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The heat and thermoelastic equations are analytically solved for a material with low optical absorption. This
set of equations shows profiles describing the temperature distribution, surface displacement, stresses and
optical path for a sample with a thick-disk geometry when is excited by a ring-shaped laser beam. This is
done by determining the steady-state because when a laser beam is used, it turns on for several minutes
to stabilize before using it in experiments. It is shown that the temperature takes some seconds to reach
the steady-state condition, then, this approximation is very useful and simplifies the data processing. These
results were also compared with a Gaussian profile, showing that the Gaussian equations are a consequence
of the ring-shaped laser beam equations. The finite element method is used as a form of validation of the
equations found in this work, obtaining a good agreement between numerical results. Errors are calculated
for the temperature, displacement and optical path difference at the center(edge) of the sample; these are
around 0.14 %(0 %), 0.11 %(30.50 %) and 0.09 %(4.86 %), respectively, for a BK7 sample. The analytical
results obtained could be of great help in the design of the optical components and different experimental
configurations. Maybe the principal advantage of a ring-shaped laser beam is to produce a temperature profile
with a top-hat form at steady-state, while that a top-hat laser beam does not.

PACS numbers: Valid PACS appear here
Keywords: Ring-shaped, Photothermal effects, Thermal lensing

I. INTRODUCTION

Laser technology introduced new ideas for the design
of experimental setups and photothermal spectroscopy is
not an exception. This spectroscopic technique is based
on the transformation of light into heat at the sample.
And it has been used for materials characterization. So,
the knowledge of the laser beams is crucial for the cor-
rect interpretation of the heat transfer through the ma-
terials. When a laser beam impinges a material, dif-
ferent effects occur. Gaussian laser beams have been
widely used and characterized, also to being used in nu-
merous experiments,1–7 which has been used in various
photothermal techniques for the characterization of ma-
terials. Research on other forms of distribution, such as
the top-hat laser beam, has also been studied.8,9 There is
an excellent work describing the temperature profile for a
ring-profile laser beam.27 Many techniques are based on
laser beam technologies in which the laser beam profile is
very important for the correct description of the phenom-
ena, some examples are thermal lens spectroscopy10–14

and thermal mirror spectroscopy.15–18 These have been
used successfully in characterizing many materials. To

a)michel.isidro15@gmail.com

improve the design of an experimental setup used in opti-
cal experiments using many lenses, mirrors and different
optical components; it is necessary to know what hap-
pens to the instrumentation used, especially in experi-
ments that include high-power laser beams; for example,
when samples with very low optical absorption (water,
alcohols, glasses, etc.) are explored. Optical path dif-
ference (OPD) is the basis of these methods. Analyti-
cal solutions to the complex thermoelastic problem have
been approached using simplifications, these are known
as thin-disk19 or long-rod5 approximations. A complete
analysis for material with thick-disk geometry that is ex-
posed to a Gaussian laser beam has been shown in a pre-
vious work.20 The present study considers a ring-shaped
laser beam, it should be mentioned that this type of laser
beam can provide constant power at the center of a sam-
ple at steady-state.
The finite element method (FEM) has been used to pre-
dict how a system behaves in different situations.21–25

For this reason, the FEM is an excellent complement to
the theoretical analysis developed in this work. Using the
equations obtained and the FEM, different numerical an-
alyzes were performed and a good agreement was calcu-
lated between methods. Furthermore, our equations for a
ring-shaped laser beam were compared with a Gaussian
profile to observe the differences between temperature,
displacement, stresses and OPD profiles.
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To compare the results obtained, other models were used
that have been used to describe the steady-state temper-
ature profile. These models for a Gaussian26 and ring-
shaped27 laser beam show a very good agreement with
the results of this work for both the analytical model
and the FEM. This gives the confidence to continue with
the solution of the thermoelastic equation. Furthermore,
these results obtained for a ring-shaped laser beam could
be used for the determination of thermal and optical
properties as has been done using different laser beams
profiles.
The goal of this work is to provide analytical expressions
to describe the temperature profile produced by a ring-
shaped laser beam in a material with thick-disk geometry
and the consequent deformation. And to obtain a more
general expressions for laser beams at steady-state.

