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Abstract—The widespread decentralized applications and
Blockchain components significantly boost the security
frameworks in many vertical applications and use-cases
including different secured payment methods and smart
contracts. The integral part of any smart contract is the
validation of the stake-holder identity, in general, while
ideally being achieved without the third-party involvement.
Recent industrial research works introduce the sovereign-identity
system, where Blockchain becomes a decentralized component to
establish a self-certified identity and to avoid a centralized trust
third party. Hence, the classification of distributed transactions
with respect to identity validation across several users becomes
more challenging, especially because of the massive and sensitive
identities that are issued through many users and IoT devices
and that are used to validate transactions. In this context,
it is important to identify and classify the malicious and
non-malicious types of transactions. Our proposed method
achieves the target of identity classifications from variety of
transaction data. Since different users may have different device
usage patterns, the data samples and labels located on any
individual device may follow a different distribution, which
cannot represent the global data distribution. Therefore, the
solution could be bi-focal to compensate the gap. This paper
coins the approach of hybridizing the consensus where as to
initiate a machine learning mechanism to collect the local data
globally through a permission driven and a federated approach.
We introduce here a Federated Reinforcement learning to be
improvised for distributed independent data as a policy of
consortium while binding the proof of consensus more centrally
authenticated.

I. INTRODUCTION

The deployment of Blockchain technology and the
subsequent influence of various machine learning components
allowed the enhancement of the security with a comprehensive
level. The essence of Blockchain in the foundation of network
security is the creation of blocks while bitcoin is one of
the prime artifacts of this ecosystem. In fact, the Blockchain
paradigm involves several key technical components, including
a chained data structure, a peer-to-peer network protocol, and
a distributed consensus algorithm [3]–[5]. The Blockchain
concept has become a prime-technical brick in FinTech [6],

Internet of Things (IoT) [7] [8] and supply chains [9]. The
key feature of Blockchain is that no central authority is
required to certify the authenticity of the transactions since
that they are assembled by peers in the network independently
and in a distributed manner. In order to guarantee the
consistency of the block chains that are maintained by
different peers, the peers must agree on a single universal
trust about the transactions through a consensus/approval
building process. However, in this context, it is worthy
to mention that any security application, across network
models, starts from identity verification process as a standalone
component. Without verifying the credentials and the identity,
no system can proceed for real-time operations. The existing
standard identification systems and the credential verification
mechanisms are dependent on the third party verification when
transactions are done remotely through the Internet. Therefore,
in many practical use-cases of Blockchain, the identity
verification needs trust and authentication that are preferably
free from bias through the third parties. Since it is difficult to
maintain trust on the third party that is generally called Identity
Provider in traditional identity management systems, the
decentralization of the trust based on Blockchain technology
has been investigated by introducing the self-sovereign identity
concept that establishes self-certified identities where each
user identity is the union of her different partial identities in
each of different decentralized domains.

In the backdrop, it is realized that, in many smart
applications and platforms, multiple sensor networks or IoT
driven cyber-physical systems (CPS) could experience the
presence of multiple types of devices for which we need
to verify the identity and the trustworthiness. These devices
could be part of data acquisition or data modeling process,
subsequently participating in network processes. Definitely,
there must be a certain hybrid mechanism to establish such
automated identity and trust identification by relying on
the establishment of a consortium that favors Blockchain
decentralized theme so that to avoid any specific bias and
influence.

