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Abstract

RNA tertiary structure is crucial to its many non-coding molecular functions. RNA architec-
ture is shaped by its secondary structure composed of stems, stacked canonical base pairs,
enclosing loops. While stems are precisely captured by free-energy models, loops com-
posed of non-canonical base pairs are not. Nor are distant interactions linking together
those secondary structure elements (SSEs). Databases of conserved 3D geometries (a.k.a.
modules) not captured by energetic models are leveraged for structure prediction and
design, but the computational complexity has limited their study to local elements, loops.
Representing the RNA structure as a graph has recently allowed to expend this work to
pairs of SSEs, uncovering a hierarchical organization of these 3D modules, at great compu-
tational cost. Systematically capturing recurrent patterns on a large scale is a main chal-
lenge in the study of RNA structures. In this paper, we present an efficient algorithm to
compute maximal isomorphisms in edge colored graphs. We extend this algorithm to a
framework well suited to identify RNA modules, and fast enough to considerably generalize
previous approaches. To exhibit the versatility of our framework, we first reproduce results
identifying all common modules spanning more than 2 SSEs, in a few hours instead of
weeks. The efficiency of our new algorithm is demonstrated by computing the maximal mod-
ules between any pair of entire RNA in the non-redundant corpus of known RNA 3D struc-
tures. We observe that the biggest modules our method uncovers compose large shared
sub-structure spanning hundreds of nucleotides and base pairs between the ribosomes of
Thermus thermophilus, Escherichia Coli, and Pseudomonas aeruginosa.

Author summary

Ribonucleic Acids (RNAs) are performing a broad range of essential molecular functions
in cells, many of which rely on intricate folding properties of the molecule. Watson-Crick
and Wobble base pairs form early, stack onto each other to create stems connected by
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loops, which are themselves stabilized by more sophisticated base interaction patterns.
These networks are essential to shape RNA 3D structures but unfortunately still poorly
understood. Here, we undertake the task to build a catalog of base interaction networks
occurring in multiple structures. However, a pairwise comparison of all RNA structures is
computationally heavy. Therefore, we devise an algorithm leveraging intrinsic properties
of RNA base interaction networks that enables us to quickly mine full databases of 3D
structures. Compared to previous methods, our techniques bring the total running time
of the analysis from months to hours while performing more general searches. The data
collected though this work will benefit molecular evolution studies and serve in structure
prediction tools.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Functional RNA tertiary structures are stabilized by a collection of base pairs and base stack-
ings often referred to as the secondary structure. The latter forms a planar structure made of
stems of canonical base pairs (i.e. Watson-Crick and Wobble) connected by loops. Although
these loops do not feature regular canonical base pairs patterns, they are often characterized by
complex non-canonical base pair networks that create sophisticated 3D motifs used to shape
the molecular structure. Furthermore, these loops occasionally interact with distant parts of
the structure (i.e. other loops or stems) to form bridges stabilizing the global architecture of
the RNA. The identification and characterization of these structural sub-units is therefore
essential for a better understanding of the evolution of structured RNAs and the development
of robust methods for predicting tertiary structures.

RNA modules are small and (usually) densely connected base pair patterns that can be
observed in a variety of different molecules, sometimes in multiple locations. Fig 1 displays an
RNA secondary structure and, below, a module from the same structure to serve as an illustra-
tion. The conservation of RNA modules suggests an evolutionary pressure to preserve specific
interaction patterns that constrains the possible set of sequences to the ones compatible with
those interactions. As a consequence, identified RNA modules associate sequences to potential
structures and so help to draw information about base pairs out of RNA sequences. This infor-
mation can then be used to infer the 3D structure of the whole molecule [1-7].

Other applications require a well defined and rigorous description of modules. In synthetic
biology, the availability of databases of autonomous structural modules is key for designing
new molecules [8]. The assembly of RNA binding sites may also require bringing together dis-
tant modules within the secondary structure [9]. A comprehensive and indexed catalog of sub-
structures would greatly facilitate studies of these sites.

Some RNA modules have received a specific attention such as GNRA loops, Kink-turns, G-
bulges, and the various types of A-minors. Moreover, several works have been presented, pro-
posing computational methods to detect RNA modules in tertiary structures using either
geometry or graph-based approaches [10-22]. A coarse grain graph representation of the sec-
ondary structure with its pseudoknots has already shown the modularity of ribosomal struc-
tures [23], and has been used recently for fragment based design applications [24]. However,
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Fig 1. Secondary structure and module. In (1) we show an RNA and its secondary structure with non-canonical
interactions. Base pair interactions in blue are local (both nucleotides involved are in the same or in adjacent SSEs)
while the ones in red are long range interactions (between two distant SSEs). The canonical base pair interactions are
represented with double lines. We highlighted the loops in the structure with green dotted lines. Loops A and C are
hairpins, loops D and E are interior loops, and loop B is a multi-loop. In (2) we show an instance of a module found in
the RNA secondary structure in (1). On the right is the base pair pattern that characterizes this module and on the left
is the sequence profile of this module (i.e. the nucleotide sequences of the corresponding parts of RNAs this module
has been observed in). The first sequence in the profile, for instance, corresponds to the RNA displayed in (1).

https://doi.org/10.1371/journal.pcbi.1008990.g001

the purpose of the majority of those methods is to search for known modules in new struc-
tures. A couple of methods has been proposed that search local modules without any prior
knowledge of their geometry or topology [11, 15]. In addition to those methods, databases of
RNA modules found in experimentally determined RNA tertiary structures have been pro-
posed such as RNA 3D Motif Atlas [5] and RNA Bricks [25].

We are interested in the whole landscape of RNA modules (known or not) rather than any
RNA module in particular which distinguishes us from most of the works previously men-
tioned. Furthermore, we aim at extracting recurrent patterns in the secondary structure rather
than in the sequence or in the tertiary structure. Those patterns capture a topological informa-
tion that has been associated with similar tertiary structures and can be in turn used to derive
consensus sequences. As previously highlighted in several key structural studies [26, 27], they
are therefore interesting RNA modules candidates that warrant further and more quantitative
investigations. Our goal is to automatically and comprehensively capture this topological
information to accelerate research in area.

To our knowledge, the only published method similar in those aspects is CaRNAval [28],
one of our previous work. In CaRNAval, we presented an algorithm to find all identical
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interaction networks between two RNAs [28], which capture the topological information of
interaction modules (i.e. RNA modules over two, non-adjacent, secondary structure elements
or SSEs) but not the sequences. We made the results of CaRNAval available as an extensive
organized catalogue of the Recurrent Interaction Networks (RINs) computed on all the non-
redundant structures available in RNA3DHub [29]. The method developed for CaRNAval is
automated and does not use any prior knowledge of neither the topology nor the geometry of
the structures it detects.

CaRNAval was limited in its capacity to capture the whole landscape of RNA modules.
The algorithmic work presented in this paper aims to remedy to this. Indeed, by approaching
RNA secondary structures as graphs equipped with a proper edge coloring, we designed several
graph matching algorithms and used them as the core of a modular automated pipeline.
Leveraging the proper edge coloring of a structure graph allows to improve execution time a
hundredfold compared to CaRNAval. Moreover, and this is the main novelty of this method,
there are no built-in constraints on the structures it can capture (albeit it accepts such con-
straints as an optional input). This flexibility joined with the improved performances allow to
mine for any kind of RNA module candidates.

