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ACCURATE COMPUTATIONS OF EULER PRODUCTS OVER

PRIMES IN ARITHMETIC PROGRESSIONS

OLIVIER RAMARÉ

Abstract. File ArithProducts-03.tex This note provides accurate trun-

cated formulae with explicit error terms to compute Euler products over primes

in arithmetic progressions of rational fractions. It further provides such a for-
mula for the product of terms of the shape F p1{p, 1{psq when F is a two-

variable polynomial with coefficients in C and satisfying some restrictive con-

ditions..

1. Introduction and results

Our primary concern in this paper is to evaluate Euler products of the shape

ź

p”arqs

ˆ

1´
1

ps

˙

when s is a complex parameter satisfying <s ą 1. Such computations have attracted
some attention as these values occur when s is a real number as densities in number
theory. D. Shanks in [13] (resp. [12], resp. [11]) has already computed accurately
an Euler product over primes congruent to 1 modulo 8 (resp. to 1 modulo 4,
resp. 1 modulo 8). His method has been extended by S. Ettahri, L. Surel and the
present author in [4] in an algorithm that converges very fast (double exponential
convergence) but this extension covers only some special values for the residue class
a, or some special bundle of them; it is further limited to real values of s.

We will use logarithms, and since the logarithm of a product is not a priori the
sum of the logarithms, we need to clarify things before embarking in this project.
First, the log-function corresponds in this paper always to what is called the prin-
cipal branch of the logarithm. We recognize it because its argument vanishes when
we restrict it to the real line and we consider it undefined on the non-positive real
numbers. The second point is contained in the next elementary proposition.

Proposition 1. Associate to each prime p a complex number ap such that |ap| ă p
and ap !ε p

ε for every ε ą 0. We consider the Euler product defined when <s ą 1
by:

(1) Dpsq “
ź

pě2

ˆ

1´
ap
ps

˙´1

.

2010 Mathematics Subject Classification. Primary 11Y60, Secundary 11N13, 05A.
Key words and phrases. Euler products.

(13) D. Shanks, 1960, “On the conjecture of Hardy & Littlewood concerning the number of

primes of the form n2 ` a”.
(12) D. Shanks, 1961, “On numbers of the form n4 ` 1”.
(11) D. Shanks, 1967, “Lal’s constant and generalizations”.
(4) S. Ettahri, O. Ramaré, and L. Surel, 2019, “Fast multi-precision computation of some Euler

products”.
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In this same domain we have

(2) logDpsq “
ÿ

pě2

ÿ

kě1

akp
kpks

.

This is simply because, by using the expansion of the principal branch of the
logarithm in Taylor series, namely ´ logp1 ´ zq “

ř

kě1 z
k{k valid for any com-

plex z inside the unit circle, we find that Cpsq “ ´
ř

pě2 logp1 ´ ap{p
sq verifies

expCpsq “ Dpsq, so that Cpsq is indeed a candidate for logDpsq. The second
remark is that Dpsq approaches 1 when <s goes to infinity while our choice for
logDpsq indeed approaches 0 and no other multiple of 2iπ. These two remarks are
enough justification of this proposition.

Remark 1.1. To be axiomatically correct, we should specify that our definition of
logDpsq depends a priori on the chosen product representation, and thus on the
choice of the coefficients papqpě2. However, since the development in Dirichlet se-
ries is unique, we find that the coefficients in (2) are uniquely defined; this implies in
particular that our definition does nor depend on the chosen product representation
(as it is unique!).

We assume here that the values of the Dirichlet L-series Lps, χqmay be computed
with arbitrary precision when <s ą 1. Our aim is thus to reduce our computations
to these ones. Here is an identity to do so.

Theorem 2. Let a be prime to the modulus q ě 1 and let pGq be the group of
Dirichlet characters modulo q. We have

´
ÿ

p”arqs,
pěP

logp1´ 1{psq “
ÿ

`ě1

´1

`ϕpqq

ÿ

d|`

µpdq
ÿ

χP pGq

χpaq logLP p`s, χ
dq

where

(3) LP ps, χq “
ź

pěP

p1´ χppq{psq´1.

