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STOCHASTIC ELLIPTIC OPERATORS DEFINED BY

NON-GAUSSIAN RANDOM FIELDS WITH UNCERTAIN SPECTRUM

CHRISTIAN SOIZE

Abstract. This paper presents a construction and the analysis of a class of non-

Gaussian positive-definite matrix-valued homogeneous random fields with uncertain
spectral measure for stochastic elliptic operators. Then the stochastic elliptic bound-

ary value problem in a bounded domain of the 3D-space is introduced and analyzed

for stochastic homogenization.

1. Introduction

Random fields theory has extensively been developed [35, 25, 1, 34, 24], in particular
in the context of continuum physics [19, 32, 17]. The framework of this paper is that of
the analysis of the stochastic homogenization of a 3D-linear anisotropic elastic random
medium. The elasticity field is modeled by a Non-Gaussian positive-definite fourth-order
tensor-valued homogeneous random field. This paper present an extension of the works
[29, 18, 31, 32] devoted to random field representations for stochastic elliptic boundary
value problems and stochastic homogenization. We propose a novel probabilistic mod-
eling to take into account uncertainties in the spectral measure of the elasticity random
field and we analyze the stochastic elliptic boundary value problem (BVP) that has to
be solved to perform the stochastic homogenization.

Notations
The following notations are used:
x: lower-case Latin or Greek letters are deterministic real variables.
x: boldface lower-case Latin, Greek, and calligraphic letters are deterministic vectors.
X: upper-case Latin, Greek, and calligraphic letters are real-valued random variables.
X: boldface upper-case Latin or Greek letters are vector-valued random variables.
[x]: lower-case Latin of Greek letters between brackets are deterministic matrices.
[X]: boldface upper-case letters between brackets are matrix-valued random variables.

C: fourth-order tensor-valued random field.
N, R: set of all the integers {0, 1, 2, . . .}, set of all the real numbers.
Rn: Euclidean vector space on R of dimension n.
Mn,m: set of all the (n×m) real matrices.
Mn: set of all the square (n× n) real matrices.
MSn : set of all the symmetric (n× n) real matrices.
M+
n : set of all the positive-definite symmetric (n× n) real matrices.

[In]: identity matrix in Mn.
x = (x1, . . . , xn): point in Rn.
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〈x,y〉2 = x1y1 + . . .+ xnyn: inner product in Rn.
‖x‖2: norm in Rn such that ‖x‖2= 〈x,x〉2.
‖ [a] ‖2 = supx{‖[a]x‖2/‖x‖2} for [a] ∈ Mn and x ∈ Rn.
[x]T : transpose of matrix [x].
tr{[x]}: trace of the square matrix [x].
〈[x], [y]〉F = tr{[x]T [y]}, inner product of matrices [x] and [y] in Mn,m.
‖ [x] ‖F : Frobenius norm of matrix [x] such that ‖[x]‖2F= 〈[x], [x]〉F .
1B : indicatrix function of set B.
ι: imaginary unit.
δkk′ : Kronecker’s symbol.
δx0

: Dirac measure at point x0.
a.s: almost surely.
E: mathematical expectation.

Cw, Cy, Cz, Cξ, Cϕ, CS : set of values for w, [y], z, ξ,ϕ,S.
δc: controls the level of statistical fluctuations in the random medium.
δs: controls the level of uncertainties in the uncertain spectral measure.
G: Gaussian random field indexed by R3.
Gν : normalized random field corresponding to a finite representation of G.
k: wave vector in R3.
K: compact support of s.d.f k 7→ s(k).
s: spectral density function (s.d.f) k 7→ s(k) of random field G.
S: parameter {w, [y]} controlling the uncertainties in random field Gν .
S: random variable {W , [Y ]} modeling S = {w, [y]}.
S: mean value {w, [y]} of S = {W , [Y ]}.
w: in Cw ⊂ R3, controls the compact support K of s.d.f k 7→ s(k).
w: mean value of W .
W : random vector modelling w.
χ: dimensionless s.d.f τ 7→ χ(τ ) on R3 with compact support [−1, 1]3.
[y]: in Cy ⊂ M3,ν̂s , controls the dimensionless s.d.f τ 7→ χ(τ ).
[y]: mean value of [Y ].
[Y ]: random vector modelling [y].

2. Non-Gaussian random field with uncertain spectral measure

Physical framework of the considered random fields class. For stochastic homogenization
of linear elastic heterogeneous media presented in Section 5, the physical space R3 is
referred to a Cartesian reference system for which the generic point is x = (x1, x2, x3).
Nevertheless, all the developments presented in Sections 2 to 4, can easily be adapted
to any finite dimension greater or equal to 1. We consider a linear elastic heteroge-
neous medium for which the elasticity field is a non-Gaussian fourth-order tensor-valued

random field C̃ = {C̃ijpq}ijpq with i, j, p, and q in {1, 2, 3}. A general probabilistic
construction has been proposed in [9, 10, 32] in order to take into account the material
symmetry in a given symmetry class for the mean value of the elasticity random field and
considering the statistical fluctuations either in the same symmetry class, or in another
symmetry class, or in a mixture of two symmetry classes. In this paper, we start the
construction of the random field with the initial formulation proposed in [29]. It is thus

assumed that the mean value of the elasticity random field C̃ is independent of x and

belongs to any symmetry class. The statistical fluctuations of C̃ around C̃ are assumed
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to be anisotropic and statistically homogeneous in R3 (it should be noted that the devel-
opments presented could be extended to a more general case of material symmetry for
the statistical fluctuations but would greatly complicate the presentation). An important
quantity that controls the statistical fluctuations is the spectral measure that allows the
spatial correlation structure to be described (see for instance [27, 12, 34, 14, 16]) and
that we will assumed to be uncertain in this paper.

Principle of construction of the uncertain spectral measure. The uncertainties are mod-
eled using the probability theory. A parameterization of the spectral measure, involving
a parameter S, is introduced. The uncertain spectral measure is obtained by modeling
S by a random variable S. We then construct a non-Gaussian positive-definite fourth-
order tensor-valued homogeneous random field C(·;S) parameterized with S such that

C̃ = C(·;S). Throughout the paper the quantities surmounted by a tilde correspond to
the case of uncertain spectral measure modeled by a random spectral measure.

Non-Gaussian positive-definite matrix-valued homogeneous random fields with uncertain
spectral measure. For all x fixed in R3, the fourth-order random tensor C(x;S) will verify
the usual properties: symmetry, positivity, and existence of a positive lower bound. Let
i = (i, j) with 1 ≤ i ≤ j ≤ 3 and j = (p, q) with 1 ≤ p ≤ q ≤ 3 be the indices with values
in {1, . . . , 6}, which allow for defining the M+

6 -valued random matrix [C(x;S)] such that
[C(x;S)]ij = Cijpq(x;S) (use of the representation in Voigt notation for the constitutive
equation).

Random effective elasticity matrix. For fixed S, the parameterized effective elasticity ma-
trix [Ceff(S)] is a random matrix in M+

6 , which is obtained by stochastic homogenization
solving a stochastic elliptic BVP on a bounded domain Ω of R3. The random effec-

tive elasticity matrix [C̃eff], corresponding to the elasticity random field with uncertain

spectral measure, is then given by [C̃eff] = [Ceff(S)].

Definition 2.1 (Non-Gaussian homogeneous random field [C(·;S)] given S). Let [C] be
a given matrix in M+

6 independent of x and S. We define {[C(x;S)],x ∈ R3} as a non-
Gaussian M+

6 -valued second-order random field, on a probability space (Θ, T ,P), indexed
by R3, homogeneous, mean-square continuous, whose mean value is [C] = E{[C(x;S)]}
that is therefore independent of x and S. We have

(2.1) tr[C] = c1 , 〈[C]ω,ω〉2 ≥ c0 ‖ω‖22 , ∀ω ∈ R6 ,

in which c0 and c1 are two positive finite constants.

With the construction proposed in this paper, E{[C̃(x)]} = E{[C(x;S)]} will not be

equal to [C] (that is not a difficulty). However, we will see that E{[C̃(x)]} ' [C].

Lemma 2.2 (Normalization of random field [C(·;S)] given S). Let [L] be the upper
triangular (6 × 6) real matrix such that [C] = [L]T [L]. For fixed S, the normalized
representation of [C(x;S)] is written as,

(2.2) [C(x;S)] =
1

1 + ε
[L]T (ε [I6] + [C(x;S)])[L] ,

in which ε > 0 is given and where {[C(x;S)],x ∈ R3} is a M+
6 -valued random field

(by construction), defined on (Θ, T ,P), indexed by R3. Then [C(·;S)] is homogeneous,
mean-square continuous, and such that

(2.3) E{[C(x;S)]} = [I6] , ∀x ∈ R3 .
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Proof. (Lemma 2.2). Under the hypotheses introduced in Definition 2.1, it is easy to
see that [C(·;S)] is a second-order, homogeneous, mean-square continuous random field,
and satisfies Eq. (2.3). �

It should be noted that the lower bound ε [C]/(1+ε) used in Eq. (2.2) could be replaced
by a more general lower bound [Cb] ∈ M+

6 as proposed in [32, 31]. Note also that, as

previously, introducing [C̃(x)} = [C(x;S)], E{[C̃(x)]} will not be equal to [I6] and we

will see that E{[C̃(x)]} ' [I6].

Hypothesis 1 (Principle of construction of random field [C(·;S)] given S). By con-
struction (see Lemma 2.2), [C(·;S)] is a M+

6 -valued random field indexed by R3 and ho-
mogeneous. For x fixed in R3, the M+

6 -valued random variable [C(x;S)] is constructed
by using the Maximum Entropy Principle under the following available information,

(2.4) E{[C(x;S)]} = [I6] , E{log(det[C(x;S)])} = bc ,

in which bc is independent of x and S and such that |bc|< +∞. The second equality is
introduced in order that the random matrix [C(x;S)]−1 (that exists almost surely) be a
second-order random variable: E{‖[C(x;S)]−1‖22} ≤ E{‖[C(x;S)]−1‖2F } < +∞. With
such a construction, [C(x;S)] will appear as a nonlinear transformation of 6×(6+1)/2 =
21 independent normalized Gaussian real-valued random variables {Gmn(x;S), 1 ≤ m ≤
n ≤ 6}, such that

(2.5) E{Gmn(x;S)} = 0 , E{Gmn(x;S)2} = 1 .

