuscript is organised as follows. The experimental apparatus is
described in section 2. In section 3 we describe the reference experiment demonstrating
the emergence of a slow manifold in the form of a polygonal pattern of cyclonic vortices
in the equatorial plane, which co-exists with a wave attractor (superimposed with wave
turbulence) in the meridional plane. In section 4 we describe the results of direct
numerical simulations performed with the help of the spectral element method for a
set of forcing amplitudes. By using post-processing diagnostic tools we identify the key
dynamic regimes, ranging from linear behaviour to Triadic Resonance Instability (TRI),
and the generation of a slow manifold in the form of a Polygonal Vortex Cluster (PVC).
The latter regime reproduces the essential features of the reference experiment described
in section 3. In section 5 we summarise the key findings of the paper.

2. Experimental Apparatus

Figure 1 presents a schematic of the experimental apparatus in the vertical and hori-
zontal cross-sections. The region of interest is bounded by two vertical acrylic cylinders,
by the wave generator at the top, and by an acrylic conical surface at the bottom. The
outer and inner radii of the domain are R1 = 20.2 cm and R0 = 5.0 cm, respectively.
The generatrix of the conical bottom surface has an inclination of 45◦, and the apex of
the cone points upwards. Note that this cone can also be reversed upon needs: the choice
taken in the present study is explained in Section 3.

In a vertical (meridional) cross-section of the setup, two trapezoidal domains are facing
each other as shown in figure 1: note that the amplitude of the wave generator is greatly
exagerated and the upper bound of the fluid domain is actually nearly flat. The depth of
fluid measured along the generatrix of the outer cylinder is H = 40 cm. In a horizontal
(equatorial) cross-section, the experimental domain is a ring of width L = R1 −R0. The
whole setup is inserted into a square acrylic tank of 100 cm× 100 cm horizontal section
and 65 cm height, as used in Boury et al. (2019). Each part of the facility is rigidly fixed
to prevent any parasitic vibration when the whole setup, mounted on the rotating table,
is brought to rotation at angular velocity Ω = 2π/T where T is the rotation period. The
axis of rotation of the table coincides with the symmetry axis of the setup.

The axisymmetric wave generator (Maurer et al. 2017), adapted from a previous planar
version (Gostiaux et al. 2006), is used to produce inertial waves via a prescribed motion
of ring-shaped elements discretizing the annular upper bound of the fluid domain. This
device has been slightly modified to fit our needs, by lowering down the cylinders with
20 cm long aluminium rods. In the configuration presented in figure 2, the five inner
cylinders have been removed. The motion amplitudes of the remaining eleven outer
cylinders (grey boxes in the cross-section in figure 1(a)) have been adjusted to preserve
the volume of fluid displaced during its motion, such that the profile z(r) of the generator
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Figure 1. Schematic of the experimental apparatus in (a) a vertical cross-section, and (b) a
horizontal cross-section. The hashed area is out of the experimental domain. The trapezoidal
region of interest in the vertical plane is located between the inner and the outer cylinders, of
radii R0 = 5 cm and R1 = 20.2 cm, respectively.
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Figure 2. Configuration of the generator. The amplitude a of cam number 6 is set to 2.5 mm.
Out of the experimental domain, the first five cams have their amplitude set to zero. The two
dash-dotted vertical lines indicate the locations of the inner and outer cylinders.

satisfies ∫ R1

R0

z(r)rdr = 0. (2.1)

In order to preserve the boundary condition of non pumping fluid at the cylinder edges,
the radial velocity vr has to be zero at R0 and R1. This condition writes, in terms of the
profile z(r), as

dz

dr
(r = R0) =

dz

dr
(r = R1) = 0. (2.2)

As shown in Boury et al. (2019), this facility is efficient in producing modes 1 to 3 Bessel
shaped profiles, though the discretization of the wave generator leads to lower resolved
modes at high order. We therefore looked for the closest approximation of a radial mode
1 profile in such a confined geometry. The selected profile is a cubic shaped profile, as
shown by the dashed line in figure 2, that sets the cam motion amplitudes. The highest
amplitude for a cam is a = 2.5 mm next to the inner cylinder, low enough to ensure a
gradual growth of non-linear effects.

The commonly used Particle Image Velocimetry (PIV) technique was implemented
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to visualise the velocity fields. Horizontal and vertical laser planes were created using a
2 W Ti:Sapphire laser (wavelength 532 nm) and a cylindrical lens. While filling the tank,
hollow glass spheres and/or silver coated spheres of 10 µm diameter were added for the
purpose of visualisation. Particle displacements were recorded at 40 Hz using a camera
located either on the side of the tank (vertical-plane visualisation) or down below facing
a 45◦ mirror placed under the tank (horizontal-plane visualisation). The CIVx algorithm
was subsequently used to process the PIV raw images and extract the velocity fields
(Fincham & Delerce 2000). An additional filtering of the wave fields is often performed,
in order to isolate the component at a given discrete frequency peak ω = ωi, e.g. at the
forcing frequency ω = ω0. This post-processing is performed as follows: first, we compute
the Fourier transform of the temporal signal associated to the wave field in each space
point; the requested frequency is then isolated using a narrow Hamming window; finally,
we compute the inverse Fourier transform, giving us the filtered wave field around the
frequency of interest. The slow motions are isolated using a low-pass filter, with a cut-off
frequency ωc defining the width of the filter. It is important to note that the parameters
of the frequency filters applied to the experimental and numerical data are identical.
Below, we explicitly discuss the role of the width of the filters when appropriate. This
issue is particularly relevant to the analysis of the numerical data.

3. Experimental Results

Before getting to the description of the experimental results, let us make a few notes
on the geometry of the setup and the choice of the parameter range. As discussed in the
introduction, the setup is designed to allow for the non-linear coupling between [i] inertial
wave attractors in vertical (meridional) cross-sections and [ii] slow two-dimensional
manifold in horizontal (equatorial) cross-section. We chose the geometric configuration
of the conical bottom with the apex pointing upwards because, in such a geometry, the
inertial waves undergo an additional focusing due to geometrical convergence of waves
propagating from larger to smaller radial coordinate besides a primary focusing due to
the reflection on the cone. This additional focusing favours the onset of instability close
to the inner cylinder, as can be seen in the preliminary numerical study of Sibgatullin
et al. (2017). Furthermore, in the saturated regime we expect to localise the slow
two-dimensional manifold in the vicinity of the inner cylinder, thereby facilitating the
observation of a “vortex condensate” on top of an inertial wave background.

To reduce the effect of viscosity on the non-linear energy transfer we chose a rather
high rotation rate of the setup, Ω = 2.093 rad · s−1, so that the relevant value of the
Ekman number E = ν/(2ΩL2) in the present experiments is reasonably low – considering
ν = 10−6m2 · s−1, Ω = 2.1 rad · s−1, L = (R0 − R1) = 0.15 m or 0.4 m (max depth H),
leads to E = 1.1 · 10−5 or E = 1.5 · 10−6. The Ekman dynamics typically relates to
axial vertical processes, yielding a preference for the latter value. The global a priori
Rossby number based on the horizontal scale of the fluid domain, RoL = U/(2ΩL), can
be defined using the maximum vertical speed of the generator rings as the velocity scale
so that U = aω0, where ω0 is the forcing frequency. For our experimental conditions, the
amplitude a = 2.5 mm and frequency ω0 = 1.7 rad · s−1 yield RoL = 7 · 10−3 so that the
system is expected to be strongly affected by the Coriolis force. This low value of the
global Rossby number, however, corresponds to a developed non-linear energy transfer
so that the observed saturated regime is more appropriately characterized by a relevant
micro-Rossby number based on vertical component of vorticity as discussed below.

