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STABLE RECOVERY OF NON-COMPACTLY SUPPORTED ELECTROMAGNETIC

POTENTIALS IN UNBOUNDED DOMAIN

YAVAR KIAN AND YOSRA SOUSSI

Abstract. We consider the inverse problem of determining an electromagnetic potential appearing in an
infinite cylindrical domain from boundary measurements. More precisely, we prove the stable recovery of
some general class of magnetic field and electric potential from boundary measurements. Assuming some
knowledge of the unknown coefficients close to the boundary, we obtain also some results of stable recovery
with measurements restricted to some portion of the boundary. Our approach combines construction of
complex geometric optics solutions and Carleman estimates suitably designed for our stability results stated
in an unbounded domain.

Keywords : Inverse problems, elliptic equations, electromagnetic potential, Carleman estimate, unbounded
domain, closed waveguide, partial data.

Mathematics subject classification 2010 : 35R30, 35J15.

1. Introduction

1.1. Statement of the problem. Let Ω be an open set of R3 corresponding to a closed waveguide. More
precisely, we assume that there exists ω a C3 bounded, open and simply connected set of R2 such that
Ω = ω × R. For A ∈ W 1,∞(Ω)3, we define the magnetic Laplacian ∆A given by

∆A = ∆ + 2iA · ∇ + idiv(A) − |A|2.

For q ∈ L∞(Ω) such that 0 is not in the spectrum of of the operator −∆A+ q acting on L2(Ω) with Dirichlet
boundary condition, we can introduce the boundary value problem

{
(−∆A + q)u = 0, in Ω,

u = f, on Γ := ∂Ω.
(1.1)

Recall that Γ = ∂ω × R and that the outward unit normal vector ν to Γ takes the form

ν(x′, x3) = (ν′(x′), 0), x = (x′, x3) ∈ Γ,

where ν′ is the outward unit normal vector of ∂ω. In the present paper we consider the simultaneous
stable recovery of the magnetic field associated with A and the electric potential q from the full and partial
knowledge of the Dirichlet-to-Neumann (DN in short) map

ΛA,q : H
3
2 (∂Ω) −→ H

1
2 (∂Ω)

f 7−→ (∂ν + iA · ν)u|∂Ω,
(1.2)

where ∂ν is the normal derivative. Let Γ0 ⊂ ∂ω be an arbitrary open set. The restriction Λ′
A,q of ΛA,q on

Γ0 × R is defined by

Λ′
A,q : H

3
2 (∂Ω) −→ H

1
2 (Γ0 × R)

f 7−→ (∂ν + iA · ν)u|Γ0×R
.

(1.3)
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1.2. Motivations. The problem addressed in this article is connected with the electrical impedance tomog-
raphy (EIT in short) method as well as its applications in different scientific areas (e.g. medical imaging,
geophysical prospection...). We refer to [49] for a review of this problem. Our formulation of this problem
in an unbounded closed waveguide can be associated with problems of transmission to long distance or
transmission through structures having important ratio length-to-diameter (e.g. nanostructures). The main
objective of our study is to determine in a stable way an electromagnetic impurity perturbing the guided
propagation (see for instance in [9, 25]).

1.3. Known results. There have been many works so far devoted to the study of the Calderón problem
initially stated in [5]. The first positive answer to this problem can be found in [46] where the authors
used an approach based on the construction of complex geometric optics (CGO in short) solutions. We
refer also to [10, 20, 31] for some alternative constructions of CGO solutions. Motivated by this result,
many authors investigated several aspects of this problem. One of the first results devoted to the recovery
of electromagnetic potentials can be found in [45]. Here the authors stated a uniqueness result under a
smallness assumption of the associated magnetic field. This smallness assumption has been removed by [38]
for smooth coefficients and improved in terms of regularity by [35]. Since then, in [47], the author considered
magnetic potentials lying in C1, [41] treated the case of magnetic potentials lying in a Dini class and [35]
considered this problem with bounded electromagnetic potentials. One of the first results of stability for
this problem can be found in [48] and, without being exhaustive, we refer to [4, 8, 39, 40] for some recent
improvements of such results and to the works of [1, 6, 13, 36] for the stable recovery of several classes of
coefficients appearing in an elliptic equation.

All the above mentioned results are stated in a bounded domain. There have been only few works
devoted to the recovery of coefficients for elliptic equations in an unbounded domain. Among these results
several works have been devoted to the recovery of coefficients of an elliptic equation in a Slab (see e.g.
[7, 34, 37]) and we refer to the works [14, 15] for the recovery of periodic coefficients in an infinite waveguide.
As far as we know, the first results dealing with the unique recovery of general class of non-compactly
supported and non-periodic coefficients, appearing in an unbounded cylindrical domain, can be found in
[29, 30]. More recently, in [44] the author proved the stable recovery of an electric potential similar to the
class of coefficients under consideration in [29]. To the best of our knowledge, the results of [44] correspond
to the first proof of stable recovery of coefficients similar to those considered by [29] from full and partial
data. We mention also the works [2, 3, 12, 16, 26, 27, 32, 33] dealing with similar problems in a different
class of PDEs.

1.4. Statement of the main results. Taking into account the well known obstruction to the recovery of
the electromagnetic potentials (see e.g. [30, Section 1.4]), we study the stable recovery of the magnetic field
and the electric potential appearing in (1.1). More precisely, for A = (a1, a2, a3), we consider the recovery
of the magnetic field corresponding to the 2-form valued distribution dA defined by

dA :=
∑

16j<k63

(∂xjak − ∂xkaj)dxj ∧ dxk

and the electric potential q. In our first result, we prove the stable recovery of the magnetic field.

Theorem 1.1. For j = 1, 2, let Aj ∈ W 2,1(Ω)3 ∩W 2,∞(Ω)3 satisfy the condition

∂αxA1(x) = ∂αxA2(x), x ∈ ∂Ω, α ∈ N
3, |α| 6 1 (1.4)

and assume that 0 is not in the spectrum of the operator −∆Aj + qj acting in L2(Ω) with Dirichlet boundary

condition. Assume also that there exist M > 0, s ∈ (0, 1/2) and f ∈ L
5
3 (R+;R+) a decreasing function such
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that the following conditions are fulfilled
∫

Ω

〈x3〉s |A1(x) −A2(x)|dx +
∥
∥
∥r 7→ r

3
5 f(r)

∥
∥
∥
L

5
3 (1,+∞)

6M,

2∑

j=1

[‖Aj‖W 2,∞(Ω)3 + ‖Aj‖H2(Ω)3 + ‖qj‖L∞(Ω)] 6M,

(1.5)

|A1(x) −A2(x)| 6 f(|x|), x ∈ Ω. (1.6)

Then there exist C > 0 depending only on Ω, s, f and M and s1 ∈ (0, 1) depending only on s such that the
following estimate

‖dA1 − dA2‖L2(Ω) 6 C ln

(

3 + ‖ΛA1,q1 − ΛA2,q2 ‖
−1

B(H
3
2 (∂Ω),L2(∂Ω))

)−s1

(1.7)

holds true.

Assuming that the divergence of the magnetic potential under consideration is known, we prove also the
stable recovery of the electric potential.

Theorem 1.2. Let the condition of Theorem 1.1 and conditions (1.4)-(1.6) be fulfilled. Assume also that

div(A1) = div(A2). (1.8)

Moreover, let qj ∈ H1(Ω) ∩ L2(Ω), j = 1, 2, satisfy the following condition
∫

Ω

〈x3〉
s

|q1(x) − q2(x)|dx + ‖q1 − q2‖H1(Ω)3 6M, (1.9)

with s ∈ (0, 1). Then there exists a constant s2 > 0 depending only on s such that the following estimate

‖q1 − q2‖L2(Ω) 6 C ln

[

ln

(

e3 + ‖ΛA1,q1 − ΛA2,q2 ‖
−1

B(H
3
2 (∂Ω),L2(∂Ω))

)]−s2

(1.10)

holds true, with C > 0 depending only on Ω, s and M .

Now, we give two partial data results with restriction of the measurements to an arbitrary subset of
the boundary. The statement of these results requires some definitions and assumptions that we need to
recall first. Let W0 ⊂ ω be an arbitrary neighborhood of the boundary ∂ω such that ∂W0 = ∂ω ∪ Γ♯ with
∂ω ∩ Γ♯ = ∅. We assume that Γ♯ is C2. Let Γ0 ⊂ ∂ω ⊂ ∂W0 be an arbitrary (not empty) open set of ∂ω
and let O0 = W0 × R. For a given M > 0, we introduce the admissible sets of coefficients

A(M,A0,O0) = {A ∈ C2(Ω,R3); ‖A‖C2(Ω) 6M and A = A0 in O0},

Q(M, q0,O0) = {q ∈ L∞(Ω,R3); ‖q‖L∞(Ω) 6M and q = q0 in O0}.

Theorem 1.3. For j = 1, 2, let qj ∈ Q(M, q0,O0) and let Aj ∈ A(M,A0,O0) satisfy the conditions of
Theorem 1.1. Then there exist C > 0 depending only on Ω, s and M and s1 depending only on s such that
the following estimate

‖dA1 − dA2‖L2(Ω) 6 C ln
(

3 +
∥
∥Λ′

A1,q1
− Λ′

A2,q2

∥
∥

−1

B(H
3
2 (∂Ω),H

1
2 (Γ0×R))

)−s1

(1.11)

holds true.

Theorem 1.4. For j = 1, 2, let Aj ∈ A(M,A0,O0) and qj ∈ Q(M, q0,O0) satisfy the conditions of Theorem
1.2. Then there exists a constant s2 > 0 depending only on s such that the following estimate

‖q1 − q2‖L2(Ω) 6 C ln
[

ln
(

e3 +
∥
∥Λ′

A1,q1
− Λ′

A2,q2

∥
∥

−1

B(H
3
2 (∂Ω),H

1
2 (Γ0×R))

)]−s2

(1.12)

holds true, with C > 0 depending only on Ω, s and M .
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To the best of our knowledge Theorem 1.1 and 1.2 correspond to the first results of stable recovery
of the magnetic field and the electric potential associated with non-compactly supported electromagnetic
potentials from boundary measurements. Indeed, while the uniqueness of this problem can be found in [30],
the stability issue for this problem has not been treated so far. We mention that in contrast to bounded
domains, in unbounded domains the transition from a uniqueness result to a stability estimate requires
some careful analysis and one has to deal with several difficulties strongly related to the lost of compactness
of the closure of the domain. For instance, in order to obtain such stability estimates we need to impose
the extra assumptions (1.5)-(1.6) and (1.9) to the electromagnetic potentials under consideration. Roughly
speaking conditions (1.5)-(1.6) and (1.9) claim that the difference of the electromagnetic potentials under
consideration admit some decay at infinity. It is not clear how one can get a stability result associated with
the results of [30] without assuming such extra assumptions.