Typically, our method can capture structures spanning an arbitrary large number of SSEs
when all other approaches are only considering similarities between a loop and CaRNAval
only extended this analysis to pairs of loops connected together. We can thus compute similar-
ities between arbitrarily large RNAs. Moreover, we show that the new structures found by
removing this restriction complement the landscape of modules presented in CaRNAval and
so are other new structures obtained by broadening the search space further. As a conse-
quence, our results underline the universality and fundamental nature of these recurrent
architectures.

2 Methods

From a set of mmCIF files describing 3D structures of RNA chains, we first annotate the inter-
actions with FR3D. The method presented analyze these annotations in four steps.

1. We first build for each chain a directed edge-labelled graph such that the edges represent
the phosphodiester bonds as well as the canonical and non-canonical interactions. The
labels on the edges correspond to the interaction types plus the indication of the interaction
being either local (inside a single SSE) or long-range (between two SSEs)

2. For each pair of RNA graphs, we extract all the Maximal Common Subgraphs such that
edges are matched to edges with the same labels

3. Each Maximal Common Subgraph is then processed to obtain the Recurrent Structural Ele-
ments (constrained common subgraphs) it contains

4. Finally we gather the Recurrent Structural Elements found together into a non-redundant
collection and create a network of direct inclusions.

2.1 RNA 2D structure graphs

We rely on RNA 2D structure graphs to represent the structures of RNA chains. RNA 2D
structure graphs are directed edge-labelled graphs. Each node represents a nucleotide, each
edge represents an interaction (base pair or backbone). Edges are labelled according to the
annotation of the interaction they correspond to. Annotations of base pair interactions follow
the Leontis-Westhof geometric classification [30]. They are any combination of the orientation
cis (c) (resp. trans (t)) with the name of the side which interacts for each of the two nucleotides:
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Watson-Crick (W, represented with ® in cis orientation or o in trans), Hoogsteen (H, ® in cis
O in trans) or Sugar-Edge (S, » in cis ™ in trans). Thus, each base pair is annotated by a string
from the set: {c,t} x {W,S,H}” or by combining the corresponding symbols. Note that canonical
cWW interactions constitute an exception and are represented with a double line instead of

“® ®” Moreover, each basepairs interaction can also be annotated as either local or long range,
depending on the secondary structure elements the nucleotides involved are found in (our
method to generate the secondary structure is described in section 3.1). The backbone is repre-
sented with directed edges, labelled b53.

As a consequence, an annotation (and thus an edge label) is composed of three characters
xYZ € [c| t][W]| S| H]? plus a parameter C € [local | long- range]. Interactions are either sym-
metric (xYY) or not symmetric (xYZ). Each non symmetric interaction between nucleobases
xYZ is complemented by an interaction xZY between the same nucleobases and the same value
of Cbut in the opposite direction. We introduce an abstract type/label 35 to complement the
b53 label. We can thus define a bijection 1 as follow:

e 1(xYZ,C)=x2Y,C
e 1(xYY,C)=xYY,C
e 1(b53,local) = b35, local
1(b35, local) = b53, local

An interaction of type t between nucleotides a,b (represented by nodes v,,,v;,), is represented
by two directed edges {v,, v;} and {v;, v,,;} whose respective labels are ¢ and i(t). This property is
important as a requirement of the algorithms we designed (cf. Section 5.1 in S1 Text).

We represent each RNA chain in the dataset as a RNA 2D structure graph, the annotations
of the RNA base pair interactions corresponding to the labels of the edges of the graph (cf.

Fig 2).

2.2 Graph matching & proper edge-coloring

As we transpose RNA structures into edge-labelled graphs, finding common substructures in
the RNA structures comes down to finding common subgraphs in the RNA 2D structure
graphs.

Problems that consist in matching graphs or parts of graphs are called Graph Matching
problems. We are especially interested in finding common subgraphs, an NP-hard problem in
general. However, RNA 2D structure graphs inherit some of the constraints of the RNA struc-
tures they represent, constraints that translate into a graph property useful for graph
matching.

The chemical constraints of nucleotides interactions are such that each edge of a nucleotide
should be involved in at most one interaction. This translates in terms of graphs as follows: for
all RNA 2D structure graphs G = {V, E} and for all a node v € V, there are no two edges e;, e, €
E that originate from v with the same label. To put it differently, the set of labels on the edges
of any RNA 2D structure graphs naturally forms a Proper Edge-Coloring (PEC). We designed
three graph matching algorithms designed to take advantage of the proper edge-coloring the
RNA 2D structure graphs come equipped with.

2.3 Exceptions

We observed a few nucleotides annotated with two interactions involving the same Leontis-
Westhof edges in some RNA structures (0.02% of the nucleotides of our reference dataset cf.
section 3.1). Those interactions could either be annotation errors or biologically relevant.
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Fig 2. From 3D structure to directed edge-labelled graph. In this figure we illustrate the transition from the 3D structure (a) to RNA 2D structure
graph (b) and finally directed edge-labelled graph (c) with a simple RNA structure. Each edge label of the directed edge-labelled graph is a pair which
first element represents the type of interaction (using the same symbols as in the RNA 2D structure graph) while the second denotes the local (blue) vs.
long-range (red) property of the interaction (using the same colors as in the RNA 2D structure graph). Moreover, the set of edge labels forms a directed
proper edge-coloring, as illustrated with the last panel (d) where each different geometric type of interaction has been associated a color. Note that panel
(d) is only an illustration of the edge labels forming a proper edge-coloring as our method does not actually replace the labels by colors.

https://doi.org/10.1371/journal.pcbi.1008990.9002

Given the rarity of those exceptions, we chose to duplicate the graphs concerned into different
proper edge-colored versions, each covering a different interpretation. Details about the dupli-
cation procedure and the different versions are provided S2 Text.

2.4 Graph matching algorithms

In this section we briefly introduce our 3 algorithms, the 3 problems they solve and how we
take advantage of the PEC. Extensive and formal descriptions are provided S1 Text.

2.4.1 Definitions & notations. Two graphs G = {V, Eg} and H = {Vy, Ey} are isomorphic
iff there is a bijection b from V to Vy; that respects the edges and their labels. A graph G =
{Ve, Eg} is a subgraph of graph H = {Vy, Ey} iff there exists at least one injection i from Vg to
Vi that respects the edges and their labels.

Given two graphs G,H, a graph S = (Vy, E) is a common subgraph of G and H if it is a sub-
graph of G and a subgraph of H. A common subgraph S of G and H is maximal iff for all S’ sub-
graph of Gand H, S C §' = S=§'. All three algorithms take two properly edge-colored graphs
G =1{Vg, Eg} and H = {Vy, Ey} as an input. For any color c, the sets of c-colored edges are
denoted E;. and Eg,.

