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What is the stiffness of a bent book?

– Supplemental Information –

S. Poincloux, T. Chen, B. Audoly, P. Reis

S.I. Experimental reproducibility

In Fig. S1(a), we present a photograph of the full experimental apparatus described in the main text. This set-up
provides highly reproducible mechanical response of the stacks upon multiple loading cycles and shuffling of the layers.
This reproducibility is highlighted in Fig. S1(b) where we show the raw force-deflection curves F2(w◦) for a stack
with n = 40 plates. The stack is bent cyclically, while gardually incrementing the maximum deflection wmax

◦ within
the range 6.5 ≤ wmax

◦ [mm] ≤ 65, in steps of 6.5 mm at each cycle. The experimental test is repeated three times
(represented by the three different color in Fig. S1(b), while maintaining the same number of layers but shuffling
them in-between the experiments. For each cycle and for each experimental run, the data overlaps, attesting the
reproducibility of our experimental measurements.
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Supplementary Figure S1. (a) Picture of the experimental set-up (photo taken by Alain Herzog). (b) Vertical force
against deflection curve F2(w◦) for n = 40. At each cycle, wmax

◦ is incrementally increased by 6.5 mm from 6.5 mm to 65 mm
(a = 65 mm). The three colors represent three different tests with the stack shuffled in-between. Both loading and unloading
curves are highly reproducible.

S.II. Geometry and energy of the reduced model for the stack

Kinematics of the stack: Consider a reference inextensible curve xbb(S) = x1(S)e1 + x2(S)e2 in the plane, and
its tangent

t(S) =
dx

dS
(S1)

as well as the normal n(S); see Fig. 2(c) of the main text and Fig. S2(a) for schematic diagrams. The curvature is
κ = dθ/dS with θ as the angle between t and the horizontal axis. The curve with offset x̃(S, y) is defined by the
non-normal parametrization

S 7→ x̃bb(S, y) = x(S) + yn(S). (S2)

The arclength S̃ on the offset curve satisfies

dS̃ = |dx̃bb| = |tdS + ydn| = (1− yκ)dS. (S3)



2

We always assume |yκ| < 1 (no cusp). The offset curves remain parallel to the centerline x. The tangent to the offset
curve at x̃(S, y) is parallel to t(S). As a result, the curvature of the offset curve reads

κ̃ =
dθ

dS̃
=

κ

dS̃/dS
= κ · (1− yκ)−1. (S4)

Energy of the stack: The contribution to the bending energy density Ẽ arising from the ‘sector’ spanned by dS
reads

ẼdS =

+ nh
2∫

−nh
2

dy

h

B1

2
κ̃2dS̃ =

+ nh
2∫

−nh
2

dy

h

B1

2
κ2 · (1− yκ)−1dS =

B1

2h
κ ln

(
1 + nhκ

2

1− nhκ
2

)
dS. (S5)

This can be rewritten as

Ẽ(κ) =
B1

2h
κ ln

(
1 + nhκ

2

1− nhκ
2

)
=

B1

nh2
ϕ(nhκ), (S6)

where

ϕ(k) =
k

2
ln

(
1 + k

2

1− k
2

)
. (S7)

The Taylor expansion ϕ(k) = k2

2 + k4

24 + · · · yields

Ẽ(κ) = B1n

(
κ2

2
+

(nh)2

24
κ4 + · · ·

)
. (S8)

The first term in the expression above corresponds to the assumption that all layers have identical curvature κ. The
subsequent terms bring in a non-linear correction that accounts for the fact that the different layers have different
curvatures.