One such branch that is originated from blockchain978-1-6654-4005-9/21/$31.00 ©2021 IEEE



research is the consortium-based DLT [4]. Compared to public
blockchains, the most distinctive characteristic of consortium-
based DLT is that only authorized nodes participate in
the network [5]. This restriction enables the network to
utilize selection or polling based consensus protocols such
as Practical Byzantine Fault Tolerance (PBFT) increasing
then the scalability of the network. As a result, consortium
blockchains achieve faster transaction finality and low-delay
verification times of transactions. The IoT ecosystem such as
Internet of Vehicle (IoV) that has benefited of DLT [6], is
distributed by nature and issues a great number of identities
that are generated either by users or devices. To have a full
control over the identity data, the concept of self-sovereign
identity has emerged to self-certify different identities within
different decentralized domains while the decentralized trust
authority is built on a blockchain. Hence, the classification of
transactions across user/device identities in distributed systems
such as in cyber-physical systems becomes more challenging.
In fact, the decentralized mechanism through Blockchain
solicits more adaptive and intelligent algorithm to classify
malicious and non-malicious types of transactions.

This paper has put a bi-focal approach: firstly, to develop
a model where Blockchain theme must sustain the concept of
decentralization, and secondly a federated machine learning
to train the decision engine with all the pieces of device
identities. The algorithm will help to approve the most sorted
device to participate in Blockchain network so that the
decentralized theme will be maintained and the trust of the
devices across CPS will be established. Choosing the class of
Inverse Reinforcement Learning allows smooth management
and initial data acquisition from different devices.

The remaining part of the paper will be organized as
follows: Section 2 summarizes the relevant similar works
principally by describing the scope of Blockchain in identity
management scenarios and their corresponding highlights.
Section 3 has ideally two parts: Section 3.1 will present
the background of Blockchain initiated with Reinforcement
Learning including related mathematical parameters and it is
followed by the proposed federated Inverse Reinforcement
Learning (f-IRL) in tune of consensus to provide the theme
of decentralized control. Section 4 briefly describes the
results and discussion for the proposed model with certain
public data set behavior. Finally, section 5 concludes the
contributed model while mentioning the immediate future
scope of research in this direction.

II. RELATED WORK

Conventionally, federated learning relies on a single server
which is prone to be attacked. Therefore, it is focused on
relinquishing single-point failure in federated learning using
blockchain [13]. Zhao et al. [14] designed a system based
on federated learning and blockchain to let clients empower
full nodes and compete to serve as a central server by turns
for aggregation. Kim et al. [13] proposed a block chained-
federated learning architecture in which participant clients are
able to store local model updates on blocks and all clients as

miners can access and aggregate the updates through smart
contracts, without a single central server.

Existing research works expose blockchain in federated
learning for auditability and data privacy [15]. Lu et al.
[17] incorporated federated learning and blockchain into
a data sharing scheme to preserve privacy. Majeed et al.
[7] validated local model parameters in each iteration into
blocks. The incentive mechanism is another niche research
direction, which is combined to federated learning to motivate
participants and standardize the behavior of participants [16],
[18]. Weng et al. [16] deployed the incentive mechanism
and blockchain transactions to protect the privacy of local
gradients and enable auditability of the training process.
Kang et al. [18] proposed an incentive mechanism based
on blockchain combing the reputation. This is introduced to
measure the trustworthiness and the reliability of clients, to
stimulate honest clients with high-quality data to participate in
federated learning. Moreover, there are some recently proposed
platforms to increase more unique participant roles, such as
buyers, who can represent the clients in order to complete their
training and modeling tasks [19].

Bao et al. [19] provided a platform for buying federated
learning models and designed an architecture to reduce
the time cost of buyers querying and verifying models on
a blockchain. However, the above studies do not present
the architecture design details of blockchain-based federated
learning systems with consideration of the data heterogeneity
issue in Industrial IoT failure detection. Additionally, the
assurance of the integrity towards the client data is not
discussed.

In this paper, we propose an innovative hybrid model of
federated and reinforcement learning for multiple IoT device
systems using blockchain so that to classify malicious and non-
malicious types of transactions provided that sufficient data
and computing resources are available for model training.