In the spirit of [4], in Theorem 1.3 we treat the stable recovery of electromagnetic potentials that are
known close to the boundary from some suitable sub-boundary of ∂Ω. Our approach requires both results of
Theorem 1.1 and 1.2 and some extension of the arguments of [4] to an unbounded cylindrical domain. This
includes a weak unique continuation result, stated in Lemma 4.1, that we derive for unbounded cylindrical
domains.

In contrast to similar results stated in bounded domains (see e.g. [48]), in Theorem 1.2 we assume the
knowledge of the divergence of the magnetic potentials under consideration in order to prove the recovery
of the electric potentials. This is related to the fact that, in contrast to bounded domains, it is not clear
how one can exploit the gauge invariance associated with our problem, introduced in [30, Section 1.4], for
showing the stable recovery of the electric potential without assuming the knowledge of the divergence of
the magnetic potential.

1.5. Outlines. This paper is organized as follows. In Section 2 we introduce some class of CGO solutions,
suitably designed for our problem, that we build by mean of Carleman estimates. In Section 3, we complete
the proof of the results with full boundary measurements stated in Theorem 1.1 and 1.2. Section 4 will be
devoted to the results stated in Theorem 1.3 using partial boundary measurements. Finally, in the appendix
we prove several intermediate results including an interpolation result, a Carleman estimate and a weak
unique continuation property.

2. CGO solutions

In this section we introduce a class of CGO solutions suitably designed for our problem stated in an
unbounded domain for magnetic Schrödinger equations. More precisely, we consider CGO solutions uj ∈
H2(Ω1), j = 1, 2, satisfying ∆A1u1 + q1u1 = 0, ∆A2u2 + q2u2 = 0 in Ω for Aj ∈ W 1,∞(Ω)3 ∩ H2(Ω)3 and
qj ∈ L∞(Ω) satisfying (1.4)-(1.6). In a similar way to [29, 30], we consider first θ ∈ S1 := {y ∈ R2 : |y| = 1},
ξ′ ∈ θ⊥ \ {0}, with θ⊥ := {y ∈ R2 : y · θ = 0}, ξ := (ξ′, ξ3) ∈ R3, with ξ3 6= 0. Then, we define
η ∈ S2 := {y ∈ R3 : |y| = 1} by

η =
(ξ′,− |ξ′|2

ξ3
)

√

|ξ′|2 + |ξ′|4

ξ2
3

.

Clearly, we have

η · ξ = (θ, 0) · ξ = (θ, 0) · η = 0. (2.13)

We fix also ψ ∈ C∞
0 ((−2, 2); [0, 1]) satisfying ψ = 1 on [−1, 1] and, for ρ > 1, we introduce solutions

uj ∈ H2(Ω) of ∆A1u1 + q1u1 = 0, ∆A2u2 + q2u2 = 0 in Ω of the form

u1(x′, x3) = eρθ·x′
(

ψ
(

ρ− 1
4x3

)

b1e
iρx·η−iξ·x + w1,ρ(x

′, x3)
)

, x′ ∈ ω, x3 ∈ R, (2.14)

u2(x′, x3) = e−ρθ·x′
(

ψ
(

ρ− 1
4 x3

)

b2e
iρx·η + w2,ρ(x

′, x3)
)

, x′ ∈ ω, x3 ∈ R. (2.15)
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Here, for j = 1, 2, bj ∈ W 2,∞(Ω) and the remainder term wj,ρ ∈ H2(Ω) satisfies the decay property

ρ−1 ‖w1,ρ‖H2(Ω) + ‖w1,ρ‖H1(Ω) + ρ ‖w1,ρ‖L2(Ω) 6 C(|ξ|2 + 1)

(

1 +
|ξ′|

|ξ3|

)

ρ
7
8 ,

ρ−1 ‖w2,ρ‖H2(Ω) + ‖w2,ρ‖H1(Ω) + ρ ‖w2,ρ‖L2(Ω) 6 C

(

1 +
|ξ′|

|ξ3|

)

ρ
7
8 ,

(2.16)

with C > 0 depending on Ω and ‖Aj‖W 1,∞(Ω)3 + ‖qj‖L∞(Ω), j = 1, 2. We summarize this construction as

follows.

Theorem 2.1. For j = 1, 2 and for all ρ > ρ2, with ρ2 the constant of Proposition 2.4, the equations
∆A1u1 + q1u1 = 0 and ∆A2u2 + q2u2 = 0 admit a solution uj ∈ H2(Ω) of the form (2.14)-(2.15) with wj,ρ
satisfying the decay property (2.16).

2.1. Principal parts of the CGO. In this section, we consider Aj ∈ W 2,∞(Ω)3, j = 1, 2 satisfying (1.4).
From now on, for all r > 0, we define Br := {x ∈ R3 : |x| < r} and B′

r := {x′ ∈ R2 : |x′| < r}. In order to
define bj, j = 1, 2, we start by introducing a suitable extension of the coefficients Aj , j = 1, 2. Following [3,

Lemma 3.1.], we define Ãj ∈ W 2,∞(R3)3, j = 1, 2, and we fix r0 > 0 such that

Ãj(x) = Aj(x), x ∈ Ω

supp(Ãj) ⊂ B′
r0

× R

Ã1(x) = Ã2(x), x ∈ R
3 \ Ω

∥
∥Ãj

∥
∥
W 2,∞(R3)3 6 C(‖A1‖W 2,∞(Ω)3 + ‖A2‖W 2,∞(Ω)3 ),

(2.17)

with C > 0 depending only on Ω. Here r0 will only depends on Ω.
Following [30], we fix θ̃ = (θ, 0) ∈ R3 and we define

Φ1(x) :=
−i

2π

∫

R2

(θ̃ + iη) · Ã1(x − s1θ̃ − s2η)

s1 + is2
ds1ds2,

Φ2(x) :=
−i

2π

∫

R2

(−θ̃ + iη) · Ã2(x+ s1θ̃ − s2η)

s1 + is2
ds1ds2.

(2.18)

According to [30], one can check that Φj ∈ W 2,∞(Ω). Assuming that condition (1.6) is fulfilled, we can even
prove the following estimates.

Lemma 2.2. Assume that condition (1.6) is fulfilled. Then, for all R > r0, there exists C > 0 depending
on Ω and R such that the following estimates

‖Φ1‖W 2,∞(B′
R

×R) + ‖Φ2‖W 2,∞(B′
R

×R) 6 C(‖A1‖W 2,∞(Ω)3 + ‖A2‖W 2,∞(Ω)3 )

(

1 +
|ξ′|

|ξ3|

)

, (2.19)

∥
∥Φ1 + Φ2

∥
∥
L∞(R3)

6 C
(

‖A1‖L∞(Ω) + ‖A2‖L∞(Ω) + ‖r 7→ rf(r)‖
L

5
3 (1,+∞)

)

, (2.20)

hold true.

Proof. We will prove the estimate (2.19) only for Φ1, the proof for Φ2 being similar. For this purpose, we
fix R > r0. For α ∈ Nn, |α| 6 2, we have

|∂αxΦ1(x)| 6
1

2π

∫

R2

|∂αx Ã1(x− s1θ̃ − s2η)|

|s1 + is2|
ds1ds2.

On the other hand, using the fact that supp(Ã1) ⊂ B′
r0

× R, one can check that, for all x ∈ B′
R × R, we get

|∂αx Ã1(x− s1θ̃ − s2η)| = 0, |(s1, s2)| >
2R

|(η1, η2)|
, x ∈ Ω,
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where η = (η1, η2, η3). It follows that

|∂αxΦ1(x)| 6
1

2π

∥
∥Ã1

∥
∥
W 2,∞(R3)3

(
∫

|(s1,s2)|6 2R
|(η1,η2)|

1

|s1 + is2|
ds1ds2

)

6 C
∥
∥Ã1

∥
∥
W 2,∞(R3)3 |(η1, η2)|−1.

(2.21)

Recalling that

(η1, η2) =
ξ′

√

|ξ′|2 + |ξ′|4

ξ2
3

and applying (2.17), we deduce (2.19) from (2.21).
Now let us consider (2.20). Let us first observe that, according to (2.17), we have

Φ1(x) + Φ2(x) =
−i

2π

∫

R2

(θ̃ + iη) · A(x− s1θ̃ − s2η)

s1 + is2
ds1ds2,

where A = A1 −A2 is extended by zero to R3. Therefore, applying (1.6) and the fact that f is a decreasing
function, we deduce that

|Φ1(x) + Φ2(x)|

6 C

(

(‖A1‖L∞(Ω) + ‖A2‖L∞(Ω))

∫

B′
1

1

|s1 + is2|
ds1ds2 +

∫

R2\B′
1

|f(|x− s1θ̃ − s2η|)|

|s1 + is2|
ds1ds2

)

6 C



‖A1‖L∞(Ω) + ‖A2‖L∞(Ω) +

(
∫

R2\B′
1

|f(|x− s1θ̃ − s2η|)|
5
3 ds1ds2

) 3
5
(
∫

R2\B′
1

|s1 + is2|−
5
2 ds1ds2

) 2
5





6 C

(

‖A1‖L∞(Ω) + ‖A2‖L∞(Ω) +

(∫

R2

|f(|(x · ξ)
ξ

|ξ|
+ s1θ̃ + s2η|)|

5
3 ds1ds2

) 3
5

)

6 C

(

‖A1‖L∞(Ω) + ‖A2‖L∞(Ω) +

(∫

R2

|f(|s1θ̃ + s2η|)|
5
3 ds1ds2

) 3
5

)

6 C

(

‖A1‖L∞(Ω) + ‖A2‖L∞(Ω) +

(∫

S1

∫ +∞

1

r|f(r)|
5
3 drdω1

) 3
5

)

6 C

(

‖A1‖L∞(Ω) + ‖A2‖L∞(Ω) +
∥
∥
∥r 7→ r

3
5 f(r)

∥
∥
∥
L

5
3 (1,+∞)

)

.