Analogous Elastica formulation: We assume the left/right mirror symmetry is preserved, such that only half of
the stack is considered, with S = 0 as the point of indentation and S = ` as the contact point with the support, the
equilibrium equation is found by requiring that the total energy is stationary. The energy in this problem consists

of the bending energy E/2 =
∫ `
S=0
ẼdS. The frictionless contact with the support is enforced through Lagrange

multipliers F1 and F2 defined as positive, such that the quantity F = −F1e1 + F2/2e2 can be interpreted as the
contact force with the support at S = `. Following a variational approach, we arrive at the following equilibrium
equation:

nB1θ
′′(S)(

1−
(
nh
2 θ
′(S)

)2)2 + (F2/2 cos θ(S) + F1 sin θ(S)) = 0, (S9)

with the primes denoting differentiation with respect to S. The shape of the centerline x(S) is reconstructed from the
solution θ(S) using x′1(S) = cos(θ) and x′2(S) = sin(θ). The symmetry of the problem imposes the following boundary
condition on S = 0: θ(S = 0) = 0 and x1(S = 0) = 0. The displacement is controlled; i.e., x2(S = 0) = −w◦. The
parameter ` is an unknown whose initial value ` = a increases as the deflection gets larger. We assume that the
layers in the cantilevering portion of the setup extend sufficiently so that ` is below the physical half-length L of the
plates. The part of the stack past the roller (` ≤ S ≤ L) does not deform, nor it contributes to the bending energy.
At S = `, the tangent angle θ` = θ(S = `) is not known; it is effectively a free end and we enforce the boundary
condition θ′(S = `) = 0. The parameter ` is set by the condition of contact with the support, x1(S = `) = a− b sin θ`,
x2(S = `) = b(cos θ` − 1), with b = b0 + nh

2 being the effective radius of the supports taking the thickness of the
stack into account. The section of the plates beyond the contact point in S = ` follow a continuity condition in
position and tangent. Finally, as the supports can freely rotate, the reaction force at S = ` must remain normal
to the stack. The support creates a jump of |F | in the internal normal force of the stack. Being a normal force,
it also imposes a relation between F1 and F2: −F1 cos θ` + F2/2 sin θ` = 0. A summary of the boundary-value
problem is shown in Fig. S2. The solution of the problem is obtained numerically using a shooting method. The
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Supplementary Figure S2. (a) Schematic diagram of one half of a bent stack, illustrating the notations used. The centerline
is shown in red (continuous red line) together with the uppermost and lowermost plates (dashed red lines). The physical extent
of the roller is shown using a dashed blue circle, while the continuous blue line indicates the effective support interacting with
the centerline. (b) Summary of the equations and variables. (c) Normalized load-deflection curves computed by solving the
boundary-value problem summarized in (b) and detailed in the text. (d) Normalized incremental rigidity computed from the
force curves in (c).

shooting method is implemented using Matlab (Matlab 2018b, Mathworks) and the function ode45 to compute the
solution of Eq. S9 expressed as a first order differential equation with 4 variables Y = [θ(S), θ′(S), x1(S), x2(S)] and

Y ′ = [Y (2),
(

1−
(
nh
2 Y (2)

)2)2

× |F | (sin θ` cosY (1) + cos θ` sinY (1)) , cos(Y (1)), sin(Y (1))]. For a given deflection

and starting from S = `, the parameters (θ`, `, |F |) are varied using fsolve until the boundary conditions in S = 0 are
verified.

S.III. Internal stress in the backbone solution

In this section, we provide a detailed justification for the elastic backbone (friction-less case), and we identify the
microscopic stress, based on which, the expression for the power dissipated by friction is also obtained to first order
in the friction coefficient.

Microscopic equations of equilibrium: We start with a detailed analysis of the elastic backbone model. We
use two coordinate systems, (S, y) and (S̃, y), where S̃ is the (Lagrangian) arc length along a plate, and S is the
(non-Lagrangian) arclength of the projection of the current point onto the centerline in actual configuration. Each

layer in the stack is in equilibrium. As a result, the shear and normal forces of the individual layers, denoted as T̃
and Ñ respectively, and their internal moment M̃ must satisfy the Kirchhoff equations for the equilibrium of elastic
rods everywhere,

∂M̃
∂S̃

(S̃, y) + T̃ (S̃, y) = 0
∂Ñ
∂S̃

(S̃, y)− κ̃(S̃, y)T̃ (S̃, y) = 0
∂T̃
∂S̃

(S̃, y) + κ̃(S̃, y)Ñ(S̃, y) + p̃n(S̃, y) = 0

(S10)

