
HAL Id: hal-03381639
https://hal.science/hal-03381639

Submitted on 17 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The ACTIONFINDER: An Unsupervised Deep Learning
Algorithm for Calculating Actions and the Acceleration

Field from a Set of Orbit Segments
Rodrigo Ibata, Foivos Diakogiannis, Benoit Famaey, Giacomo Monari

To cite this version:
Rodrigo Ibata, Foivos Diakogiannis, Benoit Famaey, Giacomo Monari. The ACTIONFINDER: An
Unsupervised Deep Learning Algorithm for Calculating Actions and the Acceleration Field from a
Set of Orbit Segments. The Astrophysical Journal, 2021, 915 (1), pp.5. �10.3847/1538-4357/abfda9�.
�hal-03381639�

https://hal.science/hal-03381639
https://hal.archives-ouvertes.fr


Draft version May 6, 2021
Typeset using LATEX twocolumn style in AASTeX63

The ACTIONFINDER:

An unsupervised deep learning algorithm for calculating

actions and the acceleration field from a set of orbit segments

Rodrigo Ibata 1

—

Foivos I. Diakogiannis 2, 3

—

Benoit Famaey 1

—

Giacomo Monari 1

—
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ABSTRACT

We introduce the ACTIONFINDER, a deep learning algorithm designed to transform a sample of phase-

space measurements along orbits in a static potential into action and angle coordinates. The algorithm

finds the mapping from positions and velocities to actions and angles in an unsupervised way, by using

the fact that points along the same orbit have identical actions. Here we present the workings of the

method, and test it on simple axisymmetric models, comparing the derived actions to those generated

with the Torus Mapping technique. We show that it recovers the Torus actions for halo-type orbits

in a realistic model of the Milky Way to ∼ 0.6% accuracy with as few as 1024 input phase-space

measurements. These actions are much better conserved along orbits than those estimated with the

Stäckel fudge. In our case, the reciprocal mapping from actions and angles to positions and velocities

can also be learned. One of the advantages of the ACTIONFINDER is that it does not require the

underlying potential to be known in advance, indeed it is designed to return the acceleration field.

We expect the algorithm to be useful for analysing the properties of dynamical systems in numerical

simulations. However, our ultimate goal with this effort will be to apply it to real stellar streams to

recover the Galactic acceleration field in a way that is relatively agnostic about the underlying dark

matter properties or the behavior of gravity.

Keywords: Galaxy: halo — Galaxy: stellar content — surveys — galaxies: formation — Galaxy:

structure

1. INTRODUCTION

Corresponding author: Rodrigo Ibata

rodrigo.ibata@astro.unistra.fr

Actions and angles are the natural phase-space co-

ordinates to represent the state of the constituents of

an integrable, or close to integrable dynamical system,

such as typical Galactic potentials (Binney & Tremaine

2008). In these coordinates, motion along an orbit is

very simple, as the actions JJJ are preserved, while their
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canonically conjugate angles θθθ advance through a cycle

at a uniform rate in time (with corresponding fixed fre-

quencies ΩΩΩ). These are also the natural coordinates for

perturbation theory (e.g., Kalnajs 1977). Furthermore,

the actions are adiabatic invariants, so slow changes in

the evolution of the parent system will preserve these

quantities.

With the superb astrometry being gathered by the

Gaia mission (Gaia Collaboration et al. 2018), it has now

become possible to study the real six-dimensional phase

space structure of our Galaxy in unprecedented detail.

Action-angle variables are being used extensively in this

exploration, notably (i) because actions can be used

to construct equilibrium distribution functions from the

Jeans theorem for stars and dark matter (e.g. Binney &

Piffl 2015; Cole & Binney 2017) or for dynamical tracers

such as globular clusters (Binney & Wong 2017; Posti &

Helmi 2019; Vasiliev 2019a), (ii) because they provide

(in principle) the best “archaeological” information on

the dynamics of the Galaxy (e.g., Coronado et al. 2020;

Reino et al. 2021), and (iii) because they are convenient

for perturbation theory. Indeed, after the seminal pa-

pers of, e.g., Dehnen (1999, 2000a) – and more recently

Wegg et al. (2015); Portail et al. (2017) – on the struc-

ture and pattern speed of the Galactic bar, numerous

studies have used the action-angle variables to analyze

both its linear perturbations and its resonant structure

in the Solar neighbourhood (e.g., Monari et al. 2017;

Binney 2018, 2020a,b; Monari et al. 2019a,b; Laporte

et al. 2020; Trick et al. 2019; Trick 2020).

The present paper represents the first step of a re-

search program aimed at using deep neural networks to

perform the canonical transformation to (and from) ac-

tions and angles variables. The ultimate goal of our re-

search program will be to apply such methods to galaxy

simulations (when close to equilibrium) in a cosmologi-

cal context as well as to real (Gaia) data. The present

paper, while still limited in scope, is aimed at setting the

stage for these future endeavors. Indeed, actions and an-

gles, while undoubtedly useful, are not always easy to

calculate. The only potentials in which the actions are

expressed analytically are those of from the family of

isochrone models of which the Kepler and spherical har-

monic potentials are special cases. Although this model

is very useful, it does not provide a good approximation

to interesting stellar systems (other than those domi-

nated by a central object). Substantial theoretical ef-

forts were therefore undertaken over the past decades

to calculate approximations for the transformation from

position xxx and velocity vvv to JJJ and θθθ, and conversely, for

more general and realistic galactic potentials. McGill &

Binney (1990) developed a method known as the Torus

Mapping (see Binney & McMillan 2016, for a modern

version), starting from action-angle coordinates in an

isochrone potential, close enough but different from the

true potential. Their insight was to search for a generat-

ing function in order to transform from the true actions

and angles to those of the isochrone. This generating

function is expressed as a Fourier series expansion on

the isochrone angles, the fitted Fourier coefficients be-

ing such that the true Hamiltonian remains, after the

associated canonical transformation, constant for a set

of true actions. Once this generating function is found,

the transformation from actions and angles to positions

and velocities is known. For the reciprocal transfor-

mation, one usually relies on separable potentials, de-

noted Stäckel potentials (e.g. de Zeeuw 1985; Famaey

& Dejonghe 2003), for which three exact integrals of

the motion exist. These potentials are best expressed

in spheroidal coordinates, associated to a focal distance

directly related to the first and second derivatives of the

Stäckel potential. This focal distance can be computed

for the true potential at any configuration space point

as if the potential was a Stäckel one, and the corre-

sponding integrals of the motion and respective actions

can be evaluated. This method introduced by Binney

(2012) is known as the “Stäckel fudge”. Unfortunately,

this transformation is not the exact inverse of the one

going from actions and angles to positions and velocities

as obtained from the Torus Mapping. All these meth-

ods are reviewed in Sanders & Binney (2016), and have

all been implemented in the AGAMA dynamics package

(Vasiliev 2018, 2019b).

Our aim in the present work is to provide an inno-

vative way of calculating action-angle coordinates, a

method which would be able to jointly determine, from

a sample of segments of orbits in positions and veloc-

ities, (i) the corresponding actions and angles, as well

as (ii) the true acceleration field in which these orbits

reside. Moreover, (iii) the inverse transformation from

actions and angles to positions and velocities should be

determined easily. To this end we will build a deep neu-

ral network that will try to learn on its own, and in an

unsupervised way, the coordinate transformation from

observables into JJJ and θθθ for the particular dataset un-

der study.