III. PROPOSED MODEL AT PRIMARY LEVEL

The identity management system relies on the identity
provider to store and control the claims and identities of users.
It follows three key points:

• How claims are created (Generate algorithm)?
• How claims are stored (Transform algorithm)?
• How verification is done (Verify algorithm)?
Thanks to the configuration of the identity management

system algorithms (G, T, and V), we provide the following
table that correlates the choices of the configurations with the
type of identity management system (See Table 1).

An identity management system at the core consists of a
triplet (3) of efficient randomized polynomial time algorithms
: G (Generate), T (Transform) and V (Verify) such that: G
: (m, 1n) → (c[ ], x) is the claim generation algorithm that
generates an array c[ ] ∈ C consisting of an arbitrary (m)
number of claims, where c [ ] = {c1, c2, c3, ..., cm}, and x ∈
{0, 1}n is some secret information known only to the subject
and is used to prove that the subject owns the claim. This
could be a password used to protect claims like email, date of



Generate Transform Verify
Centralized Claims are

generated by
Identity Provider

Claims are stored
by Identity
Provider

No transparency:
claims are
controlled by
Identity Provider

Federated Claims are
generated by
multiple Identity
Providers

Claims are stored
by the respective
Identity Provider

No transparency:
claims are
controlled
by multiple
centralized
authorities

User-
Centric

Claims may
be generated
by the user
but practically
easier to let
identity providers
generate them

Claims are stored
by the Identity
Provider

verification
results in full
disclosure
of claims to
service providers
(Authorization
agents)

Decentralized Claims may be
generated by the
user on Identity
Providers

Claims are
usually stored by
subjects (users)

Verification may
leak information
about subject,
thus, full
disclosure
or weakly
anonymized
disclosure

Self-
Sovereign

Claims may be
generated by the
user on Identity
Providers

Claims
are strictly
stored/controlled
by the user

Verification is
strictly either
Zero Knowledge
Disclosure or
very strongly
anonymized
disclosure.

TABLE I
IDENTITY MANAGEMENT WITH KEY AS SELF-SOVEREIGN AND

DECENTRALIZED

birth, insurance number, etc., when registering on a website.
T : T(c[ ],y) =⇒ (c´[ ], k).

The Transform algorithm performs a cryptographic
transformation on a generated set of claims c[ ] using y ∈
{0, 1}n, where y is some secret information known only to
the identity provider. c’[] is the transformed output and k ∈
{0, 1}n is the necessary information for verifying claims.
For example, in the case of a website like Facebook, the
Transform algorithm takes all personal data (claims) belonging
to a person, c [ ], and securely stores these claims in their
database. For secure storage, the Transform algorithm uses an
encryption transformation with a secret key y. The result is
c’[] securely stored and unintelligible to all external parties
apart from the Identity Provider (Facebook) and the Subject
(Facebook user). The subject may then use k, which is say the
Facebook username, and the Verify function to access his/her
claims.
V : V (c[], x, k) →{0,1}. The Verify algorithm allows

external parties (other than the Identity Provider) to verify
the claims. With the exception of a mandatory field k, c’[ ]
and x are optional inputs to the Verify algorithm. The output 1
corresponds to a successful verification while 0 corresponds to
an unsuccessful verification. In the same Facebook scenario,
the Verify algorithm is invoked with k = username, and x =
password. If, and only if, the Verify algorithm returns 1, the
user is granted access to their account (verified claims).

In the Proof of Work (PoW) algorithm, the greater is the
number of nodes participating in the consensus, the higher is
the chance of honest nodes mining the block earlier. So the
system gets safer but the delay as well as the computational
energy consumption get longer and highly increased.

The PoW algorithm depicts the operation confirmation that
relies on the confirmation of subsequent nodes while there
exists a risk of rollback. Therefore, the PoW algorithm can
be improved by integrating advantages of the PBFT (Proof of
Byzantine Fault Tolerance) algorithm. Specifically, the nodes
directly participating in the Byzantine agreement (consensus)
are controlled in a small fixed range.