Note that we follow the standard (but potentially confusing) convention whereby the normal force Ñ is along the

tangent to the layer and the shear force T̃ is perpendicular to the layer. In this frictionless model, the loading applied
on each layer is the net transverse force p̃ndS̃; i.e., the balance of transverse forces applied by the adjacent layers.
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Microscopic shear force: Along a given layer, the transverse coordinate y is constant. The shear force T̃ (S̃, y)

can be found by combining the balance of moments in Eq. (S10), with the constitutive law M̃ = B1κ̃ and using the

expressions of the plate curvature κ̃(S̃, y) in terms of the centerline curvature κ(S) from Eq. (S4), as well as dS̃ from
Eq. (S3):

T̃ = −∂M̃
∂S̃

= −∂M̃∂S
1

1−κy
= − B1

1−κy
∂κ̃
∂S

= − B1

1−κy
∂
∂S

(
κ

1−κy

)
= − B1

1−κy
∂κ
∂S

(
1

1−κy + κy
(1−κy)2

)
= − B1

(1−κy)3
dκ
dS .

(S11)

Microscopic normal force: In view of the longitudinal balance of forces in Eq. (S10), the normal force satisfies:

∂Ñ
∂S (S, y) = ∂Ñ

∂S̃
(1− κ(S)y)

= κ̃T̃ (1− κ(S)y)

= κT̃
= − B1κ

(1−κy)3
dκ
dS

= −B1

y2
κy

(1−κy)3

(
y dκ

dS

)
= B1

y2
∂ψ(κ(S)y)

∂S

= ∂
∂S

[
B1

y2 ψ(κ(S)y)
]
,

where we have introduced the auxiliary function ψ(k) = − k2

2(1−k)2 , with deriviative ψ′(k) = − k
(1−k)3 .

By integrating ∂Ñ/∂S we find the normal force as

Ñ(S, y) = B1

y2 ψ(κy) + Cte(y)

= − B1κ
2

2(1−κy)2 + Cte(y)

The integration we just did cannot be carried out across the points of discontinuity. As a result, the constant of
integration Cte(y) may be different in each of the regions separated by the point-like forces. In particular, in the
half-domain 0 6 S 6 L, there is a priori one function Cte(y) in the interval 0 6 S 6 ` and a different function Cte(y)
in the interval ` 6 S 6 L:

• Beyond the supports (6 S 6 `), the plates are underformed so κ = 0, and Ñ(S, y) = Cte(y). The free-boundary

condition at S = L sets Cte(y) = 0 and, hence, Ñ(S, y) = 0;

• At the roller (S = `), the applied force is purely transverse, implying that the normal force Ñ is actually

continuous, JÑK` = Ñ(`+, y) − Ñ(`−, y) = −Ñ(`−, y) = 0. Since the moment is zero at S = `−, so is the

curvature, κ(`−) = 0; then Ñ(`−, y) = 0 implies Cte(y) = 0.

We have just shown that the quantity Cte(y) is zero everywhere; i.e.,

Ñ(S, y) = −B1

2

(
κ

1− κy

)2

.

Normal stress – regular part: Let us now evaluate the normal forces applied from the neighbors to a given layer
p̃ndS̃ for S < `, for which we will use transverse equilibrium,

p̃ndS̃ = p̃n(1− κy)dS

= −
(
∂T̃
∂S̃

+ κ̃Ñ
)

(1− κy)dS

= −
(
∂T̃
∂S + κÑ

)
dS

= B1

(
∂
∂S

(
1

(1−κy)3
dκ
dS

)
+ κ 1

2

(
κ

1−yκ

)2
)

dS

= B1

(
1
2

κ3

(1−yκ)2 + 3y
(1−κy)4

(
dκ
dS

)2
+ 1

(1−κy)3
d2κ
dS2

)
dS.



