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Radiative Thermostat Driven by the Combined Dynamics of Electrons, Phonons and
Photons

Jose Ordonez-Miranda1, ∗

1Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962 Futuroscope Chasseneuil, France
(Dated: August 9, 2020)

Based on the metal-insulator transition of two phase-change materials (PCMs) with asymmetric
thermal conductivities and emissivities sensitive to temperature, a radiative thermostat capable of
maintaining a constant temperature without consuming energy is proposed. This is done by deriving
explicit expressions for the heat flux and temperature profiles of the thermostat surrounded by these
PCMs and demonstrating that it can be maintained at a temperature nearly equal to the common
transition temperature of both PCMs, as the environmental one changes more than 20 K. It it
shown that the combined operation of two PCMs is much better than non-PCMs to develop energy-
free termostats, specially those supporting poor thermal conduction or dominant heat radiation.
The obtained results thus establish a fundamental theoretical method to exploit the nonlinear heat
transport driven by electrons, phonons and photons, for saving energy on temperature preservation
and thermal insulation.

PACS numbers: 65.60.+a; 65.80.-g; 65.90.+i

I. INTRODUCTION

Heat is one of the main forms of wasted energy and
its control is hence of critical importance to efficiently
manage the energy resources of nature, which is under
increasing stress due to the growing energy-hungry world
population and global warming issues. The management
of heat transport has become very challenging, as
revealed by, for instance, the high percentage (68.5%)
of energy lost in developed countries as waste heat that
is mainly released into the environment [1]. Around 15%
of the remaining energy is used for thermal insulation or
preserving the temperature of industrial fields, buildings,
homes, etc. [2]. These representative figures show
that the reduction of the energy consumption is a huge
scientific, technological and societal challenge in the
energy sector, that has been partially addressed through
the nonlinear heat transport.

Strongly nonlinear heat conduction (radiation) shows
up in materials with temperature dependent thermal
conductivities (emissivities), whose tailoring allows
modulating heat currents [3]. Over the past two
decades, many research groups have been exploiting
these thermally driven properties to control the heat
transport via phonons, electrons, and photons [4–12].
Several conceptual devices, such as thermal diodes [13–
18], thermal transistors [19–23], thermal memories [24]
and thermal memristors [25, 26] were proposed; and the
working principles of some of them were experimentally
demonstrated[27–29]. Furthermore, based on two phase
change materials (PCMs) with asymmetric thermal
conductivities, Shen et al. [30] developed a temperature-
trapping theory and proposed an energy-free thermostat
able to self-maintain a desired constant temperature
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without consuming energy, regardless of the sizeable
changes of its environmental temperature. More recently,
Wang et al. [31] introduced thermoelectric effects
in this latter theory and proposed a negative-energy
thermostat capable of generating electricity with energy-
free maintenance of a constant ambient temperature.
These two latter works [30, 31] were also applied
to significantly improve the performance of thermal
and thermoelectric cloaks, whose central regions are
kept at pretty much constant temperatures, as the
ambient ones vary in relatively large intervals. The
operation of these two thermostats and cloaks is
based on conductive heat currents and therefore their
performances are limited by the inevitable presence
of interface thermal resistances between the involved
PCMs. This limitation could, however, be overcome by
a radiative thermostat supporting photon heat currents
between their contactless terminals, as is the case of
nanophotonic thermostats based on multilayer structures
and operating with solar radiation [32].