II. THEORETICAL MODEL

A. Temperature distribution

Fig. 1 shows that both the sample and laser beams
can be described using a cylindrical coordinate system.
This geometric configuration is very convenient consider-
ing that the sample has a thick-disk shape and that the
laser beam profile is ring-shaped. So, the heat diffusion
equation is given by

∂∆T (r, z, t)

∂t
−D∇2∆T (r, z, t) = Q(r, z), (1)

where ∆T (r, z, t) is the temperature difference according
to the radius r, thickness z and time t. D = k/ (ρc)
is the thermal diffusivity where k, ρ and c are the ther-
mal conductivity, density and specific heat of the sample,
respectively. Q(r, z) is the t-independent heat source.
Q(r, z) = Q0f(r)e−Aez, where8,27,28

Q0 =

{
1
2

Q1

ω2
e−ω2

i
, for a ring-shaped laser beam

Q1

ω2
G

, for a Gaussian laser beam
, (2)

where Q1 = 2AP0(1−R)/(πcρ). A is the optical absorp-
tion coefficient at the wavelength of the laser beam. P0,
ωe and ωi are the power, the external and the internal
radius of the laser beam, respectively. ωG is the radius of
the Gaussian laser beam where its intensity decreases to
1/e2. R is the material’s surface reflectivity. For optical
systems with low optical absorption, the approximation
e−Aez → 1 can be used. Laser beam profile f(r) is as
follows

f(r) =

{
θ(r − ωi)θ(ωe − r) , for a ring-shaped beam

e−2r
2/ω2

G , for a Gaussian beam
,

(3)
where θ is the Heaviside function. Hence, Eq. (1) is
rewritten z-independent as

∂∆T (r, t)

∂t
−D1

r

∂

∂r

(
r
∂

∂r

)
∆T (r, t) = Q(r). (4)

(a)

(b)

FIG. 1. Geometry of the laser beam profile and sample. This
is important for the coordinates’ system used in the solution
of the heat and thermoelastic equations. (a) Ring-shaped
laser beam: a, l0 are the radius and thickness of the sample,
respectively. ωi and ωe are the internal and external radius
of the laser beam, respectively. (b) Gaussian laser beam: a,
l0 are the radius and thickness of the sample, respectively.
ωG is the radius of the Gaussian laser beam where its relative
intensity is 1/e2.

Eq. (4) is subject to the boudary condition ∆T (a, t) = 0
and the initial condition ∆T (r, 0) = 0. According to
the method of separation of variables, the temperature
distribution can be described by an infinite sum of zero-
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order Bessel functions J0, as follows

∆T (r, t) =

∞∑
n=1

An(t)J0

(
αn

r

a

)
, (5)

where αn are the zeros of J0. To find An(t), the laser
beam must be represented similarly to ∆T (r, t), in order
to do that, we write down

f(r) =

∞∑
n=1

BnJ0

(
αn

r

a

)
, (6)

where Bn is found taking into account the orthogonality
conditions. Therefore, we get the expressions for Bn as
follows

Bn,R =
1

aJ2
1 (αn)

{
2

αn

[
ωeJ1

(αnωe
a

)
− ωiJ1

(αnωi
a

)]}
(7a)

and

Bn,G =
1

aJ2
1 (αn)

ω2
G

2a
e−

1
2 (αnωG2a )

2

, (7b)

for a ring-shaped and Gaussian laser beam, respectively.
By replacing one of Eqs. (7) in Eq. (6), the laser beam
profile is obtained in terms of a sum of first-order Bessel
functions J1. It can be seen in Eq. (7a) that when ωe =
ωi the value of Bn,R is equal to zero, this means that
there is no heat source as expected. When ωi = 0 and
taking into account that ωe,G ≤ a, then Bn,R = 2Bn,G.
This last result suggests that Q(r) for a Gaussian profile
is a consequence of ring-shaped Q(r) at steady-state and
when l0 � a. Substituting Eq. (5) and Eq. (6) in the
heat diffusion equation given by Eq. (4), we have the
next differential equation

d

dt
An(t) +

Dα2
n

a2
An(t)−BnQ0 = 0, (8)

