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Abstract

The probabilistic learning on manifolds (PLoM) introduced in 2016 [1] has solved difficult su-
pervised problems for the “small data” limit where the number N of points in the training set is
small. Many extensions have since been proposed, making it possible to deal with increasingly
complex cases. However, the performance limit has been observed and explained for applica-
tions for which N is very small and for which the dimension of the diffusion-map basis is close
to N. For these cases, we propose a novel extension based on the introduction of a partition in
independent random vectors. We take advantage of this development to present improvements
of the PLoM such as a simplified algorithm for constructing the diffusion-map basis and a new
mathematical result for quantifying the concentration of the probability measure in terms of a
probability upper bound. The analysis of the efficiency of this extension is presented through
two applications.

Keywords: probabilistic learning, PLoM, partition in independent random vectors, machine
learning, uncertainty quantification,

1. Introduction

(i) About the PLoM. The PLoM (probabilistic learning on manifolds) method was proposed in
2016 [1] as a complementary approach to existing methods in machine learning for sampling
underlying distributions on manifolds [2, 3, 4, 5, 6, 7, 8, 9]. It allows for solving unsupervised
and supervised problems under uncertainty for which the training sets are small. This situation
is encountered in many problems of physics and engineering sciences with expensive function
evaluations. The exploration of the admissible solution space in these situations is thus hampered
by available computational resources. The PLoM was successfully adapted to tackle these chal-
lenges for several related problems including nonconvex optimization under uncertainty [10, 11]
and the calculation of Sobol’s indices [12].

(ii) Brief discussion on the hypotheses and the objectives of PLoM. Hypotheses. The PLoM ap-
proach starts from a training setDd made up of a relatively small number, N, of data points. For
the supervised case, it is assumed that the training set is related to an underlying stochastic mani-
fold related to a Rn-valued random variable X = (Q,W) in which X, Q (quantity of interest), and
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W (control parameter) are Rn-, Rnq -, and Rnw -valued random variables defined on a probability
space (Θ,T ,P) with n = nq +nw. Let U (uncontrolled parameter) be another Rnu - valued random
variable defined on (Θ,T ,P). Random variable Q is written as Q = f(U,W) = F(W) in which
the measurable mapping f is not explicitly known (unknown) and F is such that F = f(U, ·) is
a random mapping. The probability distributions of the vector-valued random variables W and
U are assumed to be given. The stochastic manifold is defined by the unknown random graph
{w,F(w)} for w belonging to an admissible set Cw that is the support of the probability distribu-
tion of W. In the PLoM construction, its is not assumed that this stochastic manifold can directly
be described; for instance, it is not assumed that there exist properties of local differentiability
(moreover, the manifold is stochastic). Under these conditions, the non-Gaussian probability
measure of X is concentrated in a region of Rn for which the only available information is the
cloud of the points of the training set.
What are the construction objectives of PLoM and its characteristics?.
- The construction of PLoM has been specifically developed for small training sets and for arbi-
trary non-Gaussian probability measures.
- From training setDd, the PLoM method makes it possible to generate the learned setDar whose
nar � N points (learned realizations) are generated by the non-Gaussian probability measure that
is estimated from the training set.
- The estimate of unknown non-Gaussian probability measure cannot be performed from the
training set by using an arbitrary estimator. It must be parameterized in a manner that permits
convergence to any probability measure as its number of points in the training set goes towards
infinity. The PLoM method therefore does not only consist in generating learned points that
belong to the region in which the measure is concentrated, but also allows these learned points
to be realizations of the estimate probability measure with the convergence properties evoked
above. The choice of the kernel estimation method for estimating the probability measure from
the training set guarantees that this required fundamental property is satisfied (see [1] and in
particular, Section 5.3 of [13]).
- The generation of the learned set is performed while preserving the concentration of the proba-
bility measure, defined by the clouds of points of the training set. With PLoM, this concentration
is preserved thanks to the use of the diffusion-maps basis that allows enriching the available
information from the training set. The preservation of the concentration is quantified by the
calculation of a L2 distance on (Θ,T ,P) between the learned set and the training set [13].
- Using the learned set, PLoM allows for carrying out any conditional statistics such as w 7→
E{Q|W = w} from Cw in Rnq , and consequently, to directly construct metamodels in a proba-
bilistic framework.

(iii) Improvement of the PLoM method for certain applications. Since its introduction in 2016,
extensions of the original method [1] have been developed in order to address increasingly
complex problems for the case of small data: sampling of Bayesian posteriors with a non-
Gaussian probabilistic learning on manifolds in very high dimension [14], physics-constrained
non-Gaussian probabilistic learning on manifolds, for instance, to integrate information coming
from experimental measurements during the learning [15], probabilistic learning on manifolds
constrained by nonlinear partial differential equations for small data [16]. During this period, a
number of applications were addressed making it possible to refine the method, to validate it, and
to better assess and relax its limitations. However, some challenges have remained. These are
cases where the number of points (realizations) in the training set is very small and for which the
dimension of the subspace generated by the diffusion-map basis is very close to this number. In
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this case, the PLoM may not be more efficient than a standard MCMC algorithm that is agnostic
to any concentration of the probability measure. One possible way to improve the PLoM for
these very challenging cases is to perform a partition of the random vector of which the training
set is the realizations, into statistically independent groups in a non-Gaussian framework. In
this manner, statistical knowledge about the data set, beyond its localization to a manifold, is re-
lied upon to enhance information extraction and representation. One difficulty with the standard
methods that allow a partition into independent components to be carried out (see paragraph (iv)
below and its included references) is that they typically divide-up available samples into sep-
arate groups, for which each group consists of a smaller number of samples. These types of
approaches are not suitable to the present setting given the already small number of points in the
training set. A more useful approach, which is adopted in this paper, results in groups that are
each equal in size to the number of samples in the training set, but for which the dimension of the
diffusion-map basis is significantly reduced. This approach relies on an extension of the PLoM
method that we present in this paper.

Remark. The reason of this difficulty, which can appear when the number of points in the
training set is close to the subspace generated by the diffusion-maps basis, is the following one.
In this case, the dimension of the manifold is close to the dimension of the support of the prob-
ability measure. The diffusion-maps basis, which makes it possible to characterize the geometry
of this support, then has a similar dimension. The projection on the diffusion-maps basis there-
fore appears as a simple change of vector basis in the data space. There is therefore no gain
compared to a standard MCMC generator and in such a case, the concentration of the probability
measure, defined by the points of the training set, deteriorates. There is therefore a great interest
in trying to preserve the concentration of the probability measure for these situations. If the train-
ing set is made up of heterogeneous data, that is, if there are data subsets in the training set, which
are statistically independent, then finding a partition becomes very efficient if it can be identi-
fied. The quantification of the gain obtained will be performed by using the L2-distance criterion
introduced in [13], recalled in Section 4.5. In this paper, we also introduce a new probability
criterion (see Section 5.7), which gives the probability upper bound of the measure of concen-
tration. As we will see, these two criteria show that PLoM without partition allows to preserve
the concentration and that the preservation of this concentration is further improved by using
PLoM with partition. When the difficulty mentioned above appears, then PLoM with partition
helps to preserve concentration. Examples of such challenging problems can be found in many
fields of engineering. Let us cite for example: (1) in the field of solid mechanics, the numer-
ical simulation models of the macroscopic behavior of heterogeneous materials, which require
the introduction of random media at the mesoscopic scale (see an illustration of this problem in
Section 7), (2) in the field of fluid mechanics, CFD models that make it possible to estimate the
unsteady aerodynamic forces exerted on the structure of stadium roofs.

(iv) A novel extension of the PLOM method to get around the difficulty. One of the ingredients
for this extension of the PLoM method is the construction of a partition in non-Gaussian inde-
pendent random vectors, assuming that it exists. Indeed, there may very well be applications for
which the partition yields a single group, identical to the initial random vector. For such cases
the present approach of PLoM with partitions affords no further reduction. Concerning the con-
struction of a partition of independent random vectors, a popular method for testing the statistical
independence of the ν components of a random vector from a given set of N realizations is the
use of the frequency distribution [17] coupled with the use of the Pearson chi-squared (χ2) test
[18, 19]. For a relatively large value of ν and a relatively small value of N, such an approach
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does not give sufficiently accurate results. In addition, even when this type of method permits
testing for independence, the need remains for a fast algorithm for constructing the optimal par-
tition. Independent component analysis (ICA) [20, 21, 22, 23, 24, 25, 26, 27] is a method that
consists of extracting independent source signals as a linear mixture of mutually statistically de-
pendent signals, and is often used for source-separation problems. The fundamental hypothesis
that is introduced in the ICA methodology is that the observed vector-valued signal is a linear
transformation of statistically independent real-valued signals (that is to say, is a linear transfor-
mation of a vector-valued signal whose components are mutually independent) and the objective
of the ICA algorithms is to identify the best linear operator. In this paper, for the PLoM with
partition, we use the procedure proposed in [28], which is an ICA by mutual information and
which does not use the construction of a linear transformation. This information-theoretic algo-
rithm permits the identification of an optimal partition in terms of independent random vectors
for any non-Gaussian vector in high dimension, which is defined by a relatively small number N
of realizations.