Having access to action-angle coordinates can be use-

ful for many types of problems in dynamics: one may

wish to study the properties of orbits in exact model

potentials, one may wish to track orbits of particles in

a frozen or in an evolving N-body simulation, or one

may hope to model a real system in nature. Previous

approaches to calculating the canonical transformation

(reviewed in Sanders & Binney 2016) have all started by
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assuming a model potential for the system under study.

Thus if the aim of the investigation is to study orbital

behaviour in a spherical or axisymmetric (or even some-

times triaxial) potential model, those previous methods

are clearly very well suited to the task, as they directly

impose the desired potential on the solutions. In con-

trast, our method aims at deriving the transformation

from xxx and vvv to JJJ and θθθ in a highly flexible way thanks

to a neural network architecture, which should render

it useful for the study of systems that do not necessar-

ily obey an analytic density profile or potential imposed

upon the system in advance. Our aim with the method

was to enable it to find by itself the potential in which

the orbits reside (although the solutions can optionally

also be forced to be consistent with a pre-selected po-

tential model). We thus expect our algorithm to be

applicable to N-body simulations that are either frozen

or slowly evolving in time, or for real galaxies or stel-

lar systems in (or close to) dynamical equilibrium. For

triaxial systems, especially with strong figure rotation,

it is well known that there are many non-regular orbits

for which JJJ and θθθ are not defined, meaning that our

method should be adapted to discard those. Further

work will be needed to see if the potential of the system

could still be recovered by our method in such cases.

We note that, although the method was originally con-

ceived for structures on typical Milky Way halo orbits,

the accuracy we obtain for particles on disk-like orbits

in a realistic Galactic potential model exceeds the best

accuracy expected from the Third Data Release (DR3)

of the Gaia mission, a future state-of-the-art dataset.

This contribution is intended as a proof of concept of

the method, and to present a novel unsupervised ma-

chine learning approach that we expect may be useful

to colleagues tackling very different problems in physics.

2. THE ALGORITHM

We designed the algorithm around the fact that dif-

ferent phase space points along an orbit have identical

JJJ (and frequencies ΩΩΩ). For this to be useful, we imag-

ine having access to groups of such phase space points

along the same orbit. This could be the case if we had

the output of a numerical N-body simulation at a se-

ries of different time steps, or alternatively we might

have such information from observations of a real dy-

namical system. In the code we refer to a group of such

phase space points along the same orbit as a “stream”,

while each individual phase space point is referred to as

a “star”. Our use of the terms “streams” and “stars”

in the software obviously betrays our ultimate motive

for building it1, but we note here that star streams do

not precisely follow orbits (Eyre & Binney 2011; for the

dangers of orbit-fitting, see especially Sanders & Binney

2013), and that a significant amount of further work

is required to adapt the present algorithm to properly

model such structures.

It is relatively straightforward to devise an algorithm

to implement the coordinate mapping from Cartesian

ηηη ≡ (x, y, z, vx, vy, vz) to ξξξ ≡ (θ1, θ2, θ3, J1, J2, J3) with

a deep neural network for a system for which we have

a set of known ηηη and ξξξ values. (This is what we con-

struct for the inverse transformations in Section 5). In

this case of so-called “supervised learning”, the network

calculates the derivatives of the loss function with re-

spect to the system parameters (the millions of weights

in the neural net), and adapts these parameters using

a stochastic gradient descent algorithm (in our work we

use the “Adam” optimization algorithm, Kingma & Ba

2017) so as to mimimize the difference between the pre-

dicted actions and angles and the corresponding “ground

truth” values. The learned map can subsequently be

used to attribute action and angle values to data not

previously seen by the network. However, for the for-

ward transformation in the present work we do not wish

to rely on external software to provide us with a train-

ing dataset of action-angle coordinates in galaxy mod-

els of interest. The fact that nature does not provide

us with ground-truth action and angle coordinate la-

bels provides the incentive to be able to calculate these

quantities without reference to a training set. The po-

tentials of galaxies probably also do not follow simple

mathematical forms, so we have a further motivation to

be able to calculate the canonical transformation in a

model-independent way.

How then can the stochastic gradient algorithm be

steered towards the right solution automatically without

1 The strategy we intend to explore in future contributions is to
fit N-body models to the observed thin and cold stellar streams
in the Milky Way using an initial first guess to the global poten-
tial. This will allow us to find a mapping between each stream’s
spatial and kinematic behavior and the orbital track of the cor-
responding progenitor system. In other words, defining φ1 to be
an angle along the great circle that best fits the stream (with
φ2 orthogonal to φ1), we will measure the difference between
the progenitor orbit and the N-body simulation in distance, sky
position, radial velocity and proper motion: ∆d(φ1), ∆φ2(φ1),
∆vr(φ1), ∆µφ1

(φ1), and ∆µφ2
(φ1). These are effectively correc-

tion functions for each stellar stream, allowing the positional and
kinematic properties of the observed stream stars to be used with
the present algorithm in lieu of phase-space coordinates at dif-
ferent times on the progenitor orbit. Once the new acceleration
field is found by our neural network, we would then iterate the
procedure until the acceleration field derived by ACTIONFINDER is
consistent with that used for the N-body models.
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Figure 1. Sketch of the method. We consider a dynamical system for which we have measured the kinematics of N particles
or “stars” along each of a sample of S different orbits which we loosely refer to as “streams”. In panel (a) we have sketched two
such “streams”, each with four “stars”. The observable sky positions, parallaxes (or distances) as well as the radial velocities and
proper motions are first converted by the algorithm into the Cartesian system (ni xxx,

n
i yyy), where the subscript denotes the stream

number and the superscript denotes the star number in that stream. The Cartesian coordinates are converted into action-angle
coordinates of an analytic isochrone model (b), which serves as a “toy” first approximation to the real actions. The central
ingredient of the algorithm is the network that proposes trial generating functions G(θθθ,JJJ ′) of the canonical transformation
between the toy coordinates (θθθ,JJJ) and the refined coordinates (θθθ′,JJJ ′). Note that because JJJ ′ is not known in advance, we need
to iterate at this stage (c) to find the JJJ ′ values that are consistent with the isochrone’s values of JJJ . Finally (d), we also allow for
a simpler canonical point-transformation with the generating function P (θθθ′) to calculate the target coordinates (θθθ′′,JJJ ′′). The
two networks (green arrows) are refined over the course of the training procedure by attempting to find the network weights
that minimize the spread in the JJJ ′′ values in each stream.

labeled data? As stated above, we know that points

along the same orbit should have identical actions and

frequencies. In addition, the map from ηηη to ξξξ obeys the

symplectic condition for the Jacobian matrix:

MT JM = J, (1)

where M is the symplectic Jacobian matrix Mij =

∂ηi/∂ξj , and J is the antisymmetric block matrix

J =

(
0 I3
−I3 0

)
, (2)

with I3 being the 3 × 3 identity matrix. This makes it

tempting to simply build a deep network that directly

maps ηηη to ξξξ, while including the above conditions as

terms in the loss function (together with additional con-

ditions that will be presented in Section 3). We were

disappointed to find that this did not work very well. In

order to approximate the coordinate transformation to

∼ 1% accuracy or better, one requires a deep neural net

with tens of millions of parameters. Yet the symplectic

condition creates a very complex loss function landscape

in this parameter space, which the stochastic gradient

descent optimizer explores in a very inefficient way.