The purpose of this work is to demonstrate the
proof of principle of a radiative thermostat, a cavity
able to self-maintain a constant temperature despite
being exposed to sizeable changes of its environmental
temperature. This is achieved by using two PCMs as the
cavity walls, whose asymmetric thermal conductivities
and emissivities significantly change with temperature,
within a narrow interval of temperatures. The proposed
thermostat is thus a cavity that capitalizes on the
non-linear heat transport driven by both conductive
and radiative heat currents, and therefore its working
principle is different than the conductive thermostat
[30, 31], passive radiative one [32], and other devices
of temperature regulation [33–35] consisting of a layered
system with a surface emitting radiation to the outer
space through the atmosphere’s transparency windows
in the mid-infrared. The cavity could thus be applied as
a constant temperature environment of objects.
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II. THEORETICAL MODELING
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FIG. 1: Scheme of a cavity with a nearly constant
temperature maintained by two PCMs. The solid line
stands for the temperature profile generated by the
temperature dependence of the asymmetric thermal

conductivities (dashed lines) of the PCMs. The surfaces
x = 0 and x = l1 + l2 + l3 are set at the steady-state

temperatures Th and Tc(< Th), respectively.

Let us consider two PCMs exchanging heat by
radiation and conduction through a cavity, as a result of
the temperature difference Th − Tc > 0 of their external
surfaces, as shown in Fig. 1. In order to minimize
the impact of the enviromental temperature variations
on the cavity temperature profile, i consider that the
left-hand (right-hand) side PCM behaves as a thermal
insulator at the relatively high (low) temperature Th
(Tc), while it becomes a thermal conductor for lower
(higher) temperatures. According to the Fourier’s law of
heat conduction, these conditions can be achieved when
the thermal conductivity (k1) of the left-hand side PCM
increases as the temperature decreases, while the one
(k3) of the right-hand side PCM exhibits the opposite
behavior, as depicted in Fig. 1 through the dashed
lines. More explicitly, this law along with the Stefan-
Boltzmann’s one and the principle of energy conservation
establish that the steady-state heat flux q propagating
along the three layers is given by [36]

q = −k1(T1)
dT1
dx

=
θ − ψ
ρ2

+σε
(
θ4 − ψ4

)
= −k3(T3)

dT3
dx

,

(1)
where T1 and T3 are the respective temperatures within
the PCM1 (0 ≤ x ≤ l1) and PCM3 (l1 ≤ x ≤
l1 + l2), θ = T1(ll), ψ = T3(ll + l2), σ is the Stefan-

Boltzmann constant, ε =
(
ε1(θ)−1 + ε3(ψ)−1 − 1

)−1

is the effective emissivity and the thermal resistance
ρ2 = l2/k2 + 2/h, with ε1(θ) and ε3(ψ) being the
respective emissivities of the facing walls of PCM1 and
PCM3, which exchange heat by radiation, conduction
and convection through the intracavity gas of thermal
conductivity k2 and convective heat transfer coefficient
h. For air, k2 = 25 mWm−1K−1 and h = 5 Wm−2K−1,
within a wide range of temperatures [37]. The effective
emissivity ε driving the intracavity radiation is defined
by the Stefan-Boltzmann’s law [36] and its values are

independent of the optical properties of the intracavity
gas, because this gas is assumed to be transparent to
the infrared radiation exchanged by PCM1 and PCM3,
as is the case of air for temperatures around the room
temperature considered in this work [32]. Given that q is
a constant, Eq. (2) establishes that −dTn/dx decreases
as kn(Tn) (n = 1 and 3) increases and vice versa, as
depicted in Fig. 1.

Considering that both PCMs have a metal-insulator
transition at the temperature T0, the required
temperature dependence of their thermal conductivities
kn and mean emissivities εn, for n = 1 and 3, can be
described as follows

kn(T ) = kln +
khn − kln

1 + e−β(T−T0)
, (2a)

