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Abstract
In this paper, we consider the full velocity difference model for traffic flow and we study

the existence and uniqueness of traveling wave solutions. First, using the monotony of the
car’s interdistance, we derive necessarily conditions for the existence of such solutions. Then,
in the framework of viscosity solutions, we construct a traveling solution by considering an
approximate non-local Hamilton-Jacobi equation on a bounded domain. This traveling waves
solution can be interpreted as a phase transition between a congested state and a free-flow
one.

AMS Classification: 74J40, 90B20, 35D40.

Keywords: traffic model, viscosity solution, semi-discrete shocks, strong comparison principle,
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1 Introduction
Nowadays, modeling traffic flows and vehicle trajectories became a necessity in order to minimize
its negative impacts such as emissions and congestion. There is an urgent need to develop traffic
models that accurately represent the behavior of vehicles on urban road networks.

Macroscopic shock wave can be defined as discontinuous change in the characteristics of the
traffic kinematic. According to Lighthill and Whitham [20] shocks in traffic can occur in the
case of an accident, a reduction in number of lanes, an entrance ramp, or abrupt breaking. The
construction of traveling shock profiles for finite difference schemes approximating hyperbolic
conservation laws was studied in many work, we refer for example to [21, 22, 23, 27, 18]. At the
microscopic scale, authors in [14] constructed shock solutions for a first order microscopic model
exploiting its connection with a macroscopic model. Up to our knowledge, there are very few works
on the existence of traveling waves in traffic at the microscopic scale, and it seems that (in addition
to [14]) this subject was studied only in [28, 29, 26] where authors constructed discrete traveling
wave profiles which are local attractors for the solution of a local and non-local follow-the-leader
model.

One of the most famous microscopic models is the following type model ("car-following model")
which describes how the vehicles adapt their position, their speed or their acceleration according
to the surrounding vehicles. In this type of model, the behavior of the driver depends on the
situation in front of him: if he is not preceded by another vehicle, he circulates freely ("free flow").
Otherwise, he must adapt his driving behavior depending on the distance with the "leading"
vehicle. Several car-following models were proposed with the intention to describe precisely the
driver’s behaviors, see [25, 24, 4].

In [2], Bando et al. introduced the optimal velocity model (OVM), a straightforward car-
following model that accurately captured many characteristics of real traffic flows [7]. The optimal
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velocity function, which depends on the headway distance, is used in this model to characterize
each vehicle, and each driver controls the velocity based on this function. The jamming transition
is found to be well described by the OVM.

In light of the empirical data, Helbing and Tilch calibrated the OVM [16]. According to the
comparison with field data, the OVM exhibits rapid acceleration and unrealistic deceleration. In
order to enhance the OVM, Helbing and Tilch proposed in the same paper a generalized force
model. When the following vehicle’s velocity exceeds that of the leader, a velocity difference
term is considered in the model (that is negative velocity difference). The simulation findings
demonstrate that the GFM and the empirical data correspond well. However, Treiber et al ’s
descriptions of traffic phenomena (see [30]) cannot be explained by either the OVM or the GFM.
If the cars ahead of it are moving considerably more quickly, the vehicle would not brake, even if
its headway is smaller than the safe distance.

In [19], the authors noted that the GFM exhibited poor delay time of car motion and kinematic
wave speed at jam density because positive velocity differences were disregarded. By taking
both positive and negative velocity differences into account, Jiang et al. proposed in [19] a new
microscopic model called full velocity difference model (FVDM). The numerical investigations
indicated that the FVDM could describe the phase transition of traffic flow and estimate the
evolution of traffic congestion.

In this paper, we construct traveling solutions for the FVDM which can be seen as phase
transition between a congested state and a free-flow one. The FVDM is given by

Üi(t) = κ
(
V (Ui+1(t) − Ui(t)) − U̇i(t)

)
+ λ(U ′

i+1(t) − U ′
i(t)), (1.1)

where Ui denotes the position of the i-th vehicle, U̇i its velocity, Üi its acceleration, V : R → R is
the optimal velocity function and κ, λ are constant sensitivity coefficients.

For model (1.1), we construct a particular type of solutions called semi-discrete shocks. Before
we give the definition of these solutions, let us explain the motivation of our work. Let us consider
the macroscopic model

χt = V (χy) for t > 0, y ∈ R. (1.2)

It was shown that (1.2) can be rigorously derived from the microscopic model (1.1) (see [11] or [12]
with local perturbation considering the Eulerian coordinates). Let a < b and define the constants
1
T

= V (a) − V (b)
a− b

and c = aV (b) − bV (a)
a− b

. The function

χ(t, y) = min(ay + tV (a), by + tV (b)) =


ay + tV (a) if y > − t

T

by + tV (b) if y < − t
T

ct if y = − t
T

(1.3)

is a viscosity solution of (1.2) if and only if

c+ p

T
≤ V (p) for any p ∈ [a, b]. (1.4)

The function χ can be interpreted as a "shock" since its left and right derivatives at the point
− t

T
are different. This means that the spacing after the shock (resp. before the shock) is a (resp.

b) and the speed of propagation of the shock is c. Finally, let us remark that χ is a traveling wave
since we can write

χ(t, y) = χ

(
0, y + t

T

)
+ ct (1.5)
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with χ(0, y) = min(ay, by). Aim of this work is to construct solutions of (1.1) which can be seen
as the discrete analogue of the function χ. We look for particular shock solutions Ui of (1.1)
satisfying

{
Ui+1(t) − Ui(t) → b as i → −∞,

Ui+1(t) − Ui(t) → a as i → +∞.
(1.6)

Moreover, we will prove that the interdistance Ui+1 − Ui is strictly decreasing (see Theorem
2.6). The traffic interpretation of (1.6) is that a shock occurred at the microscopic level and the
interdistance is b far before the shock, and is a far after it. This shock represents for example the
position of a traffic jam tail.

Following the definition of χ in (1.5), we construct a similar solution at the microscopic level
by considering

Ui(t) = u

(
i+ t

T

)
+ ct

with {
u(y + 1) − u(y) → b as y → −∞,

u(y + 1) − u(y) → a as y → +∞.
(1.7)

Finally, let us recall that at the macroscopic scale, (1.4) is a necessarily condition to prove that χ is
a solution. At the microscopic scale, we will provide a necessarily condition to ensure the existence
of traveling solution satisfying (1.7) (see Theorem 2.6). We obtain our results in the framework
of viscosity solutions and we refer the reader to reference [5, 3, 6, 8] for a full presentation of this
theory.

2 Main results
In the rest of the paper, we will work with an equivalent formulation of (1.1). We borrow the idea
from [12, 10] and consider for all i ∈ Z,

Ξi(t) = Ui(t) + 1
α
U̇i(t) with α = κ+ λ

2 .

Using this new function, we obtain the following system of ODEs equivalent to (1.1) for all i ∈ Z,
for all t ∈ (0,+∞),{

U̇i(t) = α (Ξi(t) − Ui(t)) ,
Ξ̇i(t) = α (Ui(t) − Ξi(t)) + κ

α
V (Ui+1(t) − Ui(t)) + λ (Ξi+1 − Ui+1) . (2.1)

We look for particular shock solutions of (1.1) of the form

Ui(t) = u

(
i+ t

T

)
+ ct,

Ξi(t) = ξ

(
i+ t

T

)
+ ct,

where (u, ξ) solves{ 1
T u

′(y) + c = α(ξ(y) − u(y)),
1
T ξ

′(y) + c = α(u(y) − ξ(y)) + κ

α
V (u(y + 1) − u(y)) + λ(ξ(y + 1) − u(y + 1)), (2.2)
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and {
u(y + 1) − u(y) → b and ξ(y + 1) − ξ(y) → b as y → −∞,

u(y + 1) − u(y) → a and ξ(y + 1) − ξ(y) → a as y → +∞.

To obtain our results, we need the following assumptions on the optimal velocity function V
and the parameters κ and λ.

Assumptions (A) on V and s.

• (A1) (Regularity)

V ∈ C1(R), V ′ ∈ L∞(R).

• (A2) (Monotonicity)

V ′ > 0 on R.

• (A3) (Strict chord inequality) There exists a, b ∈ R such that

{ p

T
+ c ≤ V (p) for p ∈ R if and only if p ∈ [a, b],

with equality if and only if p ∈ [a, b],

with

1
T

= V (b) − V (a)
b− a

and c = bV (a) − aV (b)
b− a

.

• (A4) (Non degeneracy)

V ′(b) < 1
T
< V ′(a).

• (A5) (Monotonicity) We assume that κ > λ > 0 and that
(κ+ λ)2

κ
> 4 max

p∈[a,b]
V ′(p),

λ(κ+ λ)
κ

< 2 min
p∈[a,b]

V ′(p).

Remark 2.1 (Comments on assumptions (A)). The regularity assumption (A1) provides regular
viscosity solutions. We will show (see Theorem 2.6) that our shock solutions exist if and only if
assumption (A3) is satisfied. We will use assumption (A4) to get exponential asymptotics of the
solution at infinity. We add assumption (A5) to obtain that the functionsf : z1 7→ αz1 + κ

α
V (z2 − z1)

g : z2 7→ κ

α
V (z2 − z1) − λz2

are strictly increasing if z2 − z1 ∈ [a, b]. We will use assumptions (A2)-(A5) to get strong com-
parison results for system (2.2) and to prove the monotonicity of the interdistance.
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Remark 2.2. As example of general functions V satisfying (A3) and (A4), we can consider
V ∈ C1(R) and strictly concave. We recall that

1
T

= V (b) − V (a)
b− a

.

Using the mean value theorem, there exists e ∈ (a, b) such that 1
T

= V ′(e). Using that V is strictly
concave, we have

V ′(a) > V ′(e) > V ′(b)

and the function p 7→ V (p) − p

T
− c is strictly increasing in [a, e] and strictly decreasing in

(e, b].

Remark 2.3 (Examples of optimal velocities satisfying (A3) and (A4)). The Greenshields velocity
[15] given by

V (p) = Vmax

(
1 − 1

ρmaxp

)
(2.3)

satisfies (A3) and (A4) since it’s strictly concave for p > 0. Similarly, the Bando optimal velocity
(see [2]) function given by

V (p) = V1 + V2 tanh (C1(p− lc) − C2) (2.4)

where V1, V2, C1 and C2 are positive parameters is stricly concave for p > C2

C1
+ lc.