2.4.2 Using the PEC when extending a matching. The three algorithms presented in this
paper revolve around exploiting the constraint added by having to respect the PEC when
matching two graphs to greatly reduce the search space. All three algorithms reliy on the same
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Fig 3. Impact of proper edge-coloring on graph-matching. This figure displays a piece of two graphs (G on the left
and H on the right) in which the nodes 0 and a are already matched together. The next step is to match their
neighbours. In the generic case, all permutations have to be tested. On the contrary, in the example displayed, the
colors of the edges limit the options to consider to a single one.

https://doi.org/10.1371/journal.pcbi.1008990.9003

core strategy. Matching the two graphs is done by starting with a minimal match and then
extending it through the neighbors of the already matched nodes. This strategy is common in
graph matching and usually requires to test all permutations between the two sets of neigh-
bours. However, the constraint of respecting the PEC only leaves at most a single valid affecta-
tion of the neighbours, as illustrated in Fig 3. As a consequence, the complexity of the
extension process is linear in the number of nodes (since the number of colors is fixed, cf. S1
Text).

Graph isomorphism algorithm. The Graph Isomorphism problem consists in determin-
ing if two properly edge-colored graphs G and H are isomorphic. Our Graph Isomorphism
Algorithm determines the color ¢ that minimizes the product |Eg | X |Eg,|. Then, for all pairs
of edges ({g1, £}, {h1, ho}) € Eg. X Egy, the algorithm launches an extension with the matching
((g1> h1), (g2, hy)) as starting point. The two graphs are isomorphic iff it exists a matching that
can be extended into a bijection of Vi and Vy, that respects the edges and their coloring. As we
mentioned previously, the extension process is in O(|C| x n) (assuming n = |Vg| = | Vg, if
not, G and H are trivially not isomorphic) and the number of starting point is capped by
O(n*/|C)) resulting in a O(n*) complexity for the algorithm (cf. ST Text).

2.4.3 Subgraph isomorphism algorithm. The Subgraph Isomorphism problem consists
in, given two properly edge-colored graphs G and H, determining if G is a subgraph of H. Our
Subraph Isomorphism Algorithm is derived from our Graph Isomorphism Algorithm, the dif-
ference between the two being that G is a subgraph of H iff it exists a matching that can be
extended into an injection of V in Vy; that respects the edges and their coloring. The com-
plexity is the same as the Graph Isomorphism Algorithm: O(n*) with n = min(|Vg|, | V) (cf.
S1 Text).

2.4.4 All maximal common subgraphs algorithm. The All Maximal Common Subgraphs
problem consists in finding all maximal common subgraphs between two properly edge-col-
ored graphs G and H (note that this differs slightly from the maximal common subgraph prob-
lem which usually consists in just finding the largest common subgraph). This algorithm relies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008990 May 28, 2021 7128


https://doi.org/10.1371/journal.pcbi.1008990.g003
https://doi.org/10.1371/journal.pcbi.1008990

PLOS COMPUTATIONAL BIOLOGY

Finding recurrent RNA structural networks with fast maximal common subgraphs

~

” T/, o
O ORO2ORRIOORO20)

O,
N

AN

-

-
-

on the same extension strategy than the two previous ones. However, unlike the two previous
problems, encountering a discrepancy during the extension does not imply that this extension
should be abandoned (as illustrated in Fig 4). Instead, it suggests the existence of an alternative
way of matching the graphs by considering the nodes in a different order than in the current
extension. As we are looking for all maximal common subgraphs, this alternative has to be
explored as well. As a consequence, we designed an unconventional backtracking mechanism.
For any new discrepancy encountered, we launch a new extension with a list of constraints
(similar to instructions) designed to force this new extension to explore the alternative sug-
gested by the discrepancy. Such an extension can also encounter new discrepancies and so on
and so forth. Fig 5 illustrates this process and a complete description of this mechanism (with
additional illustrations) is provided in S1 Text as well as a formal proof of its correctness.

2.5 From common subgraphs back to RNA structures

By transposing the RNA structures to graphs and using our algorithms, we are thus able to
obtain the set of All Maximal Common Subgraphs contained in any given dataset. However,
the number of Maximal Common Subgraphs grows exponentially with the size of the dataset
and quickly exceeds human capacities. As a consequence, we designed a restriction system to
define more human-sized subsets of structural elements and designed our method to extract
and organize such subsets specifically rather than the whole set All Maximal Common Sub-
graphs. Those subsets of structural elements are to be defined by users through rules or restric-
tions, according to the types of structures they want to study.
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Fig 4. Illustration of the extension process. This figure illustrates the extension process from a “starting point” (here ((go, o), (0> 1)), in blue). We first consider the
neighbors of g, and A (in purple). Thanks to the PEC, there is only one way to match them. We then consider the neighbors of g; and h; (in green). We match gs and A5
but discover that their neighborhoods are not compatible. At this point the behaviours of the three algorithms differ. This discovery implies that the matching cannot be

extended to cover all of G so the Graph Isomorphism and Subgraph Isomorphism will abandon it and pass on to another “starting point”. The All Maximal Common

Subgraphs on the contrary will take note of this discrepancy and keep extending the matching nevertheless. This extension will output a maximal common subgraph of G
and H and a new branch will be created to explore the alternative solution suggested by the discrepancy found.

https://doi.org/10.1371/journal.pchi.1008990.9004
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(14, 20) 5

Fig 5. Exploration tree with backtracking. This figure displays the exploration tree representing a posteriori the relation between the different
branches created. In this tree, the root is a starting point (i.e. the nodes that are already matched at the start of an exploration) and each leaf is a
different maximal common subgraph. Each path from the root to a leaf describes an exploration. For instance, the node (14,20) of the
exploration tree corresponds to the action of matching the node 14 from G to the node 20 of H. All the leafs in the right subtree have matched
14 to 20 and all the ones in the left subtree have not. Note that only the nodes with a left child are represented, all other nodes have been
collapsed since they bear no information about the exploration process. The first exploration always produces the right most maximal common
subgraph. In this exemple, the first exploration encountered two conflicts and the algorithm thus produced two new branches which
respectively were instructed not to add (24,26) and not to add (14,20). The first of the two produced another maximal common subgraph
without any trouble but the second encountered another conflict and so on and so forth.

https://doi.org/10.1371/journal.pchi.1008990.9005
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One of the strong points of our methods is its ability to easily switch from a subset to
another since the restriction system is independent from the graph matching part. This opens
the opportunity to conduct studies on several related subsets to draw comparisons, as illus-
trated in section 3. Since we will be working on different subsets simultaneously, let us formal-
ize what those subsets are or can be.

2.5.1 Recurrent Interaction Network (RIN). We call Recurrent Interaction Network
(RIN) any recurrent subgraph of RNA 2D Structure Graphs (i.e. observed in at least two RNAs
of the dataset). A RIN is formally defined as a pair (S, O) with:

o §={Vs, Eg} a connected graph with the properties of a RNA 2D structure graph

o 9 a collection of occurrences. An occurrence records an observation of S in the dataset. We
represent an occurrence as a pair (G, i) with G = {V, Eg} a RNA 2D structure graph and i an
injection from Vg to V that respects the edge labels.