The spatial correlation structure of random field {[C(x;S)],x ∈ R3} is introduced by
considering 21 independent real-valued random fields {Gmn(x;S),x ∈ R3} for 1 ≤ m ≤
n ≤ 6, corresponding to 21 independent copies of a unique normalized Gaussian homo-
geneous mean-square continuous real-valued random field {G(x;S),x ∈ R3} given its
normalized spectral measure parameterized by S. Note that the Gaussian random field
G(·;S) is entirely defined by its normalized spectral measure (parameterized by S) be-
cause, ∀x ∈ R3, E{G(x;S)} = 0 and E{G(x;S)2} = 1. The constant bc is eliminated in
favor of a hyperparameter δc, which allows for controlling the level of statistical fluctua-
tions of [C(x;S)], defined by δc = (E{‖[C(x;S)]− [I6]‖2F }/6)1/2, independent of x and
chosen independent of S.

Proposition 2.1 (Random field [C(·;S)]). Let us assume Hypothesis 1.
(i) Let dSC = 215/2Π1≤m≤n≤6 dCmn be the volume element on Euclidean space MS6
in which dCmn is the Lebesgue measure on R. For all x fixed in R3, the probability
measure P[C(x;S)](d

SC) of the M+
6 -valued random variable [C(x;S)] constructed with

the Maximum Entropy Principle under the constraints defined by Eq. (2.4), is inde-
pendent of x (homogeneous random field), independent of S (this marginal probability
measure does not depend of the correlation structure), and written as P[C(x;S)](d

SC) =

p[C(x;S)]([C]) dSC in which the probability density function is written as p[C(x;S)]([C]) =

1M+
6

([C]) cc(det[C])7(1−δ2c)/(2δ2c) exp(−7tr{[C]}/(2δ2
c )) with cc the normalization constant

and where hyperparameter δc must belong to the real interval ]0 ,
√

7/11[.
(ii) For all x fixed in R3, random matrix [C(x;S)] is written as

(2.6) [C(x;S)] = [L(x;S)]T [L(x;S)] ,

in which [L(x;S)] is an upper triangular random matrix in M6 such that
1) the 21 random variables {[L(x;S)]mn, 1 ≤ m ≤ n ≤ 6} are mutually independent.

2) for 1 ≤ m < n ≤ 6, [L(x;S)]mn = σcGmn(x;S) with σc = δc/
√

7 and where
Gmn(x;S) is a normalized Gaussian real-valued random variable (see Eq. (2.5)).
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3) for 1 ≤ m = n ≤ 6, [L(x;S)]mm = σc
√

2h(Gmm(x;S);αm) with αm = 1/(2σ2
c ) +

(1 −m)/2 such that α1 > . . . > α6 > 3 and where Gmm(x;S) is a normalized Gauss-
ian real-valued random variable (see Eq. (2.5)). The function b 7→ h(b;α) is such that
�α = h(N ;α) is a Gamma random variable with parameter α when N is the normalized
Gaussian real-valued random variable.
(iii) The 21 random fields {Gmn(x;S),x ∈ R3} for 1 ≤ m ≤ n ≤ 6 are 21 indepen-
dent copies of a normalized Gaussian homogeneous mean-square continuous real-valued
random field {G(x;S),x ∈ R3},
(2.7) E{G(x;S)} = 0 , E{G(x;S)2} = 1 , ∀x ∈ R3 ,

and which will be defined in Section 3 for imposing its spatial correlation structure via
its spectral measure. parameterized by S.

Proof. (Proposition 2.1). We refer the reader to [28] for the construction using the Max-
imum Entropy Principle and to [29, 31, 32] for the representation defined by Eq. (2.6).
However, we have to prove the properties that yield E{[C(x;S)]} = [I6], this proof being
used in Remark 2.4. For 1 ≤ m ≤ n ≤ 6, [C(x;S)]mn =

∑m
`=1[L(x;S)]`m [L(x;S)]`n.

For m = n, E{[C(x;S)]mm = 2σ2
c E{h(Gmm(x;S);αm)} + σ2

c

∑
`<mE{G`m(x;S)2}.

Equation (2.5) yields
∑
`<mE{G`m(x;S)2} =

∑
`<m 1 = m−1 and E{h(Gmm(x;S);αm)} =

E{�αm} = αm = 1/(2σ2
c ) + (1 − m)/2. Therefore, E{[C(x;S)]mm} = 1. For 1 ≤

m < n ≤ 6, we have E{[C(x;S)]mn = σ2
c E{Gmn(x;S)

√
2h(Gmm(x;S);αm)} +

σ2
c

∑
`<mE{G`m(x;S) G`n(x;S)}. Proposition 2.1-(iii) and Eq. (2.5) yield E{G`m(x;S)

G`n(x;S)}=E{G`m(x;S)}×E{G`n(x;S)} = 0 and E{Gmn(x;S)
√

2h(Gmm(x;S);αm)}
= E{Gmn(x;S)} ×E{

√
2h(Gmm(x;S);αm)}=0. Therefore, E{[C(x;S)]mn} = 0. We

thus obtain the first equation in Eq. (2.4). �

Lemma 2.3 (Properties of function h). (i) Let be α > 3. Function b 7→ h(b;α) : R 7→
]0 ,+∞[ defined in Proposition 2.1 is written as h(b;α) = F−1

α (F (b)) in which F (b) =∫ b
−∞(2π)−1/2e−t

2/2 dt and where F−1
α is the reciprocical function of Fα() = �(α)−1×∫ 

0
tα−1e−t dt for  ≥ 0 with �(α) =

∫ +∞
0

tα−1e−t dt. For all α > 3 and for all b ∈ R,

h(b;α) ≤ 2α+ b2.
(ii) If N is Gaussian with E{N} = 0 and E{N 2} = 1, then E{h(N ;α)} = α.
(iii) If G is non-Gaussian with E{G} = 0 and E{G2} = 1, we have E{h(G;α)} 6= α, but
for α→ +∞, E{h(G;α)} → α.

Proof. (Lemma 2.3). (i) Function h defined in Proposition 2.1 shows that Fα(h(b;α)) =
F (b) in which F (b) is the c.d.f of N and Fα() is the c.d.f of the �α random variable
such that E{�α} = α. We then deduce that h(b;α) = F−1

α (F (b)). In order to prove that
h(b;α) ≤ 2α+ b2, since u 7→ F−1

α (u) is a strictly increasing function from [0, 1[ into R+,
we have to prove that, for all α > 3 and for all b ∈ R, we have Jα(b) ≥ 0 in which

(2.8) Jα(b) = Fα(2α+ b2)− F (b) =
1

�(α)

∫ 2α+b2

0

tα−1e−t dt− 1√
2π

∫ b

−∞
e−t

2/2 dt ,

which can be rewritten as

(2.9) Jα(b) = Pα +
1

�(α)

∫ 2α+b2

2α

tα−1e−t dt− sgn (b)√
2π

∫ |b|
0

e−t
2/2 dt ,

in which Pα = Fα(2α) − 1/2 that is such that, ∀α > 3, Pα > F3(6) − 1/2 ' 0.438,
and sgn is the sign function. Equation (2.9) shows that ∀α > 3 and ∀ b < 0, Jα(b) > 0
because Jα(b) is the sum of three positive terms. For b = 0 and ∀α > 3, Eq . (2.9)
shows that Jα(0) = Pα > 0. For b > 0, we use Eq . (2.8). Let J ′α(b) = dJα(b)/db

be such that J ′α(b) = (2π)−1/2e−b
2/2(aαb (1 + b2/(2α))α−1e−b

2/2 − 1), in which aα =
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2
√

2πe−2α(2α)α−1/�(α) that is such that, ∀α > 3, aα ≤ 0.223679. From Eq. (2.8), it can

be seen that, ∀α > 3, for b→ +∞, Jα(b)→ 0 and J ′α(b) ∼ −e−b2/2/
√

2π. Consequently,
Jα → 0+. Since Jα(0) > 0, we will have Jα(b) > 0 for b > 0 if J ′α(b) < 0, that is to say if

aαb (1 + b2

2α )α−1 < eb
2/2, which is true for α > 3 and b > 0. (ii) If N is normalized and

Gaussian, then h(N ;α) = �α and hence E{h(N ;α)} = α. (iii) Let P (x2|α̂) be defined

by P (x2|α̂) = (2α̂/2�(α̂/2))−1
∫ x2

0
v(α̂/2)−1e−v/2 dv. The change of variable v = 2t yields

P (x2|α̂) = (�(α̂/2))−1
∫ x2/2

0
t(α̂/2)−1e−t dt. Taking α̂ = 2α yields P (x2|α̂) = Fα(x2/2).

For α̂ → +∞, P (x2|α̂) ∼ F (y) with y = (x2 − α̂)/
√

2α̂ and hence Fα(x2/2) ∼ F (y).
Since Fα(h(b;α)) = F (b), taking x2/2 = h(b;α) yields F (b) ∼ F (y) that is to say

b ∼ y = (2h(b;α)−2α)/
√

4α, which shows that h(b;α) ∼ α+b
√
α. If G is a non-Gaussian

random variable such that E{G} = 0, then E{h(G;α)} ∼ α+
√
αE{G} = α. �

Comments on the proposed construction. The use of a nonlinear transformation of a
Gaussian random vector to a non-Gaussian one in finite or infinite dimension has widely
been used in the literature (see for instance [4, 7]). The transformation presented in
Proposition 2.1 is not trivial because it does not result from a simple nonlinear transfor-
mation of a Gaussian vector but takes into account the matrix structure and its algebraic
properties. This nonlinear transformation, which has been constructed by using the Max-
imum Entropy principle, appears as the composition of two nonlinear transformations
for which, the second one (transformation h) depends on parameters linked to the com-
ponents of the random matrix. This construction was introduced in [28, 29], but in the
present paper, point (i) of Lemma 2.3 is a new result, which is essential to demonstrate
the existence and uniqueness of the strong stochastic solution of the weak formulation
of the stochastic elliptic boundary value problem for stochastic homogenization (see Sec-
tions 4 and 5).