(v) Organization of the paper. In Section 2, we present the supervised problem and training set.
In Section 3, we introduce the notations for the principal component analysis of random vector
X, which is the first step of the PLoM method. Section 4 is devoted to a summary of the PLoM
method with no group (No-Group PLoM), which is necessary for understanding the presentation
of the PLoM with partition. Section 5 deals with the PLoM analysis with group (With-Group
PLoM). Section 6 and Section 7 are both devoted to the presentation of two applications. Finally,
a discussion of the method is presented in Section 8. Complements on the probabilistic models
used for the two applications are given in Appendices A and B.

(vi) Novelties presented in the paper. The main novelty is the development of the PLoM method-
ology with partition. We also propose an adapted algorithm for identifying the optimal values
of the hyperparameters related to the construction of the reduced-order diffusion-map basis. For
covering the cases for which the normalization introduced by the PLoM is lost with the use of a
partition, we introduce constraints by using the Kullback-Leibler minimum cross-entropy princi-
ple [15]. The quantification of the concentration of the probability measure for the PLoM, which
is performed with the distance introduced in [13], is extended for the PLoM with partition, and
is completed by a result formulated in terms of a probability upper bound of the measure of
concentration.

2. Supervised problem and training set

The mapping (w,u) 7→ f(w,u) on Rnw × Rnu with values in Rnq , introduced in Section 1-(ii),
represents the solution of a mathematical/computational model. The Rnw -valued random variable
W is the control parameter and the Rnu -valued random variable U is the non-controlled param-
eter, defined on a probability space (Θ,T ,P). The random vectors W and U are assumed to
be statistically independent and they are generally non-Gaussian. The probability distributions
PW(dw) = pW(w) dw and PU(du) = pU(u) du are defined by the probability density functions
pW and pU with respect to the Lebesgue measures dw and du on Rnw and Rnu . The Rnq -valued
random variable Q = f(W,U) represents the quantity of interest (QoI), which is defined on
(Θ,T ,P). For instance, the computational model can be the finite element discretization of an
elliptic stochastic boundary value problem as the one presented in Section 7, which involves an
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elasticity problem for a random medium. In this application, U is related to the space discretiza-
tion of the fourth-order tensor-valued non-Gaussian elasticity random field of the heterogeneous
material at mesoscale (random coefficients of the partial differential operator) while the compo-
nents of W are related to the spatial correlation lengths of the random medium and to the level
of statistical fluctuations in it. The components of random vector Q will then correspond to the
displacement field at some given space points. It is assumed that N ≥ 3 independent realizations
{q j

d, j = 1, . . . ,N} of Q have been computed such that q j
d = f(w j

d,u
j
d) in which {w j

d, j = 1, . . . ,N}
and {u j

d, j = 1, . . . ,N} are N independent realizations of W and U (subscript d refers to the train-
ing set). We then consider the random variable X with values in Rn, such that X = (Q,W) with
n = nq + nw. The training set (initial data set) related to random vector X is then made up of
the N independent realizations {x j

d, j = 1, . . . ,N} in which x j
d = (q j

d,w
j
d) ∈ Rn (note that U is

not included in X). Since generally the data pertains to heterogeneous features with potentially
wildly distinct supports, it is assumed that the training set has been suitably scaled for the pur-
pose of computational statistics. Let us assume that the measurable mapping f is such that the
conditional probability distribution PQ|W(dq|w) given W = w admits a conditional probability
density function. It can be deduced (see [15]) that the probability distribution PX(dx) of X admits
a density x 7→ pX(x) with respect to the Lebesgue measure dx on Rn. As recalled in Section 1-
(ii), PLoM [1, 13] allows for generating the learned set Dar made up of Nar � N realizations
{x`ar, ` = 1, . . . ,Nar} that allows for deducing {(q`ar,w`

ar) = x`ar, ` = 1, . . . ,Nar} without using the
computational model, but using only the training setDd (subscript ar refers to the learned set).

3. Introducing the notations for the principal component analysis (PCA) of random vector
X

The first step of the PLoM method consists in performing a PCA of random vector X. For
presenting the PLoM with partition, we need to introduce the notations related to this PCA and
it is the aim of this section. Let xd ∈ Rn and [CX] ∈ M+

n be the mean vector and the covariance
matrix of X estimated with the training set. Let µ1 ≥ µ2 ≥ . . . ≥ µν > 0 be the ν largest
eigenvalues and let ϕ1, . . . ,ϕν be the associated orthonormal eigenvectors of [CX]. The integer
ν ≤ n is such that, for a given εPCA > 0, we have errPCA(ν) = 1 −

∑ν
α=1 µα/tr[CX] ≤ εPCA.

The PCA of X allows for representing X by Xν such that Xν = xd + [Φ] [µ]1/2 H such that
E{‖X − Xν‖2} ≤ εPCA E{‖X‖2}, in which [Φ] = [ϕ1 . . .ϕν] ∈ Mn,ν such that [Φ]T [Φ] = [Iν] and
[µ] is the diagonal (ν × ν) matrix such that [µ]αβ = µαδαβ. From a numerical point of view, if
N < n, then matrix [CX] is not estimated and ν, [µ], and [Φ] are directly computed using a thin
SVD [29] of the matrix whose N columns are (x j

d − xd) for j = 1, . . . ,N. The Rν-valued random
variable H is obtained by projection, H = [µ]−1/2 [Φ]T (X−xd), and its N independent realizations
{η j

d, j = 1, . . . ,N} are such that η j
d = [µ]−1/2 [Φ]T (x j

d − xd) ∈ Rν. Using {η j
d, j = 1, . . . ,N}, the

estimates of the mean vector and the covariance matrix of H verify η
d

= 0ν and [CH] = [Iν]. We
define the matrix [ηd] = [η1

d . . . η
N
d ] ∈ Mν,N whose columns are the N realizations of H, which is

such that

‖[ηd]‖2 = tr{[ηd]T [ηd]} =

N∑
j=1

‖η j
d‖

2 = ν(N − 1) . (1)
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4. Summary of the PLoM method with no group (No-Group PLoM) and its improvement

The PLoM method can be found in [1], for which a complete mathematical analysis is pro-
posed in [13]. We present a summary of this method (PLoM with no group also called ”No-
Group PLoM”) in order to introduce the notations and the developments that are required for the
presentation of the PLoM with partition (also called ”With-Group PLoM”).

4.1. Nonparametric estimate of the pdf of H
A modification of the multidimensional Gaussian kernel-density estimation method [30, 31,

32, 33] is used for constructing the nonparametric estimate p(N)
H on Rν of the pdf pH of random

vector H, which is written (see Theorem 3.1 of [13] for the convergence with respect to N) as

p(N)
H (η) =

1
N

N∑
j=1

1
(
√

2π ŝ)ν
exp{−

1
2ŝ2 ‖

ŝ
s
η j

d − η‖
2} , ∀η ∈ Rν , (2)

in which s = (N(ν + 2)/4)−1/(ν+4) is the usual Silverman bandwidth (since [CH] = [Iν], see
for instance, [34]) and where ŝ = s (s2 + (N − 1)/N)−1/2 has been introduced in order that∫
Rν η p(N)

H (η) dη = 0ν and
∫
Rν η ⊗ η p(N)

H (η) dη = [Iν].

4.2. Construction of a reduced-order diffusion-map basis (ROB-DM)

To identify the subset around which the points of the training set are concentrated, the PLoM
relies on the diffusion-map method [35, 36]. The Gaussian kernel is used. Let [K] and [b] be the
matrices such that, for all i and j in {1, . . . ,N}, [K]i j = exp{−(4 εDM)−1‖ηi

d−η
j
d‖

2} and [b]i j = δi j bi

with bi =
∑N

j=1[K]i j, in which εDM > 0 is a smoothing parameter (the non symmetric matrix P =

[b]−1[K] ∈MN is the transition matrix of a Markov chain that yields the probability of transition
in one step). The eigenvalues λ1, . . . , λN and the associated eigenvectors ψ1, . . . ,ψN of the right-
eigenvalue problem [P]ψα = λα ψ

α are such that 1 = λ1 > λ2 ≥ . . . ≥ λN and are computed
by solving the generalized eigenvalue problem [K]ψα = λα [b]ψα with the normalization <
[b]ψα,ψβ >= δαβ. The eigenvector ψ1 associated with λ1 = 1 is a constant vector. For a given
integer κ ≥ 0, the diffusion-map basis {g1, . . . , gα, . . . , gN} is a vector basis of RN defined by gα =

λκα ψ
α. For a given integer m with 3 ≤ m ≤ N, the reduced-order diffusion-map basis of order m

is defined as the family {g1, . . . , gm} that is represented by the matrix [gm] = [g1 . . . gm] ∈ MN,m

with gα = (gα1 , . . . , g
α
N) and [gm]`α = gα` . This ROB-DM depends on two parameters, εDM and m,

which have to be identified. It is proven in [13], that the PLoM method does not depend on κ that
can therefore be chosen to 0.