whose solution is given by

An(t) =BnQ0
a2

Dα2
n

(
1− e− t

τ α
2
n

)
, (9)

where τ = a2/D is the thermal diffusion time and Bn
is given by Eqs. (7). Eq. (9) is very important be-
cause it describes the shape and behavior of the laser
beam. Where the second term (in parentheses) contains
the time dependency, where it can be seen that when
t→∞ this term is equal to 1, this way the steady-state
is obtained. This last approach is very important in prac-
tice because laser beams need stabilization before using
them in experiments. Substituting Eq. (9) in Eq. (5),
with Bn given by Eq. (7a), we have an equation that de-
scribes the temperature profile when a ring-shaped laser
beam excites a sample. This equation matches very well
the set of equations (3) found by Kim et al.27

B. Thermoelastic equation

Heating produces a deformation in the sample. For this
reason, it is important to understand the thermoelastic
behavior that said heat produces. It is called thermoe-
lasticity because the deformation of the structure does
not exceed the elastic limit and when the heat source
disappears the deformation also does.29 Thermoelastic-
ity theory makes possible to calculate the stresses in a
body produced by a temperature field. This theory in-
cludes heat conduction, strains and stresses due to a heat
source.30 As has been shown in a previous work,20 the
displacement vector (ui) and the stress components (σij)
are obtained from

ui (r, z, t) =∂iΨ (r, z, t)

+
1

1− 2ν

[
2 (1− ν) δzi∇2 − ∂zi

]
ψ (r, z, t)

(10)

and

σij (r, z, t) =2µ
(
∂ij − δij∇2

)
Ψ (r, z, t)

+
2µ

1− 2ν

[
∂z
(
νδij∇2 − ∂ij

)
+
(
1− ν)∇2 (δiz∂j + δjz∂i)

]
ψ (r, z, t) ,

(11)

where ∇2 is the Laplacian operator, δij is the the Kro-
necker delta function. µ = Y/ [2 (1 + ν)] where ν is the
Poisson ratio and Y is the Young’s modulus of the sam-
ple. Using the thermoelastic displacement potential Ψ
and Love function ψ, the thermoelastic equation can be
expressed by

∇2Ψ(r, t) = m∆T (r, t) (12)

and

∇2∇2ψ(r, z, t) = 0. (13)

Eqs. (12) and (13) are known as the Poisson and Love
equations, respectively. m = αT (1 + ν) / (1− ν), where
αT is the linear thermal expansion coefficient.
Using Eq. (5), solutions of (12) and (13) take the follow-
ing form

Ψ(r, t) = −
∞∑
n=1

ma2

α2
n

An(t)J0

(αnr
a

)
(14)

and

ψ (r, z, t) =

∞∑
n=1

J0
(
αnr
a

)
(αn/a)

2

[(
B1 +B2

αn
a
z
)
eαnz/a

+
(
C1 + C2

αn
a
z
)
e−αnz/a

]
,

(15)

respectively. The solutions for the constants B1, B2, C1

and C2 can be consulted in the reference,20 when σzz =
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FIG. 2. Behavior of h(αnβ) for J0(αn) = 0, n = 1, ..., 35.
It can be seen that when h(β → 0) = 1/4, this means the
thin-disk approximation (l� a).

σrz = 0 at z = 0 and z = l0. To account for edge
deformation for a thick-disk material, it is necessary to
use30

uz → uz + 2N
ν (z − l0/2)

Y
, (16)

σrr → σrr −N and σφφ → σφφ −N. (17)

Then, the displacement on the faces of the sample can
be expressed as

uz(r, 0, t) = −uz(r, l0, t)

=

∞∑
n=1

An(t)αT
αn

[
−2αnh(αn)l0 (ν + 1) J0

(αnr
a

)
+
l0νJ1 (αn)

ν − 1
(4h(αn)ν − 1)

]
(18)

with

h(αnβ) ≡ cosh (αnβ)− 1

αnβ [sinh (αnβ) + αnβ]
, (19)

where β = l0/a.
Fig. 2 shows the behavior of Eq. (19) for the first

thirty-five αn values that produce J0(αn) = 0. It can be
seen that when β → 0 it is obtained that h(αnβ) = 1/4,
this means that the thin-disk approximation is reached.
Now, using the general equations for the OPD shown in
a previous work20 and equations found here, we have a
complete set of equations for the correct description of
the OPD when a laser beam heats a material with thick-
disk configuration.