Remark 2.4 (Examples of optimal velocities satisfying (A5)). For any a, b > 0 (resp. a, b >
C2

C1
+ lc) , taking a sensitivity κ large enough, assumption (A5) is satisfied for the velocity defined

in (2.3) (resp in (2.4)). For the Bando velocity (2.4), authors in [16] carried out a calibration of
the parameters with respect to the empirical data and they adopted the following parameters values:

κ = 0.85s−1, V1 = 6.75m/s, V2 = 7.91m/s, C1 = 0.13m−1, C2 = 1.57.

Taking λ as in [19], i.e. λ = 0.5s−1, assumption (A5) is satisfied for C2

C1
+ lc ≈ 17.08m < a ≤ 23m

and b ≥ 25m.

The main result of this paper is the following theorem.

Theorem 2.5. i) (Existence.) Assume that (A) holds for some a, b ∈ R. There exists a
solution (u, ξ) of (2.2) such that u, ξ ∈ C2(R) satisfy for some constant C > 0,{

|u(y) − ū(y)| ≤ C,

|ξ(y) − ū(y)| ≤ C,
(2.5)

with

ū(y) =
{
ay if y ≥ 0,
by if y < 0.

(2.6)

Moreover, we have that
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a ≤ G(y) ≤ b, a ≤ H(y) ≤ b and a

α
≤ F (y) ≤ b

α
for all y ∈ R,

u′(+∞) = ξ′(+∞) = G(+∞) = H(+∞) = a,

u′(−∞) = ξ′(−∞) = G(−∞) = H(−∞) = b

with

G(y) = u(y + 1) − u(y), H(y) = ξ(y + 1) − ξ(y) and F (y) = ξ(y) − u(y).

ii) (Uniqueness.) The solution (u, ξ) is unique (up to translation and addition of constants)
among the solutions (v, χ) with v, χ ∈ C2(R) such that

a ≤ v(y + 1) − v(y) ≤ b for all y ∈ R and

|v − ū| ≤ C and |χ− ū| ≤ C

for some constant C > 0.

Normalization. Up to consider a new velocity function

Ṽ (p) = T (V (p) − c) ,

and replacing V by Ṽ , we can assume that

T = 1 and c = 0.

This allows us to consider assumptions (A) for T = 1 and c = 0. Till the end of this paper, we
will consider system (2.2) for T = 1 and c = 0 which gives us the following equations{

u′(y) = α(ξ(y) − u(y)) y ∈ R,
ξ′(y) = α(u(y) − ξ(y)) + κ

α
V (u(y + 1) − u(y)) + λ(ξ(y + 1) − u(y + 1)) y ∈ R.

(2.7)

2.1 Steps to prove Theorem 2.5
In this paragraph, we give the steps to prove Theorem 2.5:

1) First, we provide provide necessarily and sufficient conditions for existence of shock solutions.
This result can be seen as a justification of our choice to impose assumption (A3).

Theorem 2.6. [Classification of the solutions.] Assume (A1),(A2). Let u, ξ ∈ C2(R) be
such that (u, ξ) is a solution of (2.7) such that G(y) = u(y+1)−u(y), H(y) = ξ(y+1)−ξ(y)
and F (y) = ξ(y) − u(y) are bounded functions. Let s1, s2 ∈ R with s1 < s2 such that
s1 ≤ G(y) ≤ s2 for all y ∈ R.
Assume that (A5) holds for p ∈ [s1, s2], i.e. κ > λ > 0 and

(κ+ λ)2

κ
> 4 max

p∈[s1,s2]
V ′(p),

λ(κ+ λ)
κ

< 2 min
p∈[s1,s2]

V ′(p).
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Then, there exits ā, b̄ ∈ R such that{
u′(+∞) = ξ′(+∞) = G(+∞) = H(+∞) = ā,

u′(−∞) = ξ′(−∞) = G(−∞) = H(−∞) = b̄.

Moreover, if ā < b̄, then we have u′ is stricly decreasing and

p ≤ V (p) for p ∈ [ā, b̄] with equality if and only if p = ā, b̄. (2.8)

If ā > b̄, then we have u′ is strictly increasing and

p ≥ V (p) for p ∈ [b̄, ā] with equality if and only if p = ā, b̄. (2.9)

If ā = b̄, then we have u′ is constant.

Remark 2.7. We would like to mention that Theorem 2.6 is a mathematical result and it’s
not related to traffic modeling. In this theorem, we do not provide the existence of shock
solution. Our existence result is provided in Theorem 2.5. Since our work is applied to
traffic modeling, we choose a < b in Theorem 2.5. To be more clear, let χ be the solution of
(1.2). We recall that χy = 1

ρ
where ρ is the car’s density and is the solution of the scalar

conservation law

ρt + (f(ρ))x = 0 (2.10)

where the flux is f(p) = pV

(
1
p

)
(see [11] or [12]). It’s known that in the theory of hyperbolic

conservation laws only upward jumps in the density are admissible and that’s why we define
(1.3) for a < b and in Theorem 2.5, we construct shock solution where the distance Ui+1 −Ui

travels from state b to state a.

2) Assume that (A) holds for some a, b ∈ R. Let (u, ξ) be a viscosity solution of (2.7) such that
for all y ∈ R, we have

a ≤ G(y) ≤ b, a ≤ H(y) ≤ b,
a

α
≤ F (y) ≤ b

α
(2.11)

and u, ξ are globally lipschitz functions such that their respective Lipschitz constants Lu and
Lξ satisfy

a ≤ Lu ≤ b and 2a− b ≤ Lξ ≤ 2b− a. (2.12)

Thanks to Proposition 3.3, we have u, ξ ∈ C2(R). From Theorem 2.6, we know that{
u′(+∞) = ξ′(+∞) = G(+∞) = H(+∞) ∈ {a, b},
u′(−∞) = ξ′(−∞) = G(−∞) = H(−∞) ∈ {a, b},

(2.13)

and

u′ is strictly decreasing or u′ is constant.

To obtain our result (Theorem 2.5), we will construct a viscosity solution (u, ξ) of (2.2)
such that (2.11) and (2.12) hold. Moreover, our solution satisfies the following: for any
y0 ∈ (−1,−1/2),

u(y0 + 1) − u(y0) ≥ a+ δ tanh(γ(y0 + 1)) > a (2.14)

and

7



i) there exits y ∈ (−1, 1/2),

u(y + 1) − u(y) ≤ b+ δ (tanh(γy) − tanh(γ(y + 1))) < b (2.15)

or there exists y0 ∈
(

0,min
(

− 1
α

+ 1, 1
2

))
,

ii)

ξ(y0) − ξ(y0 − 1) ≤ b+ δ tanh(γ(y0 − 1)) + δγ(1 − tanh2(γ(y0 − 1))
α

< b. (2.16)

Inequalities (2.14),(2.15) and (2.16) ensure that u′ is strictly decreasing and that limit at
+∞ (resp. −∞) in (2.13) is a (resp. b). The construction of this solution is done in
Section 5 where we consider an approximated operator and then we pass to the limit. This
operator will become local at infinity and this will allow us to construct particular sub-
solution and super-solution. To complete the proof of Theorem 2.5 (see Section 6), we prove
(2.5) by using the non degeneracy assumption (A4). Finally, the uniqueness of the solution
is obtained using the strong comparison principle (see Proposition 3.6).

Remark 2.8 (Comparison with the work [14]). In [14], authors obtained similar results for the
Newell’s model. To be more precise, they proved a classification theorem which provides necessarily
conditions for the existence of the shock solutions and then they constructed these solutions. It’s
not surprising that the same result is obtained for the microscopic model (1.1) because the one in
[14] is also strongly connected to (1.2) (see [13] or [9]). From a traffic modeling point of view,
our model can describe the traffic with higher precision since we consider the acceleration. From
a mathematical point of view, the proofs of our results require new ideas and the proof of [14] can
not be adapted to our work since we consider a system of ODE (2.7).

Organization of the paper. In section 3, we define the viscosity solutions of (2.7) and give
strong comparison principle results. In section 4, we prove Theorem 2.6. To do this, we will
show that the interdistances are monotone (see Proposition 4.1). In section 5, we prove Theorem
2.5. The idea is to consider a new non-local operator for which we can construct sub and super
solutions (and then a solution by Perron method). We then use the stability of viscosity solutions
to obtain the results in Theorem 2.5. Finally, in section 6, we prove the exponential behavior of
the solution at ±∞ and its uniqueness.

3 Viscosity solution
In this section, we first give the definition of viscosity solutions of (2.7). We then state different
comparison principles.

3.1 Definition of viscosity solutions
Definition 3.1. Let u, ξ be two functions such that u, ξ ∈ L∞

loc(R). We define the upper and lower
semi-continuous envelopes of u and ξ by

u∗(t, x) = lim sup
s→t,y→x

u(s, y) and u∗(t, x) = lim inf
s→t,y→x

u(s, y)

ξ∗(t, x) = lim sup
s→t,y→x

ξ(s, y) and ξ∗(t, x) = lim inf
s→t,y→x

ξ(s, y).

1) We say that (u, ξ) is a viscosity sub-solution (resp. super-solution) of (2.7) if for all test
function φ ∈ C1(R) such that u∗ − φ attains a local maximum (resp. u∗ − φ attains a local
minimum) at some point x0, we have

φ′(x0) ≤ α(ξ(x0) − u∗(x0)) (resp. φ′(x0) ≥ α(ξ(x0) − u∗(x0)))

8



and if for all test function φ ∈ C1(R) such that ξ∗ −φ attains a local maximum (resp. ξ∗ −φ
attains a local minimum) at some point x0, we have

φ′(x0) ≤ α(u∗(x0) − ξ∗(x0)) + κ

α
V (u∗(x0 + 1) − u∗(x0)) + λ(ξ∗(x0 + 1) − u∗(x0 + 1))

(resp. φ′(x0) ≥ α(u∗(x0) − ξ∗(x0)) + κ

α
V (u∗(x0 + 1) − u∗(x0)) + λ(ξ∗(x0 + 1) − u∗(x0 + 1))).

2) We say that (u, ξ) is a viscosity solution of (2.7) if u, ξ ∈ L∞
loc(R) and (u, ξ) is a subsolution

and supersolution of (2.7).

Proposition 3.2 (Comparison Principle). Assume (A1). Let (u, ξ) be a viscosity sub-solution
and (v, χ) be a viscosity super-solutions of (2.7). We assume that there exists K > 0 such that

(u− v)(y) ≤ K(|y| + 1) and (ξ − χ)(y) ≤ K(|y| + 1).

Then, we have

u(y) ≤ v(y) and ξ(y) ≤ χ(y) for all y ∈ R.

