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Abstract

This work is devoted to the vibroacoustics of complex systems over a broad-frequency band
of analysis. The considered system is composed of a complex structure coupled with an internal
acoustic cavity. On one hand, the global displacements are associated with the main stiff part
and on the other hand, the local displacements are associated with the preponderant vibrations
of the flexible subparts. Such complex structures induce interweaving of these two types of dis-
placements, which introduce an overlap of the usual three frequency bands (low-, medium- and
high-frequency bands (LF, MF, and HF). A reduced-order computational vibroacoustic model
is constructed by using a classical modal analysis with the elastic and acoustic modes. Nev-
ertheless, the dimension of such reduced-order model (ROM) is still important when there is
an overlap for each one of the three frequency bands. A multi-frequency reduced-order model is
then constructed for the structure over the LF, MF, and HF bands. The strategy is based on a mul-
tilevel projection consisting in introducing three reduced-order bases that are obtained by using a
spatial filtering methodology. To filter out the local displacements in the structure, a set of global
shape functions is introduced. In addition, a classical ROM using acoustic modes is carried out
for the acoustic cavity. Then, the coupling between the multilevel ROM and the acoustic ROM
is presented. A nonparametric probabilistic modeling is then proposed to take into account the
model uncertainties induced by modeling errors that increase with the frequency. The proposed
approach is applied to a large-scale computational vibroacoustic model of a car.

Key words: Vibroacoustics, Reduced-order model, Multilevel, Broad-frequency band,
Uncertainty Quantification, Automobile

1. Introduction

In this work, the dynamical analysis of complex vibroacoustic systems is developed in a
broad-frequency band. The complex system can be separated in two parts, a complex structure
(such as the structure of a car) coupled with an internal acoustic cavity (such as the cockpit of
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the car). The complex structure is defined by a complex geometry, made up of heterogeneous
materials and more specifically, characterized by the presence of numerous structural levels. The
structure is made up of a stiff main part embedding various flexible sub-parts. In addition to
the usual global displacement elastic modes linked with the stiff skeleton, there are a numerous
local elastic modes that are associated with the predominant vibrations of the flexible subparts.
Such complex structures can be found, for instance in aeronautics and aerospace, but above all
in the automotive industry [1, 2, 3, 4]. There are two main difficulties caused by the presence
of local displacements in the structure. Firstly, the modal density may increase abruptly from
low frequencies, causing a high dimensional reduced-order model (ROM) within modal analy-
sis. Secondly, such a ROM may not be robust enough with respect to uncertainties caused by the
presence of the numerous local displacements, which are known to be very sensitive to uncer-
tainties. The engineering objectives for such complex structures are to obtain a computational
model with a robust prediction for the global displacements at observation points that belong to
the main stiff part.

For a vibroacoustic system composed of a complex elastic structure coupled with an internal
acoustic cavity, characterized by the presence of numerous local elastic modes entangled with
global elastic modes, the research are not plentiful. Nonetheless for the structural part, numerous
works have been published into the literature. In the experimental modal analysis framework, a
spatial filtering method of the local displacements [5], based on regularization schemes, has been
proposed in [6]. For computational models, the Guyan condensation technique [7] has also been
used, consisting in introducing master structural nodes in which the mass matrix is condensed.
It allows the filtering of local displacements to be obtained. The downside is the complexity of
the choice of the master nodes [8]. Filtering using the lumped mass matrix approximations has
also been introduced by [9, 10, 11] but it depends on the mesh and cannot easily be adjusted.
The construction [12] of a global displacement basis using a coarse mesh can yield important
errors for the elastic energy. Other methods for extracting the long-wavelength elastic modes of
the main structure, like the interface substructuring, have also been proposed [13]. Moreover,
computational approaches based on the use of image processing [14] have been proposed for
identifying the global elastic modes, in which the global displacements are considered as the
eigenvectors of the frequency mobility matrix [15]. The extrapolation of the dynamical response
using a sparse representation constructed with a few elastic modes has also been proposed in [16].
In the low-frequency (LF) band, for slender structures exhibiting a high modal density, simplified
equivalent models have been proposed in [17, 18] and homogenization has been suggested in
[19]. Though, using these approaches, the simplification of the model is not automatic and
generally requires an expertise and a validation.

For complex structures for which the elastic modes are neither purely global nor purely local
displacements, the increasing of the dimension of the ROM based on the classical modal analysis
proves to be inconvenient. The methodology to sort the elastic modes depending to whether they
are global displacements or local displacements is also irrelevant because the elastic modes are
an association of both types of displacement. It is well known that large amplitudes of the local
displacements are difficult to distinguish from the global ones using the modal shapes. Such a
difficulty increases with the frequency.