It should be noted that, if ν = 1, then there is no reason to use the ROB-DM and in this case,
we propose to take m = N and [gN] = [IN]. For non-trivial applications analyzed with the PLoM
without partition, we always have ν > 1 and even, 1 � ν ≤ n. However for the PLoM method
with partition, optimal partitions can be found for which some groups may have dimension 1
(hence the consideration of possible cases of this type).

4.3. Novel algorithm for identifying the optimal values εo and mo of εDM and m

Let us assume that ν ≥ 2. For estimating the optimal values εo of εDM and mo of m, the
criterion of the eigenvalues given in Section 5.2 of [13] must be satisfied for the PLoM method
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to be applicable. This criterion can be summarized as follows. We have to find the value mo ≤ N
of m and the smallest value εo > 0 of εDM such that

1 = λ1 > λ2(εo) ' . . . ' λmo (εo) � λmo+1(εo) ≥ . . . ≥ λN(εo) > 0 , (3)

with an amplitude jump equal to an order of magnitude (a factor 10 as demonstrated in [13])
between λmo (εo) and λmo+1(εo). This property means that we have to find mo ≤ N and the
smallest positive value εo in order (i) to have λ2(εo) < 1 (one must not have several eigenvalues in
the neighborhood of 1) and (ii) to obtain a plateau for λ2(εo) to λmo (εo) with a jump of amplitude
10 between λmo (εo) and λmo+1(εo). A further in-depth analysis makes it possible to state the
following new criterion and algorithm to easily estimate εo and mo. Let εDM 7→ Jump(εDM) be the
function on ]0,+∞[ defined by Jump(εDM) = λmo+1(εDM)/λ2(εDM). The algorithm is thus given in

Algorithm 1 Algorithm for estimating the optimal values mo of m and εo of εDM

1: if ν = 1 then
2: Set the value of m to mo = N and [gN] = [IN].
3: end if
4: if ν ≥ 2 then
5: Set the value of m to mo = ν + 1.
6: Identify the smallest possible value εo of εDM in order that Jump(εo) ≤ 0.1 and such that

Eq. (3) be verified.
7: end if

Algorithm 1 and Figure 1 shows an illustration: we have mo = ν + 1 = 61; the optimal value of
εDM that satisfies the criteria is εo = 65 and yields Figure 1a; if a smaller value than 65 is chosen,
for instance the value 5, then there will be many eigenvalues close to 1 as shown in Figure 1b; if
the smallest value for εDM is not selected, for example taking the value 100, then the plateau is not
obtained as shown in Figure 1c. For these two bad values of εDM, the calculated diffusion-map
basis is not adapted to the PLoM procedure.
Remark concerning the choice of factor 10 for the jump of the eigenvalues. This choice is justified
in Paper [13], which gives the mathematical results in support of PLoM (we refer the reader to
Theorem 7.8 of this paper and its Lemmas 7.5, 7.6, and 7.7 on which the proof is based). In
this paper, it is proven that Eq. (3) must hold for preserving the concentration of the probability
measure, which is quantified by the square of the L2-distance (see Eq. (4)), and which is estimated
with the Nar � N learned realizations. Note that there are two important hypotheses in Eq. (3)
that must be verified: one is the existence of the plateau for m ∈ {2, . . . ,mo} and the other one
is the existence of a jump between m = mo and m = mo + 1. In paper [13], it is proven that
the plateau and the jump on the eigenvalues are directly related to the variations of the function
m 7→ εDM(m) (denoted as m 7→ εd(m) in [13]), which has to be rapidly decreasing in m in the
neighborhood of mo by the lower integer values and which has to remain much lower than 1
for m ≥ mo (see Fig. 1 of [13]). When Eq. (3) holds, then εDM(m) � 1 for m ≥ mo, that is a
fundamental property used for proving Theorem 7.8. This property εDM(m) � 1 for m ≥ mo has
been quantified by choosing one order of magnitude for the jump of the eigenvalues.

4.4. Random matrices [ HN], [ HN
m], [ HN

mo ], and MCMC generator

Let H(N) be the Rν-valued random variable defined on (Θ,T ,P) for which the pdf is p(N)
H

defined by Equation (2). Let [HN] be the random matrix with values in Mν,N such that [HN] =
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(a) Correct value εo of εDM
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(b) Bad value of εDM that is smaller than εo
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(c) Bad value of εDM that is larger than εo

Figure 1: Illustration of the criterion effects defined by Equation (3) for identifying εo.

[H1 . . .HN] in which H1, . . . ,HN are N independent copies of H(N). It can be seen that E{H(N)} =

0ν and E{H(N) ⊗ H(N)} = [Iν]. Note that H1, . . . ,HN are not taken as N independent copies of
H whose pdf pH is unknown, but are taken as N independent copies of H(N) whose pdf p(N)

H is
known. The PLoM method introduces the Mν,N-valued random matrix [HN

m] = [Zm] [gm]T with
3 ≤ m ≤ N , corresponding to a data-reduction representation of random matrix [HN], in which
[gm] is the ROB-DM and where [Zm] is a Mν,m-valued random matrix for which its probability
measure p[Zm]([z]) d[z] is explicitly described by Proposition 2 of [13]. In the PLoM method,
the MCMC generator of random matrix [Zm] belongs to the class of Hamiltonian Monte Carlo
methods [37], is explicitly described in [1], and is mathematically detailed in Theorem 6.3 of
[13]. For generating the learned set, the best probability measure of [ HN

m] is obtained for m = mo
and using the previously defined [gmo ]. For these optimal quantities mo and [gmo ], the generator
allows for computing nMC realizations {[z`ar], ` = 1, . . . , nMC} of [Zmo ] and therefore, for deducing
the nMC realizations {[η`ar], ` = 1, . . . , nMC} of [HN

mo ]. The reshaping of matrix [η`ar] ∈Mν,N allows
for obtaining Nar = nMC × N additional realizations {η`

′

ar, `
′ = 1, . . . ,Nar} of H. These additional

realizations allow for estimating converged statistics on H and then on X, such as pdf, moments,
or conditional expectation of the type E{ξ(Q) |W = w0} for w0 given in Rnw and for any given
vector-valued function ξ defined on Rnq .
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4.5. Quantifying the concentration of the probability measure of random matrix [HN
mo ]

In [13], for 3 ≤ m ≤ N, we have introduced an L2-distance dN(m) of random matrix [HN
m]

to matrix [ηd] in order to quantify the concentration of the probability measure of random ma-
trix [HN

m], which is informed by the training set represented by matrix [ηd]. The square of this
distance is defined by

d2
N(m) = E{‖[HN

m] − [ηd]‖2}/‖[ηd]‖2 . (4)

LetMo = {mo,mo + 1, . . . ,N} in which mo is the optimal value of m previously defined. The-
orem 7.8 of [13] shows that minm∈Mo d2

N(m) ≤ 1 + mo/(N − 1) < d2
N(N) which means that the

PLoM method, for m = mo and [gmo ] is a better method than the usual one corresponding to
d2

N(N) = 1 + N/(N − 1). Using the nMC realizations {[η`ar], ` = 1, . . . , nMC} of [HN
mo ], we have the

estimate d2
N(mo) ' (1/nMC)

∑nMC

`=1{‖[η
`
ar] − [ηd]‖2}/‖[ηd]‖2.

5. PLoM analysis with group (With-Group PLoM)

In this section, for ν ≥ 2, we present the extension of the PLoM method for which statistically
independent groups are constructed using an optimal partition of random vector H.

5.1. Construction of the optimal partition of H
From the training set {η j, j = 1, . . . , N}, the optimal partition of H = (H1, . . . ,Hν) is per-

formed using the algorithm proposed in [28]. Such a partition is composed of np groups con-
sisting in np mutually independent random vectors Y1, . . . ,Ynp . Since H is a normalized random
vector (zero mean vector and covariance matrix equal to the identity matrix), for i = 1, . . . , np,
Yi is a normalized Rνi -valued random variable Yi = (Y i

1, . . . ,Y
i
νi

) = (Hri
1
, . . . ,Hri

νi
) in which

1 ≤ ri
1 < ri

2 < . . . < ri
νi
≤ ν, with ν = ν1 + . . . + νnp , and where Y i

k = Hri
k
. Random vector Yi

is non-Gaussian and such that the estimate of its mean vector is ηi = 0νi and the estimate of its
covariance matrix is [CYi ] = [Iνi ]. We then have H = perm(Y1, . . . ,Ynp ) in which perm is the
permutation operator acting on the components of vector H̃ = (Y1, . . . ,Ynp ) in order to reconsti-
tute H = perm(H̃). For each group i, the training set is represented by the matrix [ηi

d] ∈ Mνi,N

whose columns are the N realizations {ηi, j
d , j = 1, . . . ,N} of the Rνi -valued random variable Yi,

which are deduced from an adapted extraction (due to the permutations) of the components of
vectors {η j

d, j = 1, . . . ,N}. The partition is identified by constructing the function iref 7→ τ(iref) of
the mutual information defined by Eq. (3.44) of [28] and then by deducing the optimal level ioref
defined by Eq. (3.46) of [28]. These two equations are recalled below.
(i) Mutual information of the random vectors related to the partition. The mutual information
iν(Y1, . . . ,Ynp ) between the random vectors Y1, . . . , Ynp is defined by

iν(Y1, . . . ,Ynp ) = −E

{
log(

p
Y1 (Y1) × . . . × p

Ynp (Ynp )

p
Y1 ,...,Ynp (Y1, . . . ,Ynp )

)

}
,

in which the conventions 0 log(0/a) = 0 for a ≥ 0 and b log(b/0) = +∞ for b > 0 are used,
where p

Yi is the pdf of Yi, and where p
Y1 ,...,Ynp is the joint pdf of Y1, . . . ,Ynp . Let G be the Gaus-

sian second-order centered Rν-valued random vector for which its covariance matrix is [Iν]. Con-
sequently, its components are mutually independent. Applying to G the same partition that the
one defined for Y, we can write G = (G1, . . . ,Gnp ), and its mutual information is iν(G1, . . . ,Gnp ).
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(ii) Optimal level ioref. Let iref ≥ 0 be any fixed real value of the mutual information for two
real-valued random variables. Let τν(iref) be the mutual information defined by

τν(iref) = 1 −
iν(Y1, . . . ,Ynp )
iν(G1, . . . ,Gnp )

.