To overcome this problem, we decided to make use of

a generating function for the canonical transformation,

to guarantee that the coordinate transformation will be
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symplectic. As pioneered by McGill & Binney (1990),

the transformation can be made much simpler by using

the action and angle coordinates of a “toy” model as a

stepping stone. Our procedure is sketched in Fig. 1. We

begin by converting the observed astrometric data into

Cartesian coordinates (xxx,vvv). It is worth noting that

thanks to the automatic differentiation module in the

pytorch (Paszke et al. 2019) machine learning library,

the gradients of the output quantities with respect to

the astrometric observables can be calculated easily; we

will make use of this feature in future work to account

for observational uncertainties.

For the toy model, we use an isochrone potential:

Φ(r) = − GM

b+
√
b2 + r2

. (3)

Here r is the (spherical) radius coordinate, G is the uni-

versal gravitational constant, and the two model param-

eters are the mass M and scale radius b. One may then

choose the three actions in the isochrone model to be:

J1,iso = Lz

J2,iso = L− |Lz|

J3,iso =
GM√
−2E

− 1

2

(
L+

1

2

√
L2 − 4GMb

)
,

(4)

where L is the angular momentum of the particle, Lz
is the z-component of angular momentum, and E is the

particle’s energy. The procedure to convert from (xxx,vvv)

to the isochrone model’s (θθθ,JJJ) is detailed in McGill

& Binney (1990), and our pytorch version is heavily

inspired by the galpy isochrone implementation (Bovy

2015).

McGill & Binney (1990) found that their algorithm

converged irrespective of the initial chosen values of the

two isochrone parameters M and b, although values

closer to the real system produced faster convergence.

Our algorithm does not appear to be very sensitive to

this initial choice either, as long as M is set high enough

that all orbits are bound. In our algorithm both the M

and b parameters can be fitted by pytorch in the stochas-

tic gradient descent procedure, or if desired, they can be

held fixed at their initial values.

We now aim to find new coordinates (θθθ′,JJJ ′) that are

closer to those of the real system. To this end we define

an indirect type 2 generating function G = G(θθθ,JJJ ′),
whose derivatives give the implicit transformation:

JJJ = JJJ ′ +
∂G

∂θθθ
(5)

θθθ′ = θθθ +
∂G

∂JJJ ′
. (6)

A deep learning network will be used to propose trial

variations on G, and again thanks to the automatic dif-

ferentiation in pytorch it is straightforward to find the JJJ

and θθθ′ values generated by G. Since we are actually in-

terested in JJJ ′, we iteratively find the JJJ ′ value that yields

values of JJJ from Eqn. 5 that are the same as those of

the toy isochrone.

We now finally update the (θθθ′,JJJ ′) coordinates using

a further transformation θθθ′′ = P (θθθ′) that is only depen-

dent on the updated angles. This point-transformation

is much simpler than G, as we can obtain the updated

angles and actions directly with no need for an iterative

procedure,

θθθ′′ = P (θθθ′) (7)

JJJ ′′ =
∂θθθ′

∂θθθ′′
JJJ ′ , (8)

and is therefore easy for the algorithm to fit. As demon-

strated by Kaasalainen & Binney (1994), such a trans-

formation allows for deformations of the toy model that

may be better adapted to the geometry of the real sys-

tem’s orbits. In our experiments we found that this ad-

ditional network improved the quality of the predicted

actions by up to ∼ 50%.

Python style pseudocode for the central function of

the algorithm is shown in the Appendix in Listing 1.

3. THE ACTION-ANGLE NETWORK

All of the neural networks used here have the same

basic architecture. Thus, the generating function G is

given by:

G = netG(cos(θθθ), sin(θθθ),JJJ ′) , (9)

while the canonical point-transformation P has the

form:

P = netP (cos(θθθ), sin(θθθ)) . (10)

After extensive experimentation, we found that the an-

gle coordinates were best learned by first introducing the

pair of auxiliary variables tttx ≡ cos(θθθ) and ttty ≡ sin(θθθ),

as used in Eqns. 9 and 10. This naturally takes care of

the cyclic property of the angle variables. The netG net-

work consists of a series of 15 blocks similar to a Resid-

ual neural network (ResNet, He et al. 2015), adapted

for the case of Dense (Linear) layers2. An initial fully-

connected linear layer takes the input features (9 in the

case of netG and 6 in the case of netP ) and passes them

2 A linear layer W with bias b simply transforms an input vector
x to y = xWT + b. The parameters W and b are learned by the
algorithm.



6 Ibata et al.

ReLU

Linear

WeightNorm

ReLU

Linear

WeightNorm

ResDense(nf=64)

ResDense(nf=128)

ResDense(nf=256)

ResDense(nf=512)

ResDense(nf=1024)

ResDense(nf=1024)

ResDense(nf=1024)

ResDense(nf=512)

ResDense(nf=256)

ResDense(nf=128)

ResDense(nf=64)

Linear(in=64,out=128)

Linear(in=128,out=256)

Linear(in=256,out=512)

Linear(in=512,out=1024)

Linear(in=1024,out=512)

Linear(in=512,out=256)

Linear(in=256,out=128)

Linear(in=128,out=64)

Input (nf=6)

Output (nf=1)

Figure 2. Sketch of the (shorter) netP neural network. The
ResNet-like unit blocks (left, and Eqn.11), are incorporated
as a series of layers (right) that progressively increase in com-
plexity up to a chosen maximum width, and then decrease
symmetrically up to the layer immediately before the output.
The number of features nf in each unit block is indicated.

onto a layer of 64 features. Deeper layers increase in

width, becoming a factor of 2 wider in the number of

features per layer, up to a maximum of 1024 features

per layer. After the chosen maximum depth is reached

(at layer 6), the layers decrease in size in a symmetric

way. A final fully-connected linear layer is applied to

give the chosen output features, which in the case of the

generating functions G and P is a scalar value. This

architecture is sketched in Fig. 2. The netP network is

identical to netG, but consists of only 11 blocks.

The unit blocks were constructed as follows:

out = W2(D2(ReLU(

W1(D1(ReLU(input))) ))) + input
(11)

where D1 and D2 are fully connected linear layers,

ReLU(x) = max(0, x) is the Rectified Linear Unit

(ReLU) activation function, and W1 and W2 are Weight

Normalisation layers (Salimans & Kingma 2016). This

setup is very similar to the canonical ResNet, designed

so that the blocks learn successive corrections to the

input information. We show the pseudo-code of this

module in Listing 2 in the Appendix. Each unit block

is connected to the following block with a Dense layer,

without applying an activation function.

For those unit blocks that exceed a width of 256 nodes,

we apply a “Dropout” layer (Hinton et al. 2012) after

every ReLU operation in Eqn. 11, to randomly set half

of the node weights to zero. This is a commonly-used

regularization technique that helps to avoid over-fitting.

Our use of Weight Normalisation layers in Eqn. 11 is

noteworthy. Most modern networks in computer vision

make use of the “Batch Normalization” (BN, Ioffe &

Szegedy 2015) procedure to decouple as much as possi-

ble the fitting of the parameters in the different layers

of a network. This mitigates against the co-variance be-

tween layers, allowing the parameters of a deep layer

to be refined even though the parameters of the higher

layers are also being adjusted at the same time by the

optimization algorithm. However, after much experi-

mentation, we found that the BN layers we initially used

were limiting the accuracy of our algorithm. This is due

to the fact that this procedure operates (during train-

ing) on the data presented to it in each “batch” (i.e.

in small sub-samples which are chosen so that the data

may fill the graphics card memory), from which it nor-

malizes the data using the mean and standard deviation

of the sub-sample. Since the data at different positions

within the batch belong to different streams, the un-

avoidable shot noise then creates substantial variation

between batches, resulting in unacceptably large errors

for a study such as ours. We devised a work-around by

training in the normal way with the BN procedure un-

til it reached an equilibrium state, and then restarting

with the BN layers frozen using parameter values calcu-

lated from the whole dataset. We later realised that the

“Weight Normalization” scheme gives similar accuracy

to our BN “hack”, and have adopted it for the present

work as it is an accepted machine learning method.