Generally, in the case of a complex structure, an elastic mode is constituted of global dis-
placements (long wavelength deformations) assorted with local displacements (short wavelength
deformations) of differentiated structural level. One important observation is that as the fre-
quency increases, the global displacements in the elastic modes are less and less perceptible.
The fact is that they are covered by high-amplitude local displacements.
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Nevertheless, substructuring techniques have been used for trying to solve this separation
problem. The substructuring techniques have deeply been studied [20, 21, 22]. As written in
[23]: ”historically, the concept of substructures was first introduced by Argyris and Kelsey in
1959 [24] and by Przemieniecki in 1963 [25] and was extended by Guyan and Irons [7, 26].
Hurty [27, 28] considered the case of two substructures coupled through a geometrical interface.
Finally, Craig and Bampton [29] have adapted the Hurty method. Many variants have been
proposed for improving substructuring techniques [30, 31, 32, 33, 34], notably for the complex
dynamical systems with many auxiliaries considered as substructures from Benfield and Hruda
[35]. A new group of methods has been introduced for two coupled subtructures with fixed
geometrical interface using structural modes with free geometry interface, as proposed by Craig
and Bampton, MacNeal [36], and Rubin [37]. Then the Lagrange multipliers have been applied
to write the coupling on the geometrical interface [38, 39, 40, 41]”. The substructuring needs
discarding the component modes associated with flexible subparts, to eliminate their associated
local displacements. In the proposed approach, there is no clear boundary between the skeleton
and the substructures, that is to say, between the main stiff part and the flexible subparts. This
property can be explained by the complex geometry of the structure that is constructed in order
to have a continuous series of structural levels, instead of a clear separation, in addition to the
various embedded equipments. In this type of setup, the notion of local displacements is relative.
It is worth mentioning that, in comparison to the usual global displacements that are present in
the LF band, the local displacements associated with the structural sub-levels (which can also
appear in the LF band) are characterized by a high-complexity level, similarly to those in the
HF band. Therefore, for the complex structure studied, there is an overlap of the three vibration
regimes (LF, MF, and HF bands).

Regarding the uncertainties in the computational model, the probabilistic framework is well
suited to construct the stochastic models and to solve the inverse problems for the identification
of the probabilistic models of uncertainties. Thereafter, we present the framework limited to the
probabilistic approaches for uncertainty quantification. To take into account model-parameter
uncertainties, model uncertainties induced by modeling errors, and variabilities in the real dy-
namical system, different probabilistic approaches can be used (see [42]).

The parametric probabilistic approach is well adapted to model-parameter uncertainties, at
least for a sufficient small number of parameters. It involves the construction of prior and poste-
rior stochastic models of uncertain model parameters linked, for instance, to materials properties,
to geometry, to boundary conditions, etc. Concerning such a parametric probabilistic approach
of uncertainties, the reader is referred, for example, to [43, 44, 45, 46, 47] for random vibra-
tion and structural dynamics, to [48, 49, 50, 51] for stochastic computational mechanics, to
[52, 53, 54] for random fields and polynomial chaos expansions, and to [55, 42] for a general
overview on uncertainty quantification. This approach is computationally efficient for both the
computational model and its resulting ROM [56, 57], and for large-scale statistical inverse prob-
lems [58, 59, 60, 61, 62, 63]. The main limit of this approach is that it does not take into account
neither the model uncertainties induced by modeling errors introduced during the construction
of the computational model nor the uncertainties caused by the use of a ROM.

The nonparametric probabilistic approach [64, 42] allows model uncertainties induced by
modeling errors to be taken into account linear dynamical systems. The modus operandi is done
in two stages. Firstly, the construction of a linear ROM of dimension n using the linear computa-
tional model with m degrees of freedom (DOFs) and a reduced-order basis (ROB) of dimension
n. Then, a linear stochastic ROM is built by replacing the deterministic matrices of the linear
ROM by random matrices for which the probability distributions are constructed [42] using the
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Maximum Entropy (MaxEnt) Principle [65, 66] from Information Theory. The construction of
the linear stochastic ROM is fulfilled under the constraint generated from the available informa-
tion such as algebraic positiveness, integrability of the inverse, and some statistical information.
This approach enlarged for different family of random matrices and for linear boundary value
problems [67, 68, 42]. For linear problems, experimental validations and applications to statisti-
cal inverse problems can be found in [69] for composites, [70] for viscoelasticity, [71, 72, 73] for
dynamic substructuring, [74, 1] for vibroacoustics, [75] for robust design and optimization, and
[76] for the identification and sampling the Bayesian posteriors of high-dimensional symmetric
positive-definite random matrices for data-driven updating of computational models. An exten-
sion to the nonlinear geometrical effects in structural analysis has also been proposed [77, 78, 79].