The optimal level ioref is such that

ioref = inf
iref
{ arg max

iref≥0
τν(iref)} .

(iii) Numerical aspects. For calculating the mutual information, the pdf are estimated by using
the multidimensional Gaussian kernel density estimation method with the points of the training
set. For each given iref, the partition is constructed using a graph theory algorithm (see [28]).

5.2. Use of the PLoM for each independent group

Let i be fixed in {1, . . . , np}. The PLoM method (summarized in Section 4) is applied to the
Rνi -valued random variable Yi of the optimal partition Y1, . . . ,Ynp of H = perm(Y1, . . . ,Ynp ).
The parameters of the PLoM are thus the following.
1) The Silverman bandwidth is si = (N(νi + 2)/4)−1/(νi+4) (since [CYi ] = [Iνi ]) and the modified
bandwidth is ŝi = si (s2

i +(N−1)/N)−1/2.
2) Algorithm 1 is used. If νi = 1, then mi,o = N and [gi

N] = N. If νi ≥ 2, the optimal parameter
mi,o of the dimension mi of the ROB-DMi is such that mi,o = νi + 1. The optimal parameter εi,o
of εi,DM is calculated as explained in Section 4.3. The ROB-DMi of order mi,o is represented by
the matrix [gi

mi,o ] ∈MN,mi,o .
3) The learned set of the random matrix [ YN,i

mi,o ] = [Zi
mi,o ] [gi

mi,o ]T is computed for mi = mi,o and
by using [gi

mi,o ]. Finally, the nMC realizations {[ηi,`
ar ], ` = 1, . . . , nMC} of [YN,i

mi,o ] are computed with
the MCMC generator and by reshaping, we obtain the Nar = nMC × N additional realizations
{ηi,`′

ar , `
′ = 1, . . . ,Nar}.

5.3. Possible loss of normalization

Numerical experiments have been done for numerous cases with respect to the number of
groups and the dimension of each group. These experiments have shown the following. In gen-
eral, the mean value of Yi, estimated using the Nar additional realizations {ηi,`′

ar , `
′ = 1, . . . ,Nar},

is sufficiently close to zero. Likewise, the estimate of the covariance matrix of Yi, which must be
the identity matrix, is sufficiently close to a diagonal matrix. However, sometimes the diagonal
entries of the estimated covariance matrix can be lower than 1 (for instance 0.5). Such a case
can occur for relatively small value of νi (but it is not systematic because this type of behavior
is application-dependent). Normalization can be recovered by imposing constraints in the PLoM
method.

5.4. Constraints on the second-order moments of the components of Yi if loss of normalization
occurs

As explained in Section 5.3, if appropriate for group i, constraints {E{(Y i
k)2} = 1, k =

1, . . . , νi} can readily be introduced in the PLoM. For that, we use the method and the itera-
tive algorithm presented in Sections 5.5 and 5.6 of [15]. The method consists of constructing the
generator using the PLoM for each independent group (see Section 5.2) and the Kullback-Leibler
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minimum cross-entropy principle. The resulting optimization problem is formulated using La-
grange multipliers associated with the constraints. The optimal solution of the Lagrange multi-
pliers is computed using an efficient iterative algorithm. At each iteration, the MCMC generator
of the PLoM is used. The constraints are rewritten as

E{hi(Yi)} = bi , (5)

in which the function hi = (hi
1, . . . , h

i
νi

) and the vector bi = (bi
1, . . . , b

i
νi

) are such that hi
k(Yi) =

(Y i
k)2 and bi

k = 1 for k in {1, . . . , νi}. Equations (71) and (72) of [15] involve the Lagrange
multiplier λ = (λ1, . . . , λνi ) ∈ Rνi associated with the constraints defined by Equation (5). These
two equations, which define the nonlinear mapping [u] 7→ [Li

λ([u])] from Mνi,N into Mνi,N (drift
of the Itô stochastic differential equation of the PLoM generator), have to be modified as follows.
For α = 1, . . . , νi, for ` = 1, . . . ,N, and for [u] = [u1 . . . uN] in Mνi,N , we have

[Li
λ([u])]α` =

1
ρi(u`)

∂ρi(u`)
∂u`α

− 2λαu`α ,

ρi(u`) =
1
N

N∑
j=1

1
(
√

2π ŝi)νi
exp{−

1
2ŝ2

i
‖

ŝi

si
ηi, j

d − u`‖2} .

The iteration algorithm computes the sequence {λι}ι≥1 that is convergent. If difficulties of conver-
gence appear, a relaxation factor (less than 1) is introduced for computing λι+1 as a function of
λι. For controlling the convergence as a function of iteration number ι, we use the error function
ι 7→ erri(ι) defined by

erri(ι) = ‖bi − E{hi(Yi
λι )}‖/‖b

i‖ . (6)

At each iteration ι, E{hi(Yi
λι )} is estimated with the Nar additional realizations deduced by re-

shaping of the nMC realizations of the Mνi,N-valued random matrix [YN,i
mi,o (λι)] that depends on λι.

These realizations are generated by the MCMC algorithm of the PLoM under the constraints.

5.5. Learned data set generated by With-Group PLoM

We have seen above (see Section 5.2 how the learned set {[ηi,`
ar ], ` = 1, . . . , nMC} of random

matrix [YN,i
mi,o ] are generated using With-Group PLoM for each group i = 1, . . . , np (using or not

the constraints on the second-order moments of the components of Yi). From this information,
we can directly deduce the learned set {[ηwg,`

ar ], ` = 1, . . . , nMC} of [Hwg,N
mo ] that corresponds to

the concatenation with an adapted extraction of the rows (due to the permutations) of matrices
{[YN,i

mi,o ], i = 1, . . . , np} and where mo = (m1,o, . . . ,mnp,o). We have introduced a superscript wg for
distinguishing With-Group PLoM from No-Group PLoM. The reshaping of matrix [ηwg,`

ar ] ∈Mν,N

allows for obtaining Nar = nMC×N additional realizations {ηwg,`′
ar , `′ = 1, . . . ,Nar} of H, computed

using With-Group PLoM.

5.6. Quantifying the concentration of the probability measure of random matrices [Hwg,N
mo ] and

{[YN,i
mo ], i = 1, . . . , np}

For mo = (m1,o, . . . ,mnp,o), the square of the distance of the random matrix [Hwg,N
mo ] to matrix

[ηd] is directly given by Equation (4) which is rewritten here as,

d2
wg,N(mo) = E{‖[Hwg,N

mo ] − [ηd]‖2}/‖[ηd]‖2 , (7)
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in which the mathematical expectation is estimated using the nMC realizations {[ηwg,`
ar ], ` = 1, . . . ,

nMC}. Using again Equation (4), for i ∈ {1, . . . , np}, the square of the distance of random matrix
[YN,i

mi,o ] to matrix [ηi
d] is given by

d2
i,N(mi,o) = E{‖[YN,i

mi,o ] − [ηi
d]‖2}/‖[ηi

d]‖2 , (8)

which is estimated using the nMC realizations {[ηi,`
ar ], ` = 1, . . . , nMC}. Equation (7) contains the

information defined by Equation (8). Indeed it is easy to verify that we have the relation

d2
wg,N(mo) =

np∑
i=1

(νi/ν) d2
i,N(mi,o) . (9)

5.7. How to quantify the gain obtained by using With-Group PLoM instead of No-Group PLoM
when np > 1

For a given application, the first method consists in numerically comparing the estimates of
d2

wg,N(mo) defined by Equation (7) with d2
N(mo) defined by Equation (4). If there is a gain, we

must have
d2

wg,N(mo) < d2
N(mo) . (10)

This expected inequality for any applications for which np > 1 is reinforced by the second
method, which is encapsulated by the following proposition.