Between them, with the chosen depth of 15 and 11

layers, the two generating function networks have a total

of ∼ 44 M free parameters.

The chosen loss function is very simple:

L = LJ′′, spread + LJ′′
2,3>0 + α1Lθ0′′ . (12)

LJ′′, spread is the mean absolute deviation of the differ-

ence between the predicted action J ′′J ′′J ′′ of the stars in a

stream and the mean action of that stream 〈J ′′J ′′J ′′〉. The

term LJ′′
2,3>0 penalises unphysical negative values of J2

′′
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and J3
′′, as follows:

LJ′′
2,3>0 = 〈|J2 − |J2||〉+ 〈|J3 − |J3||〉 . (13)

Finally, the loss term α1Lθ0′′ is the mean absolute de-

viation of the target angles θθθ′′ when θθθ = 0 is fed into

the network (i.e. it encourages the zero-point of the tar-

get angles to coincide with those of the isochrone toy

model). Following common machine learning practise,

we normalised the position and velocity variables (to

20 kpc and 200 km s−1, respectively); thus the actions

are normalized to 4000 km s−1 kpc. However, for conve-

nience, we left the angle variables in radians. We chose

to set the hyper-parameter to α1 = 0.1 in Eqn. 12, so as

compensate for this difference in the range of the angle

and action variables.

The algorithm proceeds by iterating over discrete

“epochs” when the network derivatives are calculated

and the parameters are consequently updated to obtain

improved estimates for J ′′J ′′J ′′ and θ′′θ′′θ′′.

4. THE ACCELERATION NETWORK

After the algorithm has converged on values of J ′′J ′′J ′′ and

θ′′θ′′θ′′ that minimize the spread of J ′′J ′′J ′′ in the streams, we can

use these transformed coordinates to study the system

they inhabit. To this end, we re-run the network once

more with an updated loss function, and with an addi-

tional network (the acceleration network) turned on.

The structure of the acceleration network is set up

as an additive correction to the acceleration of the toy

isochrone model aaaiso:

aaa = neta(x, y, z,aaaiso) + aaaiso . (14)

Note that here we only feed in the position part of the

ηηη phase space vector. We use a depth of 15 blocks for

this network, which contains ∼ 17.5 M free parameters.
The structure of neta is essentially identical to that of

netG, except that it outputs a vector.

If J ′′J ′′J ′′ and θ′′θ′′θ′′ are only functions of position xxx and ve-

locity vvv, the chain rule implies that the mapping is con-

strained by the following relations:

dJi
′′

dt
=
∂Ji
′′

∂xj
ẋj +

∂Ji
′′

∂ẋj
ẍj = 0 (15)

dθi
′′

dt
=
∂θi
′′

∂xj
ẋj +

∂θi
′′

∂ẋj
ẍj = Ωi

′′ , (16)

where the i index here is associated to each of the (usu-

ally three) integrals of motion Ji, and j is a dummy

index denoting Einstein summation.

A brief inspection of Eqn. 15 reveals that once we

have access to a network that delivers predictions for

the position and velocity derivatives of J ′′, we can solve

the simultaneous equations to calculate the acceleration

terms ẍ. While this suggests that the acceleration net-

work (Eqn. 14) is superfluous, we nevertheless opted to

employ a network to calculate aaa for two main reasons.

First, it allows us to train a network that can be subse-

quently applied to make predictions for the acceleration

on new unseen data (for instance, for “stars” without full

6-dimensional information). Second, we found that solv-

ing Eqn. 15 for ẍ using linear algebra can occasionally

be problematic, due to ill-conditioned matrices. Cre-

ating a separate acceleration network eliminates these

problems.

In this second run through the algorithm, we choose

the following loss function:

L =LdJ′′/dt + α2Lsymmetry + α3LΩ′′, spread , (17)

where LdJ′′/dt is the mean absolute value of dJ ′′i /dt,
as calculated from Eqn. 15. Lsymmetry is an optional

term to enforce a desired symmetry on the solution of

the acceleration network. For instance for axisymmetric

potential models, we experimented with a cosine anti-

similarity criterion Lsymmetry = 1 + ~aR · ~R/(||~aR|| ||~R||)
between the cylindrical-R component of the acceleration

field ~aR and the same component of the (Galactocen-

tric) position vector ~R. Although this loss term helps to

constrain the acceleration, for the purpose of the tests

presented in Section 6 we decided to suppress this sym-

metry constraint on aaa by setting α2 = 0.

Finally, LΩ′′, spread is another optional loss term to en-

sure that the frequencies calculated from Eqn. 16 for

each “stream” have minimum spread. This is done by

calculating the mean absolute difference of the frequency

of each “star” from the mean of the frequencies in the

“stream”. However, we found in our tests that includ-

ing this term introduced slight additional scatter in the

solutions (most likely because angles are much less ac-

curately constrained than actions in our algorithm), so

it too was suppressed by setting α3 = 0 in the present

work.

5. INVERSE TRANSFORMATION

Deep learning can also be used to calculate the in-

verse transformation from actions and angles back to

positions and velocities. However, there are many dif-

ferent situations that one can envisage being confronted

with. For instance, one may or may not have frequen-

cies in addition to the actions and angles, or one may

already know the potential. Alternatively, it is possible

that the potential and frequencies are not known, but

one may have groups of particles along orbits (i.e. our

“stars” in “streams”). Each of these cases would require

a different network to be constructed in order to learn

the inverse transformation in an unsupervised way.
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The approach we take here is slightly different, but

perhaps more realistic given the forward transformation

we have presented previously. We imagine having de-

rived the forward transformation from ηηη to ξξξ for a num-

ber of orbits. This information can now be used to train

a supervised network to predict ηηη from ξξξ.

Since this is a supervised learning task, compared to

the previous problem, it is a much easier for the net-

work to find the correct direction for the stochastic gra-

dient descent to improve the loss function. We therefore

choose a simple network architecture:

(tttx, ttty,JJJ) = netinverse(tttx
′′′′′′, ttty

′′′′′′,J ′′J ′′J ′′) , (18)

from which the toy model angles are calculated with

θθθ = atan2(ttty, tttx) + π/2. Just like the forward network,

the inverse transformation thus employs the isochrone

model as a stepping stone, with the final step being the

analytic inversion of the toy model’s (θθθ,JJJ) coordinates

to the 6-dimensional vector ηηη. Since this inverse network

is not constrained by differential equations (and hence

does not require any Jacobians to be calculated) it is

feasible to implement it as a deeper network of 23 (or

more if necessary) layers of blocks (Eqn. 11), using a

total of ∼ 34 M free parameters.

6. RESULTS

The algorithm was constructed to accept as input data

a set of S “streams”, each with N “stars”. The method

works with N ≥ 2 “stars” per “stream”, but for these

initial tests we have chosen a more conservative N = 8,

simply to make it easier for the algorithm to verify that

the actions and frequencies calculated for each “stream”

are constant. Pytorch achieves its speed by processing

the data in parallel, and so it is much more efficient to

pass pytorch “tensors” of the same size onto the graph-

ics processing unit (GPU). Because of this, we expect

that when the method is applied to real data, it will be

convenient to break up streams with a large number of

known members into smaller sub-groups (of the same

size N).