So we can choose an optimal set of nodes (which are
probably more honest) for participation in consensus per block
addition. The objective is to achieve the reduced forking ability
of transaction log. It can only be possible if and only if the
consensus of the algorithm can follow a minimum divergence
of the transaction class after dividing the log into an equivalent
class. Moreover, we cannot also ignore the power consumption
and latency for each transaction nodes. Therefore, finally we
need a majority minimization consensus algorithm to set this
objective w.r.t all the constraints.

The background and preliminaries of introducing the model
of Inverse Reinforcement Learning (RL) is required. However,
the relevant concept of Federated Learning (FL) is also
appreciated. FL trains a shared global model by iteratively
aggregating model updates from multiple client devices, which
may have slow and unstable network connections. Initially,
eligible client devices first check-in with a remote server. The
remote server then proceeds federated learning synchronously
in rounds. In each round, the server randomly selects a subset
of available client devices to participate in the training. The
selected devices first download the latest global model from
the server, train the model on their local datasets, and report
their respective model updates to the server for aggregation.

In this paper, we consider the following scenario: each
device (including the IoT and edge device) periodically creates
a Merkle tree in which each leaf node represents a data record
collected by sensors. The information of a client in each
selection round (including the Merkle tree root, the status
of training, the size and the centroid distance of client data
for model training) are all stored in the pre-deployed smart
contracts on the blockchain through client data anchor. This
smart contract is hybrid consensus in nature. If a dispute
(e.g. about failure cause) occurs, the operators of both the
Master device and its client associated devices can use dispute
resolver to verify the integrity of client historical data in a
certain "stewardship" period, by comparing the data with the
respective Merkle tree root stored on-chain. To reward the
client organizations for their contribution to model training,
the RL algorithm yields the distance of classes for policy data.

The consensus optimization impact for such algorithm and
under Blockchain networks is described in the next sub-
section.



A. Approach Towards Improving PoW Consensus Algorithm:
Hybrid approach

Primarily, we include the notion behind PBFT consensus
algorithm into PoW consensus algorithm. In turn, the
objective is to combine PoW with the selection or polling
based consensus protocols such as Practical Byzantine Fault
Tolerance (PBFT). This combination will help to configure the
consortium or approval driven platforms.

We then implement Reinforcement Learning along with an
iterative policy based optimization.

1) Step by Step Approach:

• After the hash is generated for a particular Merkle tree
constituting a particular block, it gets reflected on every
node gradually. The miners start mining on the block to
find the sequence of block for attaching the block on
chain.

• Every participating miner solves the hash and produces a
set of transaction logs in sequence. As every miner works
individually, multiple valid log sets can be constructed
based on the received transaction log set, but gradually it
gets converged to a similar sequence.

• As the logs produced by different miners are different
and unique, so we can transform them to the same sized
abstract vector representation using LSTM module.

• The same sized vector produced by the LSTM module,
for corresponding miners is used in optimization
algorithm, whose objective is to select a subset of vectors,
for which the probability of forking is the least.

• We choose then the miners, whose corresponding log
vectors were selected by the optimizer. A state vector for
our reinforcement learning algorithm (S), is introduced,
which is basically a binary representation of the nodes
selected and not selected, for example: [0, 1, 1, ...0, 1]
for N nodes (participating miners).

• Transition function/action of RL can be defined as the
modification of selected nodes/miners by updating the
optimizer parameter, which in turn selects some different
sets of abstract log vector, so that a different set of miners
gets selected.

• Thus, a modified reward function under PoW and PBFT
modification for RL can be defined as:

hash(T )=hashvalue, verify(hashvalue ≥ targetvalue).
(1)

A brief explanation about the function is given here: when
the chosen set of miners is found mostly malicious, i.e. our
optimizer is working inappropriately, in that case the incentive
is mainly received by malicious nodes. So the reward function
becomes −ve. The RL model gets penalized for such wrong
miner subset selection. Consequently, the RL takes an action
and updates the optimizer parameter accordingly.