Objectives and novelty of the paper.. Recently, a method has been proposed in [80, 81] to sep-
arate the local displacements and the global displacements using a spatial filtering (on wave-
length). Moreover, the multilevel stochastic approach for structural dynamics has been intro-
duced in [81] to adapt the level of uncertainties in each frequency band: LF, MF, and HF. This
work presents an extension to the case of vibroacoustic systems based on a reformulation of
the construction of the multilevel ROM for the structural part. An objective of this work is to
propose a predictive stochastic multilevel ROM whose dimension is inferior to the usual ROM
constructed by using the classical modal analysis. Another very important objective is that the
algorithms developed can be used for very large computational models without encountering
problems related to the limitation of RAM and with numerical costs that remain low. This last
objective requires to develop a methodology and algorithms, which are not intrusive with respect
to commercial software.

Organization of the paper.. Section 2 is devoted to the construction of the classical reduced-order
computational vibroacoustic model that is carried out by projecting the full-order computational
vibroacoustic model on the elastic and acoustic modes. Section 3 presents the principle of the
spatial filtering. Section 4 is devoted to the construction of a multilevel basis and the associated
algorithms are detailed. Moreover, a numerical application of the multilevel reduced-order com-
putational model is presented. Finally in Section 5, the construction of a stochastic multilevel
reduced-order computational model in vibroacoustics is presented. The probabilistic model of
random matrices is constructed in the framework of the nonparametric probabilistic approach of
model uncertainties. The numerical application is devoted to a large computational vibroacoustic
model of an automobile.

2. Classical reduced-order model of a vibroacoustic computational model

In this section, the construction of the reduced-order computational vibroacoustic model
(ROM) is introduced for a vibroacoustic system (the car and the air in its cockpit). The ROM
will be constructed by projecting the full-order computational vibroacoustic model on the elastic
and acoustic modes. The solution is therefore computed with the well known modal analysis
method.

2.1. Full-order computational vibroacoustic model
The vibroacoustic analysis is carried out over a broad-frequency band denoted by B. The

computational vibroacoustic model is built using the finite element method. The angular fre-
quency ω belongs to the frequency band of analysis B = [ωmin, ωmax]. Let u(ω) (resp. p(ω))
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be the vector of all the degrees of freedom corresponding to the nodal values on the finite el-
ement mesh of domain Ωs (resp. Ωf) for displacement field u(·, ω) (resp. acoustic pressure
field p(·, ω)). Let ns

dof (resp. nf
dof) be the dimension of vector u(ω) (res. p(ω)). The full-order

computational vibroacoustic model is written as(
− ω2[Ms] + iω[Ds] + [Ks]

)
u(ω) + [C] p(ω) = Fs(ω) , (1)(

− ω2[Mf] + iω[Df] + [Kf]
)
p(ω) + ω2[C]T u(ω) = 0 , (2)

in which [Ms], [Ds], and [Ks] are the ns
dof × ns

dof positive-definite symmetric real mass, damping,
and stiffness matrices for the structure, where [Mf] (resp. [Df] and [Kf]) is the nf

dof×nf
dof positive-

definite (resp. positive) symmetric real mass (resp. damping and stiffness) matrix for the acoustic
cavity, where [C] is the ns

dof × nf
dof coupling matrix and where Fs is the finite-element vector of

the external forces.

2.2. Elastic modes

Let 0 < λs
1 ≤ . . . ≤ λ

s
ns be the ns � ns

dof smallest eigenvalues such that

[Ks]ϕs
α = λs

α[Ms]ϕs
α .

The eigenvectors ϕs
1, . . . ,ϕ

s
ns in Rns

dof associated with the eigenvalues verify the usual orthogonal-
ity properties and normalization,

(ϕs
β)

T [Ms]ϕs
α = δαβ , (ϕs

β)
T [Ks]ϕs

α = λs
α δαβ . (3)

The LF, MF, and HF bands are [0, ωL], [ωL, ωM], and [ωM, ωH] (in rad.s−1) where the three
bounds ωL, ωM, and ωL are assumed to be already known. Furthermore, let nL, nM, and nH be
the number of structural elastic modes in the LF, MF, and HF bands, and let nLM = nL + nM. For
the whole three LF, MF, and HF bands, let [Φs] = [ϕs

1 . . .ϕ
s
ns ] be the ns

dof × ns modal matrix. Let
[Φs

L], [Φs
M], and [Φs

H] be the matrices with dimensions ns
dof × nL, ns

dof × nM, and ns
dof × nH whose

columns are the elastic modes belonging to LF, MF, and HF bands respectively and such that

[Φs] =
[
[Φs

L] [Φs
M] [Φs

H]
]
.