εn(T ) = εln +
εhn − εln

1 + e−β(T−T0)
, (2b)

where kln (εln) and khn (εhn) are the thermal
conductivities (emissivities) at low (T � T0) and high
(T � T0) temperatures, respectively; and β is the phase-
transition slope of kn(T ) and εn(T ) at T = T0. In
order to fulfill the external thermal insulation condition
depicted in Fig. 1, i consider that kl1 > kh1 and
kl3 < kh3, which along with Eq.(2a) determines the
behaviors of k1(T ) and k3(T ) shown in Fig. 2(a). Note
that the PCM1 at low temperature (T � T0) is in its
metallic phase, which switches to an insulating one at
high temperature (T � T0). Taking into account that
metals usually exibit emissitities lower than insulators, i
consider that εl1 < εh1, as shown in Fig. 2(b). Therefore,
the PCM1 emissivity, as the thermal conductivity k1,
is bounded between its values for the metallic and
insulating phases, such that the ratio εh1/εl1 > 1 allows
enhancing (reducing) the radiative heat flux with PCM1
in its insulating (metallic) phase, as established by Eq.
(1). For the emissitivy of PCM3, on the other hand,
i take εl3 > εh3 (Fig. 2(b)), given that k3(T ) has the
opposite behavior of k1(T ).
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FIG. 2: Temperature dependence of the (a) thermal
conductivities and (b) mean emissivities of the two

PCMs involved in Fig. 1. The black line in (b) stands
for the effective emissivity ε defined in Eq.(1).

In practice, the temperature dependence of k1(T )
and ε1(T ) can be obtained with polyethylene nanofibers
[38] and Ge2Sb2Te5 [39], while that of k3(T ) and
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ε3(T ) is exhibited by VO2 [3, 40–42] and nitinol [43].
The phase transition of these four PCMs is driven by
correlated atomic interactions and therefore the values
of their thermal and optical properties at low and
high temperatures can be tailored through dopings or
by varying the deposition parameters, as was reported
for the metal-insulation transition of VO2 [44–47].
Furthermore, the temperature variations of kn(T ) and
εn(T ), for n = 1 and 3, can also be achieved by means
of alternating layered structures involving strips of shape
memory alloys, as detailled by Shen et al. [30] and Wang
et al.[31]. This latter multistep approximation method
is particularly suitable to make sure that the values of
the transition parameters T0 and β are the same for
both materials surrounding the cavity, given that they
will be composed by the same shape memory alloy. In
general, the thermal and optical properties of these alloys
and PCMs vary significantly due to their metal-insulator
transition in a relatively narrow interval of temperatures.
This phase transition is the reason why the operation
of the radiative thermostat (Fig. 1) is driven by the
collective dynamics of electrons, phonons, and photons.

The temperature profiles T1(x) and T3(x) along with
the heat flux q can be determined by integrating Eq.
(1) for the thermal conductivity in Eq. (2a) and the
boundary conditions T1(0) = Th and T1(l1) = θ (T3(l1 +
l2) = ψ and T3(l1 + l2 + l3) = Tc). Final results can be
written as follows

q =
kh1 − kl1
β1l1

ln

[
f1(Th)

f1(θ)

]
=
kh3 − kl3
β3l3

ln

[
f3(ψ)

f3(Tc)

]
=
θ − ψ
ρ2

+ σε
(
θ4 − ψ4

)
,

(3a)

f1(T1(x)) = [f1(Th)]
1−x/l1 [f1(θ)]

x/l1 , (3b)

f3(T3(x)) = [f3(ψ)]
1−(x−l1−l2)/l3 [f3(Tc)]

(x−l1−l2)/l3 ,
(3c)

where fn(T ) = [1 + Zn(T )] [Zn(T )]
−λn , Zn(T ) =

exp [−βn (T − T0)] and λn = khn/(khn − kln), for n = 1
and 3. Taking into account that kl1 > kl1 (kl3 <
kh1), the function f1(T ) (f3(T )) decreases (increases)
monotonically as the temperature T rises and therefore
the heat flux q in Eq. (3a) only takes positive values,
in agreement with the second law of thermodynamics,
for Th > Tc. Given that the heat flux q is a constant,
the third equality in Eq. (3a) establishes a trade-
off between the conductive and radiative contributions,
such that the latter one strengthens as the conductive
thermal resistance ρ2 increases. The temperatures T1(x)
and T3(x) are determined by the respective numerical
solutions of Eqs. (3b) and (3c), after solving the strongly
non-linear system of Eqs. (3a), for the temperatures θ
and ψ of the inner walls. In order to capitalize on the full
phase transition of the PCMs and derive an approximate
solution of Eqs. (3a), the external temperatures Th
and Tc are chosen in such a way that they fulfill the