If finding this identity has not been immediate, checking it is only a matter of
calculations that we reproduce in Section 2. A partial identity of this sort has
already been used by K. Williams in [14] and more recently by A. Languasco and
A. Zaccagnini in [5, 7], and [6, (2-5)] is a related formula. It is worth noticing that,
with our conventions, we have the obvious

logLP ps, χq “ logLps, χq ´
ÿ

păP

logp1´ χppq{psq.

This leads to the next immediate corollary.

Corollary 3. Let a be prime to the modulus q ě 1 and let pGq be the group of
Dirichlet characters modulo q. Let further two integer parameters P ě 2 and L ě 2
be chosen. We have

ź

pěP,
p”arqs

ˆ

1´
1

ps

˙

“ exp

ˆ

YP ps; q, a|Lq `O˚
ˆ

1

PL<s

˙˙

.

(14) K. S. Williams, 1974, “Mertens’ theorem for arithmetic progressions”.
(5) A. Languasco and A. Zaccagnini, 2009, “On the constant in the Mertens product for arith-

metic progressions. II. Numerical values”.
(7) A. Languasco and A. Zaccagnini, 2010, “On the constant in the Mertens product for arith-

metic progressions. I. Identities”.
(6) A. Languasco and A. Zaccagnini, 2010, “Computing the Mertens and Meissel-Mertens con-

stants for sums over arithmetic progressions”.
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where

(4) YP ps; q, a|Lq “
ÿ

`ďL

1

`

ÿ

d|`

µpdq
ÿ

χP pGq

χpaq

ϕpqq
logLP p`s, χ

dq

and where f “ O˚pgq means |f | ď g.

Extension to one variable rational fractions. Once we have such an approximation,
we can reuse the machinery of [4] to reach Euler products of the shape

ź

pěP,
p”arqs

p1`Rppsqq

where R is a rational fraction.

Theorem 4. Let F and G be two polynomials of Crts. We assume that Gp0q “ 1
and that F p0q “ F 1p0q “ 0. Let β ě 2 be larger than the inverse of the roots of G
and of G´F . Let P ě 2β be an integer parameter. Then, for any integer parameter
L ě 2, we have

ź

pěP,
p”arqs

ˆ

1´
F p1{pq

Gp1{pq

˙

“ exp

ˆ

ÿ

2ďjďJ

`

bG´F pjq ´ bGpjq
˘

YP pj; q, a|Lq ` I

˙

where the integers bG´F pjq and bGpjq are defined in Lemma 6,

|I| ď 8 maxpdegpG´ F q,degGqβ2pβ{P q2L

and Y ps; q, a|Lq is defined by (4).

We obtained in [4] an approximation that is much better but only valid for
rational fractions with real coefficients and some residue classes.

One can write a similar theorem for the Euler product
ź

pěP,
pPA

ˆ

1´
F p1{psq

Gp1{psq

˙

.

Extension to two variables rational fractions. The general form of Euler products
that one has to treat in practice are of the shape

ź

pěP,
p”arqs

p1`Rpp, psqq

where R is a rational fraction of two variables. When s takes a specific rational
value, typically 2, 3{2 or 4{3, this question reduces to the above one though each
values of s requires a new rational fraction; this covers most of the cases when we
have to compute a single special constant. In the general case however, for instance
when s “ 2 ` i, such a trick fails. The theoretical understanding of this situation
is also limited even for q “ 1. For instance, if the case of a rational fraction of
one variable is covered by the theorem of T. Esterman in [3] and extended by
G. Dalhquist in [1], no such result is known in the general situation. This question
has been addressed in the context of enumerative algebra, for instance by M. du
Sautoy and F. Grünewald in [10]. The lecture notes [9] by M. du Sautoy and
L. Woodward contains material in this direction. There are several continuations

(4) S. Ettahri, O. Ramaré, and L. Surel, 2019, “Fast multi-precision computation of some Euler

products”.
(3) T. Estermann, 1928, “On Certain Functions Represented by Dirichlet Series”.
(1) G. Dahlquist, 1952, “On the analytic continuation of Eulerian products”.
(10) M. du Sautoy and F. Grunewald, 2002, “Zeta functions of groups: zeros and friendly ghosts”.
(9) M. du Sautoy and L. Woodward, 2008, Zeta functions of groups and rings.
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of Esterman’s work; for instance, one may consider Euler products of the shape
Rpps1 , ps2q (with the hope of being able to specify s1), see for instance [2] by
L. Delabarre, but these results do not apply to our case.