The goal of the RL model is to select the optimal/honest set
of miners for mining a particular block. We can also define it
as Pf ← Pmin, i.e., the probability of forking is less than
a certain probability under which the final decision/consensus

Algorithm 1 f-IRL Primary parameters version 1
f-IRL Decision Process (S,A,T,β , D,R)
S : Finite set of states
A : Set of actions
T = {Psa} : state transition probabilities є [0,1) :
β ∈ [0.1] discount factor
D : initial state distribution
R(s)=σTφ(s) : reward function :
S [0,1]k : k-dimensional feature vector
Policy π : S ⇒A
2nd level :
Assume the feature distribution of the master CPS as value V
is given.
If we can find a policy πsuch that || µ(π) - V µ ||2 then
we have for any underlying reward R*(s) =σ*T(s) (||w||1 ≤1)
here µ(π) feature distribution of the given policy and v is the
importance or value of the policy.

doesn’t get affected, OR the probability of forking up to which
the blockchain is robust/tolerant.

A global parametric view of the primary model is shown in
Algorithm 1.

The significant point of the context of distributed and
federated system is also worthy to mention under Blockchain
network. In a Blockchain network, a full node maintains a
complete list of every single transaction that had occurred
on the Blockchain. In the proposed architecture, each
participating organization client, including master organization
and client organization, hosts one Blockchain full node. Hence,
each organization has a full replica of the data stored on the
Blockchain which can be used for auditing and ensuring the
availability of the whole system. The conventional federated
learning proposed by Google may not be effective due to the
data diversity in different CPS as well as with Blockchain
networks.

Therefore, a grade or weighted class is introduced, which
works as the distance between the positive class and the
negative class of each client dataset.

The Blockchain-consensus update mechanism is achieved
by Algorithm 2.

All PBFT and PoW require a complex crypto puzzle to
resolve. In practical scenarios, PBFT possesses the fault
tolerance with at least the participation of 3f + 1 nodes [20].
Therefore the Merle root and the data structure allow towards
a random verification of hash values where this participation
frequency reduces in case of malicious nodes.

IV. DEPLOYED DATA, TARGET SIMULATIONS & ANALYSIS

We modeled a real distributed cyber physical system on
the basis of edges and nodes with their licit and illicit
transactions. It should be noted that the proposed approach
has not been simulated with real-time data. Only the primary
efficacy is verified on the collected transactions under similar
environment where plenty of IoT and edge devices are



Algorithm 2 Updating and Policy selection under
Blockchain
/*Root Blockchain network of Devices*/
Initialize σ /* grade or weighted class*/

for each round t = 1, 2, ...do
for each finite set of states S = 1, 2... do
Select K clients for each client k ∈ K clients do

Randomly pick a policy 0, set i=1
Compute ti= maxt,w t
σk
t ←UpdateDevicePolicey( )

dk−t ← the distance between two classes in training
dataset

end for
(dk

t )→ 1 1
dk
t

$σt ⇒ ΣK
k=1=1nk×f(dk

t )×wt−1

ΣK
k =1nk×(dk

t )
)

end for
/*Client update*/
UpdateClientDevicePolicey( )
{

Initialize local minibatch size B, local epochs E,
learning rate η

for each epoch i ∈ E do
Randomly sample State Si based on size B

Randomly pick a policy 0, set i = 1; Compute ti = max(t,σt)
wi→ wi−1 - η∇g(wi−1 ; Si)

end for
return σt

}

interacting and performing transactions with respect to identity
validation.

Indeed, we have experimented on an available dataset1 from
kaggle. The dataset contains a large set of transactions, each of
which is either labelled as licit (exchanges, wallet providers,
miners, licit services, etc.), illicit (scams, malware, terrorist
organizations, ransomware, Ponzi schemes, etc.) or unknown
data instances.