We also introduce the matrix [Φs
LM] that is defined by

[Φs
LM] =

[
[Φs

L] [Φs
M]

]
.

2.3. Acoustic modes

Let 0 = λf
0 < λ

f
1 ≤ . . . ≤ λ

f
nf be the nf + 1 � nf

dof smallest eigenvalues such that

[Kf]ϕf
α = λf

α[Mf]ϕf
α .

It should be noted that there is a zero eigenvalue λf
0 because the dimension of the null space of

matrix [Kf] is 1. The eigenvectors ϕf
0,ϕ

f
1, . . . ,ϕ

f
nf in Rnf

dof associated with the eigenvalues verify
the usual orthogonality properties and normalization, for all α and β in {1, . . . , nf},

(ϕf
β)

T [Mf]ϕf
α = δαβ , (ϕf

β)
T [Kf]ϕf

α = λf
α δαβ . (4)
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For the LF, MF, and HF bands, the nf
dof × nf modal matrix is defined as [Φf] = [ϕf

1 . . .ϕ
f
nf ] in

which the eigenvector ϕf
0, which is associated with the null eigenvalue λf

0, has been omitted,
assuming an almost closed (nonsealed wall) acoustic cavity [74, 82].

2.4. Reduced-order computational vibroacoustic models for the LF-MF-HF and LF-MF bands

In the LF, MF, and HF bands, the ROM is constructed by using the truncated modal expansion
of vectors u(ω) and p(ω) such that

u(ω) = [Φs] qs , p(ω) = [Φf] qf .

Using these modal expansions in Eqs. (1) and (2) yield(
− ω2[Ms] + iω[Ds] + [Ks]

)
qs(ω) + [ C ] qf(ω) = f s(ω) , (5)(

− ω2[Mf] + iω[Df] + [Kf]
)

qf(ω) + ω2[ C ]T qs(ω) = 0 , (6)

in which [Ms] = [Φs]T [Ms][Φs], [Ds] = [Φs]T [Ds][Φs], and [Ks] = [Φs]T [Ks][Φs] are ns × ns

positive-definite matrices, where [Mf] = [Φf]T [Mf][Φf], [Df] = [Φf]T [Df][Φf], and [Kf] =

[Φf]T [Kf][Φf] are nf × nf positive-definite matrices, where [ C ] = [Φs]T [C][Φf], and where
f s(ω) = [Φs]T Fs(ω). Note that the orthogonality properties and normalization defined by Eqs. (3)
and (4) yield [Ms] = [Ins ] and [Ks] = [Λs] for the structure, and [Mf] = [Inf ] and [Ks] = [Λf] for
the cavity in which [Λs]αβ = λs

α δαβ and [Λf]αβ = λf
α δαβ are diagonal ns × ns and nf × nf matrices.

Nevertheless, it is well known that such a ROM is not robust in the HF domain. In addition, this
work focus on the LF and MF domains while the only purpose of computing the eigenvectors
associated with eigenfrequencies into HF consists in carrying out an analysis for defining the
spatial complexity level of the HF domains. Consequently, when the analysis is carried out into
the LF and MF domains, the ROM defined by Eqs. (5) and (6) is not used. Instead, a truncated
modal expansion of vectors u(ω) and p(ω) that are rather written as

u(ω) = [Φs
LM] qs

LM , p(ω) = [Φf] qf .

Using such truncated modal expansions for projecting Eqs. (1) and (2) yields(
− ω2[Ms

LM] + iω[Ds
LM] + [Ks

LM]
)
qs

LM(ω) + [ CLM] qf(ω) = f s
LM(ω) , (7)(

− ω2[Mf] + iω[Df] + [Kf]
)

qf(ω) + ω2[ CLM]T qs
LM(ω) = 0 , (8)

in which [Ms
LM] = [Φs

LM]T [Ms][Φs
LM], [Ds

LM] = [Φs
LM]T [Ds][Φs

LM], and [K s
LM] = [Φs

LM]T [Ks]
[Φs

LM] are ns
LM × ns

LM positive-definite matrices, where [ CLM] = [Φs
LM]T [C][Φf

LM], and where
f s
LM(ω) = [Φs

LM]T Fs(ω). Note that the orthogonality properties and normalization defined by
Eqs. (3) and (4) yield [Ms

LM] = [Ins
LM

] and [Ks
LM] = [Λs

LM] in which [Λs
LM]αβ = λs

α δαβ is a
diagonal ns

LM × ns
LM matrix.