Proposition 1 (Probability upper bound of the measure of concentration). Let ε be a given
real number such that 0 < ε < 1. Let d2

N(mo) be defined by Equation (4) for m = mo. We then
have

Proba{‖[HN
mo ] − [ηd]‖2/‖[ηd]‖2 ≥ ε} ≤ d2

N(mo)/ε . (11)

Let r be the positive real number (geometric mean) such that r = {Π
np
i=1d2

i,N(mi,o)}1/np in which
d2

i,N(mi,o) is defined by Equation (8). We then have

Proba{‖[Hwg,N
mo ] − [ηd]‖2/‖[ηd]‖2 ≥ ε} ≤ (r/ε)np . (12)

PROOF. (i) Using the Markov inequality to the left hand-side member of Equation (11) directly
yields Equation (11). (ii) Let us introduce the simplified following notations: Ξi = ‖[YN,i

mi,o ] −
[ηi

d]‖2 and ζi = ‖[ηi
d]‖2. Therefore, Equation (8) can be rewritten as d2

i,N(mi,o) = E{Ξi}/ζi. If ∀i ∈
{1, . . . , np} we have Ξi ≥ ε ζi a.s, then ‖[Hwg,N

mo ] − [ηd]‖2 =
∑np

i=1 Ξi ≥ ε
∑np

i=1 ζi = ε ‖[ηd]‖2 a.s,
that is to say ‖[Hwg,N

mo ] − [ηd]‖2/‖[ηd]‖2 ≥ ε a.s. (iii) Using result (ii) above, it can be deduced
that Proba{∩np

i=1{Ξi/ζi ≥ ε}} = Proba{‖[Hwg,N
mo ] − [ηd]‖2/‖[ηd]‖2 ≥ ε}. (iv) Due to the partition, the

random matrices [YN,1
m1,o ], . . . , [YN,np

mnp ,o ] are statistically independent, and thus Ξ1, . . . ,Ξnp are statis-
tically independent. Therefore, we can write, Proba{∩np

i=1{Ξi/ζi ≥ ε}} = Π
np
i=1Proba{Ξi/ζi ≥ ε}. (v)

The results (iii) and (iv) above yield Proba{‖[Hwg,N
mo ] − [ηd]‖2/‖[ηd]‖2 ≥ ε} = Π

np
i=1Proba{Ξi/ζi ≥

ε}. The use of the Markov inequality allows us to write, Proba{Ξi/ζi ≥ ε} ≤ E{Ξi}/(ε ξi) =

d2
i,N(mi,o)/ε. Substituting this inequation into the right hand-side member of the last equality

allows us to write Proba{‖[Hwg,N
mo ] − [ηd]‖2/‖[ηd]‖2 ≥ ε} ≤ Π

np
i=1{d

2
i,N(mi,o)/ε} = (r/ε)np , which is

Equation (12).
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6. Application 1

The probabilistic model is chosen so that the partition in terms of statistically independent
groups is known. This will serve to validate the proposed methodology. This application can
easily be reproduced. We directly construct the normalized non-Gaussian Rν-valued random
variable H = (H1, . . . ,Hν) with ν = 60. Its probabilistic model is described in Appendix Ap-
pendix A. The random vector X from which H is deduced by a PCA is not constructed. It should
be noted that this application is very difficult for the learning methods taking into account the
high degree of the polynomials in the model, which induces a complexity of the geometry of the
support of the probability measure of H.

A reference data set with Nref = 1 000 000 independent realizations and the training set with
N = 1 200 independent realizations {η j

d, j = 1, . . . ,N} are generated using the probabilistic
model of H. The learned set is generated by the PLoM method (without or with groups) with
Nar = 1 200 000 realizations {η`ar, ` = 1, . . . ,Nar} (Nar = nMC × N with nMC = 1 000). It should be
noted that the mean vector η and the covariance matrix [CH] of H, which are estimated with the
N realizations of the training set, are such that η

d
= 0ν and [CH] = [Iν].

6.1. PLoM analysis with no group (No-Group PLoM)

Algorithm 1 is used for the calculation of the reduced-order diffusion-map basis [gmo ] of
the Rν-valued random variable H. The optimal dimension is mo = ν + 1 = 61. Figure 2a
displays the function εDM 7→ Jump(εDM) and shows that the optimal value εo of the smoothing
parameter εDM is εo = 656 for which Jump(εo) = 0.1. For this value εo of εDM, Figure 2b shows
the graph of function α 7→ λα(εo). It can be seen that the criterion defined by Equation (3)
is satisfied. The PLoM algorithm with no group is then used for generating the learned set

200 400 600

0.1

0.12

0.14

0.16

(a) Identifying the value εo of εDM

0 50 100
10

-6

10
-4

10
-2

10
0

(b) Eigenvalues of the transition matrix

Figure 2: Construction of the diffusion map basis of the standard PLoM (No group).

{η`ar, ` = 1, . . . ,Nar}. Figure 3 shows the pdf of each one of the random variables H4, H5, H6, and
H7 estimated with the learned set. Each pdf is estimated (i) with the N realizations of the training
set, (ii) with the Nref realizations of the reference data set, (iii) with the Nar additional realizations
generated with the Hamiltonian MCMC algorithm corresponding to the PLoM with mo = N and
[gmo ] = [IN], and referenced as ”No-PLoM”, and finally, with the Nar realizations of the learned
set constructed with the PLoM for which the partition in groups is not taken into account and
referenced as ”No-Group PLoM” (in this case no constraints are applied). It can be seen that the
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No-PLoM estimation yields a big scattering with an important increase of the dispersion (and
thus a loss of the concentration of the probability measure) while No-Group PLoM preserves
the concentration of the probability measure (as expected) and the pdfs’ estimations are good
enough. These estimations will be improved by using the PLoM with groups and referenced as
”With-Group PLoM”.
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0.5

1

(a) pdf of H4
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(b) pdf of H5
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(c) pdf of H6
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2

(d) pdf of H7

Figure 3: pdf estimated with (i) the training set (black thin), (ii) the reference data set (red thick), (iii) No-PLoM (dashed)
, and (iv) No-Group PLoM (blue thin).

6.2. Computing the partition

The optimal partition is computed as explained in Section 5.1. Figure 4a displays the graph
of iref 7→ τ(iref), which shows that ioref = 0.013. Finally, the algorithm identifies the partition
and finds np = 3 groups with ν1 = 10, ν2 = 20, and ν3 = 30 and with Y1 = (H1, . . . ,H10),
Y2 = (H11, . . . ,H30), and Y3 = (H31, . . . , H60), which correspond to the model introduced in
Appendix Appendix A for generating the training set. This result constitutes an additional
validation of the optimal partition algorithm that is used for non-Gaussian random vectors. For
illustration, Figure 4b displays the graph of the joint pdf of random variables H1 and H2.
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(a) Graph of function iref 7→ τ(iref) (b) Joint pdf of H1 and H2

Figure 4: Partition of H in np mutually independent random vectors Y1, . . . ,Ynp .

6.3. PLoM analysis with groups (With-Group PLoM)
Algorithm 1 is used for each group i = 1, 2, 3. We then have mi,o = νi + 1. The training set

{ηi, j
d , j = 1, . . . ,N} of Yi is used. A similar graph to the one shown in Figure 2a is constructed

for identifying the optimal value εi,o of the smoothing parameter εi,DM yielding ε1,o = 412,
ε2,o = 896, and ε3,o = 1 132. Figure 5a shows the distribution of the eigenvalues of the transition
matrix of each group i computed for εi,DM = εi,o. It can be seen that all the required criteria are
satisfied. For each group i = 1, 2, 3, the PLoM method with groups is used for generating the

0 10 20 30 40
10

-6

10
-4

10
-2

10
0

Group 1

Group 2

Group 3

(a) Eigenvalues of the transition matrix of group i
computed for εi,DM = εi,o

0 200 400 600 800

0.1

0.2

0.3

0.4
Group 1

Group 2

Group 3

(b) Error function ι 7→ erri(ι) of group i for itera-
tion number ι of the iteration algorithm

Figure 5: Diffusion map basis and error function of the iteration algorithm for each one of the 3 groups, i = 1, 2, 3.

learned set {ηi, j
ar , j = 1, . . . ,Nar}. The constraints E{(Y i

k)2} = 1 for k ∈ {1, . . . , νi} are applied and
the iterative algorithm introduced in Section 5.4 is used. Figure 5b displays the error function
ι 7→ erri(ι) of group i, defined by Equation (6), which shows the convergence of the iterative algo-
rithm. It should be noted that the convergence could have been pushed further, but the numerical
experiments showed that the additional gain obtained is negligible. In addition, numerical ex-
periments have been carried out to compare the efficiency of the type of constraints. We have
verified that taking into account all the constraints (mean of Yi equal to 0 and covariance matrix
[CYi ] = [Iνi ]) did not provide significant improvements on the preservation of the concentration
of the probability measure compared to the sole application of the constraints E{(Y i

k)2} = 1 for
15



0 20 40 60

-0.02

-0.01

0

0.01

0.02

(a) Mean value of Hk

0 20 40 60

0.5

0.6

0.7

0.8

0.9

1

(b) Standard deviation of Hk

Figure 6: Mean value and standard deviation of the components Hk , k = 1, . . . , ν, of H estimated using the learned set
generated by No-Group PLoM (thin line) and by With-Group PLoM (thick line).

k ∈ {1, . . . , νi}. Figure 6 shows the mean value and the standard deviation of the components
Hk, k = 1, . . . , ν of H estimated using the learned set generated by No-Group PLoM (see Sec-
tion 6.1) and by With-Group PLoM. Figure 6a shows that the mean values are reasonably small
with respect to 1 and therefore that it is not necessary to improve it by introducing the constraints
for the mean. Figure 6b shows that the standard deviations are improved by using With-Group
PLoM for which the constraints are taken into account. Figure 7 shows the pdf of H4, H5, H6,
and H7 estimated with the learned set. Similarly to Section 6.1, each pdf is estimated (i) with
the N realizations of the training set, (ii) with the Nref realizations of the reference data set, (iii)
with the Nar additional realizations computed by No-PLoM, and (iv) with the Nar realizations
computed by With-Group PLoM. Comparing Figure 3 with Figure 7, it can be seen that the use
of groups improves the pdfs’ estimations as expected. It can also be noted that the estimates are
excellent for this very difficult case in particular by comparing with the usual approach (see the
dashed lines corresponding to No-PLoM).