A. Description of Nodes and Edges

In Figure 2, the accuracy of the conventional and ideal
model of IRL is addressed. The plot in ideal condition and
hypothesis (without being federated) considers the number
of sample data flow paths (shown as trajectory) versus
the performance of the expert policy to be fed into the
learning model. If we follow the color dots, green navigates
only the value of IRL as output including non-zero data
features. However, this condition in distributed systems is rare.
Therefore, we consider a more realistic scenario of ideal IRL
where it includes both zero and non-zero data features (shown
in red color).

Here, few interesting analytical points need to be mentioned.
Firstly, we have to use sampling estimates for the feature
distribution of the expert. It means that the master models

1"https://www.kaggle.com/ellipticco/elliptic-data-set"

of machine learning need appropriate feature distribution with
sampling estimates. Subsequently, if the data is organized as
a grid of m×n, assuming 4 even actions on IRL output, 70%
success (otherwise random among other neighboring squares).
Also, non-overlapping regions can demonstrate their features.
A small number has non-zero (positive) rewards. This IRL will
be more feasible when we have a network of connected cars
and we illustrate how different driving styles can be learned
(if it is the form of videos or in the form of image-frames and
more over they are not distributed in nature).

In this case, we consider a public available data set (as
mentioned). The description is follows:

• Number of nodes : 203,769
• Number of edges : 234,355
• Number of illicit nodes : 4,545
• Number of licit nodes : 42,019

The paper considers these features:
• Total number of features : 166
• Transaction Features (local features) : 94 (first)
• Nodes Features (Aggregated features) : 72 (remaining).

We have created virtual workers for each of the nodes present
in the dataset. These virtual workers act as sub nodes in
the federated model. In the setting, we have implemented
Inverse Reinforcement Learning using different supervised
classification algorithms, to help the IRL model learn an
appropriate policy, which can accurately prevent occurrence of
malicious/invalid transactions. We have trained the IRL model
in 49 episodes.

We assume here that the given dataset can be well-described
by a Gaussian (normal) distribution. Such a distribution
is defined by its mean vector and its covariance matrix.
Therefore, if we are able to estimate these two parameters from
the training set and the data following the Gaussian assumption
(or without following a probability density function that is
massively different from absolute normal), then we can easily
classify the transactions based on their node and transaction
features. In this context, the simulation is presented in Figure
2. As depicted in this figure, it is quite evident that the IRL
master model of normal maximum likelihood outperforms,
while selecting precisely the level of trust and honesty of
devices as opposed to the IRL with SVM as a master model.
It should be noted that both the simulations have been done
with the same specification and parameters of data features.

V. CONCLUSION

The paper proposes a unique model to support either
IoT multiple-device oriented networks or the associated
trust worthiness of data through federated machine learning
and Blockchain-based approaches. In order to reduce
the heterogeneous property of the distributed data, we
implemented a Federated inverse Reinforcement Learning on
the basis of distance and weights. We also combined the
concepts of Proof of Work (PoW) and Practical Byzantine
Fault Tolerance (PBFT) to mitigate the contradictory
decentralized concept of Blockchain. However, the work



Fig. 1. Ideal IRL Experiments using Frame/Grid Like data instances

Fig. 2. Multi-Class Simulations using f-IRL

expects more challenges of real-time use cases of CPS
to analyze the complexity of such high degree of hybrid
algorithms. Moreover, the proofs of hybrid Blockchain cannot
be presented here, which will require more real-identity and
sovereign concepts towards further implementation.

REFERENCES

[1] F. Tschorsch and B. Scheuermann, Bitcoin and beyond: A technical
survey on decentralized digital currencies, IEEE Communications
Surveys & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[2] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, A survey on consensus mechanisms and mining strategy
management in blockchain networks, IEEE Access, vol. 7, pp. 22 328
– 22 370, 2019.