« 3(G,i),(H,i) € O s.t. G# H (i.e. it should be recurrent)

This minimal set of properties defines the RIN* class which can be seen as the mother-class
from which all other classes are derived by adding additional restrictions. Note that we will be
using class to refer to subsets of structural elements from now on as the relations between sub-
sets are similar to the ones between the classes of a class-oriented langage.

To illustrate this let us consider a set of additional rules/restrictions R, designed to invali-
date some structural elements we are not interested in. R thus defines RIN® which is a subclass
of RIN*. For our method to extract RIN® from a dataset, R is to be translated into a filtering
function fz: G — Cgne with G a graph that shares the same properties as an RNA 2D structure
graph and Cgp the collection of RINY in G that respects the rules in R (the properties defining
RIN*are “built-in”). To put simply, the role of fz: G — Cgynx in the pipeline is to extract the
RINF from the maximal common subgraphs.

Additionally, we offer the possibility of providing a second filtering function f; : G — G’
that takes as input an RNA 2D structures graphs G in the dataset and outputs another graph
G', which is a subgraph of G without the edges and nodes in G that already infringe a rule of R
(and thus cannot possibly be part of any valid RIN®). £, is optional as it only improves perfor-
mances by reducing the search space, albeit greatly in most cases.

We will be using RIN® in the following sections to denote an arbitrary class of RINs cur-
rently being extracted.

2.5.2 Extraction of RIN®. For every pair of RNA 2D Structure Graphs in the dataset
(after the application of f;, if provided), we use our algorithm solving the maximal common
subgraphs problem to extract the set of all maximal common subgraphs between the two
graphs (as illustrated in Fig 6). The filtering function f (derived from the rules in R that
defines the class RIN® currently being extracted) is applied to each maximal common sub-
graph found. The sets of RINs obtained are gathered and clustered using our graph isomor-
phism algorithm. This process involves non trivial but incidental mechanisms which we
describe in S2 Text.

Note that our implementation relies on parallelization to improve the performances by dis-
tributing the pairs of graphs to process (cf. S2 Text).

2.5.3 Network of RIN®. RINs of a given class are often related (i.e. the canonical graph of
one may be a subgraph of the canonical graphs of one or several others RINs). In order to dis-
play the internal structure of a class of RINs, we organize it into a network N = {V, E}. A node
in Vrepresents a RIN. An edge e = {r;, r,} from RIN r; = (§,,0,)toRIN r, = (§,,90,),isin E
iff S, is a subgraph of S,. If the network is to be displayed, we then remove any edge e = {ry, 73}
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Fig 6. Simplified display of the full pipeline. The RNA 2D structure graphs given as input are pre-processed for the
sake of optimization. Each pair of graphs in the pre-processed data is then given to the maximal common subgraphs
algorithm as input and the output is post-processed into partial sets of RINY. All partial sets of RIN® are finally merged
into the complete set of RIN® which is the output of the whole pipeline.

https://doi.org/10.1371/journal.pcbi.1008990.9006

€ Eife={ry, r,} € Eand e = {r,, 13} € E to avoid overloading the display as the edges removed
were equivalent to paths in the new version of the network. We rely on our subgraph isomor-
phism algorithm to build those networks efficiently.

3 Results & discussion

In this section, we present the results of different applications of our method that fall into two
categories. First are the results obtained from the dataset used in CaRNAval [28] that aim at
validating our method, at illustrating the flexibility of the method in regards of defining
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families of substructures and at evaluating the impact of consecutive relaxations of constraints
over the same dataset. Second are the results obtained from a recently published dataset that
constitute an up-to-date corpus of structures.

3.1 Datasets

We use two different datasets of RNA structures. Both datasets are produced from the non-
redundant RNA database maintained on RNA3DHub [29]. The difference between the two
datasets is the version of this database used: the first dataset is based on version 2.92 (Sept. 9"
2016) whereas the second dataset is based on version 3.137 (Jul. 29" 2020). Our motivations in
using two datasets (that will be referred as dataset 2.92 and dataset 3.137 from now on) instead
of just using the more recent dataset 3.137 lie in that dataset 2.92 was the one used in CaRNA-
val [28]. As a consequence, dataset 2.92 was necessary to draw any meaningful comparison
with CaRNAval.

The non-redundant RNA database maintained on RNA3DHub [29] contains all-atom
molecular complexes with a resolution of at worse 3A(843 for version 2.92 and 1152 for ver-
sion 3.137). From these complexes, we retrieved all RNA chains also marked as non-redundant
by RNA3DHub (1180 chains for version 2.92 and 1604 for version 3.137). The basepairs were
annotated for each chain using FR3D. Because FR3D cannot analyze modified nucleotides or
those with missing atoms, our present method does not include them either. If several models
exist for a same chain, only the first one was considered.

To distinguish between local and long-range interactions, we define a secondary structure
from the ensemble of canonical CWW interactions. This task can be ambiguous for pseudo-
knotted and large structures. We used the K2N algorithm [31] from the PyCogent library [32].
A case that can not be treated by K2N is when a nucleotide is annotated as having two CWW
interactions. Since this is rare, we decided to keep the interaction belonging to the largest
stack.

3.2 Three different yet related classes of RINs

As we mentioned previously, some of our objectives in this section are to validate our method
and evaluate how successive relaxations of rules impact the results. In order to fulfill those
objectives, we define three classes of RINs which are successive generalizations obtained by
incrementally relaxing rules. Those classes (RIN*", RIN*" and RIN?) are named according to
the sets of rules they corresponds to so let us first introduce those rules before elaborating on
those three classes.

For any RIN = {S, O}, where S is a canonical graph representing the interactions network
while O is the collection of occurrences:

x - each node in the canonical graph S belongs to a cycle in the undirected graph induced by S
(the undirected graph induced by S is obtained by replacing every directed edge by an undi-
rected edge and merging those between the same nodes). We are interested in geometries
constrained by annotated interactions.

y - if two nodes, a and b in S, form a local canonical base pair, there exists a node c in S such
that c is a neighbor to a or b, and c is involved in a long-range or non-canonical interaction.
In other words we do not extend stacks which nucleotides are involved in canonical base
pairs only. Else, we would match every stem with each other stem.

z - each node in S is involved in a canonical or a non-canonical interaction (i.e. no nodes with
only backbone interactions). This impedes chains of nucleotides ony connected by the
backbone.
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b - S contains at least 2 long-range interactions, i.e. 4 edges labeled as long-range since each
interaction is described with two directed edges. This is a known property of interaction
networks joining two SSEs, as the A-minor and the ribose zipper.

¢ - the nucleotides corresponding to the nodes in S are captured by exactly 2 SSEs. This was a
technical restriction to limit the size of RINs, that could not be handled by the previous
algorithms.