6.4. Quantifying the concentration of the probability measure
For No PLoM, the computations are performed as explained in Section 6.1, for No-Group

PLoM as in Section 4 and Section 6.1, and for With-Group PLoM as in Section 5 and Section 6.3.
(i) The results concerning the concentration of the probability measure are summarized in

Table 1. For No PLoM, d2
N(N) is computed with Equation (4) for which m = N = 1 200. For

No-Group PLoM, d2
N(mo) is also computed with Equation (4) but with m = mo = 61. For With-

Group PLoM, d2
wg,N(mo) is computed with Equation (7) for which mo = (m1,o,m2,o,m3,o) with

m1,o = 11, m2,o = 21, and m3,o = 31, and where d2
i,N(mi,o) are computed using Equation (8),

which yields d2
1,N(m1,o) = 0.012, d2

2,N(m2,o) = 0.015, and d2
3,N(m3,o) = 0.019. The results ob-

tained are those that were hoped for. Without using the PLoM method, we find numerically
d2

N(N) ' 2 that is the theoretical value (see Section 4.5). We also see that d2
N(mo) = 0.094 � 2,

which shows that the usual PLoM method (without group) effectively preserves the concentra-
tion of the probability measure unlike the usual MCMC method that does not allow it. For the
PLoM with groups, an improvement is observed relative to the PLoM without group as indicated
by the evaluation d2

wg,N(mo) = 0.016 � d2
N(mo) = 0.094. The quantification of the probability of

the random relative distance defined by Equation (12) confirms this improvement. Note that the
probability (r/ε)np corresponds to an upper value, the probability being certainly smaller.
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Figure 7: pdf estimated with (i) the training set (black thin), (ii) the reference data set (red thick), (iii) No-PLoM (dashed)
, and (iv) With-Group PLoM (blue thin).

Table 1: Concentration of the probability measure for Application 1

No PLoM PLoM
PLoM No Group With Group

mo = 61 Proba by Eq. Equation (12)
d2

N(N) d2
N(mo) d2

wg,N(mo) ε ≤ (r/ε)np

2.00 0.094 0.016 0.05 ≤ 0.028
0.10 ≤ 0.0034
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(ii) Concerning the visualization of the concentration of the probability measure, Figure 8
shows the clouds of points {η`ar, ` = 1, . . . ,Nar} for the components (H1,H2,H3), generated (a)
without using PLoM (No-PLoM), (b) using the PLoM method without group (No-Group PLoM),
and (c) using the PLoM method with groups (With-Group PLoM). The three figures confirm the
analysis presented in point (i) above.

(a) No PLoM (b) No-Group PLoM (c) With-Group PLoM

Figure 8: Clouds of the Nar = 1 200 000 realizations of (H1,H2,H3) computed with No-PLoM, No-Group PLoM, and
With-Group PLoM.

7. Application 2

The second application is devoted to a supervised learning problem Q = f(W,U) (see Sec-
tion 2) in high dimension, for which the uncontrolled random parameter is the Rnu -valued random
variable U with nu = 420 000, the random control random parameter is the Rnw -valued random
variable W with nw = 2, and the QoI is the Rnq -valued random variable Q with nq = 10 098.

7.1. Generation of the training set and reference data set
This application relates to a linear elastic system modeled by an elliptic stochastic boundary

problem (BVP) in a 3D bounded domain Ω, described in the SI Units. The generic point of Ω

is ζ = (ζ1, ζ2, ζ3) in an orthonormal Cartesian coordinate system (O, ζ1, ζ2, ζ3) with O = (0, 0, 0).
The outward unit normal to ∂Ω = Γ0 ∪ Γ is denoted by n(ζ). There is a zero Dirichlet condition
on Γ0 and a Neumann condition on Γ. Domain Ω is occupied by a random linear elastic medium
(heterogeneous material). The uncontrolled parameter U of the system is related to the finite
element discretization of the fourth-order tensor-valued non-Gaussian elasticity random field
{K = {Ki jkh(ζ)}1≤i, j,k,h≤3, ζ ∈ Ω} (random coefficients of the partial differential operator) for
which the mean value is isotropic and the statistical fluctuations are anisotropic. The control
parameter w = (w1,w2) of the system consists of w1 = log(Lcorr) in which Lcorr is a spatial
correlation length and of w2 = log(δG) in which δG is a dispersion parameter, which allows the
statistical fluctuations of K to be controlled. The observation of the system is the R3-valued
random displacement field V = (V1,V2,V3) on Ω, which is the strong stochastic solution of the
weak formulation of the stochastic BVP,

−div Σ = 0 in Ω ,

V = 0 on Γ0 ,

Σn = GΓ on Γ .
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The stress tensor Σ = {Σi j}1≤i, j≤3 is related to the strain tensor E(V) = {Ekh(V)}1≤k,h≤3 by the
constitutive equation, Σi j(ζ) = Ki jkh(ζ) Ekh(V(ζ)) in which the strain tensor is such that Ekh(V) =

(∂Vk/∂ζh + ∂Vh/∂ζk)/2. The geometry, the surface force field GΓ, the probabilistic model of the
elasticity random field K that depends on parameter w, and the finite element discretization of
the weak formulation of the stochastic BVP are detailed in Appendix Appendix B.

The control parameter w is modelled by a R2-valued random variable W = (W1,W2). The
random vectors U, W, and Q, for which the dimensions are nu = 420 000, nw = 2, and nq =

10 098, are defined in Appendix Appendix B. The random vectors W and U are statistically
independent. The dimension n = nq + nw of random vector X = (Q,W) is thus n = 10 100.

The training set is generated as explained in Section 2 for which N = 100 independent
realizations, u j

d and w j
d, of U and W are generated using the probabilistic model detailed in

Appendix Appendix B. For each j ∈ {1, . . . ,N}, the realization q j
d of Q is computed by solving

the BVP using the computational model (finite element discretization of the BVP), which is such
that q j

d = f(w j
d,u

j
d) (note that f is not explicitly known and results from the solution of the BVP).

The training set related to random vector X = (Q,W) is then made up of the N independent
realizations {x j

d, j = 1, . . . ,N} in which x j
d = (q j

d,w
j
d) ∈ Rn.

The reference data set {x`ref, ` = 1, . . . ,Nref} for X is generated as the training set but with
Nref = 20 000 independent realizations. Computations have been made for Nref = 15 000, 18 000,
and 20 000, which have shown that the pdf of each observed component of Q were converged for
Nref = 20 000 (note that the construction of the reference has been very CPU time consuming).

The learned sets generated without using the PLoM method (No PLoM), or using the PLoM
method with no group (No-Group PLoM), or with groups (With-Group PLoM) will be all per-
formed with Nar = 200 000 realizations {η`ar, ` = 1, . . . ,Nar} (Nar = nMC × N with nMC = 2 000).

7.2. PLoM analysis without and with partition

In this section, we give the main results without too many details (paper length limitation),
knowing that we have already presented a detailed analysis for Application 1.

(i) PCA of random vector X. Since n = 10 000 � N = 100, the eigenvalue problem of [CX]
is solved using a thin SVD of matrix [xd] = [x1

d . . . xN
d ] ∈ Mn,N , which thus does not require

the assembling of [CX] (as explained in Section 3). Figure 9a shows the distribution of the
eigenvalues µα. For constructing the PCA representation, Xν = xd + [Φ] [µ]1/2 H, of X, we
have chosen εPCA = 0.001 that yields ν = 27. Following Section 3, the matrix [ηd] ∈ Mν,N is
constructed with the N realizations η1

d, . . . , η
N
d of the Rν-valued random variable H.

(ii) Reduced-order diffusion-map basis for No-Group PLoM. Algorithm 1 is used for the calcu-
lation of the reduced-order diffusion-map basis [gmo ] of the Rν-valued random variable H. For
the optimal values mo = ν + 1 = 28 and εo = 103, Figure 9b shows the eigenvalues λα of the
transition matrix.