5

In the main text, we have defined Σ(S, y) as the normal stress at the plate-plate interfaces. The normal force
applied by the plate above (respectively, below) the plate having mean coordinate y, over an interface element with

length dS̃, is therefore −Σ(S, y + h/2)dS̃ (respectively, +Σ(S, y − h/2)dS̃). The net force experienced by the plate

from the adjacent plates is therefore p̃ndS̃ = h∂(ΣdS̃)
∂y , which we can rewrite as

h
∂(Σ(1− κy))

∂y
= p̃n(1− κy). (S12)

This equation can be integrated with respect to y, using the free boundary conditions at top and bottom of the stack
Σ(S,±nh2 ) = 0; this yields the normal stress in the elastic backbone solution as

Σ(S, y) =
1

h(1− κ(S)y)

∫ y

−nh
2

B1

(
1

2

κ3(S)

(1− κ(S)ỹ)2
+

3ỹ

(1− κ(S)ỹ)4

(
dκ

dS

)2

+
1

(1− κ(S)ỹ)3

d2κ

dS2

)
dỹ. (S13)

One can check that the stress-free condition at the top of the stack Σ(S, y = nh
2 ) = 0 is automatically satisfied, even

if it has not been enforced.
The normal stress Σ(S, y) is evaluated and represented in Fig. S3(a). We observe that the pressure is always

negative, meaning that the plates are pressing against each other.

Normal stress – singular contribution at the rollers: The expression in Eq. (S13) for the normal stress is valid
away from the points S ∈ {−`, 0, `}, where point-like forces are applied. We do not need to derive the singular normal
stress at the point of indentation S = 0, since the sliding velocity of the plates is zero there by symmetry, implying
that there is no frictional dissipation.

We proceed to derive the singular (Dirac-like) contribution of the internal stress at the roller S = `. The other roller
S = −` is treated similarly, by symmetry. At S = `, the point-like force applied by the roller induces a point-like net
normal force p̃Dn applied to each plate, leading to the following balance of forces and moments,

JT̃ K` + p̃Dn = 0, JÑK` = 0, JM̃K` = 0. (S14)

where JfK` = f(y, `+) − f(y, `−) denotes the discontinuity of a function f across S = `. The equation JÑK` = 0 has

already been used to determine Ñ . The equation JM̃K` = 0 has been used to show that the curvature is continuous
across S = `, which motivates the boundary condition κ(`−) = θ′(`−) = 0 used in the boundary value problem of the
elastic backbone.

We insert the expression of T̃ from Eq. (S11) into the balance of normal forces JT̃ K`+p̃Dn = 0; noting that dκ
dS (`+) = 0,

as the plates remain straight for S > `, we obtain:

B1
dκ

dS
(`−) + p̃Dn = 0 (S15)

By the same argument as earlier, the Dirac-like contribution to the normal stress ΣD(y) at S = ` satisfies the
differential equation

h
∂ΣD

∂y
= p̃Dn

as well as the boundary conditions

ΣD
(
−nh

2

)
= −|F | 2 emΣD

(
+
nh

2

)
= 0

where F is the point-like force applied by the roller from below. The solution is found by integration as

ΣD(y) = − 1

h

∫ + nh
2

y

p̃Dn dỹ =
1

h
B1

dκ

dS
(`−)

(
nh

2
− y
)
. (S16)

The constant of integration warrants the equilibrium on the topmost interface. The equilibrium of the bottommost
interface yields

nB1
dκ

dS
(`−) = −|F |. (S17)
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This equation can be interpreted as a balance of transverse force for the one-dimensional model across the singularity
(details not shown). In view of this, the singular contribution to the transverse stress at S = ` can be rewritten as

ΣD(y) = −|F |
(

1

2
− y

nh

)
. (S18)

Sliding velocity: We define the sliding displacement as

u(y, S) = S̃(y, S)− S,
which satisfies

∂u

∂S
=
∂S̃

∂S
− 1 = −κ(S)y, (S19)

and, hence,

u(y, S) = −yθ(S). (S20)

The relative displacement at an interface therefore reads

δ(y, S) = S̃

(
y +

h

2
, S

)
− S̃

(
y − h

2
, S

)
= u

(
y +

h

2
, S

)
− u

(
y − h

2
, S

)
= h

∂u

∂y
(u, S) = −hθ(S). (S21)