Moreover, in this experimental section, we discuss only a single experiment that
has been run at these parameters (a = 2.5 mm and ω0 = 1.7 rad · s−1). The reasons
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for that are multiple. First, the range of accessible parameters is very narrow given
our experimental apparatus: a ray tracing theory indicates that the forcing frequency
should be between 1.47 and 2.14 rad · s−1 in order to observe a wave attractor, and the
amplitude set for the generator profile is the optimum we can do. Indeed, on the one hand,
since the cam amplitudes are set with a given error, the exact volume-conserving form
of the forcing becomes difficult to prescribe as amplitude decreases: the local amplitudes
of several cams may fall within the error margin. On the other hand, at high forcing
amplitudes the non-linearity sets in too fast to allow the observation of the transient
behaviour. At the instrumental level, additional limitations are imposed, especially in
the horizontal plane, due to deposition of visualisation particles at the bottom of the
test tank which decreases the imaging quality for visualisations in the horizontal plane.
We therefore describe in detail only the experiment for which we have a complete
data set. Nonetheless, we checked that the phenomenon is reproducible by performing
experiments at different frequencies (ω0 = 1.81 rad · s−1 and ω0 = 1.92 rad · s−1), at a
higher rotation rate (Ω = 2.723 rad · s−1 with ω0 = 2.21 rad · s−1, to keep the same
ratio ω0/f), in addition to many experiments at the same frequency and rotation rate
as the one discussed and analysed below. In all these experiments, the same behaviour
is qualitatively observed. To propose a more detailed study of the phenomenon, we then
proceed with Direct Numerical Simulations (DNS), as presented in section 4, notably by
investigating lower forcing amplitudes.

3.1. Linear Regime

In the linear regime we recover the classical dynamics: at the time-scale of order 10T0
after the start of the forcing, where T0 = 2π/ω0 is the forcing period, iterative focusing
downscales the wave motion from the global scale L to the scale associated with the
width of the wave beams (Rieutord et al. 2000; Hazewinkel et al. 2008; Grisouard et al.
2008). Typical wave patterns observed in the quasi-linear regime at t = 17T0 in horizontal
and vertical planes are presented in the upper rows of figures 3 and 4 in terms of the
quantities filtered at ω = ω0 and ω = 0, respectively.

Note that the width of the low-pass filter is set by the upper cut-off frequency, i.e. ωc =
ω0/3. As discussed later, the essential low-frequency content of the experimental signal
(see figure 8) lies well below the chosen cut-off frequency. The choice of the width of the
low-pass filter is important for a unified description of numerical and experimental results
(see sections 4.4. and 4.5 for details). For the experimental results as such the choice of
the cut-off frequency is less important (i.e. a lower value of ωc could be prescribed). For
the sake of brevity, the result of the low-pass filtering is below referred to as the “signal
filtered at ω = 0”.

For clarity, we visualise the fields of radial vr and azimuthal vθ velocity, and vertical
vorticity ξz in the horizontal (equatorial) plane, and the corresponding field of vertical
velocity in the vertical (meridional) plane. It can be seen that the wave pattern observed
at the forcing frequency (figure 3) in the horizontal plane is to a good approximation
axisymmetric, while in the vertical trapezoidal cross-section we recover a classic pattern
of the (1, 1) wave attractor (Maas et al. 1997; Maas 2001) in agreement with the ray
tracing, whose branch width is due to an equilibrium between wave focusing and viscous
dissipation (Rieutord et al. 2000; Hazewinkel et al. 2008; Grisouard et al. 2008). The
experimental signal filtered around ω = 0 remains weak at t = 17T0 (see figure 4).

3.2. Non-linear Regime

The development of the fully saturated non-linear regime is illustrated in figures 3
and 4 by snapshots corresponding to t = 50T0 and t = 150T0. The full vortex pattern
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Figure 3. Fields of radial vr and azimuthal vθ velocity and vertical vorticity ξz in the horizontal
plane (at ' 20 cm depth) and of vertical velocity vz in the vertical plane. The presented
quantities are filtered around ω = ω0. Positive vorticity corresponds to cyclonic motion. The
parallelogram with arrows in the vertical plane shows the theoretical attractor in which the
energy propagates clockwise.

representing the slow two-dimensional manifold is formed at the time scale of 100T0.
It can be clearly seen that the initial axisymmetry observed at t = 17T0 is lost while
the slow manifold is gradually formed. The latter is represented by a regular polygonal
system of eight cyclonic vortices. The vortices are nearly invariant in the vertical direction
as attested by the right column of images in figure 4, representing the vertical velocity
component. These vortex structures are reminiscent of the Taylor columns usually found
in rotating systems but there is, however, a crucially important distinction: while the
Taylor columns are normally formed as a consequence of a slow motion of a perturbation
imposed on the rotating fluid, the coherent structures seen in figure 4 arise due to
a non-linear process which drains energy from the wave field toward the slow two-
dimensional manifold. We note that the vertical velocity in the cyclonic vortices is
directed downwards, corresponding to Ekman pumping, in agreement with existing
experimental and numerical data (e.g. Hopfinger et al. (1982); Godeferd & Lollini (1999)).
Interestingly, Lopez et al. (2002) observed a similar breaking of a flow, axisymmetrically
forced by a counter-rotating surface lid introducing azimuthal shear, into a discrete
pattern of vortices distributed with an azimuthal periodicity. In their experiment, they
relate the formation of such a manifold to the linear instability of the shear layer
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Figure 4. Fields of radial vr and azimuthal vθ velocity and vertical vorticity ξz in the horizontal
plane (at ' 20 cm depth) and of vertical velocity vz in the vertical plane. The presented
quantities are filtered around ω = 0 with the low-pass filter having the upper cut-off frequency
ωc = ω0/3. Positive vorticity corresponds to cyclonic motion.

producing an azimuthal wave-like structure and, although much of the dynamics following
the development of this instability is similar to the one we describe –e.g. the formation
of a polygonal pattern of cyclonic vortices, intensified due to vortex stretching–, the
mechanism is different. In our setup, the forcing introduces vertical motion in the fluid,
and very little azimuthal motion is present at the beginning. As we will show in the
numerical section, the instability observed in the non-linear regime (figures 3 and 4) is
then likely due to a triggered Triadic Resonant Instability that grows and becomes itself
unstable. An internal boundary layer is formed around the attractor, which is prime
candidate for the mixing of angular momentum, resulting in a sheared mean flow and
it is worth mentioning that even in the fully saturated regime one can still identify the
branches of the inertial wave attractor in the signal filtered around the forcing frequency
ω = ω0 (see figure 3). The relevance of such experimental regime (where a wave attractor
in the meridional plane co-exists with a polygonal vortex system in the equatorial plane)
to geo- and astrophysical systems admitting the existence of inertial-wave attractors
(Dintrans et al. 1999; Rieutord et al. 2001; Rieutord & Valdettaro 2010) represents an
interesting direction for future research.

The visual evidence of the vortices is seen in figure 5 which presents the temporal
evolution of the radial structure measured by sampling the azimuthal distribution of
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Figure 5. Temporal evolution of the radial velocity as a function of azimuth, θ, obtained by
taking profiles of radial velocity at radius r = 8 cm in the horizontal plane at ' 20 cm depth.
To guide the eye, we added a solid line showing that the cluster rotates half a turn (π rad) in
(88± 2)T0.

radial velocity at the radius r = 8 cm corresponding to the position of centres of vortices
seen in figure 4. Figure 5 shows that coherent structures start to appear after roughly
25T0, and that further the vortex pattern self-organises itself so that new structures
gradually appear and join the ensemble. After roughly 100T0 all structures move at the
same rate in cyclonic direction. This rate corresponds to half a turn of the vortex cluster
around the inner cylinder which lasts about (88± 2)T0.

The vertical vorticity field in the horizontal plane can be characterized statistically, by
measuring the Probability Density Function (PDF) of the micro-Rossby number Roξz =
ξz/(2Ω). The typical PDFs of Roξz corresponding to different stages of development of
the coherent vortex structures are shown in figure 6. We calculate the PDFs for the raw
signal and for the signal filtered around the forcing ω = ω0 and ω = 0 frequencies. The
PDFs are calculated over the surface of the ring-shaped zone between the inner and outer
cylinders, and over the time-span of ±2T0 around the time instances indicated in figure 6.
It can be seen that at the beginning of the process, when the motion is represented
essentially by the axisymmetric waves, the PDFs of Roξz have a sharp symmetrical form.
As the non-linear energy transfer towards coherent vortex structures develops, there is a
progressive evolution of the vorticity PDFs toward the shape characterized by asymmetric
“shoulders”, which indicates a well-pronounced cyclonic/anticyclonic asymmetry. This
asymmetry is clearly seen in the PDFs calculated over the raw signal and the signal
filtered around zero frequency ω = 0 (upper and lower images in figure 6), suggesting
that a few strong cyclonic vortices seen in figure 4 are responsible for the asymmetry
of the PDFs. The probability density functions calculated for the signal filtered at the
forcing frequency (middle image in figure 6) remain approximately symmetrical at any
time. A slight asymmetry visible in the curve corresponding to time around t = 30T0
and 40T0 can be tentatively attributed to the process of genesis of the regular Polygonal
Vortex Pattern: new cyclonic vortices are emerging in the plane of visualization and are
joining the ensemble. Nonetheless, since the asymmetry is weak one cannot exclude also
a minor contribution from experimental noise.
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Figure 6. PDFs of the vertical vorticity component at different times in the experiment. The
curves (from top to bottom) correspond to processing of the raw signal, and the signal filtered
around ω = ω0 and ω = 0.