In all the experiments below, we split the input sample

into two sets, a training set with 50% and a test set with

50% of the sample. Clearly, with real data we would be

much more sparing with the fraction allocated to the

test set! Typically, we run the training process with a

learning rate of 10−4. In all the tests reported below we

iterate for 1024 “epochs” even though the training losses

often stabilize much earlier. We found that re-running

the network with smaller learning rates (which is the

standard procedure in machine learning to improve ac-

curacy), resulted in only very marginal improvements to

the loss function values.

Test samples are used in machine learning primarily

to verify that the training procedure is not overfitting

the data. When this occurs, the loss of the training set

continues to improve, while the loss values in the test

set (which the algorithm does not see during training)

become worse. We simply ignore all further epochs once

the algorithm begins to overfit.

Both the data and network are expressed internally

as double precision floating-point numbers, as we found

that the Jacobian matrices were not always calculated

to sufficient precision with single precision numbers, re-

sulting in a network that would not update correctly due

to vanishing gradients.

Because of the fact that we find the actions iteratively

starting from an initial guess provided by the toy model,

the speed of the algorithm depends on how close the toy

model is to the target system. But in typical cases using

S = 1024 and N = 8, the algorithm takes ∼ 3 hours to

complete a training run of 1024 epochs on an NVIDIA

GV100 GPU with 32 GB of card memory. Running

times on larger datasets should scale approximately lin-

early with the number of data.

6.1. Fitting isochrone models

Although we have built the ACTIONFINDER as a series

of transformations from the analytic isochrone, it is still

worth checking whether the software can fit a sample of

orbital points drawn from different models of this family.

To this end we generated orbits within an isochrone

potential with M = 3.334 × 1011 M� and b = 5 kpc

(i.e. M = 1.5 × 106 in N-body units where G = 1

and distances are in kpc and time is in Gyr), which

gives a circular velocity at the Solar neighborhood

(R� = 8.122 kpc, Gravity Collaboration et al. 2018) of

vc(R�) = 217 km s−1. One of the advantages of the
ACTIONFINDER is that we do not need to provide it with

a fair sample of orbits within the system, almost any

sample that covers the region of interest will do.

In the following, we imagine having access to the or-

bits of some objects in the “Galaxy” halo. To model

this situation we select a random 3-dimensional initial

radius drawn uniformly in Galactocentric distance be-

tween r = [6–16] kpc, together with a velocity vector

that is oriented randomly (i.e. isotropic) with magni-

tude drawn from a Gaussian of dispersion 150 km s−1.

Using a symplectic Leapfrog scheme, we integrate from

these initial phase space locations for 0.1 Gyr, ensuring

energy conservation to 1 part in 107, and randomly se-

lect N = 8 phase space points along each path. Since

our aim is to eventually work with real astrometric data,

we convert the positions and velocities of the set of orbit

locations to the observable quantities: d, `, b, vh, µ`, µb,
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as they would be measured from our vantage point in

the Galaxy, where d is Heliocentric distance, (`, b) are

Galactic coordinates, vh is the Heliocentric radial ve-

locity, and µ` and µb are the proper motions along the

Galactic coordinate directions.

With the correct input values of M and b, the network

quickly finds the correct J ′′J ′′J ′′ and θ′′θ′′θ′′ to better than 0.01%

(with a training set size of S = 1024), which is reassuring

given that the algorithm effectively just has to learn (in

an unsupervised way) the identity operation.

A more interesting case occurs when we try to fit the

isochrone “stream” sample above using fixed and incor-

rect reference M and b values. With M and b both

10% lower (higher) in the toy model compared to the

simulated data, using S = 1024 we obtain action er-

rors of δJJJ = 1.2(2.0) km s−1 kpc and angle errors of

0.7◦(1.2◦). When M and b are 20% higher, the action

error is δJJJ = 3.0 km s−1 kpc and the angle error is 1.4◦.
The algorithm fails with a fixed 20% lower value of M ,

because some orbits are unbound in the toy model, and

thus do not have valid (θθθ,JJJ) coordinate values.

Using S = 1024 with fixed 20% higher values of

M and b in the toy model, the inverse transformation

from (θ′θ′θ′,J ′J ′J ′) to (xxx,vvv) is recovered to an accuracy of

δxxx = 0.3 kpc and δvvv = 2.6 km s−1 (again, mean abso-

lute deviation errors).

6.2. Fitting the Dehnen & Binney Galactic model

We now examine the performance of our method with

two reasonably realistic Galactic potential models, by

Dehnen & Binney (1998) and Piffl et al. (2014), who fit-

ted plausible axisymmetric density models of the main

Galactic components to kinematic observations of the

Milky Way. These useful models have been incorpo-

rated into the AGAMA package (Vasiliev 2019b), which

now allows one to transform the actions and angles of

test particles in these potentials to positions and veloci-

ties with the Torus Mapping. We first consider model ‘1’

of Dehnen & Binney (1998), in which we integrated a set

of random orbits (each with fixed triplet of actions) in a

similar way to that described in Section 6.1, and as be-

fore we selected N = 8 random points along the orbits,

recording their input actions and angles values, their

(xxx,vvv) values generated with the Torus Mapping, as well

as their output (θ′′θ′′θ′′,J ′′J ′′J ′′) values found by ACTIONFINDER.

For these tests the toy isochrone M and b parameters

are left free.

Using S = 1024, the ACTIONFINDER recovers the Torus

Mapping input action-angle coordinates with an error of

δJ ′′J ′′J ′′ = 8.0 km s−1 kpc in action (i.e. ∼ 0.4% of the Sun’s

action) and δθ′′θ′′θ′′ = 7.4◦ in angle. The model acceler-

ations are also recovered to δaaa = 2.6%. These errors
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Figure 3. Convergence of the loss function for different sam-
ple sizes. All three tests use simulated orbits in the Dehnen
& Binney (1998) potential model ‘1’, each with N = 8 phase-
space points. The sample sizes are S = 1024, S = 128 and
S = 16 for the top, middle and bottom panels, respectively.
In each case, the blue line shows the training loss while the
orange line shows the validation loss. The red dot shows the
position of the best validation loss, which defines the epoch
at which the (θ′′θ′′θ′′,J ′′J ′′J ′′) coordinates are extracted.

are calculated as the mean absolute deviation between

the Torus Mapping input values and the ACTIONFINDER

predictions. With these noise-less data (possessing only

shot-noise), the derived (θ′′θ′′θ′′,J ′′J ′′J ′′) are not very sensitive to

the sample size. If instead we set S = 128(16), we ob-

tain an action error of δJ ′′J ′′J ′′ = 11.2(18.1) km s−1 kpc and

the angle error is δθ′′θ′′θ′′ = 8.0◦ (9.1◦). In Fig. 3 we show

the evolution of the loss function in these three tests.

As a comparison, we also transformed back the po-

sitions and velocities of each particle into action-space

with the Stäckel-fudge in AGAMA. In this case, the mean

absolute deviation between the Torus Mapping input ac-

tions and the Stäckel-fudge estimate is 44 km s−1 kpc, 5

times less accurate than with the ACTIONFINDER.