This completes the proof of the lemma. �

Fixing

b1(x) = eΦ1(x), b2(x) = eΦ2(x), (2.22)

we obtain

(θ̃ + iη) · ∇b1 + i[(θ̃ + iη) · Ã1(x)]b1 = 0, (−θ̃ + iη) · ∇b2 + i[(−θ̃ + iη) · Ã2(x)]b2 = 0, x ∈ R
3. (2.23)

Here, using the fact that ω ⊂ B′
r0

, we obtain

‖bj‖W 2,∞(B′
r0+1×R) 6 C(‖A1‖W 2,∞(Ω)3 + ‖A2‖W 2,∞(Ω)3 )

(

1 +
|ξ′|

|ξ3|

)

, j = 1, 2. (2.24)

Using these properties of the expressions bj, j = 1, 2, we will complete the construction of the solutions
uj of the form (2.14)-(2.15). For this purpose, we will use some suitable Carleman estimates which will
extend the one introduced in [30] (see also [18, 43]).
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2.2. General Carleman estimate. Let us first introduce a weight function depending on two parameters
s, ρ ∈ (1,+∞) with ρ > s > 1. Following [30, Section 2.1], for θ ∈ S2 we consider the perturbed weight

ϕ±,s(x
′, x3) := ±ρθ · x′ − s

(x′ · θ)2

2
, x = (x′, x3) ∈ Ω. (2.25)

We introduce also the weighted operator

PA,q,±,s := e−ϕ±,s(∆ + 2iA · ∇ + q)eϕ±,s .

Then we can consider the following Carleman estimate.

Proposition 2.3. (Proposition 2.1, [30]) Let A ∈ L∞(Ω)3 ∩ L∞(Ω)3 and q ∈ L∞(Ω). Then there exist
s1 > 1 and, for s > s1, ρ1(s) such that for any v ∈ H2(Ω) ∩H1

0 (Ω1) the estimate

ρ

∫

∂ω±,θ×R

|∂νv|2|θ · ν|dσ(x) + sρ−2

∫

Ω1

|∆v|2dx+ s

∫

Ω1

|∇v|2dx + sρ2

∫

Ω1

|v|2dx

6 C

[

‖PA,q,±,sv‖2
L2(Ω1) + ρ

∫

∂ω∓,θ×R

|∂νv|2|θ · ν|dσ(x)

] (2.26)

holds true for s > s1, ρ > ρ1(s) with C depending only on Ω and ‖q‖L∞(Ω) + ‖A‖L∞(Ω)3 .

In this subsection we will apply Proposition 2.3 in order to derive Carleman estimates in negative
order Sobolev space required for the construction of the CGO solutions. For this purpose, we recall some
preliminary tools. Following [28, 30] (see also [18, 43]), for all m ∈ R, we consider the space Hm

ρ (R3) defined
by

Hm
ρ (R3) = {u ∈ S′(R3) : (|ξ|2 + ρ2)

m
2 û ∈ L2(R3)},

with the norm

‖u‖2
Hmρ (R3) =

∫

R3

(|ξ|2 + ρ2)m|û(ξ)|2dξ.

In the above formula, for all tempered distribution u ∈ S′(R3), û denotes the Fourier transform of u which,
for u ∈ L1(R3), corresponds to

û(ξ) := Fu(ξ) := (2π)− 3
2

∫

R3

e−ix·ξu(x)dx.

From now on, for m ∈ R and ξ ∈ R3, we fix

〈ξ, ρ〉 = (|ξ|2 + ρ2)
1
2

and 〈Dx, ρ〉
m
u given by

〈Dx, ρ〉m u = F−1(〈ξ, ρ〉m Fu).

For m ∈ R we introduce also the class of symbols

Smρ = {cρ ∈ C∞(R3 × R
3) : |∂αx ∂

β
ξ cρ(x, ξ)| 6 Cα,β 〈ξ, ρ〉

m−|β|
, α, β ∈ N

3}.

In light of [21, Theorem 18.1.6], for any m ∈ R and cρ ∈ Smρ , we define cρ(x,Dx), with Dx = −i∇, by

cρ(x,Dx)y(x) = (2π)− 3
2

∫

R3

cρ(x, ξ)ŷ(ξ)eix·ξdξ, y ∈ S(R3).

For all m ∈ R, we set also OpSmρ := {cρ(x,Dx) : cρ ∈ Smρ } and

OpS−∞
ρ =

⋂

m<0

OpSmρ .

We introduce also

PA,q,± := e∓ρx′·θ(∆A + q)e±ρx′·θ.
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According to [30, Proposition 2.4], there exists C > 0, ρ∗ > 1, depending only on Ω and ‖q‖L∞(Ω)) +

‖A‖L∞(Ω)3 , such that, for all v ∈ C∞
0 (Ω1), the following estimate

ρ−1 ‖v‖H−1
ρ (R3) 6 C ‖PA,q,±v‖H−1

ρ (R3) , ρ > ρ∗,

holds true. Using this estimate we can build CGO solutions lying in H1(Ω). However, in order to improve
the smoothness of our CGO solutions into functions lying in H2(Ω), we will consider the following extension
of [30, Proposition 2.4].

Proposition 2.4. Let A ∈ W 1,∞(Ω)3 and q ∈ L∞(Ω). Then, there exists ρ2 > 1, depending only on Ω and
‖q‖L∞(Ω) + ‖A‖W 1,∞(Ω)3 , such that for all v ∈ C∞

0 (Ω) we have

ρ−1 ‖v‖L2(R3) 6 C ‖PA,q,±v‖H−2
ρ (R3) , ρ > ρ2, (2.27)

with C > 0 depending on Ω and ‖q‖L∞(Ω) + ‖A‖W 1,∞(Ω)3 .

Proof. Without loss of generality, we will only show this result for PA,q,+v. We fix

SA,q,+,s := e−ϕ+,s(∆A + q)eϕ+,s

and we split SA,+,s into three terms

SA,q,+,s = P1 + P2 + P3,

where we recall that

P1 = ∆ + ρ2 − 2sρ(x′ · θ) + s2(x′ · θ)2 + s, P2 = 2(ρ− s(x′ · θ))θ · ∇ − 2s,

P3 = 2iA · ∇ + 2iA · ∇ϕ+,s + q − |A|2 + idiv(A) = 2iA · ∇ + 2(ρ− s(x′ · θ))iA′ · θ + q − |A|2 + idiv(A).

We choose ω̃ a bounded C2 open set of R2 such that ω ⊂ ω̃ and we extend the function A and q to R3 with
q = 0 on R3 \ Ω and A ∈ W 1,∞(R3)3 satisfying

‖A‖W 1,∞(R3)3 6 C ‖A‖W 1,∞(Ω)3 ,

where C > 0 depends only on Ω. We consider also Ω̃ = ω̃ × R. We prove first the following the estimate

ρ−1 ‖v‖L2(R3) 6 C ‖SA,q,+,sv‖H−2
ρ (R3) , v ∈ C∞

0 (Ω1). (2.28)

For this purpose, we set w ∈ H4(R3) such that supp(w) ⊂ Ω̃ and we consider

〈Dx, ρ〉
−2

(P1 + P2) 〈Dx, ρ〉
2
w.

In all this proof C > 0 denotes a constant depending on Ω and ‖A‖W 1,∞(Ω)3 + ‖q‖L∞(Ω). According to the

properties of composition of pseudoddifferential operators (e.g. [21, Theorem 18.1.8]), we have

〈Dx, ρ〉
−2

(P1 + P2) 〈Dx, ρ〉
2

= P1 + P2 +Rρ(x,Dx), (2.29)

where Rρ is defined by

Rρ(x, ξ) = ∇ξ 〈ξ, ρ〉−2 ·Dx(p1(x, ξ) + p2(x, ξ)) 〈ξ, ρ〉2 + o
〈ξ,ρ〉→+∞

(1),

with

p1(x, ξ) = −|ξ|2 +ρ2 −2sρ(x′ ·θ)+s2(x′ ·θ)2 +s, p2(x, ξ) = 2i[ρ−s(x′ ·θ)]θ ·ξ′ −2s, ξ = (ξ′, ξ3) ∈ R
2 ×R.

Therefore, one can check that

‖Rρ(x,Dx)w‖L2(R3) 6 Cs2 ‖w‖L2(R3) . (2.30)

Moreover, in view of (2.26) applied to w, with Ω replaced by Ω̃ and A = 0, q = 0, we obtain

‖P1w + P2w‖L2(R3) > C
(

s1/2ρ−1 ‖∆w‖L2(R3) + s1/2 ‖∇w‖L2(R3) + s1/2ρ ‖w‖L2(R3)

)

.
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Combining this with (2.29)-(2.30) and choosing ρ
s2 sufficiently large, we get

∥
∥
∥(P1 + P2) 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

=
∥
∥
∥〈Dx, ρ〉

−2
(P1 + P2) 〈Dx, ρ〉

2
w
∥
∥
∥
L2(R3)

> Cs1/2
(

ρ−1 ‖∆w‖L2(R3) + ‖∇w‖L2(R3) + ρ ‖w‖L2(R3)

)

.

Meanwhile, since w ∈ H2(Ω̃) ∩H1
0 (Ω̃), the elliptic regularity (e.g. [12, Lemma 2.2]) implies

‖w‖H2(R3) = ‖w‖H2(Ω̃) 6 C(‖∆w‖L2(Ω̃) + ‖w‖L2(Ω̃)).

In view of the previous estimate, for s sufficiently large, we have
∥
∥
∥(P1 + P2) 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

> Cs
1
2 ρ−1 ‖w‖H2

ρ (R3) . (2.31)

In addition, we find
∥
∥
∥P3 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

6

∥
∥
∥[2i(ρ− s(x′ · θ))A · θ + (q − |A|2)] 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

+ 2
∥
∥
∥A · ∇ 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

+
∥
∥
∥idiv(A) 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

.