Rule x aims at enforcing the cohesiveness of the interaction network by preventing dan-
glings that would create variations of little interest. Rule y aims at excluding pure stacks of
canonical base pairs (i.e. at least two consecutive c(WW with no other interaction) which form
the core of the structure and are either embedded in the secondary structure with little geomet-
ric variation or result from the folding of the tertiary structure (co-axial stacking between heli-
ces, loop-loop interactions or pseudo-knots) with often a larger geometric variation. Rules z
aims at excluding non interacting nucleotides that do not have geometric constraints as inter-
action networks are intended to capture a representation of the geometry. We will discuss the
two last rules in parallel of the description of the classes.

We denote the different RIN classes by concatenating the symbols of the rules that defines
them (for instance RIN™* is the class defined by the first three rules). This naming system has
the advantage of making the name of a class an exact description of its definition. However,
since the rules x,y, and z are common to all classes, we will replace xyz with a in classes’
names. Please refer to Table 1 for a summary of the different classes, their names and the rules
they enforces. We also provide examples of structures in Fig 7 to illustrate how the successive
relaxations of rules allow additional structures to be captured.

We inherit the five rules from the CaRNAval project [28]. The CaRNAval project aimed
at extracting RNA structural motifs containing non-canonical base pairs, 2 or more long range
interactions and involving exactly 2 SSEs. The set of structures extracted in CaRNAval corre-
sponds in our system to the RIN*™* class. We will use the RIN®* class as the reference to vali-
date our method.

We designed the RIN® class to replace the RIN*™ as the standard definition of RINs. The
RIN® class conserves the core constraints (i.e. x,y and z renamed as a) but relaxes secondary
constraints b and ¢, something that was not possible with the method used in CaRNAval.

We designed the RIN®® class to serve as an intermediary between the RIN*** and RIN® clas-
ses. By doing so, we are able to distinguish the impact of relaxing rule ¢ from the impact of
relaxing rule b.

3.3 Assessment of the method on Dataset 2.92

3.3.1 Reproduction of previous work. A natural first step in the evaluation of our method
is to verify if it is able to reproduce the results presented in CaRNAval. In the notation

Table 1. Rules and RIN classes. Summary of the relation between the rules and the three RIN classes.

Rules| Classes— |  RIN*™ RIN® RIN®
Each node is in a cycle 4 4 v
Stems of canonical base pairs are not extended 4 4 v

¢ Each node forms at least one base pair v 4 4

b At least two long range interactions v 4 -

c The entire RIN must be over exactly two SSEs v - -

https://doi.org/10.1371/journal.pchi.1008990.t001
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Fig 7. Examples of structures to illustrate the three RIN classes. Those three graphs displayed inside a Venn diagram are
subgraphs of Fig 1 with the same SSEs annotations (SSEs D,C and E figured with colored areas). Graph #1 is valid for all three classes.
Graph #2 spans over 3 SSEs and so cannot be a valid RIN®*, Graph #3 does not contain long-range interactions and thus is only
valid for class RIN®.

https://doi.org/10.1371/journal.pcbi.1008990.9007

introduced in the present paper, the collection presented in CaRNAval consists in 331 RIN**
extracted from Dataset 2.92 for a total of 6056 occurrences. Our method extracts those same
331 RIN™ from Dataset 2.92 with the exact same collections of occurrences.

Please note that if CaRNAval extracted 331 RIN™™, it displays 337 structures. Indeed, it
appears during our evaluation that 4 RINs were actually invalid and should not have have
passed the filters of CaRNAval. The absence in our results actually validates our method. The
2 last RINs are a special case: they have only 2 observations with both observations inside a sin-
gle RNA chain (whereas our definition requires at least two occurrences from distinct RNA
chains). As such they are valid RINs but invalid RIN*™.

As a conclusion, our method reproduces previous results perfectly as the only discrepancies
were due to either errors in said previous results or modifications in definitions.

3.3.2 Relaxing rule c —RIN®®. Let us now leverage our new method to relax rule c and
extract RIN® that are allowed to span over two or more secondary structure elements instead
of exactly two for RIN®™ (rule b still prevents single SSE RIN**).

From Dataset 2.92, we extract 557 RIN® for a total of 7709 occurrences. Comparing the col-
lection of RIN® with the collection of RIN®™ is not trivial. Indeed, amongst the 557 RIN™, 243
are isomorphic to a RIN®™, As a consequence, 88 RIN* are not matched by a corresponding
RIN. They are instead found inside larger RIN® (i.e. the canonical graph of the RIN®* is a
subgraph of the canonical graph of at least one RIN*"), as well as their occurrences. To put it
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Fig 8. Distribution of RIN:b in Dataset 2.92. Numbers of distinct RIN:"(in blue) and all their occurrences (in green) over the different
numbers of SSEs they span over in Dataset 2.92.

https://doi.org/10.1371/journal.pchi.1008990.9008

differently, those 88 RIN™™ are still captured but are always found inside “larger contexts” that
could not be perceived before because of the limitation on the number of SSEs. Now that we
relaxed rule ¢, the “larger contexts” are now captured inside RIN™” that “assimilated” those 88
RIN?*,

We show in Fig 8 the distribution of SSEs in the RIN® and of their occurrences. Please note
the logarithmic scale of the y axis: relaxing rule c indeed allowed larger structures to be
extracted but the vast majority of RIN®® span over a small number of SSEs. We will address the
very large structures found in separately in section 3.4.2.

Interestingly, the numbers of observations of the 243 RIN***/RIN®® common to both ver-
sions have changed for 81 of them (+4 observations on average). More generally, we observe
that relaxing rule c also allowed RIN® to contain varied numbers of SSEs. We show in Table 2

Table 2. RIN®® and variation on SSEs span. For each RIN* we compute how the number of SSEs covered varies
between the occurrences. A value of 0 means that all occurrences are over the same number of SSEs while +1 (resp. £2)
means that the RIN®® can span two different number of SSEs (resp. three).

Variation in number of SSEs 0 +1 +2

Numbers of RIN® 435 116 6
https://doi.org/10.1371/journal.pchi.1008990.t002
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Fig 9. Distribution of RIN; in Dataset 2.92. Numbers of distinct RIN? (in red) and all their occurrences (in rose) over the different
numbers of long range interactions they contain in Dataset 2.92.

https://doi.org/10.1371/journal.pcbi.1008990.9009

that this variation is nevertheless limited: out of the 557 RIN®", 435 had all of their occurrences
span the same number of SSEs. There are 116 that can be over two different number of SSEs,
and only 6 RIN® have their occurrences cover three different number of SSEs.

3.3.3 Relaxing rule b —RIN®. In the previous section we created the RIN®® class as a gen-
eralization of the RIN*"™ class. A natural way to generalize the problem further is to remove
the constraint of having 2 or more long range interactions. We call RIN® the class obtained
from RIN*® by removing rule b (cf. definition of the classes in 3.2). While this modification is
trivial to implement, it does increase the search space drastically compared to the extraction of
RIN®. However the collection are way easier to compare.

Indeed, our method finds 920 RIN? for a total of 12239 occurrences and all 557 RIN®" are
matched by RIN?(and so are their occurrences).

Unlike the relaxation of rule c that caused a rearrangement of the collection, relaxing rule ¢
does not open the possibility of finding new larger “including” structures. As a consequence,
the collection of RIN? is strictly including the collection of RIN.