4. Numerical Results

4.1. Numerical Procedure

The experimental section of this paper provides an important reference result: we
explicitly show that under sufficiently strong forcing the motion in the system represents
a non-linear combination of a complex inertial wave field, with an identifiable wave
attractor at the forcing frequency, and a slow quasi-two-dimensional manifold represented
by a Polygonal Vortex Cluster. In the numerical simulations described below, we faithfully
reproduce the geometry of the setup shown in figure 1, and we use the experimental
value of the rate of background rotation Ω = 2.093 rad · s−1 and the forcing frequency
ω0 = 1.70 rad · s−1. We explore the effect of the forcing amplitude a on the long-term
non-linear evolution of the inertial wave field in the setup. Our purpose is to identify a
sequence of observed regimes, ranging from the linear to the non-linear regimes with a
Polygonal Vortex Cluster described in the previous section.

The mathematical formulation of the problem consists in the Navier-Stokes equations
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and the continuity equation

∂v

∂t
+ (v · ∇)v = −∇p̃+ ν∆v + 2Ω × v, (4.1)

p̃ =
p

ρ
− 1

2
|Ω × r |2 , (4.2)

∇ · v = 0. (4.3)

The governing equations are written in the Cartesian system (x, y, z), co-rotating with
the setup, where the z-axis points upwards and coincides with the axis of rotation. The
origin of the coordinate system is taken at the center of the upper lid. Note that the fixed
lid has no inherent rotation in the rotating system (x, y, z). In the fixed inertial non-
rotating reference frame we define the anti-clockwise background rotation Ω as positive.
In the rotating reference frame the cyclonic vorticity is positive, and the sense of the
prograde motion is positive – cyclonic is by definition in the direction of rotation; here
we take a right-handed Cartesian coordinate system such that in cylindrical coordinates,
(r, θ, z), the azimuthal coordinate θ increases in cyclonic direction. With this convention
the cyclonic vortices appear in red colour both in numerical and experimental vertical
vorticity patterns. If the motion in a vertical radial plane is considered (e.g. plane y = 0)
we use the notations (r, z). Throughout the paper we visualize the fluid motion in the
horizontal plane located at mid-depth of the fluid volume.

To complete the mathematical statement of the problem we prescribe the boundary
conditions as follows: the no-slip condition is imposed at all rigid boundaries except
at the fixed flat horizontal upper lid where a specific harmonic forcing is applied to
simulate the experimental one. We thus require that both horizontal components of the
fluid velocity vector at the upper lid are equal to zero as in standard no-slip condition,
while the vertical component is prescribed as explained below. Figure 2 shows the
discrete experimental profile of the amplitude of motion of the rings in the generator.
This discrete stepwise form approximates the smooth profile z(r) shown in figure 2
by the dashed blue line. The forcing imposed in the numerical experiments at the
upper lid is axisymmetric, with the vertical component of the fluid velocity given by
vz(r, t) = az̃(r)ω0 exp(ω0t) where a is the forcing amplitude and z̃(r) is a non dimensional
profile (of unit amplitude at r = R0) such that z(r) = az̃(r) corresponds to the dashed
blue curve of figure 2. Since we consider a small-amplitude input perturbation (more
precisely, a/ (R1 −R0) 6 0.0167), such approach seems to be justified. In the case of
internal wave attractors with similar implementation of the input forcing, we observed a
good qualitative agreement between numerical and experimental results (Brouzet et al.
2016b). However, an extension to rotating fluids stratified in angular momentum, and
not in density, and driven by Coriolis force (which does no work), and not by gravity
(which does), is not fully evident. Both this issue and the difficulty of precise evaluation
of the efficiency of the experimental wave generator leaves a considerable margin of
uncertainty regarding the possible correspondance between the experimental amplitude
and its numerical counterpart.

The numerical simulations have been performed for the following set of 7 forcing
amplitudes: a = 0.2; 0.5; 1.0; 1.8; 2.0; 2.4; 2.5 mm, the latter value corresponding to
the experimental case. This corresponds to Rossby numbers RoL ranging from 5 · 10−4

to 7 · 10−3. Below, we use a reduced representative set of amplitudes to describe the key
regimes observed. The typical duration of the numerical experiments was about 200T0,
and in some cases up to 350T0 (e.g. at a = 2.4 mm).

As evident from the experimental part of the paper, we need to model a strongly



14 S. Boury et al.

non-linear dynamical problem, where both viscosity and non-linearity play a role. The
numerical simulation of transient and turbulent regimes is a challenge as we have to follow
the development of small-scale structures during long time intervals. In this context,
spectral or Galerkin decomposition is known to be a robust approach to tackle the
non-linear effects without parasitic effects due to numerical viscosity. Classically, such
a decomposition is possible only for simple geometry and boundary conditions. In the
present work the direct numerical simulations are performed with the help of the spectral
element method, using the open source code Nek5000 (see Fischer & Ronquist (1994);
Fischer (1997); Deville et al. (2002)). This method combines the advantages of high-
order decomposition with geometric flexibility, and permits to run long-term simulations
of strongly non-linear dynamics. In the present study, we have used meshes with up to
100 thousand elements, with eighth-order polynomial decomposition within each element
(up to 50 millions DoF).

4.2. Energy Spectra: a Preliminary Classification of the Observed Regimes

The snapshots of the simulated inertial wave fields in horizontal and vertical planes are
shown in figure 7 for a set of forcing amplitudes a = 0.2; 1.0; 2.0; and 2.4 mm at t = 100T0
(all images correspond to the same phase of the forcing). As the amplitude increases, one
observes the increasing complexity of the inertial wave fields, in broad agreement with
the known literature on the onset of Triadic Resonance Instability (Bordes et al. 2012;
Bourget et al. 2013) and wave turbulence in internal and inertial wave attractors (Brouzet
et al. 2016a,b). In particular, one can see [i] visible broadening of the attractor branches
at higher forcing (Brouzet et al. 2017b), [ii] signature of discrete azimuthal symmetry
in the vertical vorticity pattern in horizontal plane at a = 1.0 mm in agreement with
preliminary simulations described in Sibgatullin et al. (2017), and [iii] emerging signature
of discrete patches of vertical vorticity in the horizontal plane at a = 2.4 mm which are
reminiscent of the experimental observations described in section 3. Below we apply a
set of post-processing tools to analyse the numerical data in some detail.

The non-linear regimes observed in the numerical simulations of an axisymmetrically
forced inertial wave attractor can be roughly classified by considering the development of
the signal spectra with time for a set of forcing amplitudes. The typical time-frequency
diagrams obtained at different values of a are shown in figure 8. These diagrams are
calculated similarly to Bourget et al. (2013), as follows

Sr(ω, t) =

〈∣∣∣∣∫ +∞

−∞
vr(r, θ, τ)eiωτh(t− τ) dτ

∣∣∣∣2
〉
rθ

, (4.4)

where h is a Hamming window and vr is the radial component of the velocity field,
and subscript rθ denotes a ring-shaped domain around the inner cylinder (θ ∈ [0, 2π],
r ∈ [5, 10] cm). The calculations are performed with the Matlab toolbox described
in Flandrin (1999). The time-frequency diagrams were also calculated for other variables
(e.g. azimuthal velocity, vertical vorticity), demonstrating similar qualitative behaviour.