(2.32)

For the first term on the right hand side of this inequality, we have
∥
∥
∥[2i(ρ− s(x′ · θ))A · θ + (q − |A|2)] 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

6 ρ−2
∥
∥
∥[2i(ρ− s(x′ · θ))A · θ + (q − |A|2)] 〈Dx, ρ〉

2
w
∥
∥
∥
L2(R3)

6 ρ−1C
∥
∥
∥〈Dx, ρ〉

2
w
∥
∥
∥
L2(R3)

6 Cρ−1 ‖w‖H2
ρ(R3) ,

(2.33)
with C depending only on ‖A‖W 1,∞(Ω1)3 + ‖q‖L∞(Ω1). For the second term on the right hand side of (2.32),
we get

∥
∥
∥A · ∇ 〈D, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

6 ρ−1
∥
∥
∥A · ∇ 〈Dx, ρ〉

2
w
∥
∥
∥
H−1(R3)

6 ρ−1 ‖A‖W 1,∞(Ω1)3

∥
∥
∥∇ 〈D, ρ〉

2
w
∥
∥
∥
H−1(R3)

6 ρ−1 ‖A‖W 1,∞(Ω1)3 ‖w‖H2
ρ (R3) .

(2.34)

Finally, for the last term on the right hand side of (2.32), we find
∥
∥
∥idiv(A) 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

6 ρ−2
∥
∥
∥idiv(A) 〈Dx, ρ〉

2
w
∥
∥
∥
L2(R3)3

6 3ρ−1 ‖A‖W 1,∞(Ω1)3 ‖w‖H2
ρ(R3)) .

(2.35)

Combining the estimates (2.32)-(2.35), we obtain
∥
∥
∥P3 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

6 Cρ−1 ‖w‖H2
ρ(R3)

and applying (2.31) for s > 1 sufficiently large, we have
∥
∥
∥RA,q,+,s 〈Dx, ρ〉

2
w
∥
∥
∥

2

H−2
ρ (R3)

> Cs
1
2 ρ−1 ‖w‖H2

ρ (R3) . (2.36)
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Now let us fix ωj, j = 1, 2 two open subsets of ω̃ such that ω ⊂ ω1, ω1 ⊂ ω2 and ω2 ⊂ ω̃. We consider

ψ0 ∈ C∞
0 (ω̃) satisfying ψ0 = 1 on ω2, v ∈ C∞

0 (Ω), w(x′, x3) = ψ0(x′) 〈Dx, ρ〉
−2
v(x′, x3) and ψ1 ∈ C∞

0 (ω1)
satisfying ψ1 = 1 on ω. Then, we have

(1 − ψ0) 〈Dx, ρ〉
−1
v = (1 − ψ0) 〈Dx, ρ〉

−2
ψ1v,

where ψ1v := (x′, x3) 7→ ψ1(x′)v(x′, x3). In view of to [21, Theorem 18.1.8], using the fact that 1 − ψ0 is

vanishing in a neighborhood of supp(ψ1), we have (1 − ψ0) 〈Dx, ρ〉−1 ψ1 ∈ OpS−∞
ρ and we get

ρ−1 ‖v‖L2(R3) = ρ−1
∥
∥
∥〈Dx, ρ〉

−2
v
∥
∥
∥
H2
ρ(R3)

6 ρ−1 ‖w‖H2
ρ(R3) + ρ−1

∥
∥
∥(1 − ψ0) 〈Dx, ρ〉

−2
ψ1v

∥
∥
∥
H2
ρ(R3)

6 ρ−1 ‖w‖H2
ρ(R3) +

C ‖v‖L2(R3)

ρ2
.

In the same way, we obtain

‖PA,−,sv‖H−2
ρ (R3) >

∥
∥
∥PA,−,s 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

−
∥
∥
∥PA,−,s 〈Dx, ρ〉

2
(1 − ψ0) 〈Dx, ρ〉

−2
ψ1v

∥
∥
∥
H−1
ρ (R3)

>

∥
∥
∥PA,−,s 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

− C
∥
∥
∥(1 − ψ0) 〈Dx, ρ〉

−2
ψ1v

∥
∥
∥
H2
ρ (R3)

>

∥
∥
∥PA,−,s 〈Dx, ρ〉

2
w
∥
∥
∥
H−2
ρ (R3)

−
C ‖v‖L2(R1+n)

ρ2
.

Combining these estimates with (2.36), we deduce that (2.28) holds true for a sufficiently large value of ρ.
Then, fixing s, we deduce (2.27). �

2.3. Remainder term of the CGO solutions. In this subsection we will construct the remainder term
wj,ρ, j = 1, 2, appearing in (2.14)-(2.15) and satisfying the decay property (2.16). For this purpose, we
will combine the Carleman estimate (2.27) with the properties of the expressions bj , j = 1, 2, in order to
complete the construction of these solutions. In this subsection, we assume that ρ > ρ2 with ρ2 the constant
introduced in Proposition 2.4 and we fix Aj ∈ (W 2,∞(Ω))3, j = 1, 2, satisfying (1.4)-(1.5). The proof for the
existence of the remainder term w1,ρ and w2,ρ being similar, we will only show the existence of w1,ρ. Let us
first remark that w1,ρ should be a solution of the equation

PA1,q1,+w = e−ρθ·x′

(−∆Ã1
+ q1)eρθ·x′

w = eiρη·xF1,ρ(x), x ∈ Ω, (2.37)

with F1,ρ defined, for all x = (x′, x3) ∈ B′
r0+1 × R (we recall that B′

r = {x′ ∈ R2 : |x′| < r}), by

F1,ρ(x) = −e−ρθ·x′−iρη·x(∆Ã1
+ q1)

[

eρθ·x′+iρη·xψ
(

ρ− 1
4 x3

)

b1e
−iξ·x

]

= −
(

(|ξ|2 + q1)ψ
(

ρ− 1
4x3

)

− 2iη3ρ
3
4ψ′

(

ρ− 1
4 x3

)

− 2iξ3ρ
− 1

4ψ′
(

ρ− 1
4x3

))

b1e
−iξ·x

−
[

−ρ− 1
2ψ′′

(

ρ− 1
4x3

)

b1 − 2∂x3b1ρ
− 1

4ψ′
(

ρ− 1
4 x3

)

+ [i2ξ · ∇b1 − ∆Ã1
b1]ψ

(

ρ− 1
4 x3

)]

e−iξ·x.

(2.38)
Here we have used (2.23) and we consider q1 as a function extended by zero to R3. We fix ϕ ∈ C∞

0 (B′
r0+1; [0, 1])

satisfying ϕ = 1 on B′
r0+ 1

2

, and we define

Gρ(x
′, x3) := ϕ(x′)F1,ρ(x

′, x3), x′ ∈ R
2, x3 ∈ R.

It is clear that Gρ ∈ L2(R3) and in view of (2.19) and the fact that
∥
∥
∥ψ
(

ρ− 1
4x3

)∥
∥
∥
L2(B′

r0+1×R)
+
∥
∥
∥ψ′

(

ρ− 1
4x3

)∥
∥
∥
L2(B′

r0+1×R)
+
∥
∥
∥ψ′′

(

ρ− 1
4 x3

)∥
∥
∥
L2(B′

r0+1×R)
6 Cρ

1
8 ,
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we deduce that

‖Gρ‖L2(R3) 6 C(|ξ|2 + 1)

(

1 +
|ξ′|

|ξ3|

)

ρ
7
8 , (2.39)

with C > 0 depending on Ω and M . From now on we denote by C > 0 a constant depending only on Ω and
M that may change from line to line. Applying (2.27), we will complete the construction of the remainder
term w1,ρ by using a classical duality argument. More precisely, applying (2.27), we consider the linear form
Tρ defined on Q := {PA1,q1,−w : w ∈ C∞

0 (Ω)} by

Tρ(PA1,q1,−v) := 〈Gρ, e−iρη·xv〉H−2
ρ (R3),H2

ρ(R3), v ∈ C∞
0 (Ω).

Here and from now on we define the duality bracket 〈·, ·〉H−2
ρ (R3),H2

ρ(R3) in the complex sense, which means

that

〈v, w〉H−2
ρ (R3),H2

ρ(R3) = 〈v, w〉L2(R3) =

∫

R3

vwdx, v ∈ L2(R3), w ∈ H2(R3).

Applying again (2.27), for all v ∈ C∞
0 (Ω), we obtain

|Tρ(PA1,q1,−v)| 6 ‖Gρ‖L2(R3)

∥
∥e−iρη·xv

∥
∥
L2(R3)

6 Cρ ‖Gρ‖L2(R3) ρ
−1 ‖v‖L2(R3)

6 Cρ ‖Gρ‖L2(R3) ‖PA1,q1,−v‖H−2
ρ (R3) ,

with C > 0 depending on Ω and ‖q1‖L∞(Ω) + ‖A1‖W 1,∞(Ω)3 . Thus, applying the Hahn-Banach theorem,

we deduce that Tρ admits an extension as a continuous linear form on H−2
ρ (R3) whose norm will be upper

bounded by Cρ ‖Gρ‖L2(R3). Therefore, there exists w1,ρ ∈ H2
ρ(R3) such that

〈PA1,q1,−v, w1,ρ〉H−2
ρ (R3),H2

ρ(R3) = Tρ(PA1,q1,−v) = 〈Gρ, e−iρη·xv〉H−1
ρ (R3),H1

ρ(R3), v ∈ C∞
0 (Ω), (2.40)

‖w1,ρ‖H2
ρ(R3) 6 Cρ ‖Gρ‖L2(R3) . (2.41)

From (2.40) and the fact that, for all x ∈ Ω, Gρ(x) = F1,ρ(x), we obtain

〈PA1,q1,+w1,ρ, v〉D′(Ω),C∞
0 (Ω) =

〈
eiρη·xF1,ρ, v

〉

D′(Ω),C∞
0 (Ω)

.

It follows that w1,ρ solves PA1,q1,+w1,ρ = eiρη·xF1,ρ in Ω and u1 given by (2.14) is a solution of ∆A1u+q1u = 0
in Ω lying in H2(Ω). In addition, from (2.41), we deduce that

ρ−1 ‖w1,ρ‖H2(Ω) + ‖w1,ρ‖H1(Ω) + ρ ‖w1,ρ‖L2(Ω) 6 C(|ξ|2 + 1)

(

1 +
|ξ′|

|ξ3|

)

ρ
7
8

which implies the decay property (2.16). This completes the proof of Theorem 2.1.

3. Stability results on the whole boundary

This section is devoted to the proof of our results with full boundary measurements stated in Theorem
1.1 and 1.2.

3.1. Recovery of the magnetic field. In this subsection we will prove Theorem 1.1. In all this proof C
and c will be two positive constants depending only on Ω and M that may change from line to line.