III. RESULTS AND DISCUSSION

Fig. 3 shows the temperature distribution produced
by a ring-shaped laser beam and one with a Gaussian

0.0 0.5 1.0 1.5 2.0
r (mm)

0.0

0.2

0.4

0.6

0.8

∆
T
(r
,t

→
∞
)
(o
C
)

ωi = 0.5 mm
ωi = 0.6 mm
ωi = 0.7 mm
ωi = 0.8 mm

ωe = 1 mm

ωG = 1 mm

Ring

Kim et al.

FEM

Gaussian

Gordon et al.

FEM

Gaussian

Gordon et al.

FEM

FIG. 3. Temperature profile created by a ring-shaped laser
beam varying the internal radius ωi with a constant external
radius ωe. ωG is the radius for a Gaussian laser beam. All
these data were created at steady-state, this means t→∞.

profile. Data used for the calculus can be found in a
previous work20 for a BK7 sample. It can be seen a very
good agreement between Eq. (5) with An(t) given by Eq.
(9) and Bn given by Eq. (7a), found in this work and rep-
resented by continuous lines, and Eqs. (3) reported by
Kim et al.27 represented by diamonds. It is shown how
the temperature profile changes as a function of ωi. The
value of ωe is kept constant. When ωi becomes zero, it
gives a top-hat profile. In the same figure, the result of
a Gaussian laser beam (Eq. (5) with Eq. (9) and Eq.
(7b)), found in a previous work is shown represented by
the dashed line.20 The latter is compared with the equa-
tion found by Gordon et al.,26 represented by triangles,
also obtaining a very good agreement. It is important to
mention that these curves were obtained at steady-state,
this means that t → ∞. The FEM was used to validate
the theoretical model proposed in this work. Circles and
squares are for ring and Gaussian FEM simulations.

Fig. 4 shows the temperature dependence as a func-
tion of r and ωi for the x-axis and y-axis, respectively.
The outer radius for the ring-shaped laser beam was set
at ωe = 1 mm. It can be seen that for r = ωe the value
of ∆T decreases independently of the value given for the
internal radius ωi. Furthermore, the behavior of the de-
crease of ∆T is the same after that value of r = ωe. It
is important to say that when the ωi = ωe there is no
representation because there is no laser beam.

In Fig. 5 is shown the temperature distribution in a
sample for (a) a ring-shaped and (b) a Gaussian laser
beam. These were generated using the models found in
this and a previous work.20 These graphs allow observ-
ing how the sample is affected by the incidence of a ring-
shaped and a Gaussian laser beam. Furthermore, in the
models, these calculations can be carried out as a func-
tion of time, then the behavior of the sample since the
laser beam is applied on the sample can be recorded until
it reaches the steady-state.
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FIG. 4. Temperature difference, ∆T , as a function of r (x-
axis) and ωi (y-axis). The value of ωe is set at 1 mm. Also,
a = l0 = 2 mm.

Fig. 6 shows the displacement calculations using Eq.
(18). The FEM was used as a validation method, and
we can see that there is a good agreement between both
methods. In addition, a comparison with the Gaussian
model is shown. For the ring model, ωe = 1 mm is main-
tained, while the value of ωi takes the values 0.8, 0.7,
0.6 and 0.5 mm. It can be seen that when the internal
radius goes to zero, the maximum value of uz increases
until reaching a behavior similar to that of a Gaussian
laser beam.

Figs. 7 and 8 show the radial and angular stress along
the z-axis, respectively. It can be seen that the absolute
maximum value is presented in the middle of the sample,
this means at z = l0/2. As ωi goes to zero, the absolute
maximum value increases. It should be noted that when
ωi → 0, the data for the ring-shaped laser beam takes
the form of σrr and σφφ for a Gaussian laser beam.