The signatures of inertial wave turbulence can be detected by analysing the en-
ergy spectra (Yarom & Sharon 2014). Note that the original approach implying four-
dimensional Fourier analysis (three dimensions for space and one for time) has been
proposed by Yarom & Sharon (2014) for a rotating system where the energy is injected
via decorrelated random forcing thereby creating well-developed fully three-dimensional
wave turbulence possessing no information on initial orientation of the input wave vector.
In the present paper the energy is injected via axisymmetric deterministic forcing (with
prescribed amplitude, length and frequency) producing a variety of dynamic regimes
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Figure 7. Snapshots of vertical vorticity field, obtained by numerical simulations, in horizontal
plane at mid-depth z = −20 cm (upper row) and corresponding vertical velocity fields in vertical
plane y = 0 (lower row) taken at t = 100T0 at different values of the forcing amplitude a.
Note that both in experiments and in numerical computations we denote cyclonic vorticity and
prograde azimuthal velocity as positive. Thus the experimental and numerical patterns have the
same colour coding and can be directly compared regardless of the direction of the background
rotation.

ranging from regular to turbulent (see figure 7). In order to adapt the method of post-
processing to the observed wave patterns, we perform the analysis described in (Yarom
& Sharon 2014) in a vertical radial plane similar to Brouzet et al. (2016a), and, in
addition, calculate the spatial energy spectrum in a horizontal plane. The latter is done
to clarify the role of the integer-number azimuthal modes at different values of the forcing
amplitude. Note that owing to different design of the experimental setup such modes were
not present in the case studied by (Yarom & Sharon 2014). Before computing the energy
spectra, the numerical results are re-sampled to yield the spatial resolution of 0.2 cm ×
0.2 cm and the temporal resolution of 0.2 s. This is done to reduce the amount of data
and to match the typical experimental resolution.

The wave energy spectra in the vertical radial plane are computed using the three
dimensional Fourier transforms of the horizontal and vertical velocity fields, v̂r(kr, kz, ω)
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and v̂z(kr, kz, ω). The corresponding energy spectrum is defined as

E‖(kr, kz, ω) =
|v̂r(kr, kz, ω)|2 + |v̂z(kr, kz, ω)|2

2A‖T
, (4.5)

where A‖ = 40× 15 cm2 is the area considered in the vertical plane and T = 50T0 is the
duration of the time-history sample. The calculations for all the cases shown below in
figure 9 are performed for the numerical data obtained for t ∈ [100T0, 150T0]. The spatial
resolution of re-sampled data and the size of the fluid domain provide respectively the
upper and lower bounds in wave numbers, of order kmax = 8 rad · cm−1 and kmin =
0.2 rad · cm−1. Interpolation is performed to express the energy spectrum E‖(kr, kz, ω)
as a function of E‖(k, α, ω), with k, the norm of the wave vector. Then, we perform
integration over the entire range of resolved wave vectors [kmin, kmax] as follows

E‖(α, ω) =

∫ kmax

kmin

E‖(k, α, ω)kdk. (4.6)

The calculated energy density E‖(α, ω) is normalised by the frequency energy density
E‖(ω), obtained by integrating E‖(α, ω) over all directions. It should be stressed that it
is only for a purely axisymmetric wave perturbation that E‖(α, ω), defined by (4.6), is
a function of the true angle α between the vector of the phase speed and the horizontal
plane. In the axisymmetric case, the vector (kr, kz, kθ) has kθ = 0, where the direction of
the component kθ is defined by a vector orthonormal to the (r, z) plane. In the general

case, the vector (kr, kz, kθ) is inclined at an angle α = arctan
[
kz/

(
k2r + k2θ

)1/2]
to the

vertical axis. A projection of this vector onto the vertical (r, z) plane is seen at the
apparent angle α∗ = arctan [kz/kr]. Restricting, for brevity, our attention to small values
of α and α∗, the difference between the two angles can be quantitatively characterized

as
[
1 + (k2θ/k

2
r)
]1/2−1. For example, the relative difference |(α∗−α)/α| < 0.1 translates

to |kθ/kr| < 0.46, thereby admitting the vectors whose azimuthal directions differ from
the (r, z) plane by less than ±25◦.

An additional analysis is performed in the horizontal plane located at the mid-depth
of the setup. The wave energy spectrum in the horizontal plane is computed using the
three dimensional Fourier transform of the horizontal components of the velocity field,
v̂r(kr, nθ, ω) and v̂θ(kr, nθ, ω). Here nθ = 2π/∆θ is the non-dimensional azimuthal wave
number, where ∆θ is the azimuthal wavelength (in radians). Note that using nθ is more
convenient than using kθ (measured in rad ·m−1) in view of the discrete azimuthal
symmetry of the wave patterns in the horizontal plane clearly seen in figure (7) at
a = 1.0 mm. The corresponding energy spectrum is defined as

E⊥(kr, nθ, ω) =
|v̂r(kr, nθ, ω)|2 + |v̂θ(kr, nθ, ω)|2

2Ar,θT
, (4.7)

where Ar,θ is the area considered (r ∈ [R0, R1], θ ∈ [0, 2π]) and T = 50T0 is the duration
of the time-history sample. The spectrum is integrated over the frequency range ω ∈
[−f, f ] in which inertial waves can propagate, as follows

E⊥(kr, nθ) =

∫ f

−f
E⊥(kr, nθ, ω)dω. (4.8)

Using (4.4), (4.6) and (4.8), we obtain figures 8 and 9, from which we can infer the
information on qualitative evolution of the wave regime with amplitude. It can be seen
in figure 8 that for the lowest amplitude considered (a = 0.2 mm), the frequency spectrum
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Figure 8. Time-frequency diagram of the logarithm (color) of the normalised spectrum of the
radial velocity, Sr(ω, t)/ 〈S0〉, where 〈S0〉 is the time averaged spectrum at ω/ω0 = 1, calculated
with the help of equation (4.1) for a ring-shaped region around the inner cylinder (r ∈ [5, 10] cm).
The last image in the lower row corresponds to the time-frequency diagram calculated for the
experimental data obtained at a = 2.5 mm. The white dashed line indicates the cut-off frequency
f .

is monochromatic, with a weak but detectable component at twice the forcing frequency.
This is confirmed by the energy spectrum for this amplitude represented in figure 9: the
energy is localized on the linear dispersion relation at discrete “spots” corresponding
to ω0/f = 0.39 and 2ω0/f = 0.78. The perturbation is nearly axisymmetric, a weak
contribution of low azimuthal modes can be detected in terms of E⊥(kr, nθ).

At higher forcing amplitude (a = 1.0 mm), one can observe (see figure 8) a classic
signature of triadic resonance instability (TRI). One can see signal components at
the frequencies of two most energetic secondary waves which satisfy the condition
ω0 = ω1 + ω2, with ω1/ω0 = 0.32 and ω2/ω0 = 0.68 (here the subscripts 0, 1 and 2
denote the parameters of the primary wave, and two secondary waves). Also there is
a significant energy content at frequencies ω1 + ω0, ω2 + ω0, and the multiples of the
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Figure 9. The upper four images present the normalized energy spectra
(
E‖(α, ω)/E‖(ω)

)
at

different values of the forcing amplitude. Colors indicate the levels of normalized energy spectra.
The white dashed lines correspond to the dispersion relation ± cosα = ω/f . Note that the
energy peaks are not always localized at the dispersion curve, owing partially to the departure
of the wave vectors from (r, z) plane and to the contribution of slaved (evanescent) waves (see
discussion in the text). The lower four images show the energy spectra in the horizontal plane
E⊥(kr, nθ) on a logarithmic scale at different values of the forcing amplitude. By combining
information from the spectra calculated in the vertical and horizontal planes one can see the
evolution of wave regimes from nearly linear at a = 0.2 mm to wave turbulence evolving from
a “discrete” form at a = 1.0 to a more “continuous” form at 2.0 and a = 2.4 mm. The latter
is particularly well seen in terms of E⊥(kr, nθ). In all cases the axisymmetric component of the
wave field (corresponding to nθ = 0) is most significant.

forcing frequency 2ω0 and 3ω0. Thus, both TRI and the Two-Wave Interactions (TWI)
(Beckebanze et al. 2021; Boury et al. 2021)) are present in the system and play a role. The
corresponding energy spectrum shown in figure 9 demonstrates that the linear dispersion
relation attracts the energy maxima. However, some energy content falls apart from the
dispersion relation, producing a pattern of weak horizontal stripes as consequence of the
difference between angles α and α∗ arising from quasi-two-dimensional analysis (4.6). In
terms of E⊥(kr, nθ) we observe a contribution of low azimuthal modes, where significant
peaks can be distinguished at nθ = ±12. As it will be discussed in section 4.3 the latter is
related with spiral waves propagating in retrograde and prograde sense which are likely
to be a consequence of triadic resonance. The data analysis presented in figures (8) and
(9) for a = 1 mm supports the idea that this regime corresponds to the onset of weak
(discrete) inertial wave turbulence.