Remark 2.4. The analysis of the proof of Proposition 2.1 shows that the property
E{[C(x;S)]} = [I6] holds for a fixed value of S. When S will be modeled by a ran-
dom variable S in order to take into account uncertainties in the spectral measure (see
Section 4 and as we have previously explained at the beginning of Section 2) the ran-

dom field {[C̃(x)],x ∈ R3} such that [C̃(x)] = [C(x;S)] will then depend on copies
of the random field {G(x;S),x ∈ R3} that will always satisfy E{G(x;S)} = 0 and
E{G(x;S)2} = 1, but which will no longer be Gaussian. By examining the proof of

Proposition 2.1, it can be seen that we will always have E{[C̃(x)]mn} = 0 for m 6= n

but that E{[C̃(x)]mm} = 2σ2
c E{h(G(x;S);αm)} + σ2

c (m − 1) 6= 1. Nevertheless, from
Proposition 2.1, since αm > 3 and from Lemma 2.3-(iii), taking G = G(x;S) yields

E{[C̃(x)]mm} ' 1. It has numerically been verified that, if G is a uniform random vari-
able (that will not be the case for G(x;S)) such that E{G} = 0 and E{G2} = 1 (that
will be the case for G(x;S)), then we have E{h(G;αm)} ' αm with an error of 5× 10−4

for all 1 ≤ m ≤ 6.

3. Construction and analysis of the Gaussian random field G(·;S) with
uncertain spectral measure parameterized by S

We start by constructing a normalized Gaussian, homogeneous, second-order, mean-
square continuous random field {G(x),x ∈ R3}. This field corresponds to G(.;S) for
which its spectral measure is given and represented by a given value S of S, that is to
say, G = G(·;S). Therefore, there exists a positive bounded spectral measure mG(dk)
on R3 such that the correlation function ρG of G is written, for all x and ζ in R3, as

(3.1) ρG(ζ) = E{G(x+ ζ)G(x)} =

∫
R3

eιk·ζmG(dk) =

∫
R3

cos(k · ζ)mG(dk) ,
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in which ι =
√
−1, k · ζ =

∑3
j=1 kjζj , dk = dk1dk2dk3. In addition, it is assumed

that mG(dk) = s(k) dk admits a spectral density function (s.d.f) k 7→ s(k) : R3 → R+.
Equations (2.7) and (3.1) yield ρG(0) = E{G(x)2} = 1, and consequently,

(3.2)

∫
R3

s(k) dk = 1 .

In this section, we begin with the analysis of the spectral measure and the modeling
of uncertainties. Then we introduce a finite representation of G(·;S) and we study its
properties. Note that a dimensionless s.d.f, χ, of s will be introduced.

Hypothesis 2 (Spectral density function s and spatial correlation length of G). It is
assumed that s has a compact support K = ∂K ∪ K with K = Π3

j=1 ] −Kj ,Kj [ in which

Kj ∈ [Kmin
j ,Kmax

j ] with 0 < Kmin
j < Kmax

j < +∞. It is assumed that s is a continuous

function on R3. Since supp s = K, we must have s(k) = 0, ∀k ∈ ∂K, and thus

(3.3)

∫
R3

s(k) dk =

∫
K
s(k) dk = 1 .

Since G is real, we have s(−k) = s(k) for all k ∈ R3. In addition to this symmetry
property, we assume that s satisfies the following quadrant symmetry [34]: defining
k{−j} as vector k for which its component kj is replaced by −kj , then s(k{−j}) = s(k)

for j = 1, 2, 3 and ∀k ∈ R3. The spatial correlation length for coordinate ζj is defined by

(3.4) Lcj =

∫ +∞

0

|ρj(0, . . . , ζj , . . . , 0)| dζj ,

and is assumed to be finite.

Definition 3.1 (Spectral domain sampling). Let νs be a given even integer. For j ∈
{1, 2, 3}, we define ∆j = 2Kj/νs as the sampling step of interval [−Kj ,Kj ] and kjβj =
−Kj + (βj − 1/2) ∆j for βj = 1, . . . , νs as its spectral sampling points. Let B = {β =
(β1, β2, β3) , βj = 1, . . . , νs} be the finite subset of N3. We define ∆, K, ν, and kβ such
that: ∆ = ∆1∆2∆3, K = K1K2K3, ν = (νs)

3, and for all β ∈ B, kβ = (k1β1 , k2β2 , k3β3) ∈
K ⊂ R3.

Lemma 3.2 (Discretization of the spectral measure and convergence properties). Let
δkβ

(k) = ⊗3
j=1δkjβj (kj) be the Dirac measure on R3 at sampling point kβ ∈ K ⊂ R3

defined in Definition 3.1. Let mν
G(dk) be the positive bounded measure on R3 defined by

(3.5) mν
G(dk) =

∑
β∈B

s∆
β δkβ

(k) , s∆
β = ∆ s(kβ) ,

which is such that mν
G(R3) =

∑
β∈B s

∆
β = ην with ην > 0. The sequence of measures

{mν
G(dk)}ν converges narrowly towards the measure mG(dk) and the positive sequence

{ην}ν converges towards 1.

Proof. (Lemma 3.2). We have to prove that ∀f ∈ C0(K), the sequence mν
G(f) =

∫
K f(k)

mν
G(dk) = ∆

∑
β∈B f(kβ) s(kβ) converges towards mG(f) =

∫
K f(k)mG(dk) =

∫
K f(k)

s(k) dk. Since the function k 7→ f(k) s(k) is continuous on K, it is known that for
νs → +∞ (that is to say for ν → +∞), ∆

∑
β∈B f(kβ) s(kβ)→

∫
K f(k) s(k) dk. Taking

f(k) = 1 for all k ∈ K yields mG(1) =
∫
K s(k) dk = 1 and mν

G(1) = ∆
∑
β∈B s(kβ) =∑

β∈B s
∆
β = ην . Therefore, {ην}ν converges towards 1. �

Hypothesis 3 (Choice of ν = (νs)
3). Let s be the s.d.f satisfying Hypothesis 2. Let us

consider the spectral domain sampling introduced in Definition 3.1. Using Lemma 3.2,
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we will assume that ν is chosen sufficiently large in order that |
∑
β∈B s

∆
β − 1|≤ εs � 1

and consequently, we will write
∑
β∈B s

∆
β ' 1.

Definition 3.3 (Dimensionless spectral density function). The spectral density function
k 7→ s(k), which verifies Hypothesis 2, is written for all k in R3 as s(k1, k2, k3) =
(K1K2K3)−1χ(k1/K1, k2/K2, k3/K3) in which χ is a given function τ = (τ1, τ2, τ3) 7→
χ(τ1, τ2, τ3) : R3 → R+ with compact support [−1, 1]3.

Function χ has the same properties as s: χ(−τ ) = χ(τ ), quadrant symmetry, and
continuity. For j = 1, 2, 3, the change of variable τj = kj/Kj yields s(k) dk = χ(τ ) dτ
and thus mG(dk) = µG(dτ ) with µG(dτ ) = χ(τ ) dτ , and consequently, Eq. (3.3) yields

(3.6)

∫
R3

χ(τ ) dτ =

∫
[−1,1]3

χ(τ ) dτ = 1 .

The dimensionless spectral domain sampling is directly deduced from Definition 3.1,

(3.7) {τβ = (τβ1 , τβ2 , τβ3),β ∈ B} , τβj = −1 + (βj −
1

2
)

2

νs
, j ∈ {1, 2, 3} .

The discretization µνG(dτ ) of µG(dτ ), such that µνG(dτ ) = mν
G(dk), is written as

(3.8) µνG(dτ ) =
∑
β∈B

χ∆
β δτβ(τ ) , χ∆

β = (2/νs)
3 χ(τβ) ,

in which δτβ = ⊗3
j=1δτβj (τj) and where, from Hypothesis 3,

(3.9)
∑
β∈B

χ∆
β ' 1 .

Definition 3.3 implies that measure µνG(dτ ) is independent of K1, K2, and K3. In order to
introduce the probability model of the spectral measure, we start by defining an adapted
parameterization [y] that takes into account quadrant symmetry.

Definition 3.4 (Parameterization of the discretized dimensionless spectral measure).
Let ν̂s = νs/2 (νs is even). Let Cy be the subset of M3,ν̂s defined by

(3.10) Cy = { [y] ∈ M3,ν̂s , [y]jβ̂ ∈ [0, 1] for j = 1, 2, 3 and β̂ = 1, . . . , ν̂s} .

Let [y] be in Cy such that [y]jβ̂ = 1/2 for j = 1, 2, 3 and β̂ = 1, . . . , ν̂s.

Let B̂ = {β̂ = (β̂1, β̂2, β̂3), β̂j = 1, . . . , ν̂s} ⊂ B be the set of ν̂ = (ν̂s)
3 = ν/8

elements. We define the finite family of functions [y] 7→ aβ̂([y]) : Cy → R such that

aβ̂([y]) =
√
χ∆
β̂
qβ̂([y]; δs), in which δs > 0 is a hyperparameter that will allow the

level of spectrum uncertainties to be controlled and where [y] 7→ qβ̂([y]; δs) is any given

continuous real function on Cy such that qβ̂([y]; δs) = 1. For all [y] ∈ Cy, let {aβ([y]),β ∈
B} be the ν real numbers that are directly constructed from {aβ̂([y]), β̂ ∈ B̂} using the

quadrant symmetry (see Hypothesis 2); an example of such a construction is given in
Example 3.5-(iv). For all β ∈ B, we define the function [y] 7→ χ̃∆

β ([y]) : Cy → R+ such
that

(3.11) χ̃∆
β ([y]) = aβ([y])2(

∑
β′∈B

aβ′([y])2)−1 .