Proof. The proof of this result is classical and we refer the reader to [3, 5] for the proof details.

Proposition 3.3. Assume (A1). Let (u, ξ) be a viscosity solution of (2.7) such that u and ξ are
globally Lipschitz continuous and ξ − u is globally bounded. Then u, ξ ∈ C2(R).

Proof. The proof of this result is a simple adaptation of the proof of Proposition 3.2 in [14]. For
the reader convenience, we explain shortly the idea of the proof. We set for y ∈ R,

f(y) =
∫ y

0
α(ξ(z) − u(z))dz + u(0)

g(y) =
∫ y

0

(
α(u(z) − ξ(z)) + κ

α
V (u(z + 1) − u(z)) + λ(ξ(z + 1) − u(z + 1))

)
dz + ξ(0).

We remark that f, g ∈ C1(R) and (f, g) is a solution of (2.7). Hence, it’s also a viscosity
solution of (2.7). Using that u and ξ are globally Lipschitz functions and that ξ − u is bounded,
there exists K > 0 such that |u(y) − f(y)| ≤ K|y| and |ξ(y) − g(y)| ≤ K|y|. Hence, using the
Proposition 3.2, we can prove that u = f and ξ = g. Finally, using that u, ξ, V ∈ C1(R), we
deduce that u, ξ ∈ C2(R).

3.2 Strong comparison principle
Since we will use the strong comparison principle for two systems ((2.7) and (4.3)), we will state
the following lemma for a general function L.

Lemma 3.4. [Partial strong comparison principle] Let s1 and s2 be two constants such that
s1 < s2 and L : R3 → R be function such that

1) z1 7→ L(z1, z2, z3) is globally Lipschitz w.r.t z1 s.t ||Lz1 ||∞ ≤ α and

2) z2 7→ L(z1, z2, z3) and z3 7→ L(z1, z2, z3) are non-decreasing if z2 − z1 ∈ [s1, s2].

We consider the following equation

{
u′(y) = α(ξ(y) − u(y)) y ∈ R,
ξ′(y) = α(u(y) − ξ(y)) + L (u(y), u(y + 1), ξ(y + 1)) y ∈ R.

(3.1)
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Let (u1, ξ1) and (u2, ξ2) be respectively a sub-solution and a super-solution of (3.1). We assume
that for i = 1, 2 and for y ∈ R,

s1 ≤ ui(y + 1) − ui(y) ≤ s2,

and that {
u1 ≤ u2 on R,
ξ1 ≤ ξ2 on R.

We then have the following:

i) if u1(x0) = u2(x0) for some x0 ∈ R, then u1(y) = u2(y) for all y ≤ x0.

ii) If ξ1(x0) = ξ2(x0) for some x0 ∈ R, then ξ1(y) = ξ2(y) for all y ≤ x0.

Proof. Let w(y) = u2(y) − u1(y) ≥ 0 and ψ(y) = ξ2(y) − ξ1(y) ≥ 0. Since (u2, ξ2) is a super-
solution and (u1, ξ1) is a sub-solution of (3.1), then using the doubling of variable method (see
[1]), we have for all y ∈ R,{

w′(y) ≥ α(ψ(y) − w(y))
ψ′(y) ≥ α(w(y) − ψ(y)) + L(u2(y), u2(y + 1), ξ2(y + 1)) − L(u1(y), u1(y + 1), ξ1(y + 1)).

Using that L is non-decreasing w.r.t z2 and z3, we get

ψ′(y) ≥ α(w(y) − ψ(y)) + L(u2(y), u1(y + 1), ξ1(y + 1)) − L(u1(y), u1(y + 1), ξ1(y + 1)).

Now, since L is globally Lipschitz w.r.t z1 with a Lipschitz constant equal to α, we obtain

ψ′(y) ≥ α(w(y) − ψ(y)) − αw(y) = −αψ(y).

We deduce that for all y ∈ R,{
w′(y) ≥ α(ψ(y) − w(y)) ≥ −αw(y)
ψ′(y) ≥ −αψ(y).

(3.2)

Let y0 ≤ x0: using the comparison principle for "ODE", we deduce that for all y ≥ y0,{
w(y) ≥ w(y0)e−α(y−y0)

ψ(y) ≥ ψ(y0)e−α(y−y0).
(3.3)

Assume that ψ(x0) = 0. Taking y = x0 in the second inequality in (3.3), we get that ψ(y0) ≤ 0.
Using that ψ ≥ 0, we deduce ψ(y0) = 0. In the same way, if w(x0) = 0, we get w(y0) = 0.

As a consequence of the preceding lemma, we can prove the following results.

Proposition 3.5. Let s1, s2 and L defined as in Lemma 3.4. Let (u1, ξ1) and (u2, ξ2) be two
viscosity solutions of (3.1) such that for i = 1, 2,

s1 ≤ ui(y + 1) − ui(y) ≤ s2.

We assume that 
lim

|y|→+∞

(
u1(y) − u2(y)

)
≤ 0,

lim
|y|→+∞

(
ξ1(y) − ξ2(y)

)
≤ 0.

(3.4)

Then we have, {
u1 ≤ u2 on R,
ξ1 ≤ ξ2 on R.
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Proof. We define

M = sup
y∈R

{
u1(y) − u2(y), ξ1(y) − ξ2(y)

}
.

We want to prove that M ≤ 0. Assume by contradiction that M > 0. Using (3.4), we deduce that
M is reached at some point y0.

Case 1: M = ξ1(y0) − ξ2(y0). We define{
ū2(y) = u2(y) +M,

ξ̄2(y) = ξ2(y) +M.

For all y ∈ R, we have ū2(y) ≥ u1(y), ξ̄2(y) ≥ ξ1(y) and ξ̄2(y0) = ξ1(y0). Using that (ū2, ξ̄2) is
a solution of (2.7) and Lemma 3.4, we get

ξ̄2(y) = ξ1(y) for all y ≤ y0.

Taking y → −∞, and using the second limit in (3.4), we get M ≤ 0 which gives a contradiction.

Case 2: M = u1(y0) − u2(y0). Similar to case 1.

Proposition 3.6 (Strong comparison principle.). Let s1, s2 and L defined as in Lemma 3.4, and
assume that

z2 7→ L(z1, z2, z3) is strictly increasing if z2 − z1 ∈ [s1, s2].

Let (u1, ξ1) and (u2, ξ2) be respectively a sub-solution and a super-solution of (3.1). We assume
that for i = 1, 2 and for y ∈ R,

s1 ≤ ui(y + 1) − ui(y) ≤ s2,

and that for all y ∈ R, {
u1(y) ≤ u2(y),
ξ1(y) ≤ ξ2(y).

If for some x0, we have u1(x0) = u2(x0) and ξ1(x0) = ξ2(x0), then we have for all y ∈ R,{
u1(y) = u2(y),
ξ1(y) = ξ2(y).

Proof. Let w(y) = u2(y) − u1(y) and ψ(y) = ξ2(y) − ξ1(y). From Lemma 3.4, we have that
w(y) = ψ(y) = 0 if y ≤ x0. It remains to prove that

w(y) = ψ(y) = 0 for y ≥ x0.

Using that ψ reaches a global minimum at x0, we have

0 ≥ α(w(x0) − ψ(x0)) + L(u2(x0), u2(x0 + 1), ξ2(x0 + 1)) − L(u1(x0), u1(x0 + 1), ξ1(x0 + 1))
≥ L(u1(x0), u2(x0 + 1), ξ1(x0 + 1)) − L(u1(x0), u1(x0 + 1), ξ1(x0 + 1))
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where we use that w(x0) = ψ(x0) = 0 and that L is non-decreasing w.r.t. z3. Using that L is
strictly increasing w.r.t. z2, we obtain

u2(x0 + 1) = u1(x0 + 1).

Hence, the function w reaches a global minimum at x0 + 1 which implies

0 ≥ w′(x0 + 1) ≥ α(ψ(x0 + 1) − w(x0 + 1)) = αψ(x0 + 1).

We deduce that w(x0 + 1) = ψ(x0 + 1) = 0. Similarly, we can prove that

w(y) = ψ(y) = 0 for y = x0 + k with k ∈ N − {1}.

Proceeding as in the proof of Lemma 3.4, we can prove that for k ∈ N ∪ {0},

w(y) = ψ(y) = 0 for y ∈ [x0 + k, x0 + k + 1].

Remark 3.7. We will use Lemma 3.4, Proposition 3.5 and Proposition 3.6 when proving Theorem
2.6 and Theorem 2.5. To be more precise, let s1 < s2 and let u, ξ ∈ C2(R) such that (u, ξ) is a
solution of (2.7) with

s1 ≤ u(y + 1) − u(y) ≤ s2 for all y ∈ R.

If we set

L(z1, z2, z3) = κ

α
V (z2 − z1) + λ(z3 − z2), (3.5)

and if we assume that (A5) holds replacing a by s1 and b by s2, then L satisfies the assumptions
in Proposition 3.6.

In the same way, we will have to consider G(y) = u(y+ 1) − u(y) and H(y) = ξ(y+ 1) − ξ(y).
Then, (G,H) is a solution of{

G′(y) = α(H(y) −G(y)) y ∈ R,
H ′(y) = α(G(y) −H(y)) + κ

α
(V (G(y + 1)) − V (G(y))) + λ(H(y + 1) −G(y + 1)) y ∈ R.

In that case, if we set

L(z1, z2, z3) = κ

α
(V (z2) − V (z1)) + λ(z3 − z2) (3.6)

then under assumption (A5) (with a = s1 and b = s2), L satisfies the assumptions in Proposition
3.6.

The next proposition is useful in two directions. First, using this proposition, we can prove
the uniqueness up to translation and addition of constants of the solution (part ii) in Theorem
2.5. Secondly, when proving Theorem 2.6, we will use it to prove that

{
p < V (p) for p ∈ (ā, b̄) if ā < b̄ and
p > V (p) for p ∈ (b̄, ā) if ā > b̄.

Proposition 3.8. Assume (A1). Let s1, s2 ∈ R with s1 < s2. Let (u, ξ) be a solution of (2.7)
such that u, ξ ∈ C2(R). We assume that there exists C > 0 such that{

|u(y) − û(y)| ≤ C,

|ξ(y) − û(y)| ≤ C
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with û(y) = min(s1y, s2y). Assume that u is concave and that

u′(−∞) = s2 and u′(+∞) = s1. (3.7)

Then, there exists constants c1, c2 such that (ũ, ξ̃) defined by{
ũ(y) = c1 + u(y + c2)
ξ̃(y) = c1 + ξ(y + c2)

is solution of (2.7). Moreover, we have that
lim

|y|→+∞
(ũ(y) − û(y)) = 0

lim
|y|→+∞

(
ξ̃(y) − ξ̂(y)

)
= 0

(3.8)

where ξ̂(y) = min(s1y + s1
α , s2y + s2

α ) .