With S = 1024 the inverse transformation algorithm

(which is basically the same transformation as the one

done with the Torus Mapping to generate positions and

velocities) recovers the (xxx,vvv) originally generated with

the Torus Mapping to an accuracy of δxxx = 0.24 kpc and

δvvv = 4.4 km s−1.

6.3. Fitting the Piffl et al. Galactic model
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Figure 4. Comparison of the action values derived with the Torus Machinery (TM, blue) and the present algorithm (AF, orange)
for the four test orbits defined by Sanders & Binney (2016) in the Piffl et al. (2014) potential model. Here, the Deep Learning
algorithm is only provided S = 1024 sets of N = 8 data points along each orbit, and the network is initiated with random
numbers. We include Jφ, since in our case the network needs to discover from the data that the host system is axisymmetric.
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For the second realistic Galactic potential we test

our algorithm with, we choose the model of Piffl et al.

(2014), which was used in the review by Sanders & Bin-

ney (2016) as the reference potential for comparing dif-

ferent methods for calculating actions. Repeating the

selection of halo orbits in an identical manner to what

was done above with the Dehnen & Binney (1998) model

results in a similar action error of δJ ′′J ′′J ′′ = 6.3 km s−1 kpc

and δθ′′θ′′θ′′ = 4.2◦ with S = 1024.

When we initially devised the present algorithm, we

intended to apply it to objects on halo-type orbits. Nev-

ertheless, it is interesting to consider how well it can

perform for stars or particles on disk orbits. To this

end, we selected a sample of disk-like orbits in the Piffl

et al. (2014) potential model. To do so, we generate

pseudo-random actions JJJ uniformly distributed in the

ranges [0, 50 km s−1 kpc] for Jr, [0, 50 km s−1 kpc] for Jz,

and [0, 3000 km s−1 kpc] for Jφ. For each orbit, we then

generate 8 angle values θθθ, where each component is uni-

formly distributed in the range [0, 2π]. To each action

angle position (JJJ,θθθ) we associate positions and veloci-

ties (xxx,vvv) obtained with the Torus Mapping technique.

We avoided the bulge region by discarding orbits with

pericenters smaller than 5 kpc. Using S = 8192(1024)

orbits, we recovered the input actions with an error of

δJ ′′J ′′J ′′ = 0.67(2.4) km s−1 kpc, and δθ′′θ′′θ′′ = 4.9(9.9)◦ in an-

gle. While performing these tests, we found that we

could improve the quality of the recovered actions if we

simplified the loss function to

L = LJ′′, spread , (19)

i.e. by giving up on measuring angle variables with cor-

rect zero-points. We were then able to recover the Torus

Mapping actions of the same sample of disk-like orbits

with an error of δJ ′′J ′′J ′′ = 0.088 km s−1 kpc using S = 8194

orbits (i.e. a factor of ∼ 8 improvement in accuracy

can easily be obtained when the angle variables are not

required).

6.4. Four test orbits

When comparing the different methods for calculating

actions, Sanders & Binney (2016) also examined how

accurately the actions were derived along four test or-

bits. These tests were undertaken for a typical orbit

in the thin disk, the thick disk, the halo, and in the

GD-1 stellar stream (Grillmair & Dionatos 2006). We

now subject our algorithm to these four tests. We inte-

grated the four pre-defined orbits in the Piffl et al. (2014)

potential, storing the output phase space position and

Torus Mapping actions at 10,000 intervals each equally

separated by 0.9777 Myr. The algorithm was then pro-

vided as input S = 1024 sets of N = 8 phase space

points chosen randomly along the orbits. After com-

pleting the training on this dataset (using the simplified

loss function of Eqn 19), the learned coordinate mapping

was applied individually to each of the 10,000 orbital

points. The resulting actions thus derived by the algo-

rithm are shown in Figure 4 (orange) and are compared

to the values derived with the Torus Machinery in AGAMA

(blue). We include panels for Jφ, contrary to Sanders

& Binney (2016), since the algorithm was not forced to

find a trivial solution consistent with an axisymmetric

potential, but discovered this component of the action

from the data themselves. The mean absolute devia-

tion of the actions of the thin disk, thick disk, halo and

stream test orbits are 0.034 km s−1 kpc, 0.11 km s−1 kpc,

0.84 km s−1 kpc and 0.61 km s−1 kpc, respectively; while

the same statistics using the Torus Machinery in AGAMA

are 0.023 km s−1 kpc, 0.23 km s−1 kpc, 0.94 km s−1 kpc

and 1.82 km s−1 kpc, respectively. We note that sig-

nificantly lower dispersions can be obtained with our

method if instead of initializing the neural network

with random numbers, we provide as starting points

the solutions previously fitted on the sample of disk

or halo orbits discussed in Section 6.3 (this yields

0.012 km s−1 kpc, 0.064 km s−1 kpc, 0.47 km s−1 kpc and

0.14 km s−1 kpc for the mean absolute deviation of the

actions of the thin disk, thick disk, halo and stream test

orbits, respectively).

6.5. Fitting an N-body simulation

As we have mentioned above, we also expect our al-

gorithm to be useful for analysing the dynamics N-body

systems. For the method to be applicable, the actions of

the particles in the system need to be conserved. This

implies that the system needs to be non-collisional and

in equilibrium, or close to equilibrium; furthermore, the

particles to be analysed cannot reside on chaotic orbits.

Here we chose as a first example a spherical Plummer

model for which we are easily able to calculate ground-

truth actions, thus allowing the accuracy of the method

to be gauged.

For this test we generated a 106 particle model taking

a Plummer scale radius of 0.02 kpc, and a total mass

of 5 × 105 M�. The actions were calculated from the

(xxx,vvv) values using the spherical version of the action

finder from AGAMA (much more accurate than the Stäckel

Fudge used for axisymmetric systems), in a potential

corresponding to the Plummer sphere used to generate

the initial conditions for the particles. The reader will

have noticed that the parameters of our Plummer model

make it resemble a relatively massive isolated globular

cluster. We deliberately chose this example to empha-

size the class of object that our algorithm is not ap-
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Figure 5. Comparison between the actions calculated
for a static Plummer model with the Torus Machinery
(TM) in AGAMA, and the actions derived from applying the
ACTIONFINDER (AF) algorithm to 8 snapshots extracted from
an N-body simulation of the same system.

propriate for. Real globular clusters are collisional sys-

tems, and undergo strong low-N interactions, invalidat-

ing the assumption of invariant actions. However, for

the purpose of the test we avoid such strong interactions

by applying a (Plummer kernel) force-softening to the

particles during the simulation with a softening length

of 0.001 kpc. The particle system was integrated with

the gyrfalcon N-body integrator (Dehnen 2000b) in the

NEMO dynamics toolbox (Teuben 1995). We chose a

total integration time of 0.07 Gyr, setting the minimum

timestep at 2−18 Gyr (i.e. ≈ 3 800yr), with 8 output

snapshots at 0.01 Gyr intervals. The total integration

time corresponds to approximately 3 dynamical times

of this Plummer model at the half-mass radius.

The resulting difference between actions derived from

the Torus Machinery and the present algorithm are

displayed in Figure 5. The mean absolute devia-

tion of the differences between the two methods is

0.00055 km s−1 kpc in Jφ, 0.00048 km s−1 kpc in Jz and

0.00032 km s−1 kpc in Jr. It is therefore probable that

the ACTIONFINDER will be able to give useful approx-

imations to the actions for certain dynamical N-body

systems, but a more detailed exploration of its capabil-

ities in this context is left to further dedicated works

within our research program.