(iii) Construction of the optimal partition of H. The optimal partition is computed as explained
in Section 5.1. Figure 10a displays the graph of iref 7→ τ(iref), which shows that ioref = 0.112.
The algorithm identifies the partition and finds np = 9 groups such that ν1 = 5 with Y1 =

(H1,H2,H4,H16,H19), ν2 = 1 with Y2 = H3, ν3 = 15 with Y3 = (H5 to H11,H14,H15,H17,H18,
H20,H24 to H26), and ν4 = . . . = ν9 = 1 with Y4 = H12, Y5 = H13, Y6 = H21, Y7 = H22, Y8 = H23,
and Y9 = H27. For each one of the two groups i = 1 and 3 (having a length greater than 1), the
optimal values are m1,o = 6, m3,o = 16, ε1,o = 37.7, and ε3,o = 103. For these optimal values of
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Figure 9: PCA eigenvalues and diffusion map eigenvalues of the PLoM without group (No-Group PLoM).

εi,o, Figure 10b shows the distribution of eigenvalues λi,α of the transition matrix. For the groups
i < {1, 3}, we have mi,o = N (see Algorithm 1).
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Figure 10: Partition of H in np = 9 mutually independent random vectors Y1, . . . ,Ynp and diffusion map eigenvalues of
the PLoM for groups 1 and 3.

(iv) Influence of the constraints of all the components of Yi. No-Group PLoM is performed
without any constraints applied to random vector H. With-Group PLoM is performed, group by
group, by applying, for i = 1, . . . , np = 9, the constraints E{(Y i

k)2} = 1 for k ∈ {1, . . . , νi}. For all
the components k = 1, . . . , ν = 27 of H, Figure 11 shows the mean value E{Hk} and the standard
deviation σHk that are estimated by No-Group PLoM and by With-Group PLoM. We can see that
the mean values remain much lower than 1 although no constraint is applied to the mean, as well
for No-Group PLoM as for With-Group PLoM. We can also see that the standard deviation of
the components are already close to 1 for No-Group PLoM although no constraint is applied to
the second-order moments. As expected, for With-Group PLoM for which the constraints are
applied to the second-order moments, the standard deviations are almost equal to 1.

(v) pdf of observations estimated by the PLoM. The pdf of components Q17 and Q7740 of Q are
presented in Figure 12. Component 17 corresponds to the ζ2-axis displacement V2(ζ) at point
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Figure 11: Mean value and standard deviation of the components Hk , k = 1, . . . , ν, of H estimated using the learned set
generated with No-Group PLoM (thin line) and With-Group PLoM (thick line).

ζ = (0, 0, 0.1) while component 7740 corresponds to the ζ3-axis displacement V3(ζ) at point
ζ = (0.78, 0, 0.1). Figure 12 shows the pdf estimated (i) with the Nd = 100 points of the training
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Figure 12: pdf estimated with (i) the training set (black thin), (ii) the reference data set (red thick), (iii) No-PLoM
(dashed), (iv) No-Group PLoM (blue thin dashed), and (v) With-Group PLoM (blue thick).

set, (ii) with the Nref = 20 000 points of the reference data set, (iii) with Nar = 200 000 additional
realizations generated with an usual MCMC generator (without using the PLoM method), (iv)
with the Nar = 200 000 additional realizations of the learned set generated by No-Group PLoM,
and finally, (v) with the Nar = 200 000 additional realizations of the learned set generated by
With-Group PLoM for which a partition in np = 9 groups has been identified. It can be seen that
the usual MCMC method (no PLoM) is not good at all, that No-Group PLoM already gives a
good estimation in comparison with the reference, and finally, that With-Group PLoM gives an
excellent estimation when compared to the reference.
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(vi) Quantifying the concentration of the probability measure. The analysis is carried out as in
Section 6.4. The results concerning the concentration of the probability measure is summarized
in Table 2 and in Figure 13. For No PLoM, d2

N(N) is computed with Equation (4) for which

Table 2: Concentration of the probability measure for Application 2

No PLoM PLoM
PLoM No Group With Group

mo = 28 Proba by Eq. Equation (12)
d2

N(N) d2
N(mo) d2

wg,N(mo) ε ≤ (r/ε)np

2.00 0.16 0.044 0.05 ≤ 4.3 × 10−5

0.1 ≤ 8.3 × 10−8

m = N = 100. For No-Group PLoM, d2
N(mo) is also computed with Equation (4) but with

m = mo = 28. For With-Group PLoM, d2
wg,N(mo) is computed with Equation (7) for which

mo = (m1,o, . . . ,m9,o). The graph i 7→ d2
i,N(mi,o) is computed using Equation (8) and is plotted

in Figure 13. Without using the PLoM method, we find numerically d2
N(N) = 2 that is the

theoretical value (see Section 4.5). We also see that d2
N(mo) = 0.16 � 2, which shows that the

usual PLoM method (without group) effectively preserves the concentration of the probability
measure unlike the usual MCMC methods that do not allow it. For the PLoM with groups, it can
be seen an improvement with respect to the PLoM without group because d2

wg,N(mo) = 0.044 �
d2

N(mo) = 0.16. The quantification of the probability of the random relative distance defined by
Equation (12) confirms this improvement. Note that the probability (r/ε)np corresponds to an
upper value, the probability being certainly smaller.
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Figure 13: Concentration of the probability measure for each group i ∈ {1, . . . , 9}: graph of i 7→ d2
i,N (mi,o) computed

using Equation (8).

(vii) Computational cost according to PLoM usage configurations and to the level of preservation
of the concentration of the probability measure. Table 3 presents the numerical cost in terms of
Elapsed Time (in seconds) of the analyses performed with a one node computer having 110 cores.
In order to compare the numerical costs with the accuracy given for each case, we have given
the value of d2

N(mo) that characterizes the preservation of the concentration of the probability
measure. As expected, the ”With-Group PLoM with constraints” yields the best accuracy for an
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elapsed time that is very small with respect to the one generated for constructing the converged
reference (reference data set) and which is the one that is required if PLoM is not used.

Table 3: Numerical cost of the analyses for Application 2

PLoM PLoM
No Group With Group

Reference No With No With
data set constraint constraints constraint constraints

d2
N(mo) 0.16 0.14 0.30 0.044

Elaspsed Time(s) 18 000 15 215 20 649

8. Discussion and conclusion

The implementation of a partition in the PLoM method has provided an opportunity to revisit,
improve the efficiency, and simplify the algorithm to identify the optimal values of the hyper-
parameters of the reduced-order diffusion-map basis. This was made necessary for the PLoM
method with partition, because the number of groups identified can be large and for each group
of dimension greater than 1, the reduced-order diffusion-map basis must be constructed. This
new efficient algorithm is common to PLoM with or without partition.

Still within the framework of the PLoM carried out with partition, we have made the fol-
lowing observations. If a group of the partition has a relatively small dimension (a few units,
or even one or two dozen) and if the support of its probability measure has a complex geome-
try, one could obtain a significant loss of normalization compared to 1 (for instance 0.6 or 0.7
instead of 0.9 or 1). For instance, such a situation can be encountered by the presence of numer-
ous non-Gaussian stochastic germs that generate strong statistical fluctuations (for example, up
to ten times the standard deviation for some components). For these cases, we have proposed
to introduce constraints on the second-order moments of the components of such a group, by
reusing the Kullback-Leibler minimum cross-entropy principle that we have previously used for
taking into account physics constraints in the PLoM method. For instance, Application 1 is very
difficult due to the high degree of the polynomials in the model; although the realizations of the
training set are centered and have a covariance matrix equal to the identity matrix, the fluctua-
tions vary between −10 and +10 for some components (which must be compared to a magnitude
of 1). It should be noted that we have also developed, tested, and implemented the general case
of introducing constraints on the mean vector (zero mean) and on the covariance matrix (identity
matrix). One then increases considerably the number of Lagrange multipliers to be calculated
by the iterative method, which induces a significant numerical additional cost. We have not seen
any significant improvement compared to the only constraint related to the diagonal of the co-
variance matrix (second-order moments equal to 1 knowing that the centering is reasonably well
obtained without constraint on the mean vector). Under these conditions we have only presented
the simplest case of constraints and we have demonstrated it on two applications.

In the recently published mathematical foundations of PLoM [13], to establish the main theo-
rem, we introduced a distance between the random matrix defined by PLoM and the deterministic
matrix that represent all the given points of the training set. In the present paper, and in order
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to facilitate the quantification of the preservation of the concentration of the probability measure
between the usual MCMC method (No PLoM), the PLoM method without partition (No-Group
PLoM), and the PLoM method with partition (With-Group PLoM), we apply this distance to
each group of the partition. We have assessed it numerically for the two applications. The re-
sults obtained confirm the theoretical results: there is a significant loss of concentration of the
probability measure for the usual MCMC method (No PLoM) while the PLoM method without
partition (No-Group PLoM) preserves well the concentration of the probability measure. In addi-
tion, this distance shows that the PLoM method with partition further improves the preservation
of the concentration of the probability measure compared to the PLoM method without partition,
which was hoped for. Finally, to complete the quantification of the concentration of the proba-
bility measure by the distance, we have also proven a mathematical result of this quantification
in terms of probability. This result shows that if the number of groups of the partition increases,
then the gain of With-Group PLoM can be significantly improved compared to No-Group PLoM.
We have numerically quantified these probabilities for the two applications.