The new structures that make the difference between the two collections are RIN? that con-
tain either 0 or 1 long range interaction. We show in Fig 9 the distribution of the RIN? and of
their occurrences depending on the number of long range interactions they have. Amongst the
new 363 RINZ, 222 contain no long range interaction and 141 have exactly 1. Those represent
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Fig 10. Distribution of RIN:. Numbers of distinct RIN? (in blue) and all their occurrences (in green) over the different numbers of SSEs
they span over in Dataset 2.92.
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39% of the RIN? and 37% of the occurrences. In Fig 10 we show the distribution of the number
of SSEs the RIN? span over. As expected, the distribution is very similar with its equivalent for
RIN? displayed in Fig 8. The two differences being the additional bar in Fig 10 that corre-
sponds to RIN? that span over exactly one SSE and a higher second bar (i.e. more RIN? span-
ning over 2 SSEs than RIN™). Similarly to RIN™, the occurrences of a single RIN* span over a
consistent number of SSEs as shown in Table 3. Table 4 summarises the numbers of RINs
found for each class.

3.3.4 Networks of RIN**, of RIN®® and of RIN®. Let us now compare the collections of
RIN, of RIN*" and of RIN® through the networks they form (cf. section 2.5.3). The network
formed by the RIN®™ consists in 3 main connected components and named after a characteris-
tic motif they contain. They are the Pseudoknot mesh, the A-minor mesh and the Trans

Table 3. Variation in the number of SSEs over the occurrences of the same RIN®. (Cf. Table 2). Those numbers
show that the variation in the number of SSEs amongst the occurrences of a given RIN® is both uncommon and limited,
even more than with RIN*®, albeit slightly (82% of RIN® with no variation vs 78% of RIN™).

Variation in number of SSEs 0 +1 +2
Numbers of RIN® 754 159

https://doi.org/10.1371/journal.pcbi.1008990.t003
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Table 4. Summary of numbers of unique RINs found in the different classes with the total numbers of occurrences. Please note that this table also displays the numbers
for the RIN? class in Dataset 3.137 that we will present in section 3.4.

Class
RINabc
RIN®®
RIN®

https://doi.org/10.1371/journal.pchi.1008990.t004

Dataset 2.92 Dataset 3.137
unique occurrences unique | occurrences
331 6056 - -
557 7709
920 12239 1875 29344

W-C/H mesh, respectively containing 59, 196 and 22 RIN®*. The remaining RIN** are shared
between 25 other components of size ranging from 1 to 4.

In contrast, the network of RIN®® only has 16 components compared to the 28 of the RIN**®
network. It suggests that the newly found RIN® connect components of the RIN* network
together. This claim is supported by the fact that, in the network of RIN®", the Pseudoknot and
A-minor meshes have merged into a single one containing 482 RIN*™. This new giant mesh
contains all the elements in the two main meshes presented in CaRNAval plus 230 extra RIN®.
The Trans W-C/H mesh remains disconnected and gains 16 elements for a total of 38 RIN®®,

The addition of the new structures from the RIN® collection to the RIN®® network connects
almost all the nodes of the network. Indeed 888 of the 920 RIN? are inside a single giant com-
ponent. This component gathers not only the Pseudoknot and the A-minor meshes of the
RIN®® network (like the main component of the RIN®® network did), but also the Trans W-C/
H mesh. Of the remaining 32 RIN? that are not in this component, 22 are singletons and 10
form 4 different small components. In summary, the RIN® network shows that the RIN® class
forms a unified and nearly totally connected landscape of structures.

3.3.5 Performances. We previously mentioned that our method was significantly more
efficient than the only published method it can be compared to (i.e. CaRNAval). This state-
ment is to be considered in the context of graph matching and thus NP-hard problems in gen-
eral. Just like CaRNAval, our method is exponential in the worst case. However our method
is able to perform the same task significantly faster than CaRNAval (0.7h instead of 330h).
Moreover, our method can extract RIN classes that are beyond the limits of the method of
CaRNAval (RIN® RIN®®, RNA 3D modules cf. section 3.5).

Table 5 displays several runtimes from our method and the method of CaRNAval on the
same machine (20 CPUs) on an indicative basis. In addition to the runtimes on Dataset 2.92, it
also displays runtimes on Dataset 3.137 that we will present in the next section 3.4 and on
RNA 3D modules that we present in section 3.5. Please note that, for our method, producing
the set of RIN*™ is equivalent to producing the set of RIN?” and applying a filter corresponding

Table 5. Runtimes over 20 CPUs. This table displays the runtime of previous method (CaRNAval) and our method
(others rows) for different classes of structures extracted. The values have been measured with the linux time command
and are real CPU times i.e. clock time elapsed between the start and the end of the execution. All runs have been per-
formed on the same machine.

Dataset 2.92 Dataset 3.137
CaRNAval 330h -
RIN** 0.7h -
RIN® 0.7h -
RIN® 1.4h 1.8h
RNA 3D modules - 2%h

https://doi.org/10.1371/journal.pchi.1008990.t005
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to rule ¢. To put it differently, our method cannot take advantage of rule c and so its runtime
for class RIN®™ s similar to its runtime for class RIN®®.

3.4 RIN? from Dataset 3.137

Now that we have accessed our method on Dataset 2.92, let us move to Dataset 3.137. We will
only consider RIN® in this section.

As we mentioned when we introduced the two datasets, Dataset 3.137 contains significantly
more RNA chains than Dataset 2.92 (1152 vs 843, +37%), a consequence of the four years that
separate the publication of the two versions of the non-redundant RNA database maintained
on RNA3DHub they are respectively based on.

Our methods finds 1875 distinct RIN? for a total of 29344 occurrences in Dataset 3.137.
Compared to the results we obtained from Dataset 2.92 (920 RIN for a total of 12239 occur-
rences), we find 104% more RIN? and 140% more occurrences. Those numbers might appear
surprising considering that there are only 37% more structures in Dataset 3.137 than in Data-
set 2.92. However the structures in Dataset 3.137 are larger in average (65 nt. vs 45nt., +44%)
so there are actually nearly twice as much nucleotides in total in Dataset 3.137 than in Dataset
2.9.

Let us mention that all our structures of interest (A-minor type I/II, Ribozipper, GNRA,
A-rich Loop) are present amongst those 1875 RIN? and that their numbers of occurrences
increased similarly to the average as displayed in Table 6

Figs 11 and 12 respectively display the distribution of RIN? by the number of long range
interactions they contain and by the number of SSEs they span over. Those distributions are
similar to their counterparts from Dataset 2.92 (Figs 9 and 10).

3.4.1 Network of RIN? in Dataset 3.137. The network of RIN? in Dataset 3.137 shows
the same trend as in Dataset 2.92. One massive mesh clusters 97.5% of RIN? (vs. 96.5% in Data-
set 2.92). This component still aggregates the three meshes (Pseudoknot mesh, A-minor
meshe and Trans W-C/H mesh) presented in CaRNAval. The remaining 44 RIN? are distrib-
uted in 4 small components (sizes: 7, 3, 3 and 2) and 29 singletons.