condition Th � T0 � Tc. In this way, the cavity is
thermally insulated from the external environment and
therefore the temperatures θ and ψ of the inner walls
are expected to satisfy the condition β |θ − T0| � 1 and
β |ψ − T0| � 1, as graphically shown below (Fig. 3(a)).
Under these conditions, Eqs. (3a) become a system of
two linear equations for θ and ψ, which yields

θ − ψ =
2R2

R(r + 1)

[
Th − Tc + 2 ln(2)

(r − 1)

β

]
. (4)

where R = R1 + R2 + R3, Rn = ln/k̄n, k̄n = (kln +

khn)/2, for n = 1 and 3, R2 =
(
ρ−1
2 + 4σε̄T 3

0

)−1
, ε̄ =(

ε̄−1
1 + ε̄−1

3 − 1
)−1

, ε̄n = (εln + εhn)/2, and r = kl1/kh1.
For the sake of simplicity and clarity, Eq. (4) was derived
by using the condition kl1 = kh3 and kh1 = kl3, which
establishes the mirror-like symmetry of k1(T ) and k3(T )
around the transition temperature T = T0. Equation
(4) indicates that the temperature difference θ − ψ can
be minimized by reducing the thermal resistance R2,
enhancing the thermal conductivity contrast r > 1 and
getting steep phase transitions (high β values). As these
three parameters are determined by the thermal and
optical properties of the considered PCMs, the values
of θ − ψ are expected to be much smaller than the
corresponding ones obtained with non-PCMs (θ − ψ =
R2(Th − Tc)/R for r = 1). Note also that the radiative
contribution boosts the reduction of θ − ψ through
a high emissivity ε̄ and/or transition temperature T0,
which only appears due to the intracavity radiative heat
transport.

III. RESULTS AND DISCUSSION

The thermal performance of the radiative thermostat
is now numerically analyzed by means of the temperature
profiles for different values of the environmental
temperatures and thermal resistance ρ2. To show how
the cavity temperature could be maintened at room
temperature, we choose T0 = 300 K and change
the temperature Th through values higher than T0 to
capitalize on the phase transition of noth PCMs. For
the sake of comparison, the temperature Tc = 290 K is
kept constant, given that its variations through values
Tc � T0 do not change either the thermal conductivity
or emissivity of the PCM3, and therefore they will not
significantly affect the thermostat temperature profile.

Figures 3(a) and 3(b) show the inner walls’
temperatures θ and ψ along with their difference θ−ψ >
0 as functions of Th, respectively, for three representative
values of the thermal resistance ρ2. Note that both
θ and ψ increases almost linearly with Th, when this
temperature is smaller than the transition one (Th <
T0). This behavior is typically generated by non-
PCMs and appears due to the fact that the environment
temperature Th is too low to excite the phase transition
of both PCMs (see Fig. 2). By contrast, for Th > T0, the
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FIG. 3: (a) Inner walls temperatures and (b) their
difference as functions of the temperature Th.

Calculations were done with Tc = 290 K, l1 = l3 = 3
cm, T0 = 300 K, β = 2 K−1, kl1 = kh3 = 50 Wm−1K−1,

kh1 = kl3 = 1 Wm−1K−1, εl1 = εh3 = 0.2,
εh1 = εl3 = 0.8 and three values of ρ2. The solid,

dashed, and dotted lines in (b) stand for the respective
predictions of Eqs. (3a), (4), and (1). This latter one

was obtained for non-PCMs with thermal conductivities
kn = k̄n and emissivities εn = ε̄n.