We are able to handle some rational fractions by reducing them to the case
treated in the next theorem.

Theorem 5. Let s be a complex number with <s “ σ ą 1. Let pa`q`ďk be a sequence
of complex numbers and pu`q`ďk and pv`q`ďk be two sequences of real numbers. We
assume that u`σ`v` ą 0 and we define A “ maxp1,maxp|a`|qq. Let q be a modulus,
a be an invertible residue class modulo q and P ě 2kA and L ě k be two integer
parameters. We have

ź

pěP,
p”arqs

ˆ

1´
ÿ

1ď`ďk

a`
pu`s`v`

˙

“ exp´pZ ` Iq

where

(5) Z “
ÿ

m1,...,mkě0,
1ďm1`...`mkďL

Mpm1, . . . ,mkq
ÿ

fďF

κf p
ś

`ďk a
m`
` q

f
YP

´

ÿ

`ďk

m`pu`s` v`q; q, a|L
¯

where Mpm1,m2, . . . ,mkq is defined at (18), κf is defined at (23), Y ps; q, a|Lq is
defined by (4) and finally where

(6) |I| ď
2k ¨AL

k!PL

ˆ

pL` kqk ` 1` logL`
3kA

L

˙

.

Hence this theorem provides us with an exponentially decreasing error term.
More complicated terms may be handled through this theorem by writing

1`
F pp, psq

Gpp, psq
“
pF `Gqpp, psq

pAs`B
pAs`B

Gpp, psq

“

ˆ

1`
pF `Gqpp, psq ´ pAs`B

pAs`B

˙ˆ

1`
Gpp, psq ´ pAs`B

pAs`B

˙´1

.

This would function when G has a clearly dominant monomial. It typically works
for Gpp, psq “ p2spp2 ` 1q but fails for Gpp, psq “ p2spp ` 1q. Our most important
additional tool, namely Lemma 11, may be used to obtain results on analytic con-
tinuation, but since we use logarithms elsewhere, the general effect is unclear. We
however provide the next example:

(7) Dpsq “
ź

pě2

ˆ

1`
1

ps
´

1

p2s´1

˙

.

Lemma 11 gives us the decomposition

Dpsq “
ź

m1,m2ě0,
m1`m2ě1

ź

pě2

ˆ

1´
p´1qm1

ppm1`2m2qs´m2

˙Mpm1,m2q

.

We check that Mp1, 0q “ Mp0, 1q “ 1 and that Mpm, 0q “ Mp0,mq “ 0 when
m ě 2, whence

(8) Dpsq “ ζp2s´ 1q
ζp2sq

ζpsq

ź

m1,m2ě1

ź

pě2

ˆ

1´
p´1qm1

ppm1`2m2qs´m2

˙Mpm1,m2q

.

(2) L. Delabarre, 2013, “Extension of Estermann’s theorem to Euler products associated to a
multivariate polynomial”.
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This writing offers an analytic continuation of Dpsq to the domain defined by <s ą
1{2. This analysis can be extended to

ź

pě2

ˆ

1´
C1

ps
´

C2

p2s´1

˙

when C1 and C2 are integers. In general, Lemma 11 transfers to problem to the
analytic continuation of

ś

pp1 ´ c{psq for some c but even the case c “
?

2 is
difficult.

2. Proof of Theorem 2 and its Corollary

Proof of Theorem 2. We have to simplify the expression

(9) S “
ÿ

`ě1

1

`ϕpqq

ÿ

d|`

µpdq
ÿ

χP pGq

χpaq
ÿ

pěP

ÿ

kě1

χppqdk

kpk`s
.