3.4.2 Ribosomes and very large RINZ. Note: this discussion on the very large RIN?
extracted could arguably falls into section 3.3 as it involves the RIN** and RIN® classes and
thus Dataset 2.92. Yet, some aspects ot this discussion require our latest results on Dataset
3.137 and it was thus moved to section 3.4 instead.

We previously mentioned that the relaxation of rule ¢ (being exactly over 2 SSEs) allowed
for larger structures to be extracted. Indeed, our method does not cap the size of the structures
extracted outside of the limitations fixed by the rules. As such, relaxing rule ¢, that directly lim-
its the size of the structures accepted, naturally results in larger structures being found. How-
ever, the three rules x,y and z (that we amalgamated into rule a) ensure that only densely

Table 6. Number of occurrences found in Dataset 2.92 and Dataset 3.137 for 5 structures of interest. The 5 struc-
tures of interest are denoted using both their name in the litterature (first column) and their ID in our database (second
column). Note that it is the same ID displayed in CaRNAval.

RIN® ID occ. in 2.92 occ. in 3.137 Variation
A-minor Type I #2 194 411 +111%
A-minor Type I #17 102 205 +100%
Ribose zipper #11 133 321 +141%
GNRA #44 33 71 +115%
A-rich Loop #74 13 34 +161%

https://doi.org/10.1371/journal.pchi.1008990.t006

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008990 May 28, 2021 19/28


https://doi.org/10.1371/journal.pcbi.1008990.t006
https://doi.org/10.1371/journal.pcbi.1008990

PLOS COMPUTATIONAL BIOLOGY

Finding recurrent RNA structural networks with fast maximal common subgraphs

Number of RIN? / Occurrences

104

=
o
w

=
o
N

101

100

ORNWAUONOORRRERKHEHRERHEHEHEHEENNN
OFRNWRARUONOWOORN

NINNWO
wh INO
Number of long range interactions
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numbers of long range interactions they contain in Dataset 3.13.
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connected structures are accepted. Typically, if we apply a filter enforcing those rules to the
vast majority of the RNA 2D structure graphs in the dataset (which is the role of the second fil-
tering function f; . cf. section 2.5.1), it disconnects the vast majority of them as the filter
“cuts” the stems, the backbone and the danglings if those do not contain any non-canonical
interactions.

Yet, relaxing rule c still drastically raised the order (i.e. number of nodes, although the same
can be said for the size) of the structures found: while the largest RIN** found in Dataset 2.92
contained 26 nodes, 64 RIN*Slb were found with more than 26 nodes on the same dataset.

Amongst those 64 RIN™, 4 have more than 100 nodes and the largest contains 293 nodes. The
numbers are the same for class RIN® on Dataset 2.92 but not on Dataset 3.137. On Dataset
3.137 there are 287 RIN? over 26 nodes, 7 over 100 and the largest RIN® now contains 376
nodes. By comparison, the number of nodes of our target structures varies between 3 (A-
minor Type I) and 13 (A-rich Loop).

Those large RIN? have very limited numbers of occurrences. The 287 RIN? with more than
26 nodes totalize 1154 occurrences for an average of 4 occurrences per large RIN® whereas the
average for the whole RIN® class is 15.7 occurrences per RIN®. This tendency is even clearer for
the largest ones as the 14 largest RIN? only have two occurrences. By comparison, the A-minor
Type I and A-rich loop we just mentioned have respectively 411 and 34 occurrences.
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Fig 12. Distribution of RIN? in Dataset 3.137. Numbers of distinct RIN? (in blue) and all their occurrences (in green) over the different
numbers of SSEs they span over in Dataset 3.13.

https://doi.org/10.1371/journal.pcbi.1008990.g012

A deeper look at those occurrences, and thus the RNA chains those large RIN? are found in,
shows that 282 of those 287 large RIN? are found exclusively in ribosomal RNAs (25 RNA
chains of various ribosomal subunits from various species). The 5 exceptions are found exclu-
sively in homologues of the SAM-I riboswitch (4 RNA chains) and the largest RIN® of them
contains only 40 nodes (128" largest RIN?).

Large RIN? being nearly only found in ribosomal chains is likely the consequence of ribo-
somal chains being both significantly larger than the average and heavily structured (which
limits the disconnection phenomenon mentioned above). Moreover, both Dataset 2.92 and
3.137 include multiple ribosomal chains despite being non-redundant due to those chains cor-
responding to different ribosomal subunits and/or organisms.

Those observations on the large RIN? suggest that part of the collection of RIN? (typically
the RIN? found in ribosomal chains) could be used as base for a study of conserved structural
elements in ribosomes. However, such study falls out of the scope of this paper. On the con-
trary, and as we mentioned in the previous section, 97.5% of the network of RIN? in Dataset
3.137 is connected in a single component. All those 288 large RIN? are in this giant component
and thus are linked to 97.5% of the collection. As a consequence, in the perspective we adopt
in this study, those large RIN? constitute the tail-end of our collection of RIN? rather than a
separate group.
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Fig 13. 3 Largest RIN? in their contexts. The figure displays three 3D structures of ribosomal RNAs: 4Y4O (chain: 2A), 5]7L (chain: DA) and 6SPB (chain: A). The
colored parts correspond to the 3 largest RIN? found in Dataset 3.137: RIN? g5, in red, RIN";; 953 in cyan and RIN", g, in lime green. The overlap of two RIN? is
colored in indigo. Additional information about those RIN? and their overlap is provided in Table 7.

https://doi.org/10.1371/journal.pchi.1008990.9013

Although a detailed study of those large RIN? falls out of the score of this paper, Fig 13 dis-
plays the 3 largest RIN? found in Dataset 3.137 in the contexts they have been found in, for
illustrative purposes. Those 3 largest RIN? all have only 2 occurrences found in 3 different
RNA chains. Table 7 provide additional information about those 3 largest RIN? and their
respective overlaps (i.e. the largest common subgraph between each pair of RIN?).

A more focused analysis of the biggest motifs shows how they are composed of interconnec-
ted A-minor motifs. In fact, all RINs with 100 nodes or more have an A-minor, with up to 8
for the largest one. This highlights the important role of A-minor geometric conformations to
stabilize complex architectures associated with functional RNAs. It also suggests the existence
of a selective pressure to conserve these structures and possibly the trace of convergent
evolution.

3.5 Applications to RNA 3D module-based RNA structure prediction

As described earlier, we designed our method to be versatile by separating the rule system that
define what structures should be extracted from the graph matching algorithms. We illustrated
this versatility in section 3.3 with 3 RIN classes (RIN®®¢ RIN®® and RIN®). In addition to RIN

Table 7. Additional information on the 3 largest RIN? found in Dataset 3.137. The colors correspond to ones used in Fig 13. The values for the overlaps correspond to
the number of nodes shared between the RIN?. The RNA chains are denoted using the name of the file (ex:4Y40) plus the name of the chain (ex:2A).