The dimensionless spectral measure µ̃νG(dτ ; [y]) for [y] given in Cy is then defined by

(3.12) µ̃νG(dτ ; [y]) =
∑
β∈B

χ̃∆
β ([y]) δτβ(τ ) .
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Comments concerning the parameterization of uncertainties in the spectral measure. The
spectral density function k 7→ s(k) has a compact support K =

∏3
j=1[−Kj ,Kj ] ⊂ R3 and

has been written as s(k1, k2, k3) = (K1K2K3)−1χ(k1/K1, k2/K2, k3/K3) in which χ is
the dimensionless spectral density function, τ = (τ1, τ2, τ3) 7→ χ(τ1, τ2, τ3), with compact
support [−1, 1]3. The considered uncertainties are one hand on the support K and on
the other hand on the shape of dimensionless spectral density function χ on its support,
which is introduced by a family {χ(.; [y])}, [y] ∈ Cy} of dimensionless spectral density
functions. Introducing w = (w1, w2, w3) ∈ Cw ⊂ R3 with wj = π/Kj for j = 1, 2, 3, the
parameter S = {w, [y]} ∈ CS = Cw×Cy is modeled by the random variable S = {W , [Y ]}
whose support of its probability measure is CS = Cw × Cy. The mean value S of S is
{w, [y]}.
Proposition 3.1 (Random discretized dimensionless spectral measure). Let us consider
Definitions 3.3 and 3.4. It is assumed that Eq. (3.9) holds.
(i) ∀β ∈ B, function [y] 7→ χ̃∆

β ([y]) is continuous on Cy (and thus bounded on Cy), is

such that χ̃∆
β ([y]) ' χ∆

β , and ∀ [y] ∈ Cy,
∑
β∈B χ̃

∆
β ([y]) = 1.

(ii) Let [Y ] be the M3,ν̂s-valued random variable, defined on (Θ, T ,P), whose support of its

probability measure is Cy ⊂ M3,ν̂s , and such that {[Y ]jβ̂ , j ∈ {1, 2, 3} , β̂ ∈ {1, . . . , ν̂s}}
are 3 ν̂s independent uniform random variables on [0, 1]. Its mean value is E{[Y ]} =∫
Cy [y]P[Y ](dy) =

∫
Cy [y] dy = [y]. For all β̂ ∈ B̂, Aβ̂ = aβ̂([Y ]) is a second-order real-

valued random variable.
(iii) ∀β ∈ B, χ̃∆

β ([Y ]) is a second-order positive-valued random variable, defined on

(Θ, T ,P) such that
∑
β∈B χ̃

∆
β ([Y ]) = 1 almost surely.

(iv) The dimensionless spectral measure µ̃νG(dτ ; [y]) for given [y] in Cy, is a bounded
positive measure on R3 and is such that µ̃νG(dτ ; [y]) ' µνG(dτ ). For all [y] ∈ Cy,

µ̃νG(R3; [y]) =
∑
β∈B χ̃

∆
β ([y]) = 1.

Proof. (Proposition 3.1). This proposition is easy to prove and is left to the reader. �

Example 3.5 (Illustration of a construction for a separable spatial correlation structure).
(i) Spectral density function. ∀k = (k1, k2, k3) ∈ R3, s(k) = Π3

j=1sj(kj). For j = 1, 2, 3,

sj(kj) = K−1
j (1 − |kj |/Kj)1[−Kj ,Kj ](kj) and thus, supp sj = [−Kj ,Kj ], sj(−kj) =

sj(kj) (yielding s(−k) = s(k) and the quadrant symmetry), and
∫

[−Kj ,Kj ] sj(kj) dkj = 1.

(ii) Correlation function and spatial correlation length. For all ζ = (ζ1, ζ2, ζ3) ∈ R3,
ρG(ζ) = Π3

j=1ρj(ζj) and for j = 1, 2, 3, ρj(ζj) =
∫
R e

ι kjζj sj(kj) dkj , ρj(0) = 1, and the

spatial correlation length is Lcj =
∫ +∞

0
|ρj(ζj)| dζj = π sj(0) = π/Kj .

(iii) Dimensionless spectral density function and spectral sampling . ∀τ = (τ1, τ2, τ3),
χ(τ) = Π3

j=1 χj(τj). For j = 1, 2, 3, χj(τj) = (1 − |τj |)1[−1,1](τj) and therefore, supp

χj = [−1, 1], χj(−τj) = χj(τj), and
∫
R χj(τj) dτj = 1. For all β = (β1, β2, β3) ∈ B,

χ∆
β = Π3

j=1χ
∆
jβj

with χ∆
jβj

= (2/νs)χj(τβj ).

(iv) Construction of aβ([y]). For j ∈ {1, 2, 3}, β̂j ∈ {1, . . . , ν̂s}, β̂ = (β̂1, β̂2, β̂3), and

∀[y] ∈ Cy, qβ̂([y]; δs) = Π3
j=1qjβ̂j ([y]; δj) in which qjβ̂j ([y]; δj) = 1 +

√
12 δj ([y]jβ̂j − 1/2)

with δj > 0 the hyperparameter. We thus have aβ̂([y]) = Π3
j=1ajβ̂j ([y]) in which

ajβ̂j ([y]) =
√
χ∆
jβ̂j

qjβ̂j ([y], δj) and for βj ∈ {ν̂s+1, . . . , 2 ν̂s}, ajβj ([y]) = aj,(2 ν̂s+1−βj)([y]).

(v) Random variable Aβ̂ and hyperparameter δs. For j ∈ {1, 2, 3} and β̂j ∈ {1, . . . , ν̂s},
the mean value and the second-order moment of random variable Ajβ̂j = ajβ̂j ([Y ]) are

E{Ajβ̂j} =
√
χ∆
jβ̂j

and E{A2
jβ̂j
} = χ∆

jβ̂j
(1 + δ2

j ). Since the random variables {Ajβ̂j}j,β̂j
are independent, the mean value and the second-order moment of the random variable
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Aβ̂ = aβ̂([Y ]) = Π3
j=1Ajβ̂j are E{Aβ̂} =

√
χ∆
β̂

and E{A2
β̂
} = χ∆

β̂
Π3
j=1(1 + δ2

j ). Defining

the hyperparameter δs as δ2
s = E{(Aβ̂ −

√
χ∆
β̂

)2}/χ∆
β̂

, it can be seen that we have

δ2
s = (Π3

j=1(1 + δ2
j ))− 1 > 0, which is independent of β̂.

(vi) Discretized dimensionless spectral measure. Eq. (3.11) yields, ∀β = (β1, β2, β3) ∈ B,
χ̃∆
β ([y]) = Π3

j=1 χ̃
∆
jβj

([y]) in which χ̃∆
jβj

([y]) = ajβj ([y])2(
∑
β′∈B aβ′([y])2)−1/3.

Definition 3.6 (Spectrum parameters w and S and their probabilistic models W and
S). Let w = (w1, w2, w3) in which wj = π/Kj (this parameter allows the support of the
spectral measure to be controlled). Let Cw = {w ∈ R3;wj ∈ [wmin

j , wmax
j ] for j = 1, 2, 3}

be the compact subset of R3, in which 0 < wmin
j = π/Kmax

j < wmax
j = π/Kmin

j < +∞ (see

Hypothesis 2). Parameter w is modeled by a R3-valued random variable W , defined on
(Θ, T ,P), independent of [Y ], whose support of its given probability measure PW (dw)
is Cw. We define the parameter S as {w, [y]}, which takes its values in the subset
CS = Cw × Cy of R3 × M3,ν̂s . The probabilistic model of S is the R3 × M3,ν̂s - valued
random variable S = {W , [Y ]} whose probability measure is the product of measures
PS = PW (dw)⊗ P[Y ](dy) whose compact support is CS .

Definition 3.7 (Normalized Gaussian random field Gν(·;S) given S = {w, [y]} ∈ CS =
Cw ×Cy ). Let ν = (νs)

3 be fixed. Let {Zβ,β ∈ B} and {Φβ,β ∈ B} be 2 ν independent
random variables on (Θ, T ,P), which are independent of W and [Y ]. For all β ∈ B,
Zβ =

√
−logΨβ in which Ψβ is uniform of [0, 1] and Φβ is uniform on [0, 2π]. Let

PZ(dz) and PΦ(dϕ) be the probability measures on Rν of the Rν-valued random variables
Z = {Zβ,β ∈ B} and Φ = {Φβ,β ∈ B}. The unbounded support Cz of PZ(dz) is
Cz = {z = {zβ,β ∈ B}, zβ > 0} ⊂ Rν and the compact support Cϕ of PΦ(dϕ) is
Cϕ = {ϕ = {ϕβ,β ∈ B}, ϕβ ∈ [0, 2π]} ⊂ Rν . Let x 7→ gν(x;S, z,ϕ) : R3 → R be such
that, for all {S, z,ϕ} ∈ CS × Cz × Cϕ,

(3.13) gν(x;S, z,ϕ) =
∑
β∈B

√
2χ̃∆
β ([y]) zβ cos(ϕβ +

3∑
j=1

π

wj
τβjxj) .

For all w ∈ Cw and [y] ∈ Cy, we define the real-valued random field {Gν(x;S),x ∈ R3}
with S = {w, [y]} ∈ CS = Cw × Cy, such that

(3.14) Gν(x;S) = gν(x;S,Z,Φ) .

Equation (3.14) with Eq. (3.13) corresponds to a finite discretization of the stochastic
integral representation with a stochastic spectral measure for homogeneous second-order
mean-square continuous random fields [6, 8, 12].

Proposition 3.2 (Properties of random field Gν(·;S)). For all S = {w, [y]} ∈ CS =
Cw × Cy, the real-valued random field {Gν(x;S),x ∈ R3} is Gaussian, homogeneous,
second-order, mean-square continuous, and normalized,

(3.15) E{Gν(x;S)} = 0 , E{Gν(x;S)2} = 1 , ∀x ∈ R3 .

Its dimensionless spectral measure µ̃νG(dτ ; [y]), expressed with the dimensionless spectral
variable τ = (τ1, τ2, τ3) with τj = kj/Kj, is the spectral measure defined by Eq. (3.12).