We readily check that, when h ě 1 and p are fixed, we have
ÿ

k`“h

ÿ

d|`

µpdq
ÿ

χP pGq

χpaqχppqdk “
ÿ

k|h

ÿ

dk|h

µpdq
ÿ

χP pGq

χpaqχppqdk

“
ÿ

g|h

ÿ

d|g

µpdq
ÿ

χP pGq

χpaqχppqg

“
ÿ

χP pGq

χpaqχppq “ ϕpqq11p”arqs

and the theorem follows directly. �

Proof of Corollary 3. A moment thought discloses that

| logLP ps, χq| ď log ζP pσq

where σ “ <s. We have furthermore

log ζP pσq ď
ÿ

něP

1

nσ
ď

ż 8

P

dt

tσ
“

1

pσ ´ 1qPσ´1
.

by our assumptions. We next check that
ˇ

ˇ

ˇ

ˇ

ÿ

`ąL

1

`ϕpqq

ÿ

d|`

µpdq
ÿ

χP pGq

χpaq logLP p`s, χ
dq

ˇ

ˇ

ˇ

ˇ

ď
ÿ

`ąL

2ωp`q

`

P

p`σ ´ 1qP `σ
.

Here ωp`q denotes the number of prime factors of ` (without multiplicity). We
use the simplistic bounds 2ωp`q ď ` and `σ ´ 1 ě 2. This yields the upper bound

P
2PLσpPσ´1q

which is no more than 1{PLσ. We finally recall that ex´ 1 ď 8
7x when

x P r0, 1{4s as the function pex ´ 1q{x is non-decreasing (its expansion in power
series has non-negative coefficients). �

3. Proof of Theorem 4

We first need to extend [4, Lemma 16] to cover the case of polynomials with
complex coefficients. The ancestor of this Lemma is [8, Lemma 1].

(4) S. Ettahri, O. Ramaré, and L. Surel, 2019, “Fast multi-precision computation of some Euler
products”.
(8) P. Moree, 2000, “Approximation of singular series constant and automata. With an appendix
by Gerhard Niklasch.”
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Lemma 6. Let Hptq “ 1 ` a1t ` . . . ` aδt
δ P Crts be a polynomial of degree δ.

Let α1, . . . , αδ be the inverses of its roots. Put sHpkq “ αk1 ` . . .` αkδ . The sHpkq
satisfy the Newton-Girard recursion

(10) sF pkq ` a1sF pk ´ 1q ` . . .` ak´1sF p1q ` kak “ 0,

where we have defined aδ`1 “ aδ`2 “ . . . “ 0. We define

(11) bHpkq “
1

k

ÿ

d|k

µpk{dqsHpdq.

Lemma 7. Let F and G be two polynomials of Crts. We assume that Gp0q “ 1
and that F p0q “ 0. Let β ě 1 be larger than the inverse of the roots of G and of
G´F . When z is a complex number such that |z| ă β and |1´pF {Gqpzq| ă 1. We
have

(12) log

ˆ

1´
F pzq

Gpzq

˙

“
ÿ

jě1

`

bG´F pjq ´ bGpjq
˘

logp1´ zjq.

Proof. We adapt the proof of [8, Lemma 1]. We write pG ´ F qptq “
ś

ip1 ´ αitq.
We have

pG´ F q1ptq

pG´ F qptq
“
ÿ

i

αit

1´ αit
“

ÿ

kě1

sG´F pkqt
k´1.

This series is absolutely convergent in any disc |t| ď b ă 1{β where β “ maxjp1{|αj |q.
We may also decompose pG´ F q1ptq{pG´ F qptq in Lambert series as

pG´ F q1ptq

pG´ F qptq
“

ÿ

jě1

bG´F pjq
jtj´1

1´ tj

as some series shuffling in any disc of radius b ă minp1, 1{βq shows. The comparison
of the coefficients justify the formula (11). We may do the same for G instead of
G´ F (or use the case F “ 0). We find that

G1 ´ F 1

G´ F
´
G1

G
“
´pF 1G´ FG1q

GpG´ F q
“
´pF 1G´ FG1q

G2

ÿ

kě0

ˆ

F

G

˙k

.

and by formal integration, this gives us the identity

´
ÿ

kě1

pF {Gqptqk

k
“ ´

ÿ

jě1

`

bG´F pjq ´ bGpjq
˘

logp1´ tjq.

This readily extends into a equality between analytic function in the domain where
|pF {Gqpzq ´ 1| ă 1 and |z| ă β. The lemma follows readily. �

Here is now [4, Lemma 17], though for polynomials with complex coefficients.