As the forcing amplitude increases further (a = 2.0, 2.4, and 2.5 mm), one can observe
a significant increase of the energy content in the continuous part of the frequency
spectrum, accompanied with an enrichment of the discrete part (figure 8). The peaks
corresponding to TRI-generated secondary waves ω1 and ω2 (detected at a = 1.0 mm)
remain persistent at higher forcing amplitudes. In general, the overall trends seen in
figure 8 at higher forcing amplitudes correspond well to the effects described in the
literature on internal wave attractors in stratified fluids in the non-linear regime (Brouzet
et al. 2016a, 2017a). There is, however, an important distinction: in the case of rotating
fluid we observe a highly complicated frequency content of the signal at the low-frequency
end of the spectrum which does not have a straightforward interpretation in terms
of TRI. In the context of this paper this issue is of central interest (see section 4.5
for discussion). Note that some discrete frequency components seen in the numerical
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calculations performed at a = 2.4 and 2.5 mm appear also in the experimental spectrum.
In the numerical simulations, the transients seem to have a significantly longer duration
as compared to the experiment. This issue is discussed in section 4.5.

The energy spectra for higher forcing amplitudes shown in figure 9 seem to be consistent
with the concept of inertial wave turbulence. As a increases, the character of wave
turbulence gradually evolves from a “discrete” form at a = 1.0 to a more “continuous”
form at a = 2.0 and 2.4 mm. The latter is particularly well seen in terms of E⊥(kr, nθ).
The presence of a significant continuous component in E⊥(kr, nθ) is a direct consequence
of the loss of the discrete azimuthal symmetry observed in figure 7 at a = 2.0 mm and
2.4 mm.

As the energy spectra E‖(α, ω) are calculated in the vertical plane we can see that
the structure of the low-frequency zones (where the dispersion relation crosses the line
ω/f = 0) evolves considerably as a increases. In the quasi-linear case (a = 0.2 mm)
there is no detectable energy component at ω/f ' 0. As a increases, a complex discrete
structure emerges in the vicinity of ω/f ' 0. At higher a this structure evolves toward a
smoothed energy distribution. The latter can be interpreted as a trend toward merging
of energy peaks corresponding to discrete frequencies.

It has been already noted that some energy content falls apart from the dispersion
relation due to the difference between α and α∗ as a consequence of the two-dimensional
analysis in (4.6). Let us note that there is an additional mechanism for the concentration
of such peaks, namely along the vertical lines at fixed α corresponding to the forcing
frequency ω0. This means that forced higher harmonics are generated which propagate
at an angle belonging to that of the fundamental frequency, as opposed to free higher
harmonics that follow the dispersion curves. These “slaved” higher harmonics have been
encountered in internal wave attractors before (Lam & Maas 2008). An interested reader
is relegated to Davis (2019), in which a similar phenomenon is observed and discussed in
more detail.

4.3. Triadic Resonant Instability in a Rotating Annulus

Relevant to our study, let us consider in more detail the Triadic Resonance Instability
(TRI) in the rotating annulus. TRI has been observed in various configurations of rotating
flows involving precession, and often led to symmetry breaking and to the formation of
vortical structures distributed periodically (Albrecht et al. 2015; Marques & Lopez 2015;
Albrecht et al. 2018; Lopez & Marques 2018; Wu et al. 2020a). For example, in the case of
a rotating cylinder (e.g. Marques & Lopez (2015)), this instability gives rise to structures
aligned with the rotation axis and distributed along θ.

The data presented in figure 8 for a = 1.0 mm show well-localised discrete frequency
components. Using the technique of Hilbert transform filtering introduced in Mercier
et al. (2008), one can separate the key components of the wave patterns observed in
vertical and horizontal planes as shown in figures 10 and 11. The filtered wave field
components seen in the vertical plane remind of the patterns already described in
literature for internal wave attractors (see e.g. Scolan et al. (2013); Brouzet et al. (2017a)).
The length of the wave vector components can be evaluated with reasonable accuracy
as location of the maximum of corresponding probability density functions calculated
over the domain of interest. The corresponding vector triad in vertical plane is shown in
figure 12 (left panel) together with the curves defining the admissible wave triads. It can
be seen that the observed triad is consistent with the theoretical curve, with reasonable
experimental accuracy.

The pattern of triadic resonance in a ring-shaped domain seen in the horizontal
plane posesses a discrete symmetry as shown in figure 11. This is in agreement with
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Figure 10. The components of the inertial wave field (displayed in terms of the vertical velocity
component) filtered at frequencies ω0, ω1 and ω2 (upper row), with the corresponding phase
patterns (lower row). Only one branch of the wave attractor is shown. The corresponding vector
triad is shown in figure 12 (a).

earlier observations described in Sibgatullin et al. (2017), and with raw snapshots shown
in figure 7 for a = 1.0 mm in the present paper. Thus, the azimuthal pattern in
the horizontal plane is reminiscent of ’modal’ triadic resonance in a rectangular box
described in McEwan (1971). However, the modal pattern of internal waves in the vertical
plane (McEwan 1971) is clearly compatible with the dispersion relation, while we are
not aware of any theoretical work predicting the number of the expected azimuthal
mode of the secondary waves in a ring-shaped domain. Assuming the triadic resonance
as the underlying key mechanism and a discrete symmetry of the azimuthal wave
pattern, we can expect that the purely axisymmetric wave (i.e. zero azimuthal mode)
at the forcing frequency ω0 should give rise to two secondary waves propagating in
the opposite azimuthal directions (cyclonic and anti-cyclonic) and corresponding to the
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Figure 11. The components of the vertical vorticity field ξz filtered at frequencies ω0, ω1 and
ω2 (upper row), with corresponding filtered wave fields as function of radial coordinate r and
azimuthal coordinate θ, with amplitude shown in the middle row and phase shown in the lower
row. Note that the primary wave is axisymmetric and propagates radially, while the secondary
waves corresponding to frequencies ω1 and ω2 propagate azimuthally in the prograde (cyclonic)
and retrograde (anti-cyclonic) directions, respectively, and the azimuthal components of the
wave vectors have the same length. The corresponding vector triad is shown in figure 12 (b).

same azimuthal mode. This is confirmed by the data presented in figure 11 and by the
construction of the projection of the wave vector triad on the horizontal plane shown in
figure 12 (right panel). Both secondary waves seen in the horizontal plane correspond to
12-th azimuthal mode. The secondary waves corresponding to ω1 and ω2 propagate in
cyclonic and anti-cyclonic directions, respectively.