slopes of the inner walls’ temperatures reduce drastically
and their values tend to keep close to T0, especially for
the two smaller values of ρ2. In this case, the temperature
difference θ−ψ is smaller than 1 K and is well predicted
by Eq. (4), as shown by the blue and red dashed lines in
Fig. 3(b). This key fact indicates that the temperature
of the central material can be maintained pretty much
constant and equal to the transition temperature of both
PCMs, without the injection of external energy, when the
environment temperatures vary through values higher
and lower than T0 (Th > T0 > Tc). In practice, the
thermal resistance ρ2 = 0.5 cm2KW−1 could be set
with either a 2-cm thick thermostat of copper (l2 =
2 cm and k2 = 400 Wm−1K−1) or a 1.25 µm-thick
cavity of air (l2 = 1.25 µm and k2 = 25 mWm−1K−1).
Thicker air cavities yield a higher thermal resistance
ρ2, which increases the temperature difference of the
inner walls to values higher than 1 K. However, the
values of θ − ψ generated by the combined effect of two
PCMs for different values of ρ2, are relatively smaller
than the corresponding ones obtained with non-PCMs,
as shown by the dotted lines in Fig. 3(b). Therefore, the
temperature profile of the central material (solid or gas)
becomes considerably less sensitive to the environment
temperature gradients, when is placed in between two
PCMs with asymmetric thermal and optical properties
than when it is in the middle of two non-PCMs.

The temperature and thermal conductivity
distributions inside the three-layer system are shown
in Fig. 4 as functions of position, for a 2 cm-thick
central layer of copper. The dashed line represents
the temperature profile obtained when the two PCMs
are replaced by non-PCMs with thermal conductivities
and emissivities independent of temperature. Note
that near the outer surfaces x = 0 and 8 cm, the
temperature exhibits a pretty much linear behavior
due to the relatively constant and low values of the
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FIG. 4: Temperature and thermal conductivity
distributions obtained with Eqs. (3) and (2a) inside the
three-layer system, as functions of position, respectively.
The dashed line stands for the prediction of Eq. (1) for

non-PCMs with thermal conductivities kn = k̄n and
emissivities εn = ε̄n. Calculations were done for a Cu

central layer with l2 = 2 cm, ρ2 = 0.5 cm2KW−1,
Th = 310 K and the data in caption of Fig. 3.

thermal conductivity of both PCMs. For other internal
positions, on the other hand, these conductivities change
drastically to keep the temperature nearly constant
and equal to the transition temperature T0 = 300 K,
specially within the central layer. This fact is consistent
with the one shown in Fig. 3 and is, of course, generated
by the combined phase transitions of the two PCMs.
Even though the non-linear behavior of temperature
within the PCMs is totally different than the linear one
(dashed line) obtained with non-PCMs, the temperature
values inside the cavity are pretty much the same in
both cases. This is reasonable due to the relatively
high thermal conductivity of the copper layer and it
is expected to change for a cavity with lower (higher)
thermal conductivity (thermal resistance ρ2), as shown
in Fig. 5. While the cavity temperature tends to keep
close to T0 = 300 K, the corresponding one obtained with
non-PCMs significantly deviates from this temperature
by many degrees, in particular for ρ2 = 50 cm2KW−1.
It is thus clear that the combined operation of two
PCMs is better than non-PCMs to develop energy-free
thermostats capable of maintaining a nearly constant
temperature as the ambient temperature gradients
change.

IV. CONCLUSIONS

The proof of principle of a radiative thermostat has
been demonstrated by exploiting the metal-insulator
transition of two phase change materials with asymmetric
thermal conductivities and emissivities. It has been
shown that the thermostat is capable of maintaining a
constant temperature equal to the transition one of the
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used phase change materials, without consuming energy
despite the significant changes of the environmental
temperature gradients. The obtained results can thus
open new research avenues on energy-free temperature
preservation, thermal insulation and phase change
materials with desired thermal and optical properties.