Lemma 8. We use the hypotheses and notation of Lemma 6. Let β ě 2 be larger
than the inverse of the modulus of all the roots of Hptq. We have

|bHpkq| ď 2 degH ¨ βk{k.

And we finally recall [4, Lemma 18] that yields an easy upper estimates for the
inverse of the modulus of all the roots of F ptq in terms of its coefficients.

Lemma 9. Let HpXq “ 1` a1X ` . . .` aδX
δ be a polynomial of degree δ. Let ρ

be one of its roots. Then either |ρ| ě 1 or 1{|ρ| ď |a1| ` |a2| ` . . .` |aδ|.

(8) P. Moree, 2000, “Approximation of singular series constant and automata. With an appendix
by Gerhard Niklasch.”
(4) S. Ettahri, O. Ramaré, and L. Surel, 2019, “Fast multi-precision computation of some Euler

products”.
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Proof of Theorem 4. The proof requires several steps. We start from Lemma 7, i.e.
from the identity

(13) log

ˆ

1´
F pzq

Gpzq

˙

“
ÿ

jě2

`

bG´F pjq ´ bGpjq
˘

logp1´ zjq,

in the domain |z| ă β and |1 ´ pF {Gqpzq| ă 1. The fact that the term with j “ 1
vanishes comes from our assumption that F p0q “ F 1p0q “ 0. To control the rate
of convergence, we notice that By Lemma 8, we know that |bG´F pjq ´ bGpjq| ď
4 maxpdegpG´ F q,degGqβj{j. Therefore, for any bound J , we have

(14)
ÿ

jěJ`1

|tj ||bG´F pjq ´ bGpjq| ď 4 maxpdegpG´ F q,degGq
|tβ|J`1

p1´ |tβ|qpJ ` 1q
,

as soon as |t| ă 1{β. Furthermore, we deduce that | logp1 ´ zq{z| ď logp1 ´
1{2q{p1{2q ď 3{2 when |z| ď 1{2 by looking at the Taylor expansion. We thus
have

(15) log

ˆ

1´
F pzq

Gpzq

˙

“
ÿ

2ďjďJ

`

bG´F pjq ´ bGpjq
˘

logp1´ zjq ` I1

where |I1| ď 6 maxpdegpG ´ F q,degGq|zβ|J`1{p1 ´ |zβ|q. Now that we have the
expansion (15) at our disposal for each prime p, we may combine them. We readily
get

ÿ

pěP,
p”arqs

log

ˆ

1´
F p1{pq

Gp1{pq

˙

“
ÿ

2ďjďJ

`

bG´F pjq ´ bGpjq
˘

ÿ

pěP,
p”arqs

logp1´ 1{pjq ` I2,

where I2 satisfies

|I2| ď 6 maxpdegpG´ F q,degGq
ÿ

pěP

βJ`1

p1´ β{P qpJ ` 1q

1

pJ`1

ď
6 maxpdegpG´ F q,degGqβJ`1

p1´ β{P qpJ ` 1q

ˆ

1

P J`1
`

ż 8

P

dt

tJ`1

˙

ď
6 maxpdegpG´ F q,degGqpβ{P qJβ

p1´ β{P qpJ ` 1q

ˆ

1

P
`

1

J

˙

,

since P ě 2 and J ě 3. We now approximate each sum over p by using Corollary 3
and obtain

ÿ

pěP,
p”arqs

log

ˆ

1´
F p1{pq

Gp1{pq

˙

“
ÿ

2ďjďJ

`

bG´F pjq ´ bGpjq
˘

YP pj; q, a|Lq ` I3

where I3 satisfies

|I3| ď
ÿ

2ďjďJ

|bG´F pjq ´ bGpjq|
1

PLj
` |I2|

ď
ÿ

2ďjďJ

4 maxpdegF,degGq
βj

j

1

PLj
` |I2|.

Therefore (and since r ě 2)

(16)
|I3|

2 maxpdegF,degGq
ď

β2pβ{P q2L

1´ β{P
`

3pβ{P qJβ

p1´ β{P qpJ ` 1q

ˆ

1

P
`

1

J

˙

,

and the choice J “ 2L ends the proof. �



8 OLIVIER RAMARÉ

4. Proof of Theorem 5

Lemma 10. We have
`

dN 1

dm1
1,¨¨¨ ,dm

1
k

˘

ě
`

N 1

m1
1,¨¨¨ ,m

1
k

˘d
.