Proof. We define ũ(y) = c1 + u(y+ c2) and ξ̃(y) = c1 + ξ(y+ c2) where c1 and c2 are constants to
be chosen later. We can easily verify that (ũ, ξ̃) is a solution of (2.7). Let ϕ(y) = u(y) − û(y) with

û(y) =
{
s1y y ≥ 0,
s2y y < 0.

Using that |ϕ(y)| ≤ C and ϕ is concave, we deduce that lim
|y|→+∞

ϕ(y) exists. We denote by

c+ = lim
y→+∞

ϕ(y) and c− = lim
y→−∞

ϕ(y).

Then, choosing (c1, c2) as the solution of the following system,{
c1 + c+ + s1c2 = 0
c1 + c− + s2c2 = 0,

we obtain lim
|y|→+∞

(ũ(y) − û(y)) = 0. To obtain the second claim in (3.8), it’s enough to remark

using the first equation in (2.7) that ũ′(y) = α(ξ̃(y) − ũ(y)) which implies

lim
y→+∞

(
ξ̃(y) − ξ̂(y)

)
= lim

y→+∞

(
ũ(y) + ũ′(y)

α
− s1y − s1

α

)
= 0,

lim
y→−∞

(
ξ̃(y) − ξ̂(y)

)
= lim

y→−∞

(
ũ(y) + ũ′(y)

α
− s2y − s2

α

)
= 0

where we use (3.7).

4 Proof of Theorem 2.6
In this section, we prove Theorem 2.6. We will first prove that if the interdistances u(y+1)−u(y)
and ξ(y + 1) − ξ(y) are bounded, then they are monotone. Let (u, ξ) be a solution of (2.7) such
that u, ξ ∈ C2(R). For y ∈ R, we define the functions

G(y) = u(y + 1) − u(y) (4.1)
H(y) = ξ(y + 1) − ξ(y). (4.2)
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The couple (G,H) satisfies{
G′(y) = α(H(y) −G(y)) y ∈ R,
H ′(y) = α(G(y) −H(y)) + κ

α
(V (G(y + 1)) − V (G(y))) + λ(H(y + 1) −G(y + 1)) y ∈ R.

(4.3)

We have the following proposition.

Proposition 4.1. Assume (A1)-(A2). Let G,H ∈ C2(R) be bounded functions such that (G,H)
is a solution of (4.3). Let s1, s2 ∈ R with s1 < s2 such that s1 ≤ G(y) ≤ s2 for all y ∈ R. Assume
that (A5) holds replacing a by s1 and b by s2. Then we have that

G and H are strictly increasing or
G and H are strictly decreasing or
G and H are constant functions .

(4.4)

Remark 4.2. As consequence of (A5) (with a = s1 and b = s2), we have

z 7→ αz − κ

α
V (z) and z 7→ κ

α
V (z) − λz are strictly increasing functions in [s1, s2].

To prove Proposition 4.1, we need the following lemma whose proof is postponed.

Lemma 4.3. Under the assumption of the previous proposition, we have the following result: let
y0 ∈ R. We have {

max (G(y), H(y)) ≤ max (G(y0), H(y0)) for all y ≥ y0 or
min (G(y), H(y)) ≥ min (G(y0), H(y0)) for all y ≥ y0.

(4.5)

Proof of Proposition 4.1. We will first show that the function G is monotone.

Step 1: G is monotone. Assume that G has a left strict local maximum at x0, i.e, there exists
r > 0 such that

G(x0) > G(y) for y ∈ (x0 − r, x0). (4.6)

We claim that

G(x0) ≤ G(y) for y ≥ x0. (4.7)

Assume by contradiction that there exists y0 > x0 such that G(x0) > G(y0). Using the
continuity of the function G, we can choose z0 ∈ (x0 − r, x0) such that

G(z0) > G(y0). (4.8)

Using that G′(x0) = 0 (local maximum) and G′(y) ≥ 0 for y ∈ (x0 − r, x0), we have

G′(x0) = α(H(x0) −G(x0)) = 0, (4.9)
G′(y) = α(H(y) −G(y)) ≥ 0 for y ∈ (x0 − r, x0) (4.10)

which implies that

G(x0) = min (G(x0), H(x0)) > G(z0) = min (G(z0), H(z0)) . (4.11)

Using the second inequality in (4.5), we get for all y ≥ z0,

min (G(y), H(y)) ≥ G(z0) = min (G(z0), H(z0)) (4.12)
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which implies that G(y0) ≥ G(z0) and we get a contradiction using (4.8).
In the same way (using the first inequality in (4.5)), we can prove that if G has a left strict local
minimum at x0 i.e, there exists r > 0 such that

G(x0) < G(y) for y ∈ (x0 − r, x0),

then,

G(x0) ≥ G(y) for y ≥ x0. (4.13)

We deduce that G is monotone.

Step 2: (G′ ≥ 0 and H ′ ≥ 0) or (G′ ≤ 0 and H ′ ≤ 0). Assume that G′ ≥ 0. Let η > 0. We
claim that for x ≥ y,

H(x) ≥ H(y) − η.

We define

M = sup
x≥y

{H(y) −H(x) − η} .

By contradiction, assume that M > 0. We then define

Mβ = sup
x≥y

{
H(y) −H(x) − βx2 − βy2 − η

}
.

For β small enough, and since M > 0, we have Mβ > 0. Using the fact that H is bounded, we
have

H(y) −H(x) − βx2 − βy2 −→ −∞ if |x| → +∞ or |y| → +∞.

We deduce that Mβ is reached at some point (xβ , yβ). In addition, there exists a constant C such
that,

0 < H(yβ) −H(xβ) − βx2
β − βy2

β ≤ C − βx2
β − βy2

β

which implies

β|xβ | ≤
√
βC and β|yβ | ≤

√
βC.

Since Mβ > 0, we also have that xβ > yβ . Writing the viscosity inequalities, we obtain

2βxβ + 2βyβ ≤ α (G(yβ) −H(yβ)) + κ

α
(V (G(yβ + 1)) − V (G(yβ))) + λ(H(yβ + 1) −G(yβ + 1))

− α (G(xβ) −H(xβ)) − κ

α
(V (G(xβ + 1)) − V (G(xβ))) − λ(H(xβ + 1) −G(xβ + 1)).

Using that G(yβ) ≤ G(xβ), G(yβ + 1) ≤ G(xβ + 1) and Remark 4.2, we get

2βxβ + 2βyβ ≤ α (H(xβ) −H(yβ)) + λ(H(yβ + 1) −H(xβ + 1)). (4.14)

By definition of Mβ , we know that

H(yβ) −H(xβ) + 2β(xβ + yβ + 1) ≥ H(yβ + 1) −H(xβ + 1). (4.15)

Injecting (4.15) in (4.14), we obtain

2βxβ + 2βyβ ≤ (α− λ)(H(xβ) −H(yβ)) + o(β) ≤ −η(α− λ) + o(β).

Taking β to zero, we get a contradiction and we deduce that M ≤ 0. Finally, taking η to zero,
we get H ′ ≥ 0. In the same way, we can prove that if G′ ≤ 0, then H ′ ≤ 0.
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Step 3: Strict Monotony. Assume that G′ ≥ 0 and H ′ ≥ 0 on R. We will show that

G and H are strictly increasing or
G and H are constant functions.

Step 3.1: Constant left implies constant right. Assume that there exists r > 0 and
x0 ∈ R such that

G(x) = G(x0) for x ∈ (x0 − r, x0).

We will prove that G(x) = G(x0) for all x ≥ x0. Let x1 ∈ (x0 − r, x0). We have G′(x1) = 0 (G is
constant on (x0 − r, x0)) which implies (using the first equation in (4.3))

G(x1) = G(x0) = H(x1) = H(x0). (4.16)

This implies that

max (G(x0), H(x0)) ≤ max (G(x1), H(x1)) .

Using Lemma 4.3, we obtain for all x ≥ x1,

max (G(x), H(x)) ≤ max (G(x1), H(x1)) = G(x0)

which implies G(x) ≤ G(x0). Using that G is non-decreasing, we have G(x) ≥ G(x0) for x ≥ x0
and thus G(x) = G(x0) for x ≥ x0.

We now prove the same result for H. Assume that there exists r > 0 and x0 ∈ R such that

H(x) = H(x0) for x ∈ (x0 − r, x0).

We will prove that H(x) = H(x0) for all x ≥ x0. Let x1 ∈ (x0 − r, x0). We have H ′(x) = 0 for
x ∈ [x1, x0] which implies

0 = H ′(x) = α(G(x) −H(x)) + κ

α
(V (G(x+ 1) − V (G(x))) + λ(H(x+ 1) −G(x+ 1))

≥ α(G(x) −H(x)) + κ

α
(V (G(x+ 1) − V (G(x))) + λ(H(x) −G(x+ 1))

≥ α(G(x) −H(x)) + λ(H(x) −G(x))
= (α− λ)(G(x) −H(x))

where we use H ′ ≥ 0, λ > 0 in the second line and G′ ≥ 0, z 7→ κ

α
V (z) − λz is strictly increasing

in the third line. We deduce that max (G(x1), H(x1)) = H(x1) = H(x0) = max (G(x0), H(x0)).
Proceeding as above, we get the desired result.

Step 3.2: Conclusion. Using step 3.1, we remark that if G is not strictly increasing and G
is not constant then G has a global maximum at some point x0 with{

G(x) = G(x0) if x ≥ x0,

G(x) < G(x0) if x < x0.

For x < x0, we have H(x) ≤ H(x0). In addition, for x ≥ x0, we have

0 = G′(x) = α(H(x) −G(x)).
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This implies that H(x) = H(x0) = G(x0) = G(x) for all x ≥ x0. We deduce that H has a global
maximum at x0. Using the strong comparison principle (Proposition 3.6) and that (G(x0), H(x0))
is a solution of (4.3), we get G(x) = G(x0) for all x ∈ R which gives a contradiction.
Similarly, if H is not strictly increasing and H is not constant then H has a global maximum at
some point x1 with {

H(x) = H(x1) if x ≥ x1,

H(x) < H(x1) if x < x1.