The time derivative of this expression yields the relative sliding velocity:

δ̇(y, S) = −hθ̇(S). (S22)

Perturbative expression for the power dissipated by frictional forces: Throughout our study, friction is
treated as a perturbation; we assume that friction does not significantly affect the microscopic stress in the stack, nor
the sliding velocities at the interfaces. We use an Amontons-Coulomb friction law between the plates, which yields
the tangent stress at the interfaces between plates as µΣ, where µ is the friction coefficient. There are also singular
(Dirac-like) tangent force at the points with coordinates S ∈ {−`, 0, `} on each of the interfaces; that corresponding
to S = ` reads µΣD. Now, we seek to compute the power dissipated by friction in the entire stack Pµ, for which we
have to first consider two separate contributions, P1 and P2, which are detailed next.

The power P1 dissipated by friction away from the singular points S ∈ {−`, 0, `} is the integral over all plate-plate

interfaces of µΣ times the sliding velocity δ̇:

P1 = µ

∫ L

−L
dS

∫ + nh
2

−nh
2

h|θ̇(S)|(−Σ(S, y))
dy

h
(S23)

where we assume that Σ(S, y) < 0 everywhere, as we checked. In this expression, there is an integral
∫
· · · dS along

the interfaces, and an integral
∫
· · · dy

h which serves as a continuous approximation to the sum over all interfaces.
Performing the integration in Eq. (S23) with respect to the transverse variable y, by (i) omitting the regions |S| > `

where the normal stress is zero, (ii) identifying the quantity Q(S) =
∫ + nh

2

−nh
2

(−Σ(S, y))dy defined in the main text, and

(ii) limiting the integration to the domain S > 0 by symmetry, yields

P1 = 2µ

∫ `

0

Q(S)|θ̇(S)|dS.

The power dissipated by friction caused by the Dirac-like contribution at S = 0 is zero, since the sliding velocity is
zero there, δ̇(0, S) = 0.

The power P2 dissipated by friction caused by the Dirac-like contribution at S = ` writes, by a similar argument,
as

P2 = µ

∫ + nh
2

−nh
2

h|θ̇(`)|(−ΣD(y))
dy

h
.

Using Eq. (S18), we can calculate the intregral as

P2 = µhn|θ̇(`)| |F |
2
. (S24)

For a given value for the friction coefficient µ, P1 appears to be somewhat smaller than (but still comparable to)
P2, see Fig. S3(b). Finally, the power dissipated by friction in the entire stack is

Pµ = 2P2 + P1, (S25)

where the factor 2 is because there are two rollers. This is the expression used in the main text.
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Supplementary Figure S3. (a) Regular part of the normal stress in the stack Σ(S, y), at an indentation level of w0/a = 0.5.
Σ does not include the singular contributions of the indenter and the rollers. (b) Comparison between the power dissipated
away from the point of contact (S < `), P1 and at the contact point P2. For both (a) and (b) the following parameters have
been used: a = 65 mm, h = 0.286 mm, B1 = 1.76.10−4 N.m2, b0 = 6.8 mm, n = 80, ẇ◦ = 1 mm.s−1 and µ = 0.52.

S.IV. The case of small deflections

In this section, we consider the limit where the deflection is small, w◦/a � 1, and the stack is overall slender,
nh/a� 1.

We start with a linear analysis of the backbone solution. In this limit, the stack’s centerline can be analyzed using
the approximations cos θ = 1, sin θ = θ and ` = a. The linearized equilibrium equations in the transverse direction
write

nB1
d2θ

dS2
+
F2

2
= 0

dx2

dS
= θ,

with the boundary conditions: x2(0) = −w◦, x2(a) = 0, θ(0) = 0 and dθ
dS (a) = 0. This equivalent, linear beam

problem, with a bending stiffness nB1, is solved as

θbb(S) = F2a
2

2nB1

(
S
a −

1
2

(
S
a

)2)
x2,bb(S) = F2a

3

4nB1

(
−
(

1−
(
S
a

)2)
+ 1

3

(
1−

(
S
a

)3)) (S26)