Summing up, we can characterise each wave component by three numbers (kr, kz, nθ),
where kr, kz are conventional wave vector components measured in r, z-plane (in
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Figure 12. Verification of the triadic resonance: (a) curve of admissible wave-vector triads in the
vertical plane (kr, kz) with superimposed measured wave vectors; (b) wave-vector triad in the
horizontal plane (kr, nθ). The wave-vector triads shown in the left and right panels represent their
projections on the vertical and horizontal planes respectively, and correspond to the patterns
depicted in figures 10 and 11. The solid, dashed, and dash-dotted lines in panel (a) represent
the locus of the tips of the resonant wave vectors according to the dispersion relation.

rad · cm−1), while nθ = 2π/∆θ is non-dimensional integer azimuthal mode number,
where ∆θ is the azimuthal wave length (in radians). For the vector triads depicted
in figure 12, we have (1.38, 0.94, 0), (−1.88,−0.43,−12) and (3.02, 1.26, 12) for the
primary and two secondary waves, respectively. With reasonable accuracy we have
k0r ≈ k1r + k2r , k0z ≈ k1z + k2z , and n0θ = 0 = n1θ + n2θ. It should be stressed that the wave
vector components can be strictly defined only for spatially monochromatic fields (or
approximately monochromatic as in Bourget et al. (2013)) while for narrow wave beams
the objective measurement of wave-vector components raises some problems as discussed
in Fan & Akylas (2020). However, experimentally it is often possible to construct the
Probability Density Functions (PDFs) for the wave vector components measured in a
zone of interest and estimate the length of the wave vectors from the positions of PDF’s
maxima. This approach is taken in the present paper. In light of the results presented in
figure 12, we note that the resonance conditions for TRI are satisfied here. Moreover, it
is interesting to point out that the primary wave is three-dimensional but axisymmetric,
and therefore mostly lives in a vertical plane, contrary to the two secondary waves,
which are non-axisymmetric and fully three-dimensional. At this stage, however, the
discussion of this 3D TRI is purely exploratory. The reader interested in a more thorough
development is referred to Boury (2020) (section 7.5.2).

4.4. Transition to a Polygonal Vortex Cluster

Let us now consider how the regime in which a Polygonal Vortex Cluster emerges in
the numerical simulations when we systematically increase the forcing amplitude. By
considering the results obtained at a = 1.0 mm we have already made an important
observation that the low-frequency behaviour of the system is represented by cyclonic
propagation of a secondary wave generated by triadic resonance. In other words, we can
say that, after the onset of TRI, this low-frequency component of the wave field represents
a “germ” of the slow manifold. Therefore, to compare the flow patterns representing the
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slow manifold in the horizontal plane it is reasonable to use the low-pass filtering with
the cut-off frequency set around ωc = ω0/3. The width of this filter corresponds to
the width of the filter used in the experimental part of the paper to separate the low-
frequency signal. Moreover, the time-frequency diagrams shown in figure 8 allow us to
conclude that this width of the low-pass filter captures the essential features of the low-
frequency behaviour of the system. By applying this filter we can identify the variation
of the structure of the vertical vorticity field at different forcing amplitudes, as shown
in figure 13. The snapshot of the pattern is complemented by a video in supplementary
material. The snapshots and the video are taken in vicinity of the time instant t = 100T0.
It can be clearly seen that the cyclonic wave motion at a = 1.0 mm is replaced by a
highly complicated pattern which exhibits cyclonic/anti-cyclonic rotation close to the
inner/outer cylinder, respectively. We illustrate such a regime by the data obtained at
a = 2.0 mm. This regime is observed in a certain range of the forcing amplitudes (around
a ∈ [1.8 mm; 2.0 mm]). Thus, the transition from the regime with wave field possessing
discrete azimuthal symmetry (a = 1.0 mm) to the regime with polygonal vortex cluster
(a = 2.4 mm) is highly non-trivial. The intermediate regime observed at a = 2 mm
deserves a special study which falls out of scope of the present paper.

As the forcing amplitude increases further, one can clearly identify the patches of
cyclonic vorticity arranged in polygonal fashion, with a slow drift of the vortex cluster
in prograde direction. This regime is shown in figure 13 for a = 2.4 mm. A very similar
regime is observed at a = 2.5 mm, which suggests that the regime is sufficiently robust
and can be reproduced in a certain range of the forcing amplitudes. The numerically
obtained vortex pattern with 7 vortices arranged at the vertices of a regular polygon can
be compared to the experimental vortex pattern with 8 vortices. We see that qualitatively
the patterns are similar, and, since the colour scale for both patterns is the same, at
quantitative level there is a reasonable agreement between the magnitudes of the vertical
vorticity. However, the mechanism of the formation of the vortex patches and the long-
term evolution of the pattern in the numerical calculations remain to be identified. To do
this we performed a long series of calculations specifically for this regime at a = 2.4 mm.
The results of these simulations are described below.

4.5. Long-term Fate of the Polygonal Vortex Cluster in Numerical Simulations

The long-term time-frequency diagram corresponding to the case a = 2.4 mm is
presented in figure 14. The diagram is calculated over 350 forcing periods. Window 6
shows schematically the domain where the low-pass filter with the cut-off frequency
ωc = ω0/3 has been applied to obtain the vortex pattern depicted in figure 13 for
a = 2.4 mm. This pattern remains virtually the same over a long time span. In particular,
the 7-vortex cluster can be observed when window 6 is shifted in time to cover the
narrow peaks 3 and 4. These peaks 3 and 4 are well-localized, making possible narrow-
band filtering of the corresponding wave components of the vertical vorticity field. The
result of such filtering is represented in figure 14 by the patterns corresponding to
ω3 = 0.36 rad · s−1 (ω3/ω0 = 0.21) and ω4 = 0.16 rad · s−1 (ω4/ω0 = 0.09). The
former represents a wave of 7-th azimuthal mode propagating in cyclonic (prograde)
direction in the close vicinity of the inner cylinder, the positive and negative patches
of vorticity in this wave have the same magnitude. The latter represents a wave of 5-
th azimuthal mode propagating in anti-cyclonic (retrograde) direction. Note that the
wave corresponding to ω4/ω0 = 0.09 is significantly weaker in magnitude than the wave
corresponding to ω3/ω0 = 0.21. Apart from this well-defined discrete components there is
also a contribution from the continuous part of the spectrum. Thus, the 7-vortex pattern
seen in figure 13 can be interpreted as azimuthal wave of 7-th mode propagating in
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Figure 13. The low-frequency pattern of the vertical vorticity field filtered by low-pass filter
with the cut-off frequency ωc = ω0/3 at different values of the forcing amplitude in the DNS and
for the experimental case. The images correspond to the time t = 100T0. In the supplementary
material we provide a short video of this pattern demonstrating prograde motion of the wave
pattern at a = 1.0 mm, prograde/retrograde motion close to inner/outer cylinder respectively at
a = 2.0 mm and prograde motion of the vortex cluster at a = 2.4 mm (in numerical simulations)
and at a = 2.5 mm (in experiments). Note that for experimental data we take a mirror
image, so that the background rotation and prograde motion are anti-clockwise. The numerically
calculated wave/vortex patterns are rotating around the central cylinder while interacting with
the mean azimuthal currents shown in the right panel of figure 16.

prograde sense over weak background vorticity pattern. In this background pattern we
can identify 5-th azimuthal retrograde wave mode while other discrete wave contributions
are difficult to identify. The observable result of such superposition is the polygonal 7-
vortex pattern.

It should be noted that at long time scale the observable vortex pattern evolves. It can
be seen in figure 14 that after approximately 225T0 the discrete frequency components
at the low-frequency end of the spectrum exhibit a strong trend towards merging. To-
wards the time around 275T0 it becomes difficult to distinguish individual low-frequency
wave components. The low-pass filtering applied to the domain schematically shown by
rectangle 5 returns the vorticity pattern which develops as result of merging of the low-
frequency discrete wave components. The resulting slow manifold is represented by a
Polygonal Vortex Cluster with 8 cyclonic vortices drifting in cyclonic direction. This
pattern is very similar, in terms of strength and spatial arrangment of vortices, to the
experimental pattern shown in figure 13. The evolution of the azimuthal drift of the
vortex cluster with time is illustrated in figure 15 representing the numerical counterpart
of figure 5. It can be seen that numerical simulations yield 6 to 3 times faster drift than
the experimentally measured one.