This work contributes to the improvement of the PLoM method. The results presented illus-
trate the gains made for the two applications, which, although quite distinct, present significant
challenges for other statistical learning methods.

NOTATIONS

The following notations are used:
A lower case letter such as x, η, or u, is a real deterministic variable.
A boldface lower case letter such as x, η, or u is a real deterministic vector.
An upper case letter such as X, H, or U, is a real random variable (except for E).
A boldface upper case letter, X, H, or U, is a real random vector.
A letter between brackets such as [x], [η], [u] or [C], is a real deterministic matrix.
A boldface upper case letter between brackets such as [X], [H], or [U], is a real random matrix.
n, nq, nu, nw : dimensions of random vectors X,Q,U,W.
nMC : number of additional realizations for random matrix [HN

mo ].
np : number of groups in the partition of H.
m,mi : dimension of the reduced-order diffusion-map bases [gm], [gi

m].
mo,mi,o : optimal value of m,mi.
E : mathematical expectation.
N,Nar : number of points in the training, learned sets.
ν, νi : dimensions of random vectors H,Yi.
R,Rn : real line, Euclidean vector space of dimension n.
Mn,Mn,N : sets of all the (n × n), (n × N) real matrices.
M+

n : set of all the positive-definite symmetric (n × n) real matrices.
‖x‖ : Euclidean norm when x is the vector or Frobenius norm when [x] is the matrix.
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Appendix A. Probabilistic model of the random generator for Applications 1

In this Appendix, any second-order random quantity S is defined on a probability space
(Θ,T ,P) and its mathematical expectation E{S} is estimated by s = (1/N)

∑N
j=1 s j using N

independent realizations {s j = S(θ j), j = 1, . . . ,N} of S with θ j ∈ Θ.
The Rν-valued random variable H = (H1, . . . ,Hν) is written as a partition of np = 3 in-

dependent random vectors Y1, . . . ,Ynp such that, for i = 1, . . . , np, the normalized Rνi -valued
random variable Yi = (Y i

1, . . . ,Y
i
νi

) is non-Gaussian and such that the estimate of its mean vector
is ηi = 0νi and the estimate of its covariance matrix is [CYi ] = [Iνi ]. We have ν = ν1 + . . . + νnp

and we choose ν1 = 10, ν2 = 20, and ν3 = 30.
For i = 1, 2, 3, let [ bi] be the deterministic matrix in Mνi defined by: rng(′de f ault′); [ bi] =

(0.15 × rand(νi, νi) + 0.85)/νi (in which rng and rand are the Matlab functions). Let Ui =

2 [ bi]Ui
− 1 be the Rνi -valued random variable in which 1 = (1, . . . , 1) and where Ui =

(Ui
1, . . . ,U

i
νi

) is the random vector constituted of νi independent uniform random variables on
[0, 1], whose N independent realizations are {Ui(θ j), j = 1, . . . ,N}. The random vectors U1,
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U
2, and U3 are statistically independent. LetMi = (Mi

1, . . . ,M
i
νi

) be the Rνi -valued random
variable in which, for k = 1, . . . , νi, Mi

k is the random monomial Mi
k =

√
k! (U i

k)k (thus the
degree of this monomial is k). Let beMi

c = Mi
− mi in which mi is the estimate of the mean

value ofMi. Let [CMi ] be the estimate of the covariance matrix ofMi and let [Li] be the up-
per triangular matrix computed from the Cholesky factorization [CMi ] = [Li]T [Li]. Therefore,
the random vector Yi is constructed as Yi = ([Li]T )−1M

i
c whose the N independent realiza-

tions {ηi, j
d , j = 1, . . . ,N} are such that ηi, j

d = ([Li]T )−1M
i
c(θ j). The N independent realizations

{η j
d, j = 1, . . . ,N} of H are such that η j

d = (η1, j
d , η2, j

d , η3, j
d ) ∈ Rν = Rν1 × Rν2 × Rν3 . Using these

N realizations, the estimate of the mean vector of H is η = 0ν and the estimate of its covariance
matrix is [CH] = [Iν]. By construction, we have Y1 = (H1, . . . ,H10), Y2 = (H11, . . . ,H30), and
Y3 = (H31, . . . ,H60).

Appendix B. Model and data for Applications 2

(i) Geometry and surface force field GΓ. The 3D bounded domain is defined by Ω =]0, 1.0[×
]0, 0.2[× ]0, 0.1[. Its boundary is written as ∂Ω = Γ0 ∪ Γ in which Γ = ∂Ω\Γ0 with Γ0 = {ζ1 =

1.0 , 0 ≤ ζ2 ≤ 0.2 , 0 ≤ ζ3 ≤ 0.1}. The surface force field GΓ = (GΓ
1 ,G

Γ
2 ,G

Γ
3) is zero on all Γ

except on the part {ζ1 = 0.0 , 0 ≤ ζ2 ≤ 0.2 , 0 ≤ ζ3 ≤ 0.1} for which GΓ
1(ζ) = −4.95 × 107 N/m2,

GΓ
2(ζ) = −4.29 × 105 N/m2, and GΓ

3(ζ) = −1.65 × 105 N/m2.

(ii) Probabilistic modeling of the elasticity random field. Random field K is rewritten as Ki jkh(ζ)
= [K(ζ)]IJ with I = (i, j) and J = (k, h), in which indices I and J belong to {1, . . . , 6}, and where
{[K(ζ)], ζ ∈ R3} is a second-order M+

6 -valued non-Gaussian random field indexed by R3, which
is assumed to be statistically homogeneous. Its mean function [K] ∈ M+

6 is thus independent
of ζ and corresponds to the elasticity tensor of a homogeneous isotropic elastic medium whose
Young modulus is 1010 N/m2 and Poisson coefficient 0.15. The statistical fluctuations of random
field [K] around [K] are those of a heterogeneous anisotropic elastic medium. The non-Gaussian
M+

6 -valued random field {[K(ζ)] , ζ ∈ Ω} is constructed using the stochastic model [38, 39] of
random elasticity fields for heterogeneous anisotropic elastic media that are isotropic in statistical
mean and exhibit anisotropic statistical fluctuations. Its parameterization consists of three spatial-
correlation lengths, one dispersion parameter, and a positive-definite lower bound. Random field
[K] is written, for all ζ in R3, as [K(ζ)] = [K`] + [Lε]T [G0(ζ)] [Lε]. The lower-bound matrix
is defined by [K`] = ε(1 + ε)−1 [K] ∈ M+

6 in which ε is chosen equal to 10−6. The upper
triangular matrix [Lε] ∈M6 is written as [Lε] = (1+ε)−1/2 [L] in which [K] = [L]T [L] (Cholesky
factorization). The non-Gaussian random field {[G0(ζ)], ζ ∈ R3}, which is indexed by R3 with
values in M+

6 , is homogeneous in R3 and is a second-order random field (see[39], pp 272-274
for details related to its stochastic modeling and the associated random generator). For all ζ in
R3, the random matrix [G0(ζ)] is written as [G0(ζ)] = [LG(ζ)]T [LG(ζ)] in which [LG(ζ)] is an
upper (6 × 6) real triangular random matrix that depends of nG = 21 independent normalized
Gaussian random variables. Random field [G0] depends on 3 spatial correlation lengths, Lcorr,1,
Lcorr,2, Lcorr,3, relative to each one of the three directions ζ1-, ζ2-, and ζ3-axes. It also depends on
the dispersion parameter δG > 0 that allows for controlling the level of statistical fluctuations.
As explained in Section 7.1, only two hyperparameters are kept: Lcorr and δG, for which we have
chosen Lcorr,1 = Lcorr,2 = Lcorr,3 = Lcorr.
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(iii) Finite element approximation of the stochastic boundary value problem and definition of
random vector U. Domain Ω is meshed with 50×10×5 = 2 500 finite elements using 8-nodes
finite elements. There are 3 366 nodes and 10 098 dofs (degrees of freedom) before applying the
Dirichlet conditions. The displacements are locked at all the 66 nodes belonging to surface Γ0 and
therefore, there are 198 zero Dirichlet conditions. There are 8 integration points in each finite
element. Consequently, there are Ni = 20 000 integration points ζ1, . . . , ζNi . Let us consider
the Rnu -valued random variable U made up of all the nu = Ni×nG = 20 000×21 = 420 000
independent normalized Gaussian random variables that allow the set {[LG(ζ1)], . . . , [LG(ζNi )]}
of random matrices to be generated.

(iv) Construction of random vectors Q, and W. The Rnq -valued random variable Q of the QoIs
are constituted of the 10 098 dofs of the discretization of the random displacement field V. The
random vector W = (W1,W2) in such that W1 = log(Lcorr) and W2 = log(δG). The random
variables Lcorr and δG are independent and uniform on [0.1 , 1.0] and [0.1 0.5], respectively. We
then have Lcorr = 0.9U1 + 0.1 and δG = 0.4U2 + 0.1 in which U1 and U2 are two independent
uniform random variable on [0 , 1].
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