The stress along the z-axis for σzz is presented in Fig.
9. It can be seen how σzz goes from positive to neg-
ative values at the center of the sample as the inter-
nal radius is decreasing. The data shown correspond to
ωi = 0.8, 0.7, 0.6 and 0.5 mm keeping the value of ωe = 1
mm as was done previously.

Fig. 10 shows total OPD in a sample with l0 = a = 2
mm. It can be observed how at the center of the graph it
is shaped like a top-hat when a ring-shaped laser beam
is used to heat. The fall of the curve that represents the
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0.8
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FIG. 5. Temperature distribution generated with the (a) ring-
shaped and (b) Gaussian model.
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FIG. 6. Displacement presented in a sample with thick-disk
geometry, using l0 = r = 2 mm. A comparison between
ring and Gaussian model is shown. It can be seen that when
ωi → 0, the ring model tends to the same behaviour as that
of a Gaussian laser beam.

∆S appears in the internal radius of the laser beam, that
is, in the value of ωi. Remember that these data were
calculated using the steady-state.

To appreciate how the value of ∆S increases with time,
different calculations were performed, which are shown in
Fig. 11. These calculations were made at the center of
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FIG. 7. Radial stress for a material with thick-disk geometry
at r = 0 by using a ring-shaped laser beam. The sample has
the dimensions l0 = a = 2 mm. It is shown a comparison
with the FEM and the model that describes a Gaussian laser
beam.

0.0 0.5 1.0 1.5 2.0
z (mm)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

σ
φ
φ
(1
05

P
a)

ωi = 0.8 mm
ωi = 0.7 mm
ωi = 0.6 mm
ωi = 0.5 mm

ωe = 1 mm

ωG = 1 mm
l0 = 2 mm

Ring

FEM

Gaussian

FEM

Gaussian

FEM

FIG. 8. Angular stress for a material with thick-disk geometry
at r = 0 by using a ring-shaped laser beam. The sample has
the dimensions l0 = a = 2 mm. It is shown a comparison
with the FEM and the model that describes a Gaussian laser
beam.

the sample, this means when r = 0. As can be seen in
the figure, ∆S does not rise instantaneously for the ring-
shaped laser beam, observe continuous lines, this makes
sense because at the center of this type of laser beam,
there is no heat source. This does not happen for a Gaus-
sian laser beam as can be seen in the same figure, where
it can be seen that the increase of ∆S is instantaneous,
observe dashed lines. Furthermore, it can be seen that
at t = 5 seconds, the value of the total OPD is almost
constant, for this reason, a steady-state approximation
can be used successfully for the data calculations when
studying low absorption samples with thick-disk geome-
try by using a ring-shaped laser beam.
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FIG. 9. Stresses along the z-axis are shown when a ring-
shaped laser beam at r = 0 is used. It can be seen how the
behavior of the graph goes from positive values to negative
values when ωi is decreasing. The absolute maximum value
is obtained when ωi = 0, recovering the data for a Gaussian
laser beam with ωG = 1 mm as can be seen.
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FIG. 10. Total OPD for material with thick-disk geometry by
using a ring-shaped laser beam. The FEM and the model de-
scribing a Gaussian laser beam were used to compare results.

IV. CONCLUSIONS

We have solved the heat diffusion and thermoelas-
tic equation for a laser beam with a ring profile. We
have shown some differences concerning the profile of the
Gaussian laser beam. In both cases, we have used the
FEM as a validation method, and we have obtained very
good results. Expressions that have been found are more
general for the description of a laser beam, going from
a ring-shaped to a Gaussian-shape at steady-state. We
have calculated the percentage differences between ex-
pressions found and FEM for the temperature, displace-
ment and optical path difference at the center(edge) of
the sample; these are approximately 0.14 % (0 %), 0.11
% (30.50 %) and 0.09 % (4.86 %), respectively. The ad-
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FIG. 11. OPD time-resolved for the first 5 seconds at the
center of material with thick-disk geometry.

vantage of a ring-shaped laser beam over the Gaussian
laser beam is that the former shows a homogeneous cir-
cular temperature distribution at steady-state, which is
known as a top-hat distribution. These calculations can
be used in the design of optical instrumentation and the
characterization of low absorption samples with thick-
disk geometry when a laser beam with a ring profile is
used.
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