For j = 1, 2, we fix uj ∈ H2(Ω) a solution of ∆A1u1 + q1u1 = 0, ∆A2u2 + q2u2 = 0 in Ω of the form
(2.14)-(2.15) with ρ > ρ2 and with wj,ρ satisfying (2.16). These solutions satisfy the following property

Lemma 3.1. There exists C > 0 such that the following estimates

‖u1‖H2(Ω) 6 Ce(D+1)ρ

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

,

‖u2‖H2(Ω) 6 Ce(D+1)ρ

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

,



12 YAVAR KIAN AND YOSRA SOUSSI

hold true for any solutions u1 and u2 given by (2.14) and (2.15).
Here D := sup

x′∈ω
|x′|.

Proof. Using the expression of u1, we can easily deduce that

‖u1‖L2(Ω) 6 ‖eρθ·x′

‖L∞(Ω)‖ψ
(
ρ− 1

4x3

)
b1e

iρη·x−iξ·x + w1,ρ(x
′, x3)‖L2(Ω).

Setting D := sup
x′∈ω

|x′| and using (2.16) and (2.24), we get

‖u1‖L2(Ω) 6 CeDρ
(

ρ
1
8 ‖A1‖W 2,∞(Ω)3

(

1 +
|ξ′|

|ξ3|

)

+ ρ− 1
8

(

1 + |ξ|2
)(

1 +
|ξ′|

|ξ3|

))

6 Ce(D+1)ρ

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

.

By simple computations of ∇u1 and ∂xi∂xj , for i, j = 1, 2, 3 and by the same arguments used previously, we
obtain

‖∇u1‖L2(Ω) 6 eDρ
(

(ρ+ |ξ|)‖ψ
(
ρ− 1

4 x3

)
b1‖L2(Ω) + ‖ψ

(
ρ− 1

4x3

)
∇b1‖L2(Ω) + ρ− 1

4 ‖ψ′
(
ρ− 1

4 x3b1

)
‖L2(Ω)

+ ρ‖w1,ρ‖L2(Ω) + ‖∇w1,ρ‖L2(Ω)

)

6 Ce(D+1)ρ

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

and

‖∂xi∂xju1‖L2(Ω) 6 eDρ
(

(ρ+ |ξ|)2‖ψ
(
ρ− 1

4 x3

)
b1‖L2(Ω) + ρ− 1

4 (ρ+ |ξ|)‖ψ′
(
ρ− 1

4x3

)
b1‖L2(Ω)

+ (ρ+ |ξ|)‖ψ
(
ρ− 1

4x3

)
∇b1‖L2(Ω) + ρ− 1

4 ‖ψ′
(
ρ− 1

4 x3

)
∇b1‖L2(Ω) + ‖ψ

(
ρ− 1

4 x3

)
∂xi∂xjb1‖L2(Ω)

+ ρ− 1
2 ‖ψ′′

(
ρ− 1

4 x3

)
b1‖L2(Ω) + ρ2‖w1,ρ‖L2(Ω) + ρ‖∇w1,ρ‖L2(Ω) + ‖∂xi∂xjw1,ρ‖L2(Ω)

)

6 Ce(D+1)ρ

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

In the same way, we get

‖u2‖L2(Ω) 6 Ce(c+1)ρ

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

and

‖u2‖H2(Ω) 6 Ce(c+1)ρ

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

.

This completes the proof. �

Fixing q = q1 − q2 extended by zero to an element of L∞(R3) and applying a classical integration by
parts argument, we deduce the following identity

〈(ΛA1,q1 − ΛA2,q2 )u1, u2〉L2(∂Ω) = i

∫

R3

(A · ∇u1)u2dx − i

∫

R3

u1(A · ∇u2)dx+

∫

R3

q̃u1u2dx, (3.42)

where q̃ = |A2|2 − |A1|2 + q.
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By simple computations, we get

∇u1u2 − u1∇u2

= 2ρ(
∼

θ + iη)ψ
(

ρ− 1
4 x3

)2

b1b2e
−ix·ξ + ρ(2

∼

θ + iη)ψ
(

ρ− 1
4 x3

) (
b1e

iρx·η−iξ·xw2,ρ + b2e
−iρx·ηw1,ρ

)

− iξψ
(

ρ− 1
4x3

)

b1

(

ψ
(

ρ− 1
4x3

)

b2e
−ix·ξ + eiρx·η−iξ·xw2,ρ

)

+ ψ
(

ρ− 1
4x3

)2

e−ix·ξ
(
b2∇b1 − b1∇b2

)

+ ψ
(

ρ− 1
4x3

) [
eiρx·η−iξ·x (∇b1w2,ρ − b1∇w2,ρ) + e−iρx·η

(
b2∇w1,ρ − ∇b2w1,ρ

)]

+ ρ− 1
4 ∂x3ψ

(

ρ− 1
4 x3

) (
b1e

iρx·η−iξ·xw2,ρ − b2e
−iρx·ηw1,ρ

)
+ 2ρ

∼

θw1,ρw2,ρ + ∇w1,ρw2,ρ − w1,ρ∇w2,ρ.

According to (2.16), (2.19), Lemma 3.1 and the fact that A ∈ L1(R3), multiplying this expression by
−iρ−12−1, we find

∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη))ψ
(

ρ− 1
4x3

)2

exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣

6 Cρ−1

∣
∣
∣
∣

∫

Ω

(

ψ
(

ρ− 1
4 x3

)

b1e
iρx·η−iξ·x + w1,ρ(x

′, x3)
)(

ψ
(

ρ− 1
4x3

)

b2e
iρx·η + w2,ρ(x

′, x3)
)

dx

∣
∣
∣
∣

+ C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)
[

ρ− 1
4 + ‖ΛA1,q1 − ΛA2,q2 ‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)
[

ρ− 1
4 + ‖ΛA1,q1 − ΛA2,q2‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

,

(3.43)

where

c = 2( sup
x′∈ω

|x′| + 1).

On the other hand, using (1.5), (2.20) and the fact that ψ = 1 on [−1, 1] and 0 6 ψ 6 1, we get
∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη))ψ
(

ρ− 1
4x3

)2

exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣

>

∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη)) exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣

− C

∫

R3

|A| (1 − ψ
(

ρ− 1
4 x3

)2

)dx

>

∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη)) exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣

− C

∫

R2

∫

|x3|>ρ
1
4

〈x3〉
−s

(〈x3〉
s

|A|)dx3dx
′

>

∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη)) exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣

− Cρ− s
4

∫

Ω

〈x3〉s (|A1| + |A2|)dx

>

∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη)) exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣

− 2CMρ− s
4 .

Combining this with (3.43), we obtain
∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη)) exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣

6

∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη))ψ
(

ρ− 1
4x3

)2

exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣
+ 2CMρ− s

4

6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)
[

ρ− s
4 + ‖ΛA1,q1 − ΛA2,q2‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

+ 2CMρ− s
4 .

(3.44)
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Now let us observe that

Φ := Φ1 + Φ2 =
−i

2π

∫

R2

(θ̃ + iη) ·A(x − s1θ̃ − s2η)

s1 + is2
ds1ds2.

Therefore, we have
∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη))eΦe−ix·ξdx

∣
∣
∣
∣
6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)
[

ρ− s
4 + ‖ΛA1,q1 − ΛA2,q2 ‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

.

Applying [30, Lemma 4.1], we deduce from the above estimate that

∣
∣(θ̃ + iη) · F(A)(ξ)

∣
∣ 6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)
[

ρ− s
4 + ‖ΛA1,q1 − ΛA2,q2 ‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

. (3.45)

In the same way, replacing η by −η in the construction of the CGO uj, j = 1, 2, we obtain

∣
∣(θ̃ − iη) · F(A)(ξ)

∣
∣ 6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)
[

ρ− s
4 + ‖ΛA1,q1 − ΛA2,q2‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

.

Combining these two estimates with the fact that (θ̃, η) is an orthonormal basis of ξ⊥ = {y ∈ R3 : y · ξ = 0},
we find

|ζ · F(A)(ξ)| 6 C|ζ|

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)
[

ρ− s
4 + ‖ΛA1,q1 − ΛA2,q2‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

, ζ ∈ ξ⊥. (3.46)

Moreover, for 1 6 j < k 6 3, fixing ζ = ξkej − ξjek, with

ej = (0, . . . , 0, 1
︸︷︷︸

position j

, 0, . . . 0), ek = (0, . . . , 0, 1
︸︷︷︸

position k

, 0, . . . 0),

(3.46) implies

|ξkF(aj)(ξ) − ξjF(ak)(ξ)| 6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|3)
[

ρ− s
4 + ‖ΛA1,q1 − ΛA2,q2 ‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

,

(3.47)
where A = (a1, a2, a3). Recall that so far, we have proved (3.47) for any ξ = (ξ′, ξ) ∈ R2 × R with ξ′ 6= 0
and ξ3 6= 0. Then, we deduce from (3.47) that

∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣ 6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|3)
[

ρ− s
4 + ‖ΛA1,q1 − ΛA2,q2‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

.

From now on we fix R > 1, γ := ‖ΛA1,q1 − ΛA2,q2 ‖
B(H

3
2 (∂Ω),L2(∂Ω))

and we consider the set

DR = {ξ = (ξ1, ξ2, ξ3) ∈ R
3 : |ξ| 6 R, |ξ3| > R−4}.

We obtain the estimate
∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣ 6 C(R13ρ− s

4 +R13γecρ), ξ ∈ DR.

It follows that ∫

DR

∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣
2
dξ 6 C(R29ρ− s

2 +R29γ2e2cρ). (3.48)

On the other hand, using the fact that A1 −A2 ∈ W 1,1(Ω)3 satisfies (1.4), we obtain
∥
∥F(∂xkaj − ∂xjak)

∥
∥
L∞(R3)

6 2 ‖A‖W 1,1(R3)3 6 2 ‖A1 −A2‖W 1,1(Ω)3 6 2M.

Therefore, we have
∫

BR\DR

∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣
2
dξ 6 4M2

∫ R−4

−R−4

∫

B′
R

dξ′dξ3 6 CR−2. (3.49)
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In the same way, using the fact that Aj ∈ H2(Ω)3 and applying (1.4), we deduce that A ∈ H2(R3)3 and
(1.5) implies that

‖A‖H2(R3)3 6 2M.

Applying this estimate we deduce that
∫

R3\BR

∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣
2
dξ 6 CR−2

∫

R3

(1 + |ξ|2)
∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣
2
dξ

6 2CMR−2.