Proof. (Proposition 3.2). Since {Zβ,β ∈ B} and {Φβ,β ∈ B} are 2 ν independent
random variables, it can easily be proven that Gν(·;S) is centered (first equation in
Eq. (3.15)) and, ∀ζ = (ζ1, ζ2, ζ3) ∈ R3 and ∀S = {w, [y]} ∈ CS = Cw × Cy,

(3.16) ρνG(ζ;S) = E{Gν(x+ζ;S)Gν(x;S)} =
∑
β∈B

χ̃∆
β ([y]) cos(

3∑
j=1

π

wj
τβjζj) .
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Using Proposition 3.1-(i) yields the second equation in Eq. (3.15). For all β ∈ B, the

random variable Zβ cos(Φβ+
∑3
j=1

π
wj
τβjxj) is Gaussian and consequently, random field

Gν(·;S) is Gaussian. Since Gν(·;S) is a Gaussian random field with zero mean function
and a correlation function that depends only on ζ, Gν(·;S) is homogeneous on R3.
Since ζ 7→ ρνG(ζ;S) defined by Eq. (3.16) is continuous on R3, Gν(·;S) is mean-square
continuous on R3 and thus there exists a spectral measure given by Eq. (3.12). Note
that the spectral measure in k = (k1, k2, k3) is such that m̃ν

G(dk;S) = µ̃νG(dτ ; [y]) with
m̃ν
G(dk;S) =

∑
β∈B s̃

∆
β (w, [y]) δkβ

(k) in which s̃∆
β (w, [y]) = χ̃∆

β ([y]) Π3
j=1(π/wj) with

S = {w, [y]}. �

4. Non-Gaussian random field [C(.;S)] parameterized by S and random

field [C̃] with uncertain spectral measure

In the construction of G with an uncertain spectrum, the spectral measure mG(dk)
of G is given (see Hypothesis 2). This is the reason why the convergence of the sequence
{mν

G(dk)}ν of measures towards mG(dk) has been studied (see Lemma 3.2). The uncer-
tain dimensionless spectrum, represented by µ̃νG(dτ ; [y]) for [y] given in Cy, is constructed
from µνG(dτ ) = mν

G(dk) and constitutes the uncertain spectral measure of random field
Gν(·;S) given S = {w, [y]} ∈ CS = Cw × Cy. Although a limit G∞(·;S) of random field
Gν(·;S) exits for ν → +∞ (see [22]), a convergence analysis is not useful for the proba-
bilistic construction that is proposed because the limit is not given (unknown). The value
of ν = (νs)

3 (see Definition 3.1) is chosen sufficiently large in order that Hypothesis 3 be
verified. Proposition 3.2 shows that, for all S ∈ CS , the random field Gν(·;S), defined
by Eq. (3.14), satisfies all the required properties (Gaussian, homogeneous, mean-square
continuous, and normalization). We are therefore led to introduce the following definition
in coherence with Proposition 2.1, Lemma 2.3, and Remark 2.4.

Definition 4.1 (Random field [C(·,S)] given S). We assume that ν is fixed and satisfies
Hypothesis 3. The non-Gaussian random fieldC(·,S) given S ∈ CS is defined by Eq. (2.6)
in which the 21 Gaussian random fields {Gmn(x;S),x ∈ R3}1≤m≤n≤6 are replaced by 21
independent copies of the Gaussian real-valued random field {Gν(x;S),x ∈ R3} defined
by Eq. (3.14), and denoted by {Gνmn(x;S),x ∈ R3}1≤m≤n≤6. For all S ∈ CS , x ∈ R3,
and for 1 ≤ m ≤ n ≤ 6, using Eq. (3.14) yields

(4.1) Gνmn(x;S) = gν(x;S,Zmn,Φmn) .

in which {Zmn,Φmn}1≤m≤n≤6 are 21 independent copies of Rν-valued random variables
Z and Φ (see Definition 3.7), and we have

(4.2) E{Gνmn(x;S)} = 0 , E{Gνmn(x;S)2} = 1 .

Proposition 4.1 (Properties of the non-Gaussian M+
6 -valued random field {[C(·;S)]}).

The non-Gaussian random field [C(·;S)], defined in Definition 4.1 for a given uncertain
spectral measure parameterized by S, is a second-order random field such that

(4.3) ‖ [C(x;S)] ‖F ≤ ΓC a.s. , ∀x ∈ R3 ,

in which ΓC is a second-order positive-valued random variable, independent of x and S,
such that

(4.4) E{Γ2
C} = γ2

2,C
< +∞ , E{Γ4

C} = γ4
4,C

< +∞ .

For all ω and ω′ in R6 and for all x in R3,

(4.5) |〈[C(x;S)]ω ,ω′〉2| ≤ ΓC ‖ω‖2 ‖ω′‖2 a.s.
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Proof. (Proposition 4.1). For all x ∈ R3 and S ∈ CS , Proposition 2.1 and Definition 4.1
yield [C(x;S)] = [L(x;S)]T [L(x;S)] in which [L(x;S)]mn = σcG

ν
mn(x;S) for 1≤m<

n ≤ 6 and [L(x;S)]mm = σc
√

2h(Gνmm(x;S);αm) for 1 ≤ m = n ≤ 6. We thus have,
almost surely, ‖ [C(x;S)] ‖F ≤ ‖[L(x;S)]‖2F=

∑
m[L(x;S)]2mm +

∑
m<n[L(x;S)]2mn =

σ2
c (
∑
m 2h(Gνmm(x;S);αm) +

∑
m<nG

ν
mn(x;S)2). Using Lemma 2.3-(i) yields

(4.6) ‖ [C(x;S)] ‖F ≤ σ2
c (4

∑
m

αm + 2
∑
m

Gνmm(x;S)2 +
∑
m<n

Gνmn(x;S)2) .

For all S = {w, [y]} ∈ CS = Cw × Cy, z ∈ Cz, and ϕ ∈ Cϕ, Eq. (3.13) allows for writing

|gν(x;S, z,ϕ)|≤
∑
β∈B

√
2χ̃∆
β ([y]) zβ ≤

√
2
∑
β∈B χ̃

∆
β ([y])

√∑
β∈B z

2
β ≤

√
2
∑
β∈B z

2
β

because, from Proposition 3.1-(i),
∑
β∈B χ̃

∆
β ([y]) = 1. For all x ∈ R3, using Eq. (4.1)

yields Gνmn(x;S)2 ≤ 2
∑
β∈B(Zmnβ )2 almost surely. Using Eq. (4.6), we obtain Eq. (4.3)

in which ΓC = σ2
c (4

∑
m αm + 4

∑
m

∑
β(Zmmβ )2 + 2

∑
m<n

∑
β(Zmnβ )2) that is indepen-

dent of x and S. The 21×ν random variables {Zmnβ }mn,β are independent copies of ran-

dom variable Z =
√
−logΨ whose probability measure is PZ(dz) = 1R+(z) 2z exp(−z2) dz.

We have E{Z} =
√
π/2 and E{Z2} = 1. Hence, E{ΓC} = γ

1,C
with γ

1,C
= σ2

c (4
∑
m αm+

54 ν) < +∞. For p = 2 or 4, E{ΓpC} = 2(2σ2
c )p
∫ +∞

0
(2
∑
m αm+27νz2)p z exp(−z2) dz =

γp
p,C

< +∞ that yields Eq. (4.4) (note that E{Γ4
C} < +∞ implies E{ΓC} < +∞

and E{Γ2
C} < +∞). Since E{‖ [C(x;S)] ‖2F } ≤ E{Γ2

C} < +∞, [C(·;S)] is a second-
order random field. Finally, for all x ∈ R3, ω and ω′ in R6, |〈[C(x;S)]ω ,ω′〉2| ≤
‖[C(x;S)]‖2 ‖ω‖2 ‖ω′‖2≤ ‖[C(x;S)]‖F ‖ω‖2 ‖ω′‖2, which yields Eq. (4.5) using Eq. (4.3).

�

Corollary 4.1 (Properties of the non-Gaussian M+
6 -valued random field [C(·;S)]). Let

C(·;S) be the non-Gaussian second-order random field defined by Eq. (2.2) in which
C(·;S) satisfies the properties given in Proposition 4.1. For all ω ∈ R6\{0},

(4.7)
〈[C(x;S)]ω,ω〉2

‖ω‖22
≤ ‖ [C(x;S)] ‖F ≤ ΓC a.s. , ∀x ∈ R3 ,

with ΓC a second-order R+-valued random variable, independent of x and S, such that

(4.8) E{Γ2
C} = γ2

2,C
< +∞ , E{Γ4

C} = γ4
4,C

< +∞ .

For all ω and ω′ in R6 and for all x in R3,

|〈[C(x;S)]ω,ω′〉2| ≤ ΓC ‖ω‖2 ‖ω′‖2 a.s. ,(4.9)

〈[C(x;S)]ω,ω〉2 ≥ cε ‖ω‖22 a.s.(4.10)

in which cε = c0 ε/(1 + ε) is a finite positive constant independent of x and S.

Proof. (Corollary 4.1). Equation (2.2) yields ‖ [C(x;S)] ‖F ≤ (1 + ε)−1‖[L]T ‖F ‖[L]‖F
(ε ‖[I6]‖F+‖[C(x;S)‖F ). We have ‖[L]T ‖F= ‖[L]‖F= (tr[C])1/2 and ‖[I6]‖F=

√
6.