[3] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das,
Everything you wanted to know about the blockchain: Its promise,
components, processes, and problems, IEEE Consumer Electronics
Magazine, vol. 7, no. 4, pp. 6–14, 2018.

[4] K. Fanning and D. P. Centers, Blockchain and its coming impact on
financial services, Journal of Corporate Accounting & Finance, vol. 27,
no. 5, pp. 53–57, 2016.

[5] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and
H. Janicke, Blockchain technologies for the internet of things: Research

issues and challenges,IEEE Internet of Things Journal, vol. 6, no. 2, pp.
2188–2204, 2018.

[6] H.-N.Dai, Z.Zheng,andY.Zhang, Blockchain forinternet of things:A
survey, IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–8094,
2019.

[7] S. A. Abeyratne and R. P. Monfared, Blockchain ready manufacturing
supply chain using distributed ledger, 2016.

[8] K. Qi and C. Yang, Popularity prediction with federated learning for
proactive caching at wireless edge, in IEEE Wireless Communications
and Networking Conference, May 2020, pp. 1–6.

[9] Robert E. Hiromoto, Michael Haney, Aleksandar Vakanski, A Secure
Architecture for IoT with Supply Chain Risk Management, The 9th
IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications 21-23
September, 2017, Bucharest, Romania.

[10] F. Masood and A. R. Faridi, Distributed ledger technology for closed
environment, in 2019 6th International Conference on Computing for
Sustainable Global Development (INDIACom). IEEE, 2019, pp. 1151–
1156.

[11] K. Li, H. Li, H. Hou, K. Li, and Y. Chen, Proof of vote: A high-
performance consensus protocol based on vote mechanism & consortium
blockchain, in 2017 IEEE 19th International Conference on High
Performance Computing and Communications; IEEE, 2017, pp. 466–
473.

[12] S. Y. Lim, P. T. Fotsing, A. Almasri, O. Musa, M. L. M. Kiah, T.
F. Ang, and R. Ismail,Blockchain technology the identity management
and authentication service disruptor: a survey, International Journal on
Advanced Science, Engineering and Information Technology, vol. 8, no.
4-2, p. 1735, 2018.

[13] H. Kim, J. Park, M. Bennis, and S. Kim, Blockchained on-device
federated learning, IEEE Communications Letters, pp. 1–1, 2019.

[14] Y. Zhao, J. Zhao, L. Jiang, R. Tan, and D. Niyato, Mobile edge
computing, blockchain and reputation-based crowdsourcing iot federated
learning: A secure, decentralized and privacy-preserving system,” 2019.

[15] U.Majeed and C.S.Hong, Fl-chain, Federated learning via ecnabled
blockchain network, in 2019 20th Asia-Pacific Network Operations and
Management Symposium (APNOMS), Sep. 2019, pp. 1–4.

[16] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, Deepchain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive, IEEE Transactions on Dependable and Secure Computing, pp.
1–1, 2019.

[17] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, Blockchain and
federated learning for privacy-preserved data sharing in industrial iot,
IEEE Transactions on Industrial Informatics, pp. 1–1, 2019.

[18] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, Incentive mech-
anise for reliable federated learning: A joint optimization approach
to combining reputation and contract theory, IEEE Internet of Things
Journal, vol. 6, no. 6, pp. 10 700–10 714, 2019.

[19] X. Bao, C. Su, Y. Xiong, W. Huang, and Y. Hu, Flchain: A blockchain
for auditable federated learning with trust and incentive, in 2019 5th
International Conference on Big Data Computing and Communications
(BIGCOM), Aug 2019, pp. 151–159

[20] Yaqin Wu, Pengxin Song, Fuxin Wang, "Hybrid Consensus Algorithm
Optimization: A Mathematical Method Based on POS and PBFT and
Its Application in Blockchain", Mathematical Problems in Engineering,
vol. 2020, Article ID 7270624, 13 pages, 2020.