(3.50)

Combining (3.48)-(3.50), we get
∫

R3

∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣
2
dξ 6 C(R−2 +R29ρ− s

2 +R29γ2e2cρ)

and by Plancherel formula, it follows

‖dA‖L2(Ω) 6 C(R−1 +R29/2ρ− s
4 +R29/2γecρ).

Choosing R = ρ
s

62 , we get

‖dA‖L2(Ω) 6 C(ρ− s
62 + (ρ− s

62 )29/2γecρ)

6 C(ρ− s
62 + γe(c+1)ρ). (3.51)

Now, let us recall a classical result already stated in [44].

Lemma 3.2. Let a ∈ (0, 1] and b > 0. Then, there exists C > 0 depending only on b, such that

inf
ρ>1

ρ− s
62 + aebρ 6 C(log(3 + a−1))− s

62 .

Combining (3.51) with Lemma 3.2, for γ 6 1, we obtain

‖dA‖L2(R3) 6 C(log(3 + γ−1))− s
62 . (3.52)

In the same way, for γ > 1, we have

‖dA‖L2(R3) 6 2M log(4)
s

62 (log(3 + γ−1))− s
62

6 C(log(3 + γ−1))− s
62 .

Combining this estimate with (3.52), we deduce that (1.7) holds true for γ > 0.
For γ = 0, (3.51) implies that ‖dA‖L2(R3) 6 Cρ− s

62 . Since ρ > 1 is arbitrary, we can send ρ to +∞ and
deduce (1.7) for γ = 0. This completes the proof.

3.2. Recovery of the electric potential. In this subsection we assume that (1.4)-(1.8) hold true and we
will show (1.10). In all this proof C and c will be two positive constants depending only on Ω and M that
may change from line to line. For this purpose, we start by proving the following estimate

‖A1 −A2‖L2(Ω)3 6 C ln

(

3 + ‖ΛA1,q1 − ΛA2,q2 ‖
−1

B(H
3
2 (∂Ω),L2(∂Ω))

)−r1

, (3.53)

with r1 > 0 depending only on s. For this purpose, let us fix ξ ∈ R3 \ {0} and consider η1, η2 ∈ S2 such that
{ξ/|ξ|, η1, η2} is an orthonormal basis of R3. Using the notation of the previous section, we deduce that

F(A)(ξ) =
(F(A)(ξ) · ξ)ξ

|ξ|2
+ (F(A)(ξ) · η1)η1 + (F(A)(ξ) · η2)η2.

However, from condition (1.4), we deduce that A ∈ H1(R3)3 and condition (1.8) implies that

F(A)(ξ) · ξ = −iF(div(A))(ξ) = −i

∫

Ω

[div(A1) − div(A2)]e−ix·ξdx = 0.
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Thus, we have

F(A)(ξ) = (F(A)(ξ) · η1)η1 + (F(A)(ξ) · η2)η2

and applying (3.46), we deduce that

|F(A)(ξ)| 6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)
[

ρ− s
4 + ‖ΛA1,q1 − ΛA2,q2 ‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

.

Combining this estimate with the arguments used at the end of the proof of Theorem 1.1 we deduce (3.53).
Applying estimate (A.1) (see Lemma A.1 in the Appendix) and (3.53), we obtain

‖A1 −A2‖L∞(Ω)3 6 C ‖A1 −A2‖
3
5

W 1,∞(Ω)3 ‖A1 −A2‖
2
5

L2(Ω)3

6 C(2M)
3
5 ‖A1 −A2‖

2
5

L2(Ω)3

6 C ln

(

3 + ‖ΛA1,q1 − ΛA2,q2 ‖−1

B(H
3
2 (∂Ω),L2(∂Ω))

)−r2

,

(3.54)

with r2 > 0 depending only on s. Using the above estimate, we will now complete the proof of Theorem 1.2.
For this purpose, applying (3.42) and the estimates (2.19), (2.20), we obtain

∣
∣
∣
∣

∫

R3

q(x)ψ
(

ρ− 1
4x3

)2

exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣

6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)

[

ρ ln

(

3 + ‖ΛA1,q1 − ΛA2,q2 ‖
−1

B(H
3
2 (∂Ω),L2(∂Ω))

)−r2

+ρ− 1
4 + ‖ΛA1,q1 − ΛA2,q2 ‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

.

(3.55)

Recalling that

Φ1 + Φ2 =
−i

2π

∫

R2

(θ̃ + iη) · (A1 −A2)(x− s1θ̃ − s2η)

s1 + is2
ds1ds2

and repeating the arguments used in Lemma 2.2, we deduce that

∥
∥Φ1 + Φ2

∥
∥
L∞(Ω)

6 C ‖A1 −A2‖L∞(Ω)3 |(η1, η2)|−1 6 C

(

1 +
|ξ′|

|ξ3|

)

‖A1 −A2‖L∞(Ω)3 .

Moreover, applying the mean value theorem, we obtain

∣
∣exp

(
Φ1 + Φ2

)
− 1
∣
∣ 6 ec‖A1−A2‖L∞(Ω)3 ‖Φ1 + Φ2‖L∞(Ω) 6 e2cMC

(

1 +
|ξ′|

|ξ3|

)

‖A1 −A2‖L∞(Ω)3 .

Combining this with (3.54), we obtain

‖ exp
(
Φ1 + Φ2

)
− 1‖L∞(Ω) 6 C

(

1 +
|ξ′|

|ξ3|

)

ln

(

3 + ‖ΛA1,q1 − ΛA2,q2 ‖
−1

B(H
3
2 (∂Ω),L2(∂Ω))

)−r2

. (3.56)

By inserting

∫

R3

q(x)ψ
(

ρ− 1
4x3

)2

e−iξ·x dx, we get

∫

R3

q(x)ψ
(

ρ− 1
4 x3

)2

exp
(
Φ1 + Φ2

)
e−ix·ξdx

=

∫

R3

q(x)ψ
(

ρ− 1
4 x3

)2

e−iξ·x dx +

∫

R3

q(x)ψ2
(
ρ− 1

4 x3

)(

exp
(
Φ1 + Φ2

)
− 1
)

e−iξ·x dx.
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It follows that
∣
∣
∣
∣

∫

R3

q(x)ψ
(

ρ− 1
4 x3

)2

e−iξ·x dx

∣
∣
∣
∣

6

∣
∣
∣
∣

∫

R3

q(x)ψ
(

ρ− 1
4x3

)2

exp
(
Φ1 + Φ2

)
e−ix·ξdx

∣
∣
∣
∣

+ ‖q‖L1(Ω) ‖ exp
(
Φ1 + Φ2

)
− 1‖L∞(Ω)

6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)

[

ρ ln

(

3 + ‖ΛA1,q1 − ΛA2,q2 ‖−1

B(H
3
2 (∂Ω),L2(∂Ω))

)−r2

+ρ− 1
4 + ‖ΛA1,q1 − ΛA2,q2 ‖

B(H
3
2 (∂Ω),L2(∂Ω))

ecρ
]

.

Combining this estimate with the arguments used in the proof Theorem 1.1 and in [44, Theorem 1.1], one
can check that the estimate (1.10) holds true.

4. Stability results from measurements on some subset of the boundary

This section is devoted to the proof of Theorem 1.3 and Theorem 1.4 by using an approach inspired by
Ben Joud in [4]. We will only prove Theorem 1.3 and we refer the reader to [44, Theorem 1.2] for the proof
of Theorem 1.4. For this purpose, for j = 1, 2, we fix Aj ∈ A(M,A0,O0) and qj ∈ Q(M, q0,O0) and we
consider again CGO solutions taking the form

u1(x′, x3) = eρθ·x′
(

ψ
(

ρ− 1
4x3

)

b1e
iρx·η−iξ·x + w1,ρ(x

′, x3)
)

, x′ ∈ ω, x3 ∈ R,

u2(x′, x3) = e−ρθ·x′
(

ψ
(

ρ− 1
4 x3

)

b2e
iρx·η + w2,ρ(x

′, x3)
)

, x′ ∈ ω, x3 ∈ R,

where wj,ρ ∈ H2(Ω) satisfies the decay property

ρ−1 ‖w1,ρ‖H2(Ω) + ‖w1,ρ‖H1(Ω) + ρ ‖w1,ρ‖L2(Ω) 6 C(|ξ|2 + 1)

(

1 +
|ξ′|

|ξ3|

)

ρ
7
8 ,

ρ−1 ‖w2,ρ‖H2(Ω) + ‖w2,ρ‖H1(Ω) + ρ ‖w2,ρ‖L2(Ω) 6 C

(

1 +
|ξ′|

|ξ3|

)

ρ
7
8 .

In view of Lemma 3.1, we have

‖uj‖H2(Ω) 6 Ce(D+1)ρ

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

; j = 1, 2 (4.57)

with D := sup
x′∈ω

|x′|.

We recall also that since q := q1 − q2 = 0 in O0, we can extend q to H1(R3) by assigning it the value 0
outside of Ω and we denote by q this extension. In this part, We need to set Wj ; j = 1, 2, 3 such that

Wj+1 ⊂ Wj , Wj ⊂ W0 and ∂ω ⊂ ∂Wj .

Let Oj = Wj × R for j = 0, 1, 2, 3. The main idea of the proofs of Theorem 1.3 and Theorem 1.4 is to
combine the estimate of the Fourier transform of dA and q with the weak unique continuation property
which is given in the following lemma.

Lemma 4.1. Let A1 ∈ C2(Ω), q1 ∈ L∞(Ω) and M > 0 such that ‖q‖L∞(Ω) 6M and let w ∈ H2(Ω) solve
{

(−∆A1 + q1)w(x) = F (x) in Ω,
w = 0 on ∂Ω,

(4.58)

where F ∈ L2(Ω). Then, there exist positive constants C, α1, α2 and λ0 such that we have the following
estimate

‖w‖H1(O2\O3) 6 C
(

e−λα1 ‖w‖H2(Ω) + eλα2

(

‖∂νw‖L2(Γ0×R) + ‖F‖L2(O0)

))

(4.59)
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for any λ > λ0. Here, the constants C, α1 and α2 depend on Ω, M , λ0, Oj and they are independent of A1,
q1, F , w and λ.

4.1. Recovery of the magnetic field.

Proof of Theorem 1.3. Let w ∈ H2(Ω) be the solution of
{

−∆A1w + q1w = 0 in Ω ,
w = u2 := h on ∂Ω.