APPENDIX

In practice, the asymmetric thermal conductivities of
PCM1 and PCM3 shown in Fig. 1(a), can conveniently
be implemented by means of layered structures made
up of still and movable parts, as shown in Fig. 6(a).
Following the experiments reported in the literature
[30], the still part (bottom layer) is composed of five
phosphor copper films (kp = 54 Wm−1K−1) separated
by five silicon grease (ks = 4 Wm−1K−1) layers. On
the other hand, the movable part (top layer) is made
up of five bimetallic strips placed on top of the silicon
grease layers. Each of these strips is composed of a
phosphor copper film assambled with a shape memory
alloy (SMA), such that their length and width are equal
to the corresponding ones of the phosphor copper films.
These latter films are slightly thicker than the silicon
grease layers to level the bimetallic strips. The SMA is
an alloy able to change its shape with temperature. In

particular, a two-way SMA ”remembers” two different
shapes related to a phase transformation, one at low
tempratures and another one at high temperatures, when
it is heated up (or cooled down) through its transition
temperature Tt [48, 49]. Based on this fact, a two-way
SMA able to tilt up for temperatures T � Tt = 300
K and fully level for T � Tt, is chosen for builing the
PCM1 and PCM3 of the proposed radiative thermostat.
Taking into account that these PCMs are set at high and
low temperatures (see Fig. 1), their bimetallic strips will
be driven up and down with an opposite deformation,
but a common transition temperature T0 = Tt = 300
K. According to Fig. 6(a), the ”experimental” thermal
conductivities k1 and k3 of the respective PCM1 and
PCM3 can then be estimated by the well-known model
of thermal resistances in series, as follows

2N

k1
=
N

kp
+
n

ks
+
N − n
kc

, (5a)

2N

k3
=
N

kp
+
n

kc
+
N − n
ks

, (5b)

where n = 0, 1, ..., N = 5 is the number of bimetallic
strips tilted up (leveled) of PCM1 (PCM3) and kc
is the thermal conductivity of one of these strips.
Considering that a bimetallic strip is composed of a
phosphor copper film attached to a SMA one of thermal
conductivity kSMA, its effective thermal conductivity
is determined by the model of thermal resistance in
parallel: kc = (lpkp + lSMAkSMA)/(lp + lSMA), with
lp and lSMA being the heights through which the
heat propagate inside the phosphor copper and SMA
films, respectively. Taking into account that kSMA

can also change with temperature [49], the condition
lSMA � lp is assumed, such that kc ≈ kp, which
is nearly independent of temperature, for the range of
temperatures considered in this work. Figure 6(b) shows
the ”experimental” predictions (solid lines) of Eqs. (5a)
and (5b) in comparison with the respective ”theoretical”
ones (dashed lines) predicted by Eq. (2a) for the thermal
conductivities of PCM1 and PCM3. One can see that
the solid curves are similar to the corresponding dashed
ones describing the asymmetric temperature variations
of k1 and k3 between 295 and 305 K. In practice, these
variations can be smoother by increasing the number
2N of layers, as established by Eqs. (5a) and (5b).
The proposed methodology based on a SMA could thus
be implemented to observe the operation of a radiative
thermostat, in a similar way as was done with the
conductive one [30].
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FIG. 6: (a) Schemes of the PCM1 and PCM3 composed
of layered systems based on bimetallic strips. These
strips tilt up for low temperatures (T � 300 K) and

level for high ones (T � 300 K), due to its composition
with a SMA, as demonstrated in the literature [30]. The

thermal conductivities of PCM1 and PCM3 thus
depend on the shape of the bimetallic strips and their

temperature dependences are shown in (b). The dashed
lines stand for the predictions of Eq. (2b), while the

solid ones are predicted by Eqs. (5a) and (5b),
assuming the leveling of 0, 1, 2, 3, 4, and 5 bimetallic
strips. Calculations in (b) were done considering that

the shape change of a strip is generated by a
temperature variation of 1 K followed by 0.5 K between

the transformations of two consecutive strips.
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