This result implies the linear indentation law F2,bb = 6nB1

a3 w◦. Consequently, the elastic energy of the stack writes

as E(w◦) = 3nB1

a3 w2
◦, from which we recover the incremental rigidity Kbb(w◦) = a3

6
dF2,bb

dw◦
= nB1 announced in the

main text.
In the limit nh/a� 1, all the plates have the same shape, given by the centerline plus a constant vertical offset; i.e.,

x̃(S, y) = Se1 + (x2,bb(S) + y) e2, with S̃ = S in this linearized setting. Inserting this result into the local equations
of equilibrium for the individual layers, Eq. (S10), one finds p̃n = 0, meaning that away from the indentation point
and from the rollers, S 6∈ {−`, 0, `}, each layer is in equilibrium without any applied force. In view of Eq. (S12), the
normal stress Σ(S, y) is independent of y. With the stress-free boundary conditions on the uppermost and lowermost
faces, we have that

Σ(S, y) = 0,

in the linear regime. In view of Eq. (S23), this result implies P1 = 0; i.e., for small friction and small deflection,
dissipation occurs dominantly at the rollers, at S = ±`.

Using Eqs. (S24–S25), we find that the power dissipated by friction can be estimated based on the elastic backbone

solution as Pµ = µnh|F |
2 |θ̇bb(a)|. In the linear regime, F can be approximated as F2/2e2; i.e.,

Pµ =
µnhF2

2
|θ̇bb(a)| (S27)

We know that F2,bb = 6nB1

a3 w◦, and Eq. (S26) shows that θbb(a) =
F2,bba

2

4nB1
= 3

2aw◦. Inserting this result into the

right-hand side of Eq. (S27), we find

Pµ =
9

2

µhn2B1

a4
w◦|ẇ◦|.
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The expression of the indentation force F±2 (w◦) can now be derived using Eq (4) from the main text, while taking
into account the frictional dissipated energy, as

F±2 =
6

a2
nB1

(
1± 3

4
µn

h

a

)
w◦
a
, (S28)

with the + sign for loading and − for unloading. Therefore, our linear theory predicts an apparent, incremental
(scaled) stiffness

Klin = nB1

(
1± 3

4
µn

h

a

)
, (S29)

where friction causes an apparent stiffening upon loading and an apparent softening upon unloading.
The expression of F2 for loading and unloading in Eq. (S28) yields the following prediction for the energy dissipated

during one cycle:

Dlin =
∫ wmax

◦
0

F+
2 dw◦ −

∫ wmax
◦

0
F−2 dw◦

= 9µB1h
2a2

(
n
wmax

◦
a

)2

,

which is plotted as the dashed line in Fig. 3(b) of the main text.

S.V. Measure of the effective friction coefficient µ

In Eq. (S29) above, we wrote the bending rigidity of the stack, Klin, for the linear case. We extrapolate this
prediction to the frictional nonlinear regime by applying the same corrective factor

(
1± 3

4µn
h
a

)
to the friction-less,

geometrically nonlinear prediction for the maximum incremental stiffness (elastic backbone) Km,bb = maxw◦(Kbb)

where Kbb(w◦) = a3

6 dF2,bb/dw◦ (see Fig. S4a):

K±m = Km,bb ·
(

1± 3

4
µn

h

a

)
. (S30)

The increase in apparent rigidity due to friction ±(K±m/Km,bb−1) = 3
4µn

h
a should therefore depend linearly on n, see

Fig. S4(b). This prediction is indeed verified by the experimental data for both loading and unloading, which enables
us to extract the friction coefficient as µ = 0.52± 0.03.
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Supplementary Figure S4. Extraction of the friction coefficient from experimental data. (a) Scaled maximum stiffness K±
m/n

as a function of n, for loading (B) and unloading (C). The dashed-dotted curve is the prediction from the elastic backbone
solution. (b) Increase in apparent rigidity due to friction: the slope from the linear regression versus n (dashed blue line)
provides a measure of the friction coefficient µ.