For x < x1, we have

G′(x) = α(H(x) −G(x)) ≥ 0

which implies G(x) < H(x1). In addition, for x ≥ x1, we have

G′(x) = α(H(x1) −G(x)) ≥ 0 (4.17)

and

0 = H ′(x) = α(G(x) −H(x1) + κ

α
(V (G(x+ 1)) − V (G(x))) + λ(H(x1) −G(x+ 1))

≤
(κ
α
V (G(x+ 1)) − λG(x+ 1)

)
−

(κ
α
V (H(x1)) − λH(x1)

)
(4.18)

where we use that G(x) ≤ H(x1) for x ≥ x1 and that z 7→ αz − κ

α
V (z) is strictly increasing.

Using that z 7→ κ

α
V (z)−λz is strictly increasing and (4.17), we deduce that G(x+1) = H(x1)

for x ≥ x1. Injecting the last equality in the first equation in (4.18), we get

0 = (αG(x) − κ

α
V (G(x))) − (αH(x1) − κ

α
V (H(x1)))

which implies G(x) = H(x1) for all x ≥ x1. Therefore, we have now

{
G(x) ≤ G(x1) if x ≤ x1

G(x) = G(x1) if x > x1.

This means that G has a global maximum at x1 and we get contradiction as in the beginning of
this step.

We turn now to the proof of Lemma 4.3.

Proof of Lemma 4.3. We will prove the first inequality of (4.5), the second one can be done simi-
larly. Let x0, x1 ∈ R be such that x1 > x0 and

max (H(x1), G(x1)) ≤ max (H(x0), G(x0)) . (4.19)

Let η > 0 and m = max (H(x0), G(x0)). We define

M = sup
x≥x0

{H(x) −m− η,G(x) −m− η} .

By contradiction, we assume that M > 0.

Case 1: M is reached for some point x̄ > x0.
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Case 1.1: M = G(x̄) −m− η. Writing the viscosity inequality, we get

0 ≤ α (H(x̄) −G(x̄)) .

Using that G(x̄) ≥ H(x̄), we get a contradiction in the above inequality if G(x̄) > H(x̄). If
G(x̄) = H(x̄), we deduce that M = H(x̄) − m − η and so we can write the viscosity inequality
using the function H at the point x̄ and we get

0 ≤ κ

α
(V (G(x̄+ 1)) − V (G(x̄))) + λ(H(x̄+ 1) −G(x̄+ 1)).

Using that G(x̄) ≥ H(x̄+ 1) and G(x̄) ≥ G(x̄+ 1), we get a contradiction in the above inequality
if G(x̄) > G(x̄ + 1). If G(x̄) = G(x̄ + 1), we deduce that M = G(x̄ + 1) − m − η and so we can
write the viscosity inequality using the function G at the point x̄+1. Continuing in the same way,
we construct a sequence xn = x̄ + n such that M = G(xn) − m − η = H(xn) − m − η. We then
define the following functions, {

Gn(x) = G(x+ xn) −m,

Hn(x) = H(x+ xn) −m.

Using the fact that G and H are bounded Lipshitz continuous functions, we have (up to passing
to the limit on a subsequence) {

Gn → G∞,

Hn → H∞.

The stability of viscosity solutions implies (see [3]) that (G∞, H∞) solves (4.3). Let x ∈ R: for
n large enough, we have x+ xn ≥ x0. Using the definition of M , we have

Gn(0) = G(xn) −m ≥ Gn(x) = G(x+ xn) −m.

This implies that for any x ∈ R, we have{
G∞(0) ≥ G∞(x),
H∞(0) ≥ H∞(x).

Using the strong comparison principle (Proposition 3.6) and that (G∞(0), H∞(0)) solves (4.3)
, we get for all x ∈ R

{
G∞(x) = G∞(0) ≥ η > 0
H∞(x) = H∞(0) ≥ η > 0.

Equation (4.19) implies that Hn(x1 − xn) ≤ 0 and Gn(x1 − xn) ≤ 0. Taking n → +∞, we get
a contradiction.

Case 1.2: M = H(x̄) − m − η. We proceed as above. The difference is that we will begin
writing the viscosity solution satisfied by H at x̄.

We deduce that M ≤ 0. Sending η to zero, we get the desired result.

Case 2: M is not reached. In this case, there exists a sequence xn → +∞ such that

{
G(xn) −m− η → M or
H(xn) −m− η → M.

(4.20)

18



We define {
Gn(x) = G(x+ xn) −m− η,

Hn(x) = H(x+ xn) −m− η.

Up to subsequence, we have Gn → G∞ and Hn → H∞. Assume that the second line in (4.20)
is true (if the first one is true, we proceed similarly and even simpler): this implies that for all
x ∈ R,

H∞(0) ≥ H∞(x) and H∞(0) ≥ G∞(x). (4.21)

We have that

0 = H ′
∞(0) = α (G∞(0) −H∞(0)) + κ

α
(V (G∞(1)) − V (G∞(0))) + λ(H∞(1) −G∞(1)). (4.22)

Using (4.21) and the fact that αz − κ

α
V (z) is strictly increasing , we get

0 ≤ κ

α
(V (G∞(1)) − V (H∞(0))) + λ(H∞(0) −G∞(1)).

We deduce using (4.21) that G∞(1) = H∞(0). Injecting the last equality in (4.22), we get

0 ≤ α (G∞(0) −H∞(0)) + κ

α
(V (H∞(0)) − V (G∞(0))) .

Using again strict monotony, we get that H∞(0) = G∞(0). Finally, the strict comparison principle
implies {

G∞(x) = G∞(0) > 0,
H∞(x) = H∞(0) > 0.

This contradicts (4.19) and implies that M ≤ 0.

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Using Proposition 4.1, we deduce that the limit of G and H at ±∞ exist:
there exist ā, ã, b̄ and b̃ such that

G(+∞) = ā, G(−∞) = b̄,

H(+∞) = ã, G(−∞) = b̃.

Case 1: if G and H are strictly decreasing. In this case ā < b̄ and ã < b̃.

Step 1: F is strictly decreasing. We have for all y ∈ R,

F ′(y) = −2αF (y) + κ

α
V (G(y)) + λF (y + 1). (4.23)

Using that F is bounded, we can proceed as in step 2 of the proof of Proposition 4.1 to prove
that F ′(y) ≤ 0 for all y ∈ R. Let us assume by contradiction that F is not decreasing: there
exists an open interval I such that F is constant in I. Let x1 < x2 be two points in I: we have
F ′(x1) = F ′(x2) = 0 and F (x1) = F (x2). Using (4.23), we obtain

κ

α
V (G(x1)) + λF (x1 + 1) = κ

α
V (G(x2)) + λF (x2 + 1)

which gives a contradiction because G is strictly decreasing and V is strictly increasing. We deduce
that F is strictly decreasing.

19



Step 2: Limits at ±∞. Using that u′(y) = αF (y), we deduce that u′ is strictly decreasing.
Therefore u′(±∞) exist and {

u′(+∞) = G(+∞) = ā,

u′(−∞) = G(−∞) = b̄.

We have

u′(y + 1) − u′(y) = α(ξ(y + 1) − ξ(y)) − α(u(y + 1) − u(y))
= α(H(y) −G(y)).

Taking y to +∞, we get

0 = α(ā− ã),

and so ā = ã. Moreover, we have

ξ′(y) = α(u(y) − ξ(y)) + κ

α
V (u(y + 1) − u(y)) + λ(ξ(y + 1) − u(y + 1))

= −u′(y) + κ

α
V (u(y + 1) − u(y)) + λ

u′(y + 1)
α

.

Taking y to +∞, we get

ξ′(+∞) = −ā+ κV (ā) + λā

α
.

Finally, using that ξ′(+∞) = H(+∞), we deduce that −ā+ κV (ā) + λā

α
= ã = ā. Recalling that

α = λ+ κ

2 , we obtain that V (ā) = ā. Similarly, we can prove that ξ′(−∞) exists and ξ′(−∞) = b̄.

Step 3: p ≤ V (p) if p ∈ [ā, b̄]. We define the functions

û(t, y) = u(t+ y) and ξ̂(t, y) = ξ(t+ y).

We remark that (û, ξ̂) is a viscosity solution ofût(t, y) = α
(
ξ̂(t, y) − û(t, y)

)
,

ξ̂t(t, y) = α
(
û(t, y) − ξ̂(t, y)

)
+ κ

α
V (û(t, y + 1) − û(t, y)) + λ(ξ̂(t, y + 1) − û(t, y + 1)).

We then rescale û and ξ̂ in the following way

ûε(t, y) = εû

(
t

ε
,
y

ε

)
and ξ̂ε(t, y) = εξ̂

(
t

ε
,
y

ε

)
.

As ε goes to zero, we have that ûε, ξ̂ε → u0 with

u0(t, y) =
{
ā(y + t) if y + t ≥ 0,
b̄(y + t) if y + t < 0.

In [11], authors obtained a homogenization result for a traffic model (Theorem 1.3) considering
n different velocities and sensitivities. Using the same arguments and even simpler (since we have
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one velocity V ), we can prove the same homogenization result: ûε and ξ̂ε both converge uniformly
towards u0 which is a viscosity solution of

u0
t = V (u0

y).

Testing u0 from above with any test function of the form

φ(y + t) where ā ≤ φ′(0) ≤ b̄,

we deduce that

p ≤ V (p) for all p ∈ [ā, b̄] with equality for p = ā, b̄.

Step 4: p < V (p) if p ∈ (ā, b̄). Assume by contradiction that there exists d̄ ∈ (ā, b̄) such
that V (d̄) = d̄. Using Proposition 3.8, there exists (ũ, ξ̃) solution of (2.7) such that

lim
|y|→+∞

(ũ− ¯̄u) = 0 and lim
|y|→+∞

(ξ̃ − ¯̄ξ) = 0

with ¯̄u(y) = min(āy, b̄y) and ¯̄ξ(y) = min
(
āy + ā

α
, b̄y + b̄

α

)
. Using that V (d̄) = d̄, we define

the following solution of (2.7),

v(y) = d̄y and χ(y) = d̄y + d̄

α
.

Moreover, we have

lim
|y|→+∞

(ũ− v) = −∞ and lim
|y|→+∞

(ξ̃ − χ) = −∞. (4.24)

Using Proposition 3.5, we obtain {
ũ ≤ v on R,
ξ̃ ≤ χ on R.