Eqs. (2.1) and (4.3) yield ‖ [C(x;S)] ‖F ≤ c1(1 + ε)−1(ε
√

6 + ‖ [C(x;S)] ‖F ) ≤ ΓC al-

most surely with ΓC = c1(1 + ε)−1(ε
√

6 + ΓC), which is the second part of Eq. (4.7).
For all ω and ω′ in R6, we have |〈[C(x;S)]ω,ω′〉2| ≤ ‖[C(x;S)]‖F ‖ω‖2 ‖ω′‖2. Tak-
ing ω′ = ω ∈ R6\{0} yields the first part of Eq. (4.7). Then using the second part of
Eq. (4.7) yields Eq. (4.9). From Eq. (2.2), it can be deduced that 〈[C(x;S)]ω ,ω〉2 =
(ε〈[C]ω,ω〉2 + 〈[C(x;S)] [L]ω, [L]ω〉2)/(1 + ε). From Eq. (2.1) and since [C(x;S)] is a
M+

6 -valued random variable, we obtain Eq. (4.10). �
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Definition 4.2 (Random field [C̃] with uncertain spectral measure). We assume that ν is

fixed and satisfies Hypothesis 3. The random field {[C̃(x)] ∈ R3} with uncertain spectral
measure is defined by

(4.11) [C̃(x)] = [C(x;S)] , ∀x ∈ R3 ,

in which S = {W , [Y ]} is the R3×M3,ν̂s- valued random variable defined by Definition 3.6.

Remark 4.3. Random field {[C̃(x)] ∈ R3} defined by Eq. (4.11) is the random field with
uncertain spectral measure. As explained in Remark 2.4, E{[C(x;S)]} = [C] for all

x ∈ R3, we have not E{[C̃(x)]} = [C], but we have the approximation E{[C̃(x)]} ' [C].

5. Stochastic elliptic boundary value problem for stochastic
homogenization

We consider a heterogeneous complex elastic microstructure occupying domain Ω,
which by definition is a microstructure that cannot be described in terms of its con-
stituents at the microscale. This is typically the case of live tissues. In such a case,
the stochastic model of the apparent elasticity field can be constructed at the mesoscale
that corresponds to the scale of the spatial correlation length of the microstructure Ω
as proposed in [29, 30, 32]. The stochastic homogenization from the mesoscale to the

macroscale allows the effective elasticity tensor C̃eff to be constructed. The study of the

statistical properties of C̃eff allows for analyzing the scale separation. The separation is

obtained if the statistical fluctuations of C̃eff are sufficiently small and, in this case, Ω is
a representative volume element (RVE) [11, 20, 21, 30]. Such a separation occurs if the
spatial correlation length at the mesoscale is sufficiently small with respect to the charac-

teristic geometrical dimension of Ω. If not, C̃eff exhibits significant statistical fluctuations
and therefore, Ω is not a RVE.

The deterministic part of the formulation used in Sections 5.1 to 5.3 to write the
problem of homogenization on Ω is that proposed in [2] for homogeneous deformations
on the boundary ∂Ω. We use the convention for summations over repeated Latin indices
j, p, and q taking values in {1, 2, 3}.

5.1. Definition of the stochastic boundary value problem (BVP). Let Ω be a
bounded open subset of R3 with a sufficiently regular boundary ∂Ω. Let S be fixed in

CS . For all ` and r in {1, 2, 3}, we have to find the R3-valued random field {Ũ `r(x) =

(Ũ `r1 (x), Ũ `r2 (x), Ũ `r3 (x)),x ∈ Ω}, defined on (Θ, T ,P), indexed by Ω, such that almost
surely,

− ∂

∂xj
(Cijpq(x;S) εpq(Ũ

`r(x)) = 0 , ∀x ∈ Ω , i = 1, 2, 3 ,(5.1)

Ũ `r(x) = ũ`r0 (x) , ∀x ∈ ∂Ω ,(5.2)

in which εpq(u) = (∂up/∂xq + ∂uq/∂xp)/2 for u = (u1, u2, u3) and where for all x ∈ ∂Ω,
ũ`r0 (x) = (ũ`r0,1(x), ũ`r0,2(x), ũ`r0,3(x)) is defined by ũ`r0,j(x) = (δj`xr + δjrx`)/2 with δj`
the Kronecker symbol. The fourth-order tensor-valued random field {Cijpq(·;S)}ijpq is
such that Cijpq = Cjipq = Cijqp = Cpqij for i, j, p, and q in {1, 2, 3} and is such that
Cijpq(·;S) = [C(·,S)]ij in which i = (i, j) with 1 ≤ i ≤ j ≤ 3 and j = (p, q) with
1 ≤ p ≤ q ≤ 3 are indices with values in {1, . . . , 6}, and where the M+

6 -valued random
field [C(·;S)] is the one constructed in Section 4 and whose properties are given by
Corollary 4.1.
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5.2. Random effective tensor from stochastic homogenization and its random
eigenvalues. For S fixed in CS , for i, j, `, and r in {1, 2, 3} the component Ceff

ij`r(S) of

the random fourth-order effective tensor Ceff(S) is defined by

(5.3) Ceff
ij`r(S) =

1

|Ω|

∫
Ω

Cijpq(x;S) εpq(Ũ
`r(x)) dx ,

in which Ũ `r is the R3-valued random field that satisfies Eqs. (5.1) and (5.2) and where
|Ω|=

∫
Ω
dx. The fourth-order effective tensor Ceff(S) satisfies the symmetry and positive-

definiteness properties [2]. We can thus define the effective M+
6 -valued random matrix

[Ceff(S)] associated with random tensor Ceff(S), which is such that [Ceff(S)]ij = Ceff
ij`r(S)

in which i = (i, j) with 1 ≤ i ≤ j ≤ 3 and j = (`, r) with 1 ≤ ` ≤ r ≤ 3.

5.3. Transforming the nonhomogeneous Dirichlet BVP in a homogeneous Dirich-
let BVP. For fixed ` and r, since x 7→ ũ`r0 (x) is a linear function in x, we can perform
the following translation (without having to resort the trace theorem in Hilbert spaces),

(5.4) Ũ `r(x) = U `r(x) + ũ`r0 (x) , ∀x ∈ Ω .

Since, ∀x ∈ Ω, εpq(ũ
`r
0 (x)) = (δp`δqr + δprδq`)/2 and Cij`r(x;S) = Cijr`(x;S), for

all ` and r in {1, 2, 3}, the nonhomogeneous Dirichlet BVP defined by Eqs. (5.1) and
(5.2) becomes the following homogeneous Dirichlet BVP for the R3-valued random field
{U `r(x) = (U `r1 (x), U `r2 (x), U `r3 (x)),x ∈ Ω}, defined on (Θ, T ,P), indexed by Ω, such
that almost surely,

− ∂

∂xj
(Cijpq(x;S) εpq(U

`r(x)) = f `ri (x;S) , ∀x ∈ Ω , i = 1, 2, 3 ,(5.5)

U `r(x) = 0 , ∀x ∈ ∂Ω ,(5.6)

in which f `ri (x;S) = ∂
∂xj

(Cij`r(x;S) that, from Proposition 2.1 and Eqs. (3.13), (3.14),

and (4.1), exists almost surely.

5.4. Analysis of the stochastic homogeneous Dirichlet BVP. (i) Definition of
random vector Ξ. Let Ξ = {{Zmn, 1 ≤ m ≤ n ≤ 6}, {Φmn, 1 ≤ m ≤ n ≤ 6}} be the
second-order random variable on (Θ, T ,P) with values in Rnξ with nξ = 2 × 21 × ν,
whose probability measure is PΞ = (⊗m,nPZmn) ⊗ (⊗m,nPΦmn) in which PZmn = PZ
and PΦmn = PΦ for all 1 ≤ m ≤ n ≤ 6 (see Definitions 3.7 and 4.1). Let Cξ ⊂ Rnξ be
the support of PΞ, which is known and can easily be written. Consequently, we have
E{‖Ξ‖22} =

∫
Rnξ ‖ξ‖

2
2 PΞ(dξ) =

∫
Cξ‖ξ‖

2
2 PΞ(dξ) < +∞.

(ii) Definition of mappings ξ 7→ c(·;S, ξ) and ξ 7→ u`r(·;S, ξ). For S fixed in CS , the
fourth-order tensor-valued random field C(·;S) is written as Cijpq(x;S) = [C(x;S)]ij
in which i = (i, j) with i ≤ j and j = (p, q) with p ≤ q. Taking into account the
construction presented in Sections 2 to 4, the random field [C(·;S)] is defined by a
M+

6 -valued measurable mapping ξ 7→ [c(·;S, ξ)] on Cξ such that [C(·;S)] = [c(·;S,Ξ)].
Therefore, the fourth-order random field C(·;S) is defined by a measurable mapping
ξ 7→ c(·;S, ξ) on Cξ such that

(5.7) Cijpq(·;S) = cijpq(·;S,Ξ) , i, j, p, q ∈ {1, 2, 3} .

Similarly, random field U `r involved in the stochastic BVP, defined by Eqs. (5.5) and
(5.6), depends only on S and Ξ, and is defined by a measurable mapping ξ 7→ u`r(·;S, ξ)
on Cξ such that U `r = u`r(·;S,Ξ) for ` and r in {1, 2, 3}.



STOCHASTIC ELLIPTIC OPERATORS DEFINED BY NON-GAUSSIAN RANDOM FIELDS 15

(iii) Definition of Hilbert space H. Let H = {v = (v1, v2, v3); vj ∈ H1(Ω) for j = 1, 2, 3;
v = 0 on ∂Ω} be the Hilbert space equipped with the inner product and the associated
norm,

(5.8) 〈u,v〉H =

∫
Ω

εpq(u(x)) εpq(v(x)) dx , ‖v‖H= (〈v,v〉H)1/2 .

Note that ‖v‖H is a norm on H due to the Korn inequality and because v = 0 on ∂Ω
(see for instance [5]). Introducing the matrix [ε] such that [ε]pq = εpq, Eq. (5.8) can be
rewritten as

(5.9) 〈u,v〉H =

∫
Ω

〈[ε(u(x))] , [ε(v(x))]〉F dx , ‖v‖2H=

∫
Ω

‖ [ε(v(x))] ‖2F dx .

(iv) Definition of bilinear form b(·, ·;S, ξ) and linear form L`r(·;S, ξ). For S fixed in
CS , for all ξ ∈ Cξ, for ` and r in {1, 2, 3}, and using Eq. (5.7), we define the bilinear form
(u,v) 7→ b(u,v;S, ξ) : H× H→ R such that

(5.10) b(u,v;S, ξ) =

∫
Ω

cijpq(x;S, ξ) εpq(u(x)) εij(v(x)) dx ,

and the linear form v 7→ L`r(v;S, ξ) : H→ R such that

(5.11) L`r(v;S, ξ) = −
∫

Ω

c`rij(x;S, ξ) εij(v(x)) dx ,

whose right-hand side member in Eq. (5.11) is the transformation of
∫

Ω
f `ri (x;S) vi(x) dx

for which we have used v = 0 on ∂Ω and the symmetry property cij`r = cji`r = c`rij .