An important remark should be made regarding the slow background azimuthal
current observed in the horizontal plane at mid-depth of the setup. The evolution of
this current is shown in figure 16 which represents the time-history of radial distribution
of mean azimuthal velocity component 〈Vθ〉θ,t (measured in cm/s). Here 〈·〉θ,t denotes
the azimuthal averaging performed over θ ∈ [0, 2π] and the temporal averaging performed
in a moving window of width 20T0. The corresponding non-dimensional quantity is
introduced as Vθ = 〈Vθ〉θ,t · T0/(2πr), which physically corresponds to the portion of
the full circle passed by the mean azimuthal current during one forcing period. The
time-history covers the same span of time as figures 14 and 15. Figure 16(b) shows



Vortex cluster arising from an axisymmetric inertial wave attractor 25

T
im

e
fr
eq
u
en

cy
sp
ec
tr
u
m

of
v r

56
3

0 50 100 150 4 200 250 300
0

0.5

1

1.5

2

2.5

3

t/T0

ω
/ω

0

−4

−3

−2

−1

0

lo
g
(S

r
(ω
,t
)/
〈S

0
〉)

V
or
ti
ci
ty
ξ

20 10 0 10 20

20

10

0

10

20

x (cm)

y
(c
m
)

(3) : ω3/ω0 = 0.21

−0.5 −0.25 0 0.25 0.5

Vorticity (s−1)
at t = 170T0

20 10 0 10 20

x (cm)

(4) : ω4/ω0 = 0.09

−0.1 −0.05 0 0.05 0.1

Vorticity (s−1)
at t = 170T0

20 10 0 10 20

x (cm)

(5) : ω/ω0 = 0; ωc = ω0/3

−1 −0.5 0 0.5 1

Vorticity (s−1)
at t = 310T0

Figure 14. The time-frequency diagram corresponding to the case a = 2.4 mm (upper image).
Lower row (from left to right) shows the snapshots of the vertical vorticity fields filtered in narrow
frequency windows 3 and 4 around t = 170T0, and via low-pass filter schematically shown as 5
around t = 310T0. Patterns 3 and 4 propagate in prograde and retrograde directions, respectively.
Note that the discrete low-frequency components seen in the time-frequency diagram exhibit a
trend toward merging at t > 225T0, and filter 5 is applied to the result of the merging process.
The result of filtering with 6 (low pass-filter, earlier times) is shown in figure 13 (c).

the radial distribution of mean non-dimensional azimuthal velocity corresponding to
t = 100T0 in the numerical simulations performed at different values of the forcing
amplitude a = 0.2; 1.0; 2.0; 2.4 mm. This time t = 100T0 corresponds to the patterns
shown in figure 13. The profiles displayed in figure 16(b) show that the mean azimuthal
“wind” in the system considerably increases with the forcing amplitude. This effect is
quantitatively investigated in figure 16(c), showing that the maximum of |Vθ| increases
proportionally to the square of the forcing amplitude a, a result consistent with other
studies (see, e.g., the recent work of Cebron et al. (2021)). No relevant scaling could
be found, however, for the radial location of these maxima. There exists a significant
literature on the effect of the mean current on TRI in two-dimensional problems, where
the wave vectors and the mean velocity vector belong to the same vertical plane (see
e.g. Richet et al. (2017); Fan & Akylas (2019)). In our case the mean azimuthal flow
is perpendicular to the primary wave motion which occurs in a vertical (meridional)
plane. We conjecture that a sufficiently strong mean azimuthal flow has an important
effect on the radial extent of the observed azimuthal wave modes depending on the
prograde/retrograde sense of motion of the flow and the waves.
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Figure 15. Same as experimental figure 5 but computed from the numerical data. It can be
seen that in the numerical simulations the prograde motion of the vortex cluster is significantly
faster than in the experiment case. The three lines indicate, from left to right, an azimuthal
drift of the vortex cluster at the rate of half a turn in (15 ± 2)T0, (22 ± 2)T0, and (28 ± 2)T0.
The rate of the azimuthal drift thus decreases with time.

In the left panel of figure 16, we superimpose the evolution of the mean position of
the vortex centers (marked by black dots) on the spatio-temporal diagram of the mean
azimuthal flow. It can be seen that vortices are initially close to the surface of the inner
cylinder as shown in figure 13 for the case a = 2.4 mm. At t around 150T0 a narrow zone
of prograde current starts to develop near the inner cylinder (visually it corresponds to
the yellow “tongue” seen in the left panel of figure 16, see also the dashed profile in the
right panel). Owing to interactions with this current, the vortex centers gradually move
away from the inner cylinder while sitting at the radial coordinate roughly corresponding
to the border between the prograde and retrograde currents. When the mean radial
position of the vortex centers increases, the 7-vortex cluster evolves toward the 8-vortex
configuration.

Let us note that the data presented in figure 15 and figure 16 permits to quantify
that the prograde propagation speed of the vortex cluster, varying from 1/30 to 1/56
cycle per period T0, is approximately equal to or smaller than the prograde average flow
speed observed in the narrow yellow “tongue” (see left panel of figure 16) toward the end
of the simulation. This observation carries the suggestion that the components of the
vortex cluster can be identified as Topographic Rossby Waves (TRWs) propagating in
retrograde direction with respect to the current (while in prograde direction with respect
to the rigid boundaries of the rotating setup).

In the experimental part of the paper (section 3) we have demonstrated that the
cyclonic/anti-cyclonic asymmetry can be conveniently illustrated by the PDFs of the
vertical vorticity components. Indeed, the vertical vorticity PDF provides a diagnostic
from which the importance of redistributing processes can be obtained; its width (vari-
ance) tells how much vorticity is present in vortices and in inertial and topographic
Rossby waves relative to the background (“planetary”) vorticity, its skewness testifies
about the dominance of concentrated strong cyclonic vorticity (in cyclones) relative
to a more widespread background of weak anticyclonic vorticity. As seen in figure 6,
in the experiment, the key contribution to the asymmetry is due to the low-frequency
component of the vorticity field filtered with the help of the low-pass filter. In figure 17 we
show the PDFs calculated for the numerically simulated vertical vorticity field. Note that
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Figure 16. (a) Spatio-temporal diagram representing the numerically computed time-his-
tory of radial distribution of mean non-dimensional azimuthal velocity component
Vθ = 〈Vθ〉θ,t · T0/(2πr). Positive/negative values correspond to prograde/retrograde current.
Black dots show the mean radial position of the centres of vortices in the vortex cluster. (b)
Radial distribution of mean azimuthal velocity corresponding to fixed moment of time t = 100T0

in numerical simulations performed at different values of the forcing amplitude a. The “slow
manifold” patterns shown in figure 13 and in supplementary material correspond to t = 100T0.
These patterns are slowly rotating while interacting with the mean azimuthal current. In (b),
for a = 2.4 mm we present also the radial profile of the azimuthal current taken at t = 310T0

(purple dashed line): note the presence of the prograde current corresponding to the yellow
“tongue” in the left panel (a). The measurement times t = 100T0 and t = 310T0 are indicated
by white dashed lines in the left panel. In both figures, a grey rectangle is added to represent
the fluid domain at rest contained in the inner cylinder. (c) Scaling of the maximum of Vθ with
the square of the forcing amplitude, a2.

the PDFs of the experimentally measured vertical vorticity component at a = 2.5 mm
(black line) are fully consistent with the PDFs obtained for the numerically simulated
vertical vorticity component obtained for a = 2.5 mm (green line) and a = 2.4 mm (purple
line). Interestingly, the widest PDFs are obtained in numerical simulations performed at
a = 2.0 mm, which is consistent with the snapshots shown in figures 7 and 13 (note that
a larger range of the colorbar is used in these figures precisely for this amplitude).

The result of the direct numerical simulations is satisfying in the sense that the
experimental pattern is successfully reproduced. It means that formation of a Polygonal
Vortex Cluster in the geometric setup under consideration is a robust phenomenon.
Moreover, the numerically observed merging of low-frequency wave components into a
regular pattern of cyclonic vortices seems to be a plausible physical scenario for the
formation of a slow manifold.

Many important issues remain unclear. In particular, it is not clear why the time-
scale of transient evolution of the flow toward a regular vortex cluster in the numerical
simulations appears to be significantly longer than in the experiments. This is evident
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Figure 17. PDFs of the vertical vorticity components calculated for the time instant around
t = 100T0 at different values of the oscillation amplitude: (a) corresponds to the raw signal, and
(b) corresponds to the signal filtered via the low-pass filter. The PDF for the experimental data
obtained at a = 2.5 mm is shown in light blue. The PDFs for the numerical data obtained at
a = 2.5 mm (green) and a = 2.4 mm (purple) are fully consistent with the experimental result
(drawn in black).

from the comparison of figure 15, where we show the temporal evolution of the in-
stantaneous radial velocity as function of the azimuthal angle, with its experimental
counterpart, figure 5. The formation of the 7-vortex cluster in numerical calculations
takes about 100T0, roughly twice the time needed for formation of the experimental
8-vortex cluster. The 8-vortex cluster in simulations appears after roughly 300T0. This
also raises a question: do we observe a fully saturated regime in the physical experiment
and in the numerical simulations? Also note that the rate of slow cyclonic drift of the
vortex cluster around the inner cylinder in numerical calculations is roughly 6 to 3 times
higher than in experiment. Considering numerical calculations, we also notice that the
rate of cyclonic drift systematically decreases with time, and the precession rate of the 8-
vortex cluster is significantly lower (by roughly 20%) as compared to that of the 7-vortex
cluster. This decrease may be attributed to slow evolution of the mean radial position of
vortices sitting at the border between the prograde and retrograde currents as illustrated
in figure 16.