Using (4.24), we remark that m1 = minR(v − ũ) and m2 = minR(χ − ξ̃) exist. For m =
min(m1,m2), we have for all y ∈ R,

ũ+m ≤ v, (4.25)
ξ̃ +m ≤ χ (4.26)

with equality at some point x0 in (4.25) or (4.26). Assume that ξ̃(x0)+m = χ(x0) (we proceed
similarly if ũ(x0) +m = v(x0)). Using Lemma 3.4, we get that

ξ̃(y) +m = χ(y) for all y ≤ x0.

Taking y → −∞, we get a contradiction and this implies that V (d̄) > d̄.

Case 2: if G and H are strictly increasing. Similar to the above case.

Case 3: if G and H are constant functions. We obtain that u′ and ξ′ are constant functions.
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5 Proof of Theorem 2.5
In this section, we prove the main result of this paper, Theorem 2.5. The idea of the proof is to
construct the solution for a suitable non-local operator and then to pass to the limit.

Proof of Theorem 2.5. We will construct viscosity solutions (u, ξ) of (2.7) such that

G(y) = u(y + 1) − u(y), H(y) = ξ(y + 1) − ξ(y)

are bounded functions on R. In fact, using the classification theorem (see Theorem 2.6), and using
assumption (A3), we get that G and H are strictly decreasing and{

G(y) −→ a, H(y) −→ a as y → +∞,

G(y) −→ b, H(y) −→ b as y → −∞

with a = inf
R
G = inf

R
H and b = sup

R
G = sup

R
H.

Step 1: Construction of the approximated solution. We modify the function V on R in
the following way: let Ṽ : R → R defined by Ṽ = V in [a, b] and Ṽ (p) = a if p < a, Ṽ (p) = b if
p > b. To simplify the notations, we assume in the rest of the proof that Ṽ = V . For η > 0 small,
we define T : R → R by

T (p) =


a− η if p ≤ a− η,

p if a− η < p < b+ η,

b+ η if p ≥ b+ η.

(5.1)

Let R > 0. We consider the following operators:G1
R(y, u, w, p) = ψR(y)T (α(w − u)) + (1 − ψR(y))V (p),

G2
R(y, u, v, w, z, p) = ψR(y)

(
−T (α(w − u)) + κ

α
V (v − u) + λ

α
T (α(z − v))

)
+ (1 − ψR(y))V (p)

(5.2)

with ψR ∈ C∞(R) defined by

ψR(y) =
{

1 if |y| < R,

0 if |y| > R+ 1.

We introduced the function T to obtain Lipschitz functions uR, ξR and bounded interdistance.
Remark that if w − u, z − v ∈

[
a

α
,
b

α

]
and if v − u ∈ [a, b], then as R → +∞, the operators G1

R

and G2
R converge to the right hand side term in equation (2.7), i.e.{

G1
R(y, u, w, p) → α(w − u) as R → +∞,

G2
R(y, u, v, w, z, p) → α(u− w) + κ

α
V (v − u) + λ(z − v) as R → +∞.

We will consider the following equation for y ∈ R,{
u′

R(y) = G1
R(y, uR(y), ξR(y), u′

R(y)),
ξ′

R(y) = G2
R(y, uR(y), uR(y + 1), ξR(y), ξR(y + 1), ξ′

R(y)).
(5.3)

Proposition 5.1. There exits a viscosity solution (uR, ξR) of (5.3). Moreover, uR and ξR are
lipshitz continuous.
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Proof. Let l be a big positive number, l >> R. We define the following functions

u+
R(y) =

{
ay if y ≥ 0,
by if y < 0,

ξ+
R(y) =

{
ay + a

α if y ≥ − 1
α ,

by + b
α if y < − 1

α ,
(5.4)

u−
R(y) =


a(y + l) − bl if −l < y < 0,
by + (a− b)l if 0 ≤ y < l,

by if y ≤ −l,
ay if y ≥ l,

ξ−
R (y) =


a(y + l) − bl + a

α if −l − 1
α < y < 0,

by + (a− b)l + b
α if − 1

α ≤ y < l − 1
α ,

by + b
α if y ≤ −l − 1

α ,

ay + a
α if y ≥ l − 1

α .

(5.5)

By simple computations, we can verify that (u+
R, ξ

+
R) is a viscosity super solution of (5.3) and

that (u−
R, ξ

−
R ) is a viscosity sub solution of (5.3). By Perron method [17], we can construct a

viscosity solution (uR, ξR) of (5.3) satisfying for y ∈ R,

u−
R ≤ uR ≤ u+

R

ξ−
R ≤ ξR ≤ ξ+

R .

In particular, from the definition of the sub and super solutions, (see (5.5) and (5.4)), we
remark that

uR(y) =
{
ay if y ≥ l,

by if y ≤ −l,
ξR(y) =

{
ay + a

α if y ≥ l − 1
α ,

by + b
α if y ≤ −l − 1

α .

Moreover, using the definition of V and T , the functions uR and ξR are lipshitz and satisfya− η ≤ u′
R(y) ≤ b+ η,

2a− b−
(
λ

α
+ 1

)
η ≤ ξ′

R(y) ≤ 2b− a+
(
λ

α
+ 1

)
η.

Remark 5.2. (u−
R, ξ

−
R ) is a viscosity sub-solution of (5.3) because the operator is local for y ≥ l− 1

α
and y ≤ −l.

Step 2: Bounds for ξR − uR and u′.

Proposition 5.3. For all y ∈ R, we have

a

α
≤ ξR(y) − uR(y) ≤ b

α
. (5.6)

In particular, this implies that for all y ∈ R,

a ≤ u′
R(y) ≤ b. (5.7)

Proof. We will prove the upper bound. The lower bound can be done in the same way. We define

M = sup
y∈R

{
ξR(y) − uR(y) − b

α

}
.

Assume by contradiction that M > 0. For y > l, we have

ξR(y) − uR(y) − b

α
= a

α
− b

α
< 0.
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Similarly, For y < l − 1
α

, we have

ξR(y) − uR(y) − b

α
= b

α
− b

α
= 0.

We deduce that M is reached at some point ȳ ∈
[
l − 1

α
, l

]
. We then define

Mε = sup
x,y∈Br(ȳ)

{
ξR(x) − uR(y) − b

α
− (x− y)2

2ε − (x− ȳ)2
}

where BR(ȳ) is the open ball of radius r. We have Mε ≥ M > 0 and Mε is reached at some point
(x, y). Moreover, we have

0 ≤ CR − b

α
− (x− y)2

2ε

where we use that ξR and uR are continuous. This implies that |x − y| → 0 as ε → 0. Let x̄ be
the common limit of x and y as ε goes to zero. We have

M ≤ Mε ≤ ξR(x) − uR(y) − b

α
− (x− ȳ)2.

Taking ε to zero, we get

M ≤ ξR(x̄) − uR(x̄) − b

α
− (x̄− ȳ)2

≤ M − (x̄− ȳ)2

which implies that x̄ = ȳ. Writing the viscosity inequalities, we get

2(x− ȳ) ≤ G2
R

(
x, uR(x), uR(x+ 1), ξR(x), x− y

ε
+ 2(x− ȳ)

)
−G1

R

(
y, uR(y), ξR(y), x− y

ε

)
= ψR(x)

(
−T (α(ξR(x) − uR(x))) + κ

α
V (uR(x+ 1) − uR(x)) + λ

α
T (α(ξR(x+ 1) − uR(x+ 1)))

)
+ (1 − ψR(x))V

(
x− y

ε
+ 2(x− ȳ)

)
− ψR(y)T (α(ξR(y) − uR(y))) − (1 − ψR(y))V

(
x− y

ε

)
≤ ψR(x)

(
−T (α(ξR(x) − uR(x))) + κ

α
V (uR(x+ 1) − uR(x)) + λ

α
T (α(ξR(x+ 1) − uR(x+ 1)))

)
− ψR(y)T (α(ξR(y) − uR(y))) + b||ψ′

R||∞|x− y| + 2||V ′||∞|x− y|

where we use in the last line the fact that V ≤ b and V, ψR are lipshitz. Taking ε to zero, we get

0 ≤ ψR(ȳ)
(

−2T (α(ξR(ȳ) − uR(ȳ))) + κ

α
V (uR(ȳ + 1) − uR(ȳ)) + λ

α
T (α(ξR(ȳ + 1) − u(ȳ + 1)))

)
.

Using that ξR(ȳ) − uR(ȳ) ≥ ξR(ȳ + 1) − uR(ȳ + 1), we obtain

0 ≤ ψR(ȳ)
((

λ

α
− 2

)
T (α(ξR(ȳ) − uR(ȳ))) + κ

α
V (uR(ȳ + 1) − uR(ȳ))

)
.

Using that 2α > λ, α = κ+ λ

2 , ξR(ȳ) − uR(ȳ) > b

α
and the definition of T (see (5.1)), we get

a contradiction.
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Step 3: Control of the oscillations of uR and ξR. The goal of the next two propositions is
to exploit the definition of the sub-solution (u−

R, ξ
−
R ) and the super-solution (u+

R, ξ
+
R) at infinity in

order to ensure that uR(y + 1) − uR(y) and ξR(y + 1) − ξR(y) are not constant functions equal to
a or b.

Proposition 5.4. Let (uR, ξR) be the solution of (5.3) provided by Proposition 5.1. Let y0 ∈
(−1,−1/2) and let γ, δ ∈ (0, 1) small such that


δ

(
1 + γ

α

)
≤ y0(a− b), γ ≤ α

2 , min
p∈[a,a+2δ]

V ′(p) > 1

min
p∈[a,a+2δ]

V ′(p) >
γ

(
2α(1 + tanh(γ))

(
1 + γ

α

)
− λ(1 − tanh(γ))

)
κ tanh(γ) .

Then, we have

uR(y) − uR(y0) ≥ a(y−y0) + δ tanh(γy),

ξR(y) − uR(y0) ≥ a(y − y0) + δ tanh(γy) + a+ δγ(1 − tanh2(γy))
α

for all y ≥ y0.

Proof. The proof of Proposition 5.4 is similar and even simpler than the proof of the next propo-
sition.

Proposition 5.5. Let (uR, ξR) be the solution of (5.3) provided by Proposition 5.1. Let δ, γ ∈
(0, 1) small such that

b− a

α
> δ, b > b− 2δ > a, 1 > max

p∈[b−2δ,b]
V ′(p) (5.8)

and

γ <
α

2 ,
γ

(
2α(1 − tanh(γ))

(
1 − γ

α

)
− λ(1 + tanh(γ))

)
κ tanh(γ) > max

p∈[b−2δ,b]
V ′(p). (5.9)

We have the following:

i) either there exists y ∈ (−1, 1/2) such that

uR(y + 1) − uR(y) ≤ b+ δ (tanh(γy) − tanh(γ(y + 1))) (5.10)

or

ii) for all y0 ∈ (0, 1/2), we have
ξR(y0) − uR(y) ≤ b(y0 − y) + δ tanh(γy) + b

α
,

ξR(y0) − ξR(y) ≤ b(y0 − y) + δ tanh(γy) + δγ(1 − tanh2(γy))
α

.
(5.11)

for all y ≤ y0.