Overlap with RIN*:
RIN® Color nodes edges #1984 #1983 #1982 Found in RNA chains:
#1984 red 376 769 - 127 126 4Y40,2A 5]7L,DA
#1983 cyan 236 491 127 - 227 6SPB,DA 5]7L,DA
#1982 green 228 473 126 227 - 6SPB,DA 4Y40,2A

https://doi.org/10.1371/journal.pcbi.1008990.t007
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classes, we applied our method on another class of structures linked to the RNA 3D structure
prediction problem: the RNA 3D modules.

RNA 3D modules are small RNA substructures involved in structural organization and
ligand binding processes that can be leveraged in the prediction of a full 3D structure. The
fragment-based method implemented by Parisien and Major in MC-Sym [33] constructs a full
3D structure from an augmented secondary structure by mapping the components of this sec-
ondary structure to a database of 3D structure fragments. The prediction of 3D modules has
been shown to improve this class of methods by providing more informative fragments,
namely in RNA-MolP [7]. Further progress has since been made in this direction with recent
improvements in RNA 3D modules identification in sequences [34, 35].

The main limitation of this type of method remains the difficulty of assembling a strong
dataset of modules. RNA modules are typically identified by searching RNA 3D structures for
recurrent subgraphs, a task to which CaRNAval should have been able to contribute. Unfor-
tunately, as of now, no fragment-based method has been able to integrate long-range modules
into a 3D structure prediction pipeline. Moreover, RNA modules do not need to include long
range interactions, and many of the well characterized modules are entirely local, namely the
kink-turn and g-bulged modules, and the published version of CaRNAval cannot be applied
to the discovery of common subgraphs without long range interactions as its execution time
would explode. However, the method presented in this paper does not have such limitation as
demonstrated by the extraction of the RIN® class.

We adapted the set of rules of the RIN classes presented in section 3.2 to the problem, focus-
ing on purely local RNA 3D modules, as a first approximation. The resulting set of rules would
correspond, in our notation, to the RIN*' class, with b being the constraint of having no long-
range interactions. We relaxed rule z as it would have invalidated structures we are interested
in such as the kink-turn that contains a bulge of backbone. Using this definition, we extracted
3387 structures with a total of 39513 occurrences from Dataset 3.137. Amongst those 3387 are
structures we aimed at extracting such as the kink-turn displayed in Fig 14, which highlight
the potential of our approach. However, those results also highlight a challenging aspect of
RNA 3D modules. Indeed, several non-isomorphic structures can be labelled as a single RNA
3D modules. Please note that it is not specific to our approach: the RNA 3D Motif Atlas, the ref-
erence dataset for local modules, typically has multiple entries that match the definition of the
kink-turn loop. As our method relies on exact graph matching to compare structures, an extra
step of post processing needs to be added to the pipeline to process the structures found into a
collection of RNA 3D modules. However, the design of this additional step is not trivial and
falls out of the scope of this paper and so does the improvement of the set of rules used.

Even with the shortcomings we just mentioned, those results show that the modularity and
the improved complexity allow for the tackling of this problem (cf. Table 5, for an indication
of the size of the search space). Our method constitutes the first software able to discover both
long-range and local RNA modules and as such, a significant step towards more accurate frag-
ment-based prediction of 3D structure from sequence.

4 Conclusion

In this paper we present a novel method that can find arbitrarily large recurrent interaction
networks (RINs) between two RNA structures, represented as graphs. Our graphical model
encodes the base interactions found in the structure and the edges are labelled with a color rep-
resenting the type of interaction according to the Leontis-Westhof classification [30]. We
designed three novel graph matching algorithms (i.e. isomorphism, subgraph and maximal
common subgraph algorithms) that leverage the information embedded in edge colors and
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Fig 14. Kink-turn found in Dataset 3.137 with our method.
https://doi.org/10.1371/journal.pchi.1008990.9014

apply these techniques to retrieve recurrent RNA base pairing networks (i.e. Recurrent Inter-
action Networks or RINs). Our methods improve by several orders of magnitude the computa-
tional efficiency compared to previous approaches. This technical breakthrough enables us to
relax constraints used in previous studies to search for recurrent RNA motifs without pre-
established assumptions.

To demonstrate the performance of our methods, we first successfully reproduce the results
presented in CaRNAval and show that we can conduct the same analysis in a matter of hours
instead of months. This achievement is an important milestone towards the release of a reliable
online database of motifs for structural biologists studying the architecture and evolution of
RNA structures. In particular, in light of the increasing number of new RNA 3D models
deposited in the structural repositories (e.g. for the first time, more than 100 RNA-only struc-
tures have been released in the RCSB Protein Data Bank in 2020), our ability to quickly update
our catalog of recurrent motifs (i.e. RIN) is key to maintaining this service up-to-date.

Then, we proceed to another computational experiment to highlight new opportunities
offered by our technology. We take advantage of our improved computational efficiency to
relax constraints previously set in earlier studies and expand the definition of a RIN. It enables
us to search for larger classes of RINs like RIN®, which can span any number of SSEs and have
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any number of long range interaction (including none). By contrast, previous attempts could
only search for RINs with exactly two SSEs and at least one long range interaction. This novel
analysis allows us to revisit observations made in earlier studies. For instance, while the net-
work of RINs found by CaRNAval had three clearly separated components, the new network
computed using the generalized definition of RIN? is made of a single giant component con-
nected to more than 95% of all recurrent structures. This information could be key to revealing
the underlying architecture of the network of RINs and helping us identify evolutionary paths
that would allow for the emergence of specific functional motifs.

Even though a complete rigorous analysis and contextualization of this data is unfortu-
nately out of scope, we believe these observations provide enough support to justify further
investigations. This data could be useful for evolutionary studies of ribosomes [23, 36-38],
viroids structures [39] and the enhancement of motifs libraries for RNA design [8, 40]. As
illustrated in sub-section 3.4.2, our algorithms could also contribute to identify higher-order
RINs in ribosomal structures.

Yet, the development of additional theoretical models is warranted to assess the significance
of the RINs detected. For instance, albeit our methods can efficiently extract recurrent motifs,
it remains unclear if the redundancy stems from a selective pressure or from a composition
bias in the input data set. To answer such question, we need to develop null models of graphi-
cal representations of RNA (sub-)structures (e.g., [41]) that itself deserves a full study on its
own. Nonetheless, we designed our computational framework to accommodate such need in
the future and maintained the independence of the definition of motifs to search for from the
graph matching algorithms.

Finally, although our algorithms have been specifically developed for analyzing RNA base
interaction networks, they could be customized to process other molecular structures (e.g. pro-
teins) or more general biological networks (e.g. biological pathways). Therefore, we also hope
that this contribution will inspire the development of other bioinformatics tools.

Supporting information

S1 Text. Algorithms for efficient graph matching of edge-colored graphs. Provides formal
descriptions of all three graph matching algorithms presented in this papers with a complete
proof of correctness for the maximal subgraph isomorphism algorithm with several explana-
tory diagrams. It also provides discussions on the complexity of all three algorithms and on the
types of graphs they can be applied to.

(PDF)

S2 Text. Extraction of Recurrent Structural Elements. Provides additional details about
three auxiliary mechanisms of our method: the management of exceptions to the proper edge-
coloring in data, the gathering of partial results and the parallelization of the pipeline.

(PDF)
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