7. DISCUSSION AND CONCLUSIONS

The present paper represents the first step of a re-

search program aimed at using modern deep learning

tools to perform the canonical transformation of posi-

tions and velocities to (and from) actions and angles

variables from a sample of orbit-segments, and to find

the underlying gravitational potential of the (simulated

or real) system in an unsupervised way. Here, we do

not deal with real data or complex simulated systems

yet, but have constructed, and tested for simple config-

urations, a method to transform observable astromet-

ric coordinates into action and angle coordinates with

a scheme that is effectively a back-to-front version of

that developed by McGill & Binney (1990), together

with the canonical point-transformation improvement

by Kaasalainen & Binney (1994).

The deep neural nets used here are able to generate

non-linear functions that are more flexible than a linear

decomposition into Fourier coefficients, and this flexi-

bility may make it easier to fit more general dynamical

systems. A nice feature of our method is that it si-

multaneously uses all the data at its disposal to fit the

generating functions of the canonical transformations.

This contrasts to earlier methods where each orbit is

fitted independently to derive the best set of Fourier co-

efficients for that orbit, bearing in mind that each such

orbit requires many constraining data points due to the

large number of Fourier coefficients that have to be fit.

Moreover, once the transformation from positions and

velocities is found, it is easy to inverse it in a supervised

way. The main advantage of the method presented here,

however, is that we do not need to know in advance the

Hamiltonian or potential of the system under investiga-

tion. The algorithm finds it for us.

The data used in the tests presented here are noise free

(apart from shot noise), and as such they do not portray

a realistic picture of the limitations of the method as

applied to real data. However, it is beyond the scope

of the present contribution to attempt an exploration of

the consequences of the observational limitations. With

this caveat in mind, we are able to train the network

to predict the actions from positions and velocities of

halo-like orbits in a realistic axisymmetric Milky Way

model, with an uncertainty of ∼ 0.6% of the action value

of the Sun (compared to the input actions transformed

into positions and velocities with the Torus Mapping),
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by training on only N = 8 phase-space points along

S = 128 orbit segments, i.e. with only 1024 phase-space

points. With S = 1024 such orbit segments, an action

uncertainty of ∼ 0.4% of the action value of the Sun

can be attained. This is 5 times more accurate than the

estimate of actions from positions and velocities with

the Stäckel fudge in AGAMA.

We also investigated the behaviour of the algorithm

on a sample of disk-like orbits. Increasing the training

sample to S = 8192, we achieved an action accuracy

of 0.67 km s−1 kpc (i.e. 0.03% of the Sun’s azimuthal

action), again assuming that the Torus Machinery pro-

vides the ground-truth values. If we relax the require-

ment in the loss function for the returned angle variables

to have the correct zero-points, we found that we could

improve significantly the accuracy of the recovered ac-

tions to 0.088 km s−1 kpc using the same data set. It is

possible that our algorithm could attain yet higher ac-

curacy if it were provided a larger dataset (the depth of

the neural net might also need to be increased).

We also directly compared the results of the Torus Ma-

chinery as implemented in AGAMA and the ACTIONFINDER

on four test orbits defined by Sanders & Binney (2016)

(representing examples of a thin disk, a thick disk, a

halo and a stream orbit). While it is difficult to gauge

whether the comparison is fair (as the ACTIONFINDER

trains its network based only on the data it was given

along each orbit, yet at the same time it has to discover

the geometry of the problem), the spread in the recov-

ered actions (Figure 4) is very low, even lower than with

the Torus Machinery as implemented in AGAMA in some

cases.

For applications of the method to real data, we stress

here that the algorithm requires the system under study

to be sufficiently well sampled spatially over the galaxy

so as to infer the global properties of the structure.

For the Milky Way, the brightest nearby stars in future

state-of-the-art Galactic datasets such as Gaia DR3 will

have radial velocity accuracy of at best 0.1 km s−1, while

the 1% distance uncertainty horizon lies at only ≈ 1 kpc

from the Sun. Therefore, for our planned large-scale

analysis of the Milky Way, there is no foreseeable need

for the algorithm to return higher accuracy actions than

we have demonstrated it is capable of.

For our method to be applicable to N-body simula-

tions, the systems under study have to be in (or close

to) equilibrium and the actions of the constituent par-

ticles need to exist and to be conserved. Exploring the

limitations and pit-falls of this application of the algo-

rithm would be a vast endeavor, far beyond the scope of

the present contribution. Here we simply showed that

if we use the particle positions and velocities at differ-

ent timesteps from an N-body simulation of a Plummer

model as inputs for the algorithm, the resulting actions

are in good agreement with the values inferred for the

N-body initial conditions, as calculated with the Torus

Machinery.

Some studies might envisage analysing the dynam-

ics of local stars through their differential motions, and

the transformation of such relative motions into actions

could require much higher accuracy than our method

currently delivers. For such applications previous meth-

ods for calculating actions in exact potentials should be

used. The reliability of the resultant findings would

then depend on the applicability of the chosen poten-

tial model to the system under study, and the mismatch

between that model and the actual system may end up

dominating the error budget.

Our method may not be the ideal choice in situations

where the exact potential is known in advance, such as

for studies of orbits in analytic potential or density mod-

els. The algorithm was deliberately built to employ the

flexibility of neural nets to adapt to the system the data

are drawn from. When that flexibility is not needed, the

method will incur a cost in the form of some coordinate

transformation noise. That being said, the G and P

generating functions can be forced to produce solutions

consistent with a fixed potential model Φfixed: the only

modification required to the algorithm is to add a loss

term to Eqn. 12 that compels Eqn. 15 to hold. This loss

term should be the mean absolute value of dJ ′′i /dt, cal-

culated from Eqn. 15 (exactly as we implemented for the

loss function of Eqn. 17, but with ẍ given by −∇Φfixed

rather than by the acceleration network).

In principle, the present algorithm is not limited to

axisymmetric systems, and given that the canonical co-

ordinate transformation encoded in the generating func-

tion networks can be made arbitrarily complex by in-

creasing the depth of the networks, one may be able to

learn and model complex mass distributions given suf-

ficient data and computational resources. However, the

presence of chaotic dynamics in complex potentials gives

cause for concern, since our method relies on the actions

being conserved, which is not the case for chaotic orbits.

It is thus likely that in such systems the method will only

work for a subset of the orbits, while returning nonsen-

sical results for the rest. We suspect that this could be

turned from a bug into a feature of the method, as it

may allow the present algorithm to be adapted into an

automatic orbit classifier. For resonant orbits, it would

be interesting to check whether the algorithm can find

new orbital tori in each resonant trapping region, with

their own system of angle-action variables (e.g., Monari

et al. 2017; Binney 2018, 2020a,b).
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We have attempted some very preliminary explo-

rations of the method on a non-axisymmetric system by

applying the algorithm to orbits integrated in a triax-

ial logarithmic halo model. We found that the present

algorithm is not able to adapt automatically to fit all

orbital families in a triaxial model simultaneously. The

reason for this may be both because of the presence of

chaotic orbits, and because the isochrone model is not a

good starting point for the canonical transformation in a

triaxial potential. Nevertheless, we were encouraged to

find that we were able to fit a generating function that

gave small scatter in J ′′J ′′J ′′ between points on the same

orbit, by selecting the input sample of “streams” from

high angular momentum tube orbits. In future work we

will attempt to replace the isochrone model with a triax-

ial Stäckel model (de Zeeuw 1985) as the “toy” starting

point; it is plausible that this may provide the key to

unlock unsupervised fitting in triaxial and more general

systems. But we will also need to be able to identify

chaotic orbits in the system.