(4.60)

Then, u = w − u2 solves
{

−∆A1u+ q1u = 2iA(x) · ∇u2 + V (x)u2(x) in Ω ,
u = 0 on ∂Ω,

(4.61)

where V (x) = idiv(A) −
∼
q(x). Let Θ be a cut-off function satisfying 0 6 Θ 6 1, Θ ∈ C∞(R2) and

Θ(x′) =

{
1 in ω\W2,
0 in W3.

(4.62)

We set
∼
u(x′, x3) = Θ(x′)u(x′, x3), x′ ∈ ω, x3 ∈ R.

We remark that
∼
u solves

{

(−∆A1 + q1)
∼
u(x′, x3) = 2iΘ(x′)A(x) · ∇u2 + Θ(x′)V (x)u2(x) + P1(x′, D)u(x) in Ω,

∼
u = 0 on ∂Ω,

with P1(x′, D) is given by

P1(x′, D)u = −[∆′,Θ]u− iA1[∇, Θ̃]u− i[∇, Θ̃]A1u,

where ∇′ = (∂x1 , ∂x2)T , ∆′ = ∂2
x1

+ ∂2
x2

and

Θ̃(x′, x3) = Θ(x′), x′ ∈ ω, x3 ∈ R.

Moreover, for an arbitrary
∼
v ∈ H2(Ω), an integration by parts leads to

∫

Ω

(−∆A1 + q1)
∼
u(x)

∼
v(x) dx =

∫

Ω

∼
u(x)(−∆A1 + q1)

∼
v(x) dx.

On the other hand, we have:
∫

Ω

(−∆A1 + q1)
∼
u(x)

∼
v(x) dx =

∫

R

∫

ω

(
2iΘ(x′)A(x) · ∇u2 + Θ(x′)V (x)u2(x) + P1(x′, D)u(x)

)∼
v(x) dx′ dx3.

(4.63)

Choosing
∼
v = u1, we have (−∆A1 + q1)

∼
v = 0 in Ω and by the fact that A = 0 and q = 0 in O0, we get

i

∫

Ω

div(Au2)u1(x) dx+ i

∫

Ω

A(x) · u1(x)∇u2 dx−

∫

Ω

(A2
1 −A2

2)u2u1(x) dx −

∫

Ω

qu2u1(x) dx

= −

∫

Ω

P1(x′, D)u(x)u1(x) dx. (4.64)

By integrating by parts and using the fact that A = 0 and q = 0 in O0, we can easily obtain

i

∫

Ω

A(x) · [u1(x)∇u2 −u2∇u1(x)] dx =

∫

Ω

(A2
1 −A2

2)u2u1(x) dx+

∫

Ω

qu2u1(x) dx−

∫

Ω

P1(x′, D)u(x)u1(x) dx.

(4.65)
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Furthermore, using the fact that P1(x′, D)u is supported on O2\O3, we find
∫

Ω

|P1(x′, D)uu1(x)| dx 6 ‖u‖H1(O2\O3)‖u1(x)‖L2(Ω)

6 C

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

eρ(D+1)‖u‖H1(O2\O3).

In a similar way to Theorem 1.1, using (4.65), we obtain
∣
∣
∣
∣

∫

R3

(A · (θ̃ + iη))eΦe−ix·ξdx

∣
∣
∣
∣
6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|2)
[

ρ− s
4 + eρ(D+1)‖u‖H1(O2\O3)

]

.

Applying [30, Lemma 4.1] and following the same steps of the proof of Theorem 1.1, we deduce that

∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣ 6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|3)
[

ρ− s
4 + eρ(D+1)‖u‖H1(O2\O3)

]

.

Combining this last estimate with (4.59), we get
∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣

6 C

(

1 +
|ξ′|

|ξ3|

)2

(1 + |ξ|3)
[

ρ− s
4 + eρ(D+1)

(

e−λα1 ‖u‖H2(Ω) + eλα2

(

‖∂νu‖L2(Γ0×R) + ‖(∆A1 + q1)u‖L2(O0)

))]

.

Since ∂νu = (Λ′
A1,q1

− Λ′
A2,q2

)(h), where h is given by (4.60), we have

‖∂νu‖L2(Γ0×R) 6 C‖Λ′
A1,q1

− Λ′
A2,q2

‖
B(H

3
2 (∂Ω),H

1
2 (Γ0×R))

‖h‖
H

3
2 (∂Ω)

6 Ce(D+1)ρ

(

1 +
|ξ′|

|ξ3|

)(

1 + |ξ|2
)

‖Λ′
A1,q1

− Λ′
A2,q2

‖
B(H

3
2 (∂Ω),H

1
2 (Γ0×R))

.

Moreover, since Aj ∈ A(M,A0,O0) and qj ∈ Q(M, q0,O0), j = 1, 2, we have (∆A1 + q1)u = 0 on O0 and it
follows by (4.57)
∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣

6 C

(

1 +
|ξ′|

|ξ3|

)3

(1 + |ξ|3)2
(

ρ− s
4 + e2ρ(D+1)−λα1 + e2ρ(D+1)+λα2 ‖Λ′

A1,q1
− Λ′

A2,q2
‖

B(H
3
2 (∂Ω),H

1
2 (Γ0×R))

)

.

(4.66)

Let D′ := D+ 1 and λ = τρ. Choosing τ sufficiently large, it becomes easy to find constants α3 and α4 such
that

e2D′ρ−λα1 = eρ(2D′−τα1) 6 e−α3ρ and e2D′ρ+λα2 = eρ(2D′+τα2) 6 eα4ρ. (4.67)

Combining (4.66) and (4.67), we conclude that
∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣

6 C

(

1 +
|ξ′|

|ξ3|

)3

(1 + |ξ|3)2
(

ρ− s
4 + e−α3ρ + eα4ρ‖Λ′

A1,q1
− Λ′

A2,q2
‖

B(H
3
2 (∂Ω),H

1
2 (Γ0×R))

)

6 C

(

1 +
|ξ′|

|ξ3|

)3

(1 + |ξ|3)2
(

ρ− s
4 + eα4ρ‖Λ′

A1,q1
− Λ′

A2,q2
‖

B(H
3
2 (∂Ω),H

1
2 (Γ0×R))

)

. (4.68)

From now on we fix R > 1, γ′ :=
∥
∥Λ′

A1,q1
− Λ′

A2,q2

∥
∥

B(H
3
2 (∂Ω),H

1
2 (Γ0×R))

and we consider the set

DR = {ξ ∈ BR : |ξ3| > R−4}.

We obtain the estimate
∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣ 6 C(R21ρ− s

4 +R21γ′eα4ρ), ξ ∈ DR.
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It follows that
∫

DR

∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣
2
dξ 6 C(R45ρ− s

2 +R45γ′2e2α4ρ). (4.69)

Combining (4.69)-(3.50), we get
∫

R3

∣
∣F(∂xkaj − ∂xjak)(ξ)

∣
∣
2
dξ 6 C(R−2 +R45ρ− s

2 +R45γ′2e2α4ρ)

and by Plancherel formula, it follows

‖dA‖L2(Ω) 6 C(R−1 +R45/2ρ− s
4 +R45/2γ′eα4ρ).

Choosing R = ρ
s

94 , we get

‖dA‖L2(Ω) 6 C(ρ− s
94 + (ρ− s

94 )45/2γ′eα4ρ)

6 C(ρ− s
94 + γ′e(α4+1)ρ). (4.70)

Then, repeating the arguments used at the end of the proof of Theorem 1.1, we can deduce (1.3) from
(4.70). �

Appendix A.

In this appendix, we consider the following interpolation result.

Lemma A.1. Let h ∈ W 1,∞(Ω) ∩ L2(Ω). Then there exists C > 0 depending only on Ω such that

‖h‖L∞(Ω) 6 C ‖h‖
3
5

W 1,∞(Ω) ‖h‖
2
5

L2(Ω) . (A.1)

Proof. Let us first observe that this result is well known for Ω bounded (see e.g. [11, Lemma Appendix
B.1.]), but we have not find any proof of it for unbounded domains. For this reason, we decided do give
the full proof of this result. Let us fix ψ ∈ C∞

0 (−2, 2) satisfying ψ = 1 on [−1, 1] and fix y3 ∈ R. Denote
also by O a smooth open bounded subset of Ω such that ω × [−2, 2] ⊂ O. Now let us consider the function
hy3 : x = (x′, x3) 7→ ψ(y3 + x3)h(x′, x3 + y3). Applying (A.1) for Ω = O and h = hy3 , we obtain that

‖hy3‖L∞(O) 6 C ‖hy3‖
3
5

W 1,∞(O) ‖hy3‖
2
5

L2(O) , (A.2)

with C > 0 depending only on O. In the same way, we have

‖hy3‖W 1,∞(O) 6 ‖ψh‖W 1,∞(Ω) 6 ‖ψ‖W 1,∞(R) ‖h‖W 1,∞(Ω) ,

‖hy3‖
2
L2(O) 6 ‖ψ‖

2
L∞(R)

∫

ω

∫

R

|h(x′, x3 + y3)|2dx′dx3 = ‖ψ‖
2
L∞(R) ‖h‖

2
L2(Ω) .

Combining these two estimates with (A.2), we obtain

‖hy3‖L∞(O) 6 C ‖ψ‖W 1,∞(R) ‖h‖
3
5

W 1,∞(Ω) ‖h‖
2
5

L2(Ω) .

Since the right hand side of the above identity is independent of y3 ∈ R, we can take the sup with respect
to y3 ∈ R in order to deduce that

‖h‖L∞(Ω) 6 sup
y3∈R

‖hy3‖L∞(O) 6 C ‖ψ‖W 1,∞(R) ‖h‖
3
5

W 1,∞(Ω) ‖h‖
2
5

L2(Ω) .

This estimate clearly implies (A.1). �
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Appendix B. Carleman’s estimate

The main goal of this appendix is to prove a Carleman’s estimate for the magnetic Schrödinger operator
−∆A + q in an infinite cylindrical domain in order to deduce the weak unique continuation property given
in Lemma 4.1. As we are dealing with weighted inequalities, we borrow, from [44] (see also [24, Lemma
2.3], [23, Lemma 1.2] and [36, Theorem 2.4]), the following result that guarantees the existence of the weigh
function.