3. Multilevel basis

In this section, a methodology is presented to construct a new basis for u(ω), different from
elastic modes. For constructing such a basis, the approach relies on a spatial filtering to de-
compose the set of the elastic modes into two sets of linearly independent displacement vectors
that are no longer elastic modes. The two sets of displacement vectors are characterized by a
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polynomial degree. First, a set of spatial filtering functions is constructed as a set of mutually
orthogonal multivariate polynomials, with respect to a given metric related to the structural mass
distribution on Ωs. Let [Mlump] be the lumped mass matrix derived from the mass matrix of
the structure. The discrete mass Mγ = [Mlump]JγJγ is associated with the Jγ-th degree of free-
dom that corresponds to one of the three translational displacements located at the γ-th node of
the finite element mesh and located at position xγ. Let [mlump] be the diagonal nnodes × nnodes
real-valued matrix defined by [mlump]γγ̃ = Mγ δγγ̃ of the lumped mass at the nnodes nodes of the
finite-element mesh of the structure. In this work, the set of spatial filtering functions is chosen
as the multivariate three-dimensional polynomials p1, p2, . . . , pnmon defined on Ωs such that

nnodes∑
γ=1

Mγ p`1 (xγ) p`2 (xγ) = δ`1`2 . (9)

Consequently, the shape of each spatial filtering function is weighted by the spatial mass distri-
bution of the structure. Such set of spatial filtering function can then represent the displacements
of separate components or assembled components of the structure as an automobile. The large
wavelength of an elastic mode and a spatially localized elastic mode can be written as a sum of
spatial filtering functions with a relatively small polynomial degree in contrast to short wave-
length elastic modes, which can only be represented by sufficiently high degrees (for instance,
in the presented application, the maximum degree that is considered is 40). Hence, the polyno-
mial degree of the spatial filtering functions can be used to characterized the level of complexity
for the vector space spanned by a set of elastic modes of the structure. The more the polyno-
mial degree of the spatial filtering functions is high, the more the complexity level is important.
Hereinafter, we will present the construction of low-complexity-level displacement basis and its
complementary counterpart into the set of the high-complexity-level displacement basis. Gath-
ering the two bases together yields the Multi-complexity-level displacements basis that will be
called the Multilevel basis. Such an approach has also been introduced in [80, 81], but in this
paper, the presentation, the developments, and the formulated interpretations are different. Note
that such an approach is only used for the elastic modes of the structure and not for the acoustic
cavity (the air in the cockpit of the automobile) because the acoustic cavity is homogeneous with
regards to such a complexity characterization.

3.1. Computation of the filtering-functions values at the finite-element nodes

Let m1, m2, . . . be the real-valued multivariate monomials defined on Ωs such that, for all
x = (x1, x2, x3) in Ωs,

mk(x) = (x1)α
1
k−α

2
k (x2)α

2
k−α

3
k (x3)α

3
k ,

in which αk = (α1
k , α

2
k , α

3
k) is the k-th three-dimensional multi-index such that 0 < |α1| ≤ |α2| . . .

with |αk | = α1
k + α2

k + α3
k and such that 0 ≤ α3

k ≤ α
2
k ≤ α

1
k ≤ d. The number of such monomials

with degree less or equal to d is nmon = (d + 1)(d + 2)(d + 3)/6.
Let [p] be the nnodes×nmon matrix of the polynomial values at the nodes of the mesh such that

[p]γ` = p`(xγ) and let [m] be the real nnodes × nmon matrix of the monomial values at the nodes of
the mesh such that [m]γk = mk(xγ). We then have

[p] = [m] [s] ,

in which [s] is an upper triangular matrix that has to be constructed. Furthermore, Eq. (9) can be
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rewritten as
[p]T [mlump] [p] = [Inmon ] . (10)

The nodal values of polynomials p1, . . . , pnmon can then be calculated by [p] = [mlump]−1/2 [q]
where [q] is an orthogonal matrix, which can directly be computed as the thin (economy size)
QR decomposition [q] [r] of matrix [mlump]1/2[m], which shows that [m] = [p] [r]. Consequently,
we have [s] = [r]−1. Nevertheless, the computation of [p] is not required for efficiently carrying
out the filtering approach presented into the next sections, which avoids the numerical cost to
compute inverse matrix [r]−1 (i.e the computation of [s]) and also avoids to store [r]. Only the
computation of [q] is required.

3.2. Finite-element projection matrix associated with the filtering functions

Let u1, u2, and u3 be the