Proof. The coefficient
`

dN 1

dm1
1,¨¨¨ ,dm

1
k

˘

is the number of partitions of a set of dN 1

elements in parts of dm11, ¨ ¨ ¨ , dm
1
k elements. The product partitions are parti-

tions. �

In [15], Witt proved a generalization of the Necklace Identity which we present
in the next lemma.

Lemma 11. For k ě 1, we have

(17) 1´
k
ÿ

i“1

zi “
ź

m1,...,mkě0,
m1`...`mkě1

p1´ zm1
1 ¨ ¨ ¨ zmkk qMpm1,...,mkq,

where the integer Mpm1, . . . ,mkq is defined by

(18) Mpm1, . . . ,mkq “
1

N

ÿ

d| gcdpm1,m2,...,mkq

µpdq
pN{dq!

pm1{dq! ¨ ¨ ¨ pmk{dq!

with N “ m1 ` . . .`mk. We have Mpm1, . . . ,mkq ď kN{N .

Proof. Only the bound needs to be proved as the identity may be found in [15]. Each

occuring multinomial is not more than
`

N
m1,¨¨¨ ,mk

˘

by Lemma 10. The multinomial

Theorem concludes. �

Proof of Theorem 5. Let Π be the product to be computed. By employing Lemma 11,
we find that

1´
ÿ

1ď`ďk

a`
pu`s`v`

“
ź

m1,...,mkě0,
m1`...`mkě1

ˆ

1´
cpm1,m2, . . . ,mkq

p
ř

`ďkm`pu`s`v`q

˙Mpm1,...,mkq

,

with cpm1, . . . ,mkq given by

(19) cpm1,m2, . . . ,mkq “
ź

`ďk

am`` .

Each coefficient cpm1, . . . ,mkq is not more, in absolute value, than AN , where
m1 ` . . . ` mk “ N . Note that, for each `, we have <pu`s ` v`q ą 1, so that
<
ř

`ďkm`pu`s ` v`q ě m1 ` . . . ` mk “ N . It thus seems like a good idea to
truncate the infinite product in (20) according to whether m1`¨ ¨ ¨`mk “ N ď N0

or not for some parameter N0 ě k that we will choose later. We readily find that,
when p ě 2A,

ˇ

ˇ

ˇ

ˇ

log
ź

m1,...,mkě0,
m1`...`mkąN0

ˆ

1´
cpm1,m2, . . . ,mkq

p
ř

`ďkm`pu`s`v`q

˙Mpm1,...,mkq
ˇ

ˇ

ˇ

ˇ

ď
3

2

ÿ

m1,...,mkě0,
m1`...`mkąN0

Mpm1, . . . ,mkq
AN

pN

ď
3

2

ÿ

NąN0

ˆ

N ` k

k

˙

pkAqN

NpN

as the number of solutions to m1 ` . . . ` mk “ N is the N -th coefficient of the
power series 1{p1´ zqk which happens to be equal to p1{k!q d

dzk
1{p1´ zq. We next

(15) E. Witt, 1937, “Treue Darstellung Liescher Ringe”.
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check that, with N “ N0 ` n` 1, we have pn` 1`N0 ` kq ď pN0 ` n` 1q2 since
N0 ě k, and thus

`

N`k
k

˘

N
`

n`k
k

˘ “
pn` 1`N0 ` kqpn`N0 ` kq ¨ ¨ ¨ pn`N0 ` 2q

pn` kqpn` k ´ 1q ¨ ¨ ¨ pn` 1q ¨ pN0 ` n` 1q
ď

ˆ

N0 ` k

k

˙

.

Hence, when p ě 2kA, we have

ÿ

NąN0

ˆ

N ` k

k

˙

pkAqN

NpN
“
pkAqN0`1

pN0`1

ˆ

N0 ` k

k

˙

ÿ

ně0

ˆ

n` k

k

˙

pkAqn

pn

ď

ˆ

N0 ` k

k

˙

pkAqN0`1

pN0`1

1

p1´ 1{2qk
.