Lemma B.1. There exists a function ψ0 ∈ C3(W0) such that

(i) ψ0(x′) > 0 for all x′ ∈ W0,

(ii) There exists α0 > 0 such that |∇
′

ψ0(x′)| > α0 for all x′ ∈ W0,
(iii) ∂ν′ψ0(x′) 6 0 for all x′ ∈ ∂W0\Γ0,
(iv) ψ0(x′) = 0 for all x′ ∈ ∂W0\Γ0.

Here ∇
′

denotes the gradient with respect to x′ ∈ R2 and ∂ν′ is the normal derivative with respect to
∂W0, that is ∂ν′ := ν′ · ∇

′

where ν′ stands for the outward normal vector to ∂W0.
Thus, putting ψ(x) = ψ(x′, x3) := ψ0(x′) for all x = (x′, x3) ∈ O0, it is apparent that the function ψ ∈ C3(O0)
satisfies the three following conditions:

(C1) ψ(x) > 0, x ∈ O0,
(C2) |∇ψ(x)| > α0 for all x ∈ O0,
(C3) ∂νψ(x) 6 0 for all x ∈ ∂O0\(Γ0 × R),
(C4) ψ(x) = 0 for all x ∈ Γ♯ × R.

Here ν is the outward unit normal vector to the boundary ∂O0. Evidently ν = (ν′, 0) so we have ∂νψ = ∂ν′ψ0

as the function ψ does not depend on x3.
Next, for β ∈ (0,+∞), we introduce the following weigh function

ϕ(x) = ϕ(x′) = eβψ(x); x ∈ O0. (B.1)

Then ϕ satisfies some properties given in the following result.

Lemma B.2. There exists a constant β0 ∈ (0,+∞) depending only on ψ such that the following statements
hold uniformly in O0 for all β ∈ [β0,+∞).

(a) |∇ϕ| > α := β0α0,
(b) ∇|∇ϕ|2 · ∇ϕ > C0β|∇ϕ|3,
(c) H(ϕ)ξ · ξ + C1β|∇ϕ||ξ|2 > 0 ; ξ ∈ R3,
(d) |∆|∇ϕ|| 6 C2|∇ϕ|3,
(e) ∆ϕ > 0.

Here, C0, C1 and C2 are positive constants depending only on ψ and α0 and H(ϕ) denotes the Hessian
matrix of ϕ with respect to x ∈ O0.

Now, we may state the following Carleman’s estimate for the operator ∆A + q.

Theorem B.3. Let u ∈ H1
0 (O0) ∩ H2(O0), M1, M2 > 0 and let A ∈ W 1,∞ and q ∈ L∞(Ω) satisfy

‖A‖W 1,∞(O0) 6M1 and ‖q‖L∞(O0) 6M2. Then, there exists β0 ∈ (0,+∞) such that for every β > β0, there
is λ0 = λ0(β) ∈ (0,+∞) depending only on β, α0, O0, M1, M2 and Γ0, such that the estimate

λ

∫

O0

e2λϕ
(
λ2|u|2 + |∇u|2

)
dx 6 C

( ∫

O0

e2λϕ|(∆A + q)u|2 dx+ λ

∫

Γ0×R

e2λϕ
∣
∣∂νu

∣
∣
2
dσx

)

. (B.2)

holds for all λ > λ0 and some positive constant C that depends only on α0, ω, Γ0, β and λ0.

Proof. For the proof, we can simply show the following inequality

λ

∫

O0

e2λϕ
(
λ2|u|2 + |∇u|2

)
dx 6 C

( ∫

O0

e2λϕ|∆u|2 dx+ λ

∫

Γ0×R

e2λϕ
∣
∣∂νu

∣
∣
2
dσx

)

. (B.3)
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In fact, we have
∆A + q = ∆ + P0,

with P0 is a first order operator given by

P0 = 2iA · ∇ + idiv(A) −A · A+ q.

As ‖A‖W 1,∞(O0) 6M1 and ‖q‖L∞(O0) 6M2, we get:

|P0u| 6 C(|u| + |∇u|).

By (B.3), we get

λ

∫

O0

e2λϕ
(
λ2|u|2 + |∇u|2

)
dx

6 C
( ∫

O0

e2λϕ(|(∆A + q)u|2 + |P0u|2) dx + λ

∫

Γ0×R

∣
∣∂νu

∣
∣
2
e2λϕ dσx

)

6 C

∫

O0

e2λϕ|(∆A + q)u|2 dx+ C

∫

O0

e2λϕ(|u|2 + |∇u|2) dx+ Cλ

∫

Γ0×R

∣
∣∂νu

∣
∣
2
e2λϕ dσx

∀λ > τ0.

Thus, we have

λ3
(
1 −

C

λ3

)
∫

O0

e2λϕ|u|2 dx+ λ
(
1 −

C

λ

)
∫

O0

e2λϕ|∇u|2 dx

6 C

∫

O0

e2λϕ|(∆A + q)u|2 dx+ Cλ

∫

Γ0×R

∣
∣∂νu

∣
∣
2
e2λϕ dσx.

Let λ′
0 such that ∀λ > λ′

0, 1 −
C

λ3
>

1

2
and 1 −

C

λ
>

1

2
. For any λ > max(λ0, λ

′
0), we have

1

2
λ3

∫

O0

e2λϕ|u|2 dx +
1

2
λ

∫

O

e2λϕ|∇u|2 dx 6 C

∫

O0

e2λϕ|(∆A + q)u|2 dx+ Cλ

∫

Γ0×R

∣
∣∂νu

∣
∣
2
e2λϕ dσx.

The proof of the estimate (B.3) is stated in [44]. �

Appendix C. Weak unique continuation property

This appendix is devoted to the proof of the weak unique continuation property stated in Lemma 4.1.
Let ψ0 be the function defined in Lemma B.1. Since ψ0(x′) > 0 for all x′ ∈ W0, there exists a constant κ > 0
such that

ψ0(x′) > 2κ; x′ ∈ W2\W3. (C.1)

Moreover, as ψ0(x′) = 0, x′ ∈ Γ♯, there exist W♯ a small neighborhood of Γ♯ such that

ψ0(x′) 6 κ; x′ ∈ W♯, W♯ ∩ W1 = ∅. (C.2)

Let
∼

W
♯

⊂ W♯ be an arbitrary neighborhood of Γ♯. To apply (B.2), it is necessary to introduce a function Θ
satisfying 0 6 Θ 6 1, Θ ∈ C∞(R2) and

Θ(x′) =

{
1 in W0\W♯,

0 in
∼

W
♯

.
(C.3)

Let w be a solution to (4.58). Setting

w1(x′, x3) = Θ(x′)w(x′, x3), x′ ∈ ω, x3 ∈ R,

we get
{

(−∆A1,q1 + q1)w1(x) = Θ(x)F (x) +Q1(x,D)w in O0,
w1 = 0 on ∂O0,
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where Q1(x,D) is a first order operator supported in W♯\
∼

W
♯

and given by

Q1(x,D)w = −[∆′,Θ]w − iA1[∇, Θ̃]w − i[∇, Θ̃]A1w.

By applying Carleman estimate (B.2) to w1, we obtain

λ

∫

O0

e2λϕ
(
λ2|w1|2 + |∇w1|2

)
dx

6 C
(∫

O0

e2λϕ
(∣
∣Q1(x,D)w

∣
∣
2

+
∣
∣F (x)

∣
∣
2
)

dx+ λ

∫

Γ0×R

∣
∣∂νw1

∣
∣
2
e2λϕ dσx

)

. (C.4)

Let O♯ = W♯ × R and
∼

O
♯

=
∼

W
♯

× R. Using the fact that Q1(x,D) is a first order operator supported in

O♯\
∼

O
♯

and by (C.2), we get
∫

O0

e2λϕ
∣
∣Q1(x,D)w

∣
∣
2
dx 6

∫

O0

e2λeβψ(x) ∣
∣Q1(x,D)w

∣
∣
2
dx

6 e2λeβκ
∫

O♯\
∼

O
♯

∣
∣Q1(x,D)w

∣
∣
2
dx

6 Ce2λeβκ
∫

O♯\
∼

O
♯

(
|w|2 + |∇w|2

)
dx.

On the other hand, by using the definition of Θ given by (C.3), the estimate (C.4) becomes

λ

∫

O0\
∼

O
♯ e

2λϕ
(
λ2|w|2 + |∇w|2

)
dx 6 C

(

e2λeβκ
∫

O♯\
∼

O
♯

(
|w|2 + |∇w|2

)
dx

+

∫

O0

e2λϕ
∣
∣F (x)

∣
∣
2
dx+ λ

∫

Γ0×R

∣
∣∂νw

∣
∣
2
e2λϕ dσx

)

.

Moreover, by the fact that O2\O3 ⊂ O0\
∼

O
♯

and by (C.1), we easily obtain that

e2λe2βκ

λ

∫

O2\O3

(
λ2|w|2 + |∇w|2

)
dx 6 C

(

e2λeβκ
∫

O♯\
∼

O
♯

(
|w|2 + |∇w|2

)
dx

+

∫

O0

e2λϕ
∣
∣F (x)

∣
∣
2
dx+ λ

∫

Γ0×R

∣
∣∂νw

∣
∣
2
e2λϕ dσx

)

.

Thus, we have

λ

∫

O2\O3

(
λ2|w|2 + |∇w|2

)
dx 6 C

(

e−2λ(e2βκ−eβκ)

∫

O♯\
∼

O
♯

(
|w|2 + |∇w|2

)
dx

+ e2λ(e2β‖ψ0‖∞ −e2βκ)
(∫

O0

∣
∣F (x)

∣
∣
2
dx+ λ

∫

Γ0×R

∣
∣∂νw

∣
∣
2
dσx

))

.

Let α1 = (e2βκ − eβκ) > 0 and α2 = (e2β‖ψ0‖∞ − e2βκ) > 0. We conclude that for any λ > λ∗, we have:

λ

∫

O2\O3

(
λ2|w|2 + |∇w|2

)
dx 6 C

(

e−2λα1

∫

O♯\
∼

O
♯

(
|w|2 + |∇w|2

)
dx

+ e2λα2

( ∫

O0

∣
∣F (x)

∣
∣
2
dx+

∫

Γ0×R

∣
∣∂νw

∣
∣
2
dσx

))

.

Then, we have

‖w‖2
H1(O2\O3) 6 C

(

e−2λα1‖w‖2
H1(Ω) + e2λα2

(

‖F‖2
L2(O0) +

∥
∥∂νw

∥
∥

2

L2(Γ0×R)

))

which completes the demonstration.
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