(v) Type of stochastic solution sought . From a computational point of view, a solution of
the stochastic BVP defined by Eqs. (5.5) and (5.6) will be constructed by using the Monte
Carlo simulation method. Consequently, we only need to analyze the strong stochastic
solution of the weak formulation of this stochastic BVP and the weak stochastic solution
is not useful. We then limit Proposition 5.1 to the strong stochastic solution.

Proposition 5.1 (Weak formulation of the stochastic homogeneous Dirichlet BVP and
its strong stochastic solution). (i) For S fixed in CS and for 1 ≤ ` ≤ r ≤ 3, the weak
formulation of the stochastic BVP defined by Eqs. (5.5) and (5.6) is: for PΞ-almost all
ξ in Cξ ⊂ Rnξ , find u`r(·;S, ξ) in H such that

(5.12) b(u`r(·;S, ξ),v;S, ξ) = L`r(v;S, ξ) , ∀v ∈ H .

(ii) For 1 ≤ ` ≤ r ≤ 3, there exists a unique solution u`r(·;S, ξ) ∈ H (strong stochastic
solution) such that Eq. (5.12) holds and ur`(·;S, ξ) = u`r(·;S, ξ).
(iii) The associated stochastic solution U `r(·;S) = u`r(·;S,Ξ) is of second-order,

(5.13) E{‖U `r(·;S)‖2H} = γ2
u
< +∞ .

Proof. (Proposition 5.1).
(i) Using Eqs. (5.7) and (5.8) to (5.11), it is easy to prove that Eq. (5.12) is the weak

formulation of Eqs. (5.5) and (5.6).
(ii) Let [c`r(x;S, ξ)] be the (3×3) real matrix such that [c`r(x;S, ξ)]ij = c`rij(x;S, ξ).

Therefore Eq. (5.11) can be rewritten as L`r(v;S, ξ) = −
∫

Ω
〈[c`r(x;S, ξ)] , [ε(v(x))]〉F dx

and using Eq. (5.9) yield |L`r(v;S, ξ)|≤ (
∫

Ω
‖ [c`r(x;S, ξ)] ‖2F dx)1/2 ‖v‖H. For all ` and

r in {1, 2, 3} and since c`rij = c`rji, we have ‖ [c`r(x;S, ξ)] ‖2F=
∑
i,j c`rij(x;S, ξ)2 ≤

2
∑
`′≤r′,i≤j c`′r′ij(x;S, ξ)2 = 2 ‖ [c(x;S, ξ)] ‖2F in which we have used the notation

[c(x;S, ξ)]j′i = c`′r′ij(x;S, ξ) in which j′ = (`′, r′) with `′ ≤ r′ and i = (i, j) with
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i ≤ j. Taking into account Proposition 4.1 and its proof, Eqs. (4.7) and (4.8) of Corol-
lary 4.1 with its proof, show that ΓC = γC(Ξ) in which ξ 7→ γC(ξ) is a positive-valued
measurable mapping on Cξ, which is independent of S and such that

(5.14) E{Γ2
C} =

∫
Cξ
γC(ξ)2 PΞ(dξ) = γ2

C
< +∞ .

Equation (4.7) shows that

(5.15) ‖ [c(x;S, ξ)] ‖F ≤ γC(ξ) , for PΞ - almost all ξ in Cξ .

It can then be deduced that

(5.16) |L`r(v;S, ξ)| ≤
√

2 |Ω|1/2 γC(ξ) ‖v‖H ,

which shows that linear form v 7→ L`r(v;S, ξ) is continuous on H for PΞ-almost ξ in Cξ.
Equation (4.9) shows that, ∀ω and ω′ in R6, |〈[c(x;S, ξ)]ω,ω′〉2| ≤ γC(ξ) ‖ω‖2 ‖ω′‖2 for
PΞ-almost ξ in Cξ. Using Eq. (5.10) and taking into account the symmetry properties
of εpq and cijpq yield, for all u and v in H, |b(u,v;S, ξ)| ≤ 2 γC(ξ) ‖u‖H ‖v‖H, which
shows that bilinear form (u,v) 7→ b(u,v;S, ξ) is continuous on H×H for PΞ-almost ξ in
Cξ. Equation (4.10) shows that, ∀ω ∈ R6, 〈[c(x;S, ξ)]ω,ω〉2 ≥ cε ‖ω‖22 for PΞ-almost
ξ in Cξ. From Eq. (5.10), it can be deduced that, ∀v ∈ H,

(5.17) b(v,v;S, ξ) ≥ cε ‖v‖2H ,

which proves that bilinear form (u,v) 7→ b(u,v;S, ξ) is coercive for PΞ-almost ξ in Cξ.
Due to the continuity and coercivity of bilinear form b(·, ·;S, ξ) and due to the continuity
of linear form L`r(·;S, ξ) for PΞ-almost ξ in Cξ, the use of the Lax-Milgram theorem
[13, 15] allows for proving (ii) of the Proposition.

(iii) Taking v = u`r(·;S, ξ) in Eq. (5.12) yields b(u`r(·;S, ξ),u`r(·;S, ξ);S, ξ) =
|L`r(u`r(·;S, ξ);S, ξ)|. From Eq. (5.16), it can be deduced that |L`r(u`r(·;S, ξ);S, ξ)| ≤√

2 |Ω|1/2 γC(ξ) ‖u`r(·;S, ξ)‖H and using Eq. (5.17) yield cε ‖u`r(·;S, ξ)‖2H≤ b(u`r(·;S, ξ),
u`r(·;S, ξ);S, ξ). Consequently, we obtain

(5.18) ‖u`r(·;S, ξ)‖H ≤
√

2 |Ω|1/2

cε
γC(ξ) .

Finally, E{‖U `r(·;S)‖2H} =
∫
Cξ‖u

`r(·;S, ξ)‖2H PΞ(dξ) ≤ 2 |Ω| c−2
ε

∫
Cξ γC(ξ)2 PΞ(dξ) and

using Eq. (5.14) yield E{‖U `r(·;S)‖2H}=2|Ω|γ2
C
/c2ε that is Eq. (5.13) with γ2

u
= 2 |Ω|γ2

C
/c2ε .
�

5.5. Random eigenvalues of the random effective elasticity matrix. For S =
{w, [y]} ∈ CS = Cw × Cy, the random effective elasticity matrix [Ceff(S)] defined in
Section 5.2 can be written as [Ceff(S)] = [ceff(S,Ξ)] in which ξ 7→ [ceff(S, ξ)] is a M+

6 -
valued measurable mapping on Cξ ⊂ Rnξ . For all S ∈ CS and ξ ∈ Cξ, let λ1(S, ξ) ≥
. . . ≥ λ6(S, ξ) > 0 be the eigenvalues of matrix [ceff(S, ξ)] ∈ M+

6 and let λ(S, ξ) =
(λ1(S, ξ), . . . , λ6(S, ξ)) ∈ (R+∗)6. Let S = {W , [Y ]} be the R3 × M3,ν̂s-valued random
variable defined in Definition 3.6 and Proposition 3.1-(ii), for which the support of its
probability measure PS = PW (dw)⊗P[Y ](dy) is subset CS = Cw×Cy of R3×M3,ν̂s . The

random effective elasticity matrix [C̃eff], which corresponds to the elasticity random field

C̃ for which its spectral measure is uncertain, can then be written as [C̃eff] = [Ceff(S)] =

[ceff(S,Ξ)]. Let {Λ̃j = λj(S,Ξ), j = 1, . . . , 6} be the ordered (a.s) random eigenvalues

of [C̃eff]. Let Λ̃ = (Λ̃1, . . . , Λ̃6) be the R6-valued random variable whose support of its

probability measure PΛ̃(dλ̃) is (R+∗)6. The operator norm of [C̃eff] is ‖ [C̃eff] ‖2= Λ̃1.
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Corollary 5.1 (Second-order properties of the random eigenvalues). Under proposi-

tion 5.1, Λ̃ is a second-order R6-valued random variable,

(5.19) E{‖Λ̃‖22} = γ2
λ < +∞ .

Proof. (Corollary 5.1). From Eqs. (5.3), (5.4), and (5.11), it can be deduced that
ceff
ij`r(S, ξ) = −|Ω|−1Lij(u`r(·;S, ξ);S, ξ) + |Ω|−1

∫
Ω
cij`r(x;S, ξ) dx. Since (a + b)2 ≤

2(a2+b2), we have ‖λ(S, ξ)‖22 = ‖ [ceff(S, ξ)] ‖2F=
∑
i≤j,`≤r c

eff
ij`r(S, ξ)2 ≤ 2|Ω|−2

∑
i≤j,`≤r{

|Lij(u`r(·;S, ξ);S, ξ)|2+(
∫

Ω
cij`r(x;S, ξ) dx)2

}
. Using Eq. (5.15) allows us to write∑

i≤j,`≤r(
∫

Ω
cij`r(x;S, ξ) dx)2 ≤ |Ω|

∫
Ω
‖ [c(x;S, ξ))] ‖2F dx ≤ |Ω|2 γC(ξ)2. Using Eq. (5.16)

and (5.18) yields
∑
i≤j,`≤r|Lij(u`r(·;S, ξ);S, ξ)|2≤ 84 c−2

ε |Ω|2 γC(ξ)4. It can then be de-

duced the inequality ‖λ(S, ξ)‖22 ≤ 168 c−2
ε γC(ξ)4 + 2 γC(ξ)2 and consequently, we have

E{‖Λ̃‖22} =
∫
CS

∫
Cξ‖λ(S, ξ)‖22 PS(ds) ⊗ PΞ(dξ) ≤ 168 c−2

ε E{Γ4
C} + 2E{Γ2

C}. Using

Eq. (4.8) yields Eq. (5.19) with γ2
λ = 168 c−2

ε γ4
4,C

+ 2 γ2
2,C

. �

5.6. Brief comments about numerical aspects of stochastic solver. The Monte
Carlo simulation method [23, 26] is used as stochastic solver. Let {(Sκ, ξκ) ∈ CS ×
Cξ, κ = 1, . . . , κsim} be κsim independent realizations of random variables (S,Ξ) using
the generator of probability measures PS (see Section 5.5) and PΞ (see Section 5.4-(i)).
The spatial discretization of the weak formulation defined by Eq. (5.12) of the stochastic
BVP and the discretization of Eq. (5.3) with Eq. (5.4) can be performed by the finite
element method. Using Section 5.5, λ1(Sκ, ξκ) ≥ . . . ≥ λ6(Sκ, ξκ) > 0 are computed as
the eigenvalues of [ceff(Sκ, ξκ)] ∈ M+

6 . Taking into account Eq. (5.19), the mean-square
convergence of the random eigenvalues can be analyzed with the convergence function

(5.20) κsim 7→ conv (κsim) = ‖ [C] ‖−1
F (κ−1

sim

κsim∑
κ=1

‖λ(Sκ, ξκ)‖22)1/2 .