On summing over p, this yields

(20) Π “ I1
ź

m1,...,mkě0,
1ďm1`...`mkďN0

ź

pěP,
p”arqs

ˆ

1´
cpm1,m2, . . . ,mkq

p
ř

`ďkm`pu`s`v`q

˙Mpm1,...,mkq

,

where

(21) | log I1| ď 2k
3

2

ˆ

N0 ` k

k

˙

pkAqN0`1

PN0

ˆ

1

P
`

1

N0

˙

.

We next note the following identity

(22)
ÿ

kě1

dk

kpkw
“

ÿ

fě1

κf pdq

f

ÿ

gě1

1

gpfgw

where

(23) κf pdq “

#

c when f “ 1,

cf ´ cf´1 when f ą 1.

We truncate identity (22) at f ď F where F is an integer, getting

ÿ

kě1

dk

kpkw
“

ÿ

fďF

κf pdq

f

ÿ

gě1

1

gpfgw
`O˚

ˆ

´
ÿ

fąF

maxp1, |d|qf

f
log

´

1´ p´f<w
¯

˙

.

We next use ´ logp1 ´ xq ď 3x{2 when 0 ď x ď 1{2. We assume that p<w ď 1{2
and p<w ě 2 maxp1, |d|q to get

´
ÿ

fąF

maxp1, |d|qf

f
log

´

1´ p´f<w
¯

ď
3

2

ÿ

fąF

maxp1, |d|qf

fpf<w
ď

3 maxp1, |d|qF`1

pF ` 1qppF`1q<w .

We have reached

ź

pěP,
p”arqs

ˆ

1´
cpm1,m2, . . . ,mkq

p
ř

`ďkm`pu`s`v`q

˙

“ exp´

"

ÿ

fďF

κf pcpm1,m2, . . . ,mkqq

f

ÿ

pěP,
p”arqs

log
´

1´ p´f
ř

`ďkm`pu`s`v`q
¯

`O˚
ˆ

3 maxp1, |cpm1,m2, . . . ,mkq|q
F`1

pF ` 1qP pF`1q
ř

`ďkm`pu`σ`v`q

ˆ

1`
P

F
ř

`ďkm`pu`σ ` v`q

˙˙*
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which simplifies info

ź

pěP,
p”arqs

ˆ

1´
cpm1,m2, . . . ,mkq

p
ř

`ďkm`pu`s`v`q

˙

“ exp´

"

ÿ

fďF

κf pcpm1,m2, . . . ,mkqq

f

ÿ

pěP,
p”arqs

log
´

1´ p´f
ř

`ďkm`pu`s`v`q
¯

`
3ANpF`1q

pF ` 1qP pF`1qN

ˆ

1`
P

FN

˙*

.

We approximate the sum of the logs by Corollary 3 and get

ź

pěP,
p”arqs

ˆ

1´
cpm1,m2, . . . ,mkq

p
ř

`ďkm`pu`s`v`q

˙

“ exp´

"

ÿ

fďF

κf pcpm1,m2, . . . ,mkqq

f
YP

´

ÿ

`ďk

m`pu`s` v`q; q, a|L
¯

`O˚
ˆ

ANF p1` logF q

PLN
`

3ANpF`1q

pF ` 1qP pF`1qN

ˆ

1`
P

FN

˙˙*

.

We then raise that to the power Mpm1,m2, . . . ,mkq and sum over the mi’s, getting,
on recalling (5),

Π{I1 “ exp´Z

`O˚
ˆ

ÿ

m1,...,mkě0,
1ďm1`...`mkďN0

Mpm1, . . . ,mkqA
NF p1` logF q

PLN

`
ÿ

m1,...,mkě0,
1ďm1`...`mkďN0

3Mpm1, . . . ,mkqA
NpF`1q

pF ` 1qP pF`1qN

ˆ

1`
P

FN

˙˙*

.

We now take F “ L. The error term is bounded above by (since P ě 2kA)

kAL

PL

ˆ

2k

k!
p1` logLq `

3 ¨ 2kA

k!pL` 1qP

ˆ

1`
P

L

˙˙

.

We select N0 “ L and we gather our estimates to end the proof. �
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