In the description of the numerical setup (see section 4.1) we have mentioned that
the boundary condition (imposing a prescribed vertical velocity component at the fixed
horizontal upper lid of the fluid domain) is not fully identical to the experimental situation
with the deformable upper lid. This issue requires further investigation.

5. Conclusions

The investigation of inertial wave attractors in rotating fluids offers a number of possi-
bilities concerning the geometric setup of the problem. A number of experimental studies
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(Maas 2001; Manders & Maas 2003, 2004; Brunet et al. 2019) consider a rectangular
box with one sloping wall placed at a rotating table which is similar to the geometry
used to reveal the linear (Maas et al. 1997) and non-linear (Scolan et al. 2013; Brouzet
et al. 2016a, 2017a; Davis et al. 2020) dynamics of internal wave attractors in stratified
fluids. It has been realized that the inherent three-dimensionality of inertial waves is
responsible for considerable secondary currents (Maas 2001; Manders & Maas 2004) and
for a number of notable changes in the scenario of Triadic Resonance Instability (Maurer
et al. 2016; Brunet et al. 2019). In contrast, there is a rich theoretical literature which
considers linear viscous regimes of inertial wave attractors in spherical liquid shells, where
the flow is studied in the meridional cross-section only while the structure of the flow
in the equatorial cross-section is supposed to be trivial (Rieutord & Valdettaro 1997;
Rieutord et al. 2001; Rieutord & Valdettaro 2010).

In the present paper, we consider numerically and experimentally the geometric setup
which builds a bridge between the two above statements: the experiments are carried out
in a (horizontal) annular and (vertical) trapezoidal domain which admits the existence of
inertial wave attractor structures in meridional planes while leaving the freedom for the
formation of a slow two-dimensional manifold which drains energy from the genuinely
three-dimensional inertial wave field as result of an energy transfer. The experimental
system is subject to axisymmetric forcing, and experiments are performed at low values
of the global Rossby (Ro is of order 10−3) and Ekman numbers (E is of order 10−5).
The main finding of the experimental part of the present study is the formation of a
slow two-dimensional manifold in the saturated regime in the equatorial plane, which
co-exists with an inertial wave attractor in the meridional plane. The two-dimensional
manifold is represented by an ensemble of eight cyclonic vortices in a regular polygonal
arrangement. The vortex cluster undergoes a slow cyclonic motion around the axis of
rotation of the experimental system.

In the numerical part of the paper we reproduce the experimental setup and perform
a series of simulations for a set of forcing amplitudes in order to obtain the experimental
reference result. We observe a sequence of regimes: [i] linear regime with axisymmetric
inertial wave attractor, [ii] onset of Triadic Resonance Instability, [iii] wave turbulence,
[iv] formation of the slow manifold in the form of a regular polygonal vortex clus-
ter, and [v] the slow cyclonic drift of the cluster. The Triadic Resonance Instability
is observed both in the vertical plane (where it appears to be compatible with the
exisiting knowledge) and in the horizontal plane where the secondary waves form the
patterns possessing discrete azimuthal symmetry, with the secondary waves propagating
cyclonically/anti-cyclonically. The concept of wave turbulence appears to provide a useful
general framework for interpretation of the observed phenomena. However, there is an
interesting specific feature: the motion observed in the meridional vertical planes seems
to correspond to classic wave turbulence, evolving from “discrete” to “continuous” form,
while the motion seen in the horizontal (equatorial) planes shows a strong trend toward
development of discrete clearly defined azimuthal modes. An important issue for further
investigation is the possible cross-interaction between prograde/retrograde azimuthal
modes and prograde/retrograde mean azimuthal currents in the case of strong forcing
when the currents are appreciable. It is noteworthy that the probability density functions
of vertical vorticity calculated for experimental and numerical data are fully consistent,
showing significant cyclonic/anti-cyclonic asymmetry.

Special attention has been paid to the development and long-term behaviour of the
vortex cluster, which was analysed with the help of low-pass and, where appropriate,
narrow-band filters. The results of the analysis support the idea that the vortex cluster
emerges as the result of summation and/or merging of wave-like vorticity components
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in the presence of a mean current. We can speculate that the observed phenomena may
be related to topographic Rossby waves. Indeed, the presence of propagating vortices
in a typical topographic β set-up warrants a discussion in terms of topographic Rossby
waves. The issue is a bit delicate for two reasons. On the one hand, for the conical
shape of the bottom that we used (decreasing in depth inwards), the topographic Rossby
waves are expected to propagate in retrograde direction (against the rotation sense of
the tank), counter to what was actually observed in the laboratory experiment as well as
in matching numerical experiments. As in the classical case studied originally by Rossby
in the Earth’s atmosphere, these waves may still propagate in prograde direction when
advected by a strong background flow (Rossby 1939). The numerical computations that
support the laboratory experiments indeed show that at the radius where the vortices
sit, a strong prograde mean flow has formed. On the other hand, the mean flow is not
necessarily formed by the mixing of angular momentum due to breaking of focused and
amplified inertial waves, but could also be generated by non-linear interactions of periodic
flows within a viscous boundary layer (see, e.g., the works of Busse (2010); Sauret et al.
(2012)). In our study, it is important to highlight that this mean flow itself has a complex
radial structure that contains strong retrograde as well as eventually strong prograde
parts. We believe this aspect, the precise generation and evolution of the radial mean
flow structure by focused inertial waves, to be sufficiently complex to require further
investigation. In numerical simulations (not reported in this paper) we have also made a
limited preliminary study on robustness of the observed effects by considering a conical
bottom with a smaller slope (30◦ instead of 45◦). The calculations have demonstrated
that a Polygonal Vortex Cluster also arises at comparable input forcing. Additionally,
the form of forcing has been changed from the cubic profile shown in figure 2 to a linear
profile (under the condition that the forcing should be volume-conserving). Again, the
computations have demonstrated the emergence of a vortex cluster, and we can therefore
conclude that the observed phenomenon is indeed robust.

Although the experimental reference regime is numerically reproduced, and the role of
the forcing amplitude is clarified, the present study raises a number of interesting general
issues, in particular, [i] how the vortex cluster regime evolves when the key parameters
of the problem (Rossby and Ekman numbers, geometric aspect ratio and the particular
type of forcing) are varied in a broad range, and [ii] whether or not the observed regime
might be relevant to realistic geo- and astrophysical systems.

Cyclonic clusters arranged in the form of regular polygons have been reported for the
polar regions of large planets, e.g. Jupiter (Adriani et al. 2018), demonstrating remarkably
persistent long-term behavior (Adriani et al. 2020). This phenomenon has a different
physical origin as compared to our experiments. It has been argued that the pattern is
captured by shallow-water models, e.g. Cho & Polvani (1996); Scott & Polvani (2007).
However, the key puzzle of vortex clusters remains (Adriani et al. 2018): “The manner in
which the cyclones persist without merging and the process by which they evolve to their
current configuration are unknown”. Recently, Reinaud (2019) has shown numerically
that a system of m quasi-geostrophic vortices equally distributed over a ring whose center
is already occupied by a vortex can be stable under certain conditions. In our experiment,
the inner cylinder may play a similar role to this central vortex. Hence, the “toy system”
proposed here may help to shed light on the stability of polygonal vortex clusters and
their possible existence not only in a shallow “atmosphere”, but also in liquid interiors
of rotating natural systems geometrically compatible with the existence of inertial wave
attractors.
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