Remark 5.6. The second condition in (5.9) is well defined since we have

lim
γ→0

γ
(

2α(1 − tanh(γ))
(

1 − γ

α

)
− λ(1 + tanh(γ))

)
κ tanh(γ) = 1.
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Proof of Proposition 5.5. Assume that i) is not true, i.e for all y ∈ (−1, 1/2),

uR(y + 1) − uR(y) > b+ δ (tanh(γy) − tanh(γ(y + 1))) . (5.12)

We will prove that ii) is true. Let y0 ∈ (0, 1/2). We define the following functions
φ1(y) = ξR(y0) − uR(y) − b(y0 − y) − δ tanh(γy) − b

α
,

φ2(y) = ξR(y0) − ξR(y) − b(y0 − y) − δ tanh(γy) − δγ(1 − tanh2(γy))
α

.

We claim that M = supy≤y0 (φ1(y), φ2(y)) ≤ 0. Assume by contradiction that M > 0. We will
first show that M is reached at some point x. In fact, if y < −l, and using that uR(y) = by, we
get

φ1(y) = ξR(y0) − by0 − δ tanh(γy) − b

α

≤ ay0 + a

α
− by0 − b

α
+ δ

≤ 0

where we use in the second line that ξR(y0) ≤ ξ+
R(y0) and (5.8) in the third line. Similarly, using

ξR(y) = by + b

α
for x ≤ −l − 1

α
, we have

φ2(y) = ξR(y0) − by0 − b

α
− δ tanh(γy) − δγ(1 − tanh2(γy))

α

≤ ay0 + a

α
− by0 − b

α
+ δ

≤ 0

where we use (5.8) in the third line.

Case 1: if M = φ1(x). We first show that x ̸= y0. If x = y0, we get

0 < ξR(y0) − uR(y0) − δ tanh(γy0) − b

α
≤ −δ tanh(γy0) < 0

where we use (5.6). Writing the viscosity super-solution inequality, we have

b− δγ(1 − tanh2(γx)) ≥ ψR(x)α(ξR(x) − uR(x))
+ (1 − ψR(x))V (b− δγ(1 − tanh2(γx))). (5.13)

Using that φ1(x) ≥ φ2(x), we have

ξR(x) − uR(x) ≥ b− δγ(1 − tanh2(γx))
α

.

Injecting the above inequality in (5.13), we get

b− δγ(1 − tanh2(γx)) ≥ ψR(x)(b− δγ(1 − tanh2(γx)))
+ (1 − ψR(x))V (b− δγ(1 − tanh2(γx))). (5.14)

Moreover, using (5.8) and that V (p) > p for p ∈ (a, b), we obtain a contradiction in (5.14) if
x < −R. It remains to treat the case where x ≥ −R. In that case and again using (5.14), we
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obtain ξR(x)−uR(x) = b− δγ(1 − tanh2(γx))
α

which implies that M is reached for φ2(x). Writing
the viscosity inequality, we get

b− f(δ, γ) ≥ ψR(x)
(
α(uR(x) − ξR(x)) + κ

α
V (uR(x+ 1) − uR(x)) + λ(ξR(x+ 1) − uR(x+ 1))

)
+ (1 − ψR(x))V (b− f(δ, γ)) (5.15)

with

f(δ, γ) = δγ(1 − tanh2(γx))
(

1 − 2γ tanh(γx)
α

)
. (5.16)

Using that φ2(x) ≥ φ1(x), we get

uR(x) ≥ ξR(x) + δγ(1 − tanh2(γx)) − b

α
. (5.17)

If x+ 1 ≤ y0: using that φ2(x) ≥ φ1(x+ 1) and φ2(x) ≥ φ2(x+ 1) , we have

uR(x+ 1) ≥ ξR(x) + b+ δ(tanh(γx) − tanh(γ(x+ 1)))

+ δγ(1 − tanh2(γx)) − b

α
(5.18)

and

ξR(x+ 1) ≥ ξR(x) + b+ δ(tanh(γx) − tanh(γ(x+ 1)))

+ δγ

α

(
tanh2(γ(x+ 1)) − tanh2(γx)

)
. (5.19)

From (5.7), we know that uR(x + 1) − uR(x) ∈ [a, b]. Hence, we can use assumption (A5) which
provides that αz1 − κ

α
V (z2 − z1) and κ

α
V (z2 − z1) − λz2 are strictly increasing. Injecting (5.17),

(5.18) and (5.19) in (5.15), we obtain

b− f(δ, γ) ≥ ψR(x)
(
δγ(1 − tanh2(γx)) − b+ κ

α
V (b− g(δ, γ)) + λb

α
− λh(δ, γ)

)
+ (1 − ψR(x))V (b− f(δ, γ))

with

g(δ, γ) = δ (tanh(γ(x+ 1)) − tanh(γx)) , (5.20)

h(δ, γ) = δγ

α

(
1 − tanh2(γ(x+ 1))

)
. (5.21)

To get a contradiction, we claim that

V (b− f(δ, γ)) > b− f(δ, γ) (5.22)

and

δγ(1 − tanh2(γx)) − b+ κ

α
V (b− g(δ, γ)) + λb

α
− λh(δ, γ) > b− f(δ, γ). (5.23)

To get (5.22), it’s sufficient to remark that 0 ≤ f(δ, γ) ≤ δγ

(
1 + 2γ

α

)
≤ 2δ where we use (5.8)

and (5.9). Using the fact that V (p) > p for p ∈ (a, b), we obtain (5.22). We will prove now (5.23).
We have

V (b− g(δ, γ)) = V (b) − g(δ, γ)V ′(p0) = b− g(δ, γ)V ′(p0) (5.24)
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with p0 ∈ [b− g(δ, γ), b]. Using (5.24), we obtain (5.23) if we have

V ′(p0) <
α

(
f(δ, γ) + δγ(1 − tanh2(γx)) − λh(δ, γ)

)
κg(δ, γ) (5.25)

with f ,g and h defined in (5.16),(5.20) and (5.21).
First, let us remark that

g(δ, γ) = δ (tanh(γ(x+ 1)) − tanh(γx))

= δ tanh(γ)(1 − tanh2(γx))
1 + tanh(γx) tanh(γ) .

On one hand, we have

f(δ, γ) + δγ(1 − tanh2(γx))
g(δ, γ) = 2γ(1 + tanh(γx) tanh(γ))

tanh(γ)

(
1 − γ tanh(γx)

α

)
≥ 2γ(1 − tanh(γ))

tanh(γ)

(
1 − γ

α

)
.

On the other hand, we have

g(δ, γ) = δ (tanh(γ(x+ 1)) − tanh(γx))

= δ tanh(γ)(1 − tanh2(γ(x+ 1)))
1 − tanh(γ(x+ 1)) tanh(γ) .

This implies that

h(δ, γ)
g(δ, γ) = γ (1 − tanh(γ(x+ 1)) tanh(γ))

α tanh(γ)

≤ γ(1 + tanh(γ))
α tanh(γ) .

We deduce that

α
(
f(δ, γ) + δγ(1 − tanh2(γx)) − λh(δ, γ)

)
κg(δ, γ) ≥

γ
(

2α(1 − tanh(γ))
(

1 − γ

α

)
− λ(1 + tanh(γ))

)
κ tanh(γ)

> V ′(p0)

where we use (5.9) and this gives us the desired contradiction.

If x+ 1 > y0. In this case, we have −1 < y0 − 1 < x < y0 < 1/2. We proceed as above: the
only difference is that we use (5.12).

Case 2: if M = φ2(x). We proceed as above after showing easily that x ̸= y0.

Step 4: passing to the limit. We define the following functions:{
ūR(y) = uR(y) − uR(0),
ξ̄R(y) = ξR(y) − ξR(0).
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Using Ascoli-Arzela theorem, and up to a sub-sequence, we have locally uniformly ūR → u and
ξ̄R → ξ as R → +∞. The stability of viscosity solutions implies that (u, ξ) is a viscosity solution
of (2.7). Moreover, from Proposition 3.3, we know that u, ξ ∈ C2(R). Using steps 1 and 2, we
have 

a ≤ G(y) = u(y + 1) − u(y) ≤ b,

a ≤ H(y) = ξ(y + 1) − ξ(y) ≤ b,
a

α
≤ F (y) = ξ(y) − u(y) ≤ b

α
.

Using step 4, we have for y0 ∈ (−1,−1/2)

u(y0 + 1) − u(y0) ≥ a+ δ tanh(γ(y0 + 1)) > a (5.26)

and

i) there exits y ∈ (−1, 1/2),

u(y + 1) − u(y) ≤ b+ δ (tanh(γy) − tanh(γ(y + 1))) < b (5.27)

or there exists y0 ∈
(

0,min
(

− 1
α

+ 1, 1
2

))
,

ii)

ξ(y0) − ξ(y0 − 1) ≤ b+ δ tanh(γ(y0 − 1)) + δγ(1 − tanh2(γ(y0 − 1))
α

< b. (5.28)

Using Theorem 2.6, we have that

ã = u′(+∞) = ξ′(+∞) = G(+∞) = H(+∞) ≤ b̃ = u′(−∞) = ξ′(−∞) = G(−∞) = H(−∞)
(5.29)

with ã, b̃ ∈ {a, b}. If we have equality in (5.29), we deduce using Proposition 4.1 that G and H
are constant which contradicts inequalities (5.26), (5.27) and (5.28). This implies that

a = u′(+∞) = ξ′(+∞) = G(+∞) = H(+∞) < b = u′(−∞) = ξ′(−∞) = G(−∞) = H(−∞).

Finally, using Proposition 6.1, there exists a constant C > 0 such that

|u− ū| ≤ C and |ξ − ū| ≤ C.

Remark 5.7. We can easily show that for any x0 ∈
(

−1,min
(

− 1
α
,−1

2

))
, we have

tanh(γx0)
tanh2(γx0) − 1

>
γ

α
for any γ > 0.

In fact, let f(γ) = tanh(γx0)
tanh2(γx0) − 1

− γ

α
. We have

f ′(γ) = −
(
x0 + 2x0 sinh2(γx0) + 1

α

)
.