For a given tolerance of convergence, the probability density function (pdf) λ̃ 7→ pΛ̃(λ̃)

on R6 (with support (R+∗)6) with respect to the Lebesgue measure dλ̃ can be estimated
with the κsim independent realizations {λ(Sκ, ξκ), κ = 1, . . . , κsim} using, for instance, the

multidimensional Gaussian kernel-density estimation method [3]. The pdf λ̃1 7→ pΛ̃1
(λ̃1)

of Λ̃1 can also be estimated yielding the pdf of the operator norm ‖ [C̃eff] ‖2= Λ̃1.

6. Numerical illustration

(i) Mean model of the microstructure. Domain Ω = (]0, 1[)3 and the mean model of the
elastic material is chosen in the orthotropic class with mean Young moduli E1 = 1010,
E2 = 0.5 × 1010, and E3 = 0.1 × 1010, with mean Poisson coefficients ν23 = 0.25,
ν31 = 0.15, and ν12 = 0.1 (the International System of Units is used).

(ii) Elasticity random field . The hyperparameter δc that allows for controlling the level
of statistical fluctuations of [C(x;S)] (see Hypothesis 1) is fixed to the value 0.4.

(iii) Uncertain spectral measure. The model of the spectral measure is the one described
in Example 3.5. The probability measure PW (dw) of W (see Definition 3.6) is chosen
as uniform on Cw. For all j ∈ {1, 2, 3}, the mean value of the random correlation length
Lcj = π/Kj is Lc and its coefficient of variation δLcj is δLc , which are independent of j.
Consequently, the support [wmin

j , wmax
j ] of the probability measure of Wj = Lcj is such that

wmin
j = Lc (1−

√
3 δLc) and wmax

j = 2Lc − wmin
j . The hyperparameter δs that controls the

level of uncertainties of the spectral measure, which is such that δ2
s = (Π3

j=1(1 + δ2
j ))−1,
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Figure 1. Left figure: function κsim 7→ conv (κsim) for δunc = 0 and Lc =
0.2 (dashed line); δunc = 0.4 and Lc = 0.2 (black thin line), 0.4 (blue

med line), and 0.6 (red thick line). Right figure: E{Λ̃1} as a function of
δunc for Lc = 0.2 (circle marker), 0.4 (square marker), and 0.6 (triangle-
up marker).

is generated with δ1 = δ2 = δ3 = δunc. A sensitivity analysis with respect to the level
of spectrum uncertainties will be performed by considering 9 values of the triplet of
parameters (Lc, δLc , δunc) with Lc ∈ {0.2, 0.4, 0.6} and δLc = δunc ∈ {0.2, 0.3, 0.4}. For
this set of data, the minimum of correlation lengths is 0.06 (obtained for Lc = 0.2 with
δLc = δunc = 0.4) while the maximum is 1.01 (obtained for Lc = 0.6 with δLc = δunc = 0.4).
The spectral domain sampling for the discretization of the spectral measure is performed
with νs = 8 and thus ν = 83 = 512. With the quadrant symmetry, we have ν̂s = 4
yielding ν̂ = 64.

(iv) Finite element discretization. The weak formulation defined by Eq. (5.12) is dis-
cretized by the finite element method. The finite element mesh is made up of 20×20×20 =
8 000 solid finite elements (8-nodes solid), 9 261 nodes, and 27 783 degrees of freedom
(dof). There are 2 402 nodes on the boundary and thus 7 206 zeros Dirichlet conditions.
There are 23 integrations points in each finite element, which yields 64 000 integrations
points. The spatial discretization of the M+

6 -valued elasticity random field [C(·,S)] yields
21× 64 000 = 1 344 000 random terms (taking into account the symmetry).

(v) Stochastic solver . The Monte Carlo simulation method is performed for κsim ∈
[1, 2 000]. Figure 1-(left) displays the convergence function κsim 7→ conv (κsim) defined
by Eq. (5.20) for Lc = 0.2 and with no uncertainty in the spectral measure (δLc = δunc =
0) and for Lc ∈ {0.2, 0.4, 0.6} with the largest uncertainties in the spectral measure,
δLc = δunc = 0.4, which is the most unfavorable value with respect to convergence. It can
be seen that the mean-square convergence is obtained for κsim = 2 000.

(vi) Sensitivity of the probability density function of the normalized operator norm of the
random effective elasticity matrix as a function of the uncertainty level of the spectral

measure. Let Λ1 = Λ̃1/E{Λ̃1} be the normalized operator norm ‖ [C̃eff] ‖/E{[C̃eff] ‖} =

Λ1. For Lc = 0.2, 0.3, 0.4, Fig. 1-(right) displays the graph of E{Λ̃1} as a function
of the level δLc = δunc of the spectral measure uncertainties. Figure 2 shows the pdf
λ1 7→ pΛ1

(λ1) of the normalized operator norm of the random effective elasticity matrix
for Lc = 0.2, 0.4, and 0.6, with no uncertainty in the spectral measure (δLc = δunc = 0)
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Figure 2. Sensitivity of the pdf λ1 7→ pΛ1(λ1) for Lc = 0.2 (top left
figure), 0.4 (top right figure), and 0.6 (down figure) as a function of the
spectral measure uncertainty level: δunc = 0 (dashed line), 0.2 (black thin
line), 0.3 (blue med line), 0.4 (red thick line).

and with uncertainties δLc = δunc = 0.2, 0.3, and 0.4.

(vii) Sensitivity of the probabilistic analysis of the RVE size with respect to the uncertainty
level of the spectral measure. We analyze the random largest eigenvalue Λ1 (normalized
operator norm). Let η be a positive real number and let η 7→ P (η) be the function from
]0, 1] into [0, 1] defined by

(6.1) P (η) = Proba{1− η < Λ1 ≤ 1 + η} = FΛ1
(1 + η)− FΛ1

(1− η) ,

in which FΛ1
is the cumulative distribution function of Λ1. Figure 3 shows the sensitivity

of the graph of function η 7→ P (η) for Lc = 0.2, 0.4, and 0.6 with respect to the level of
uncertainties in the spectral measure for δLc = δunc = 0, 0.2, 0.3, and 0.4. Table 1 yields
an extraction from Fig. 3 of the probability levels.

(viii) Brief discussion. When there are no uncertainties in the spectral measure (δunc = 0),
Figure 3 and Table 1 shows that the condition to obtain a scale separation is not really
obtained because, for Lc = 0.2 and δunc = 0 it can be seen that Proba{0.98 < Λ1 ≤
1.02} = 0.365 and the probability becomes 0.942 only for {0.92 < Λ1 ≤ 1.08}. The
results show in Table 1 shows that, for the specific case analyzed (in particular choosing
the same level of uncertainties for the spatial correlation lengths and for the values of the
spectral density function) and contrary to what was expected, the introduction of spectral
measure uncertainties improves the scale separation from a probabilistic analysis point of
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Figure 3. Sensitivity of the graph of function η 7→ P (η) for Lc = 0.2
(top left figure), 0.4 (top right figure), and 0.6 (down figure) with respect
to the level of uncertainties in the spectral measure for δunc = 0 (dashed
line), 0.2 (circle marker), 0.3 (square marker), and 0.4 (no marker).

Table 1. Sensitivity of the probabilistic analysis of the RVE size with
respect to the uncertainty level of the spectral measure.

Lc δunc P{0.98 < Λ1 ≤ 1.02} P{0.96 < Λ1 ≤ 1.04} P{0.92 < Λ1 ≤ 1.08}
0.2 0.0 0.365 0.655 0.942

0.2 0.385 0.683 0.945
0.3 0.430 0.721 0.948
0.4 0.475 0.705 0.954

0.4 0.0 0.171 0.332 0.610
0.2 0.175 0.344 0.625
0.3 0.185 0.360 0.650
0.4 0.202 0.395 0.700

0.6 0.0 0.108 0.230 0.442
0.2 0.125 0.240 0.465
0.3 0.130 0.260 0.488
0.4 0.145 0.280 0.526

view. In fact, for Lc = 0.2 and for δLc = δunc = 0.4, the minimum value of the realizations
of the random correlation length is 0.06, value less than 10 percent of the characteristic
length of the dimensions of domain Ω, for which the scale separation can be obtained.
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It should be noted that these results are presented as an illustration of the use of the
proposed mathematical construction of a random field with uncertainties in the spectral
measure in order to improve the probabilistic analysis of stochastic homogenization of
random elastic media. More advanced computational analyses must be performed with
this probabilistic model in order to deeply analyze the role played by uncertain spectral
measure for stochastic homogenization of random elastic media. This work has been
performed and can be found in [33].
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MSME UMR 8208, Université Gustave Eiffel, 5 bd Descartes, 77454 Marne-la-Vallée,
France

Email address: christian.soize@univ-eiffel.fr

Received 01/September/2021