The method currently relies on the fact that the po-

tential is static. However, with the same caveats as

above regarding chaos, it may be possible to generalize

the algorithm so that motion is analysed in a rotating

frame in which, for instance, a barred structure would

appear static. This might allow the method to be used

for analysing non-axisymmetric rotating systems as well.

Of course, the application to real systems would have to

consider carefully their actual complexities: in the case

of the Milky Way evidence for a secularly slowing down

bar has been provided by Chiba et al. (2021), while it

has also been recently shown that it may oscillate over

time (Hilmi et al. 2020). Whether such complications

can be – at least partially – handled within the action-

angle formalism, is of course an interesting question in

itself largely independent of the method proposed in the

present paper.

Enhancing the present algorithm to accept additional

dynamical constraints will be relatively straightforward.

For instance, rotation curve information can be trivially

added without changing the code, simply by comple-

menting the input sample with a number of kinematic

points along circular in-plane orbits. Other dynamical

information or priors can be provided by adding appro-

priate log-likelihood terms to the neural network’s loss

function. Furthermore, the uncertainties on the fitted

model can be estimated by using the “Dropout Lay-

ers” to make alternative predictions (Gal & Ghahra-

mani 2015), providing similar information to what is tra-

ditionally derived from a (computationally much more

expensive) Markov Chain Monte Carlo exploration.

The algorithm was deliberately built to accept astro-

metric data as inputs. Because pytorch processes data

in parallel, this architecture makes it very simple to sup-

ply the network with multiple inputs for the same star,

where the different instances could, for example, sample

over the uncertainties in the astrometry, or scan over

missing information in some input dimensions. Thus,

if a star has a missing radial velocity measurement, one

may attempt to find the radial velocity value that makes

the derived actions for the star agree with those of the

group. It is thus plausible that the present software

can be adapted into a new method for detecting stellar

streams, especially structures that do not possess any

obvious spatial correlation.

The unsupervised learning technique developed here

of building a network based on potentially complex cor-

rections to simple analytic models and applying the

physical constraints as loss function terms may have sub-

stantially wider applications. The pytorch tensor struc-

ture is particularly powerful for this purpose, with its

ability to implement automatically the derivatives of the

analytic model and the correction function. As we have

seen, this provides an easy means to incorporate differ-

ential equations into a network.

A simplified demonstration version of the code, along

with a sample of test data from the Dehnen & Binney

(1998) potential model ‘1’ is available on Zenodo3 (DOI:

10.5281/zenodo.4664482) and GitHub4.
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APPENDIX

Listing 1. Pytorch pseudocode for the ActionFinder module.

class ActionFinder(torch.nn.Module ):
"""
Inputs:

d,l,b,vh ,mu_l ,mu_b astrometric phase space coordinates
Output:

Jdd_vals - the J’’ values
Tdd_vals - the theta ’’ values
loss_Jdd_spread - loss due to the spread of the J’’ values

"""
def __init__(self,verbose=False):

super(). __init__ ()

self.conv_input2xv = conv_Input2xv(verbose=verbose)
self.isochrone_analytic = Isochrone_Analytic(verbose=verbose)
self.encoder_GF_G = Encoder_GF_G(verbose=verbose)
self.encoder_GF_P = Encoder_GF_P(verbose=verbose)

def forward(self,inputs ): #

inputs_xv = self.conv_input2xv(inputs) # convert d,l,b,vh,mu_l ,mu_b to xv

# (J,Theta) in isochrone toy model
J_iso , T_iso = self.isochrone_analytic(inputs_xv , M, b)

# We now iterate to find J ’. Start with J’ = mean(J_iso for each stream)
Jd_mean = torch.mean( J_iso , dim=1, keepdim=True)

for iter in range(iter_max ):
Jd_trial = Jd_mean.clone() # trial J’
Jd_mean_fill = torch.cat([ Jd_mean ]*NStars ,dim=1) # expand mean value to fill NStars dimension

TJd = torch.cat( [T_iso ,Jd_mean_fill],dim=-1 ) # (T,J ’)
GF_G = self.encoder_GF_G(TJd) # generating function G
# J-J’ = d(G)/d(T):
JmJd = jacobian(T_iso ,GF_G )[:,:,0,:]. data # remove from computational graph
GF_G.detach () # remove from computational graph

# update
Jd_mean = torch.mean( J_iso - JmJd , dim=1, keepdim=True)

if ( torch.max( torch.abs(Jd_trial - Jd_mean )) < 5.e-5 and # test for acceptable convergence
torch.mean(torch.abs(Jd_trial - Jd_mean )) < 1.e-6):
break

# Find Jd_mean once more , but now retain the computational graph
Jd_mean_fill = torch.cat([ Jd_mean ]*NStars ,dim=1)
TJd = torch.cat( [T_iso ,Jd_mean_fill],dim=-1 )
GF_G = self.encoder_GF_G(TJd)
JmJd = jacobian(T_iso ,GF_G )[:,:,0,:]
Jd_vals = J_iso - JmJd # J’ given by generating function G
Jd_mean = torch.mean( Jd_vals , dim=1, keepdim=True)

# Calculate T’ from generating function derivative
Jd_mean_fill = torch.cat([ Jd_mean ]*NStars ,dim=1)
TJd = torch.cat( [T_iso ,Jd_mean_fill],dim=-1 )
GF_G = self.encoder_GF_G(TJd)

# T’ = T + d(G)/d(J ’):
Td_vals = (T_iso + jacobian(Jd_mean_fill ,GF_G )[:,:,0,:]) % (2* torch.pi)

# Add in the extra freedom of a point -transformation
Tdd_vals = self.encoder_GF_P( Td_vals ) # final T’’ from generating function P
dTdd_dTd = jacobian(Td_vals ,Tdd_vals) # d(T ’’)/d(T ’)
dTd_dTdd = torch.inverse( dTdd_dTd ) # d(T ’)/d(T’’)
# J_i ’’ = dT ’/dT_i ’’ . J’
Jdd_vals = torch.einsum(’bsji ,bsj ->bsi’,dTd_dTdd ,Jd_vals) # final J’’ values

Jdd_mean = torch.mean( Jdd_vals , dim=1, keepdim=True)
Jdd_spread = Jdd_mean - Jdd_vals

loss_Jdd_spread = torch.mean( torch.abs( Jdd_spread ) )

return Jdd_vals , Tdd_vals , loss_Jdd_spread



The ACTIONFINDER 17

Listing 2. Pytorch pseudocode for the unit ResDense block.

class ResDense_block(torch.nn.Module ):
"""
The ResDense unit block.
This layer does not change the number of features.
"""

def __init__(self, nunits ):
super(). __init__ ()
"""
Declaration of the layers that will be used:
nunits is the number of features.
"""

self.nunits = nunits

self.dense1 = torch.nn.Linear(in_features=self.nunits , out_features= self.nunits , bias=False)
self.WN1 = torch.nn.utils.weight_norm(self.dense1)
self.dense2 = torch.nn.Linear(in_features=self.nunits , out_features= self.nunits)
self.WN2 = torch.nn.utils.weight_norm(self.dense2)

def forward(self, input):
"""
The computational graph (how the above layers are used):
"""

xx = torch.relu(input)
xx = self.dense1(xx)
xx = self.WN1(xx)

xx = torch.relu(xx)
xx = self.dense2(xx)
xx = self.WN2(xx)

output = xx + input

return output
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