In addition, we have f(0) = 0 and f ′(0) > 0 because x0 < − 1
α

. Let us also mention that α > 1.
In fact, we know that κ and α satisfies (A5). Hence, we have (for T = 1)

(κ+ λ)2

4κ > V ′(a) > 1
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and
λ(κ+ λ)

2κ < V ′(b) < 1.

This implies that

κ > 1 and 2
√
κ− κ < λ <

1
2

(√
κ(κ+ 8)) − κ

)
.

Therefore, α = κ+ λ

2 >
√
κ > 1.

6 Asymptotics and uniqueness
In this section, we complete the proof of Theorem 2.5 by studying the asymptotic behavior of the
solution of (2.7) and then proving its uniqueness. We start with the asymptotic behavior. We
have the following proposition.

Proposition 6.1. Assume (A). Let (u, ξ) be a solution of (2.7) such that u, ξ ∈ C2(R) and let
G(y) = u(y + 1) − u(y), H(y) = ξ(y + 1) − ξ(y) and F (y) = ξ(y) − u(y). We assume that G,H
and F are non-increasing and that{

u′(+∞) = ξ′(+∞) = G(+∞) = H(+∞) = a,

u′(−∞) = ξ′(−∞) = G(−∞) = H(−∞) = b
(6.1)

and that for y ∈ R,

a ≤ G(y), H(y) ≤ b, (6.2)

and
a

α
≤ F (y) ≤ b

α
. (6.3)

Then there exists K, γ > 0 and c1, c2 ∈ R such that{
|u(y) − ay − c1| ≤ Ke−γy and |ξ(y) − ay − c1| ≤ Ke−γy for y ≥ 0,
|u(y) − by − c2| ≤ Keγy and |ξ(y) − by − c2| ≤ Keγy for y ≤ 0.

(6.4)

The proof of this proposition is a direct consequence of the following lemma

Lemma 6.2. Assume (A). Let (u, ξ) be a solution of (2.7) satisfying (6.1) such that u, ξ ∈ C2(R)
and (G,H) satisfying (6.2). We remark that (G,H) satisfies

{
G′(y) = α(H(y) −G(y)) y ∈ R
H ′(y) = α(G(y) −H(y)) + κ

α
(V (G(y + 1)) − V (G(y))) + λ (H(y + 1) −G(y + 1)) y ∈ R.

(6.5)

Recalling that V ′(a) > 1 > V ′(b), let ε > 0 be small enough such that
min

[a−(1+e)ε,a+(1+e)ε]
V ′(p) > 1,

max
[b−(1+e)ε,b+(1+e)ε]

V ′(p) < 1.

We have the following:
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1) let γ ∈ (0, 1) be small enough such that

min
[a−(1+e)ε,a+(1+e)ε]

V ′(p) > γ(−λeγ + 2α+ γ)
κ(1 − e−γ) .

Then there exists a constant C > 0 such that for all y ≥ 0,{
G(y) ≤ a+ Ce−γy,

H(y) ≤ a+ Ce−γy.
(6.6)

2) Let γ ∈ (0, 1) be small enough such that

max
[b−(1+e)ε,b+(1+e)ε]

V ′(p) < γ(λeγ − 2α− γ)
κ(1 − eγ) . (6.7)

Then there exists a constant C > 0 such that for all y ≤ 0,{
G(y) ≥ b− Ceγy,

H(y) ≥ b− Ceγy.
(6.8)

Remark 6.3. We recall that α = κ+ λ

2 . Therefore, we have that

lim
γ→0

γ(λeγ − 2α− γ)
κ(1 − eγ) = 1.

Proof of Lemma 6.2. We will only prove part 2) since the proof of part 1) can be done in the same
way (even simpler). Using (6.1), let y0 < 0 be such that for all y ≤ y0,

{
b− ε ≤ G(y) ≤ b,

b− ε ≤ H(y) ≤ b.

We will prove that for y ≤ y0,

{
G(y) ≥ b− C1e

γ(y−y0),

H(y) ≥ b− C1e
γ(y−y0) − C1γ

α eγ(y−y0) (6.9)

with C1 > b− a.
If (6.9) is true, we obtain (6.8) for all y ≤ 0 because we can easily check that for y0 < y ≤ 0,

G(y) ≥ a ≥ b− C1 ≥ b− C1e
γ(y−y0)

H(y) ≥ a ≥ b− C1 ≥ b− C1(1 + γ

α
)eγ(y−y0).

We define the following functions{
φ1(y) = b− C1e

γ(y−y0) −G(y),
φ2(y) = b− C1e

γ(y−y0) − C1γ
α eγ(y−y0) −H(y).

We then define

M = sup
y≤y0

(φ1(y), φ2(y)) .

We will prove that M ≤ 0. Assume by contradiction that M > 0. Using that G(y), H(y) → b
as y → −∞, we deduce that M is reached at some point x.
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Case 1: if M = φ1(x). If x = y0, we get

0 < b− C1 −G(x) ≤ b− a− C1 < 0.

We deduce that x ̸= y0 and writing the viscosity inequality, we get

−C1γe
γ(x−y0) ≥ α(H(x) −G(x)).

Using that φ1(x) ≥ φ2(x), we obtain

−C1γe
γ(x−y0) ≥ α(H(x) −G(x)) ≥ −C1γe

γ(x−y0).

This means that H(x) = G(x)−C1γe
γ(x−y0)

α
and M = φ2(x) > 0. Writing the viscosity inequality,

we get

−C1γe
γ(x−y0) − C1

γ2

α
eγ(x−y0) ≥ α(G(x) −H(x)) + κ

α
(V (G(x+ 1)) − V (G(x))) + λ(H(x+ 1) −G(x+ 1)).

We claim that x+ 1 < y0. If x+ 1 ≥ y0, we get

C1e
γ(x−y0) + C1

γ

α
eγ(x−y0) ≥ C1e

−γ + C1
γ

α
e−γ > b− a

for C1 big enough. This implies that

H(x) ≥ a > b− C1e
γ(x−y0) − C1

γ

α
eγ(x−y0)

which contradicts the fact that φ2(x) > 0. We deduce that x+ 1 < y0 and using that

φ1(x) ≤ φ2(x), φ1(x+ 1) ≤ φ2(x) and φ2(x+ 1) ≤ φ2(x)

we obtain that 
G(x) ≥ H(x) + C1γ

α
eγ(x−y0)

G(x+ 1) ≥ H(x) + C1e
γ(x−y0)

(γ
α

+ 1 − eγ
)
,

H(x+ 1) ≥ H(x) + C1e
γ(x−y0)(1 − eγ)

(γ
α

+ 1
)
.

Using assumptions (A2)-(A5) and the above inequalities, we get

− C1γe
γ(x−y0) − C1

γ2

α
eγ(x−y0) ≥

C1γe
γ(x−y0) + κ

α
(V (H(x) + f(γ) + g(γ)) − V (H(x) + g(γ))) − λeγg(γ) (6.10)

with {
f(γ) = C1e

γ(x−y0)(1 − eγ),
g(γ) = C1γ

α eγ(x−y0).
(6.11)

Using (6.10), we remark that we will get a contradiction if we prove

V (H(x) + f(γ) + g(γ)) − V (H(x) + g(γ)) > C1γe
γ(x−y0)

(
λeγ

α
− γ

α
− 2

)
. (6.12)

We have

V (H(x) + f(γ) + g(γ)) − V (H(x) + g(γ)) = V ′(p)f(γ)
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with

p ∈ [H(x) + f(γ) + g(γ), H(x) + g(γ)].

To get (6.12), we have to prove that

V ′(p) < γ(λeγ − 2α− γ)
κ(1 − eγ) . (6.13)

Using that φ2(x) > 0, we get

H(x) < b− C1e
γ(x−y0) − γ

α
C1e

γ(x−y0).

Using that H(y) ≥ b− ε for y ≤ y0, we deduce that

ε > C1e
γ(x−y0)

(
1 + γ

α

)
.

Recalling the definition of f and g (see (6.11)), and using that b− ε ≤ H(x) ≤ b+ ε, we obtain

H(x) + f(γ) + g(γ) ≥ b− (1 + e)ε,
H(x) + g(γ) ≤ b+ 2ε.

Using the condition on γ in (6.7), we get (6.13). We deduce that M ≤ 0 and in particular, we get
(6.8).

Case 2: M = φ2(x). We proceed as above.

Proof of Proposition 6.1. We will only prove the first line in (6.4). The proof of the second line is
similar. We have for x ≥ 0,

ξ(x) − ξ(0) =
∫ x

0
ξ′(s)ds =

∫ x

0
α(u(s) − ξ(s)) + κ

α
V (u(s+ 1) − u(s)) + λ(ξ(s+ 1) − u(s+ 1))ds

≤
∫ x

0
(λ− α)(ξ(s) − u(s)) + κ

α
V (u(s+ 1) − u(s))ds

≤ (λ− α)
∫ x

0

a

α
+ κ

α

∫ x

0
V (a+ Ce−γs)ds

≤ (λ− α) a
α
x+ κ

α

∫ x

0
V (a+ Ce−γs) − V (a) + V (a)ds

≤ (λ− α+ κ)ax
α

+ κ

α
||V ′||∞C

∫ x

0
e−γsds

= ax+ κ

α
||V ′||∞

C

γ
(1 − e−γx)

where we use that F (y) = ξ(y) − u(y) is non-increasing in the second line, α > λ and (6.3) in the
third line, the fact that V (a) = a in the fifth line and that λ− α+ κ

α
= 1 in the last line.

It remains to proof the uniqueness of the solution (part ii) in Theorem 2.5). This is a direct
consequence of the following proposition.
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Proposition 6.4. Assume (A). Let (u, ξ) be a solution of (2.7) with u, ξ ∈ C2(R) such that u is
concave and satisfying

a ≤ u(y + 1) − u(y) ≤ b for all y ∈ R and

|u− ū| ≤ C and |ξ − ū| ≤ C

where ū is defined in (2.6). Then, (u, ξ) is unique up to translation and addition of constants on
R.

Proof. Using Proposition 3.8, we construct a solution (ũ, ξ̃) of (2.7) and satisfying
lim

|y|→+∞
(ũ(y) − ū(y)) = 0,

lim
|y|→+∞

(
ξ̃(y) − ξ̄(y)

)
= 0.

Finally, applying Proposition 3.5 with s1 = a, s2 = b and

L(z1, z2, z3) = κ

α
V (z2 − z1) + λ(z3 − z2),

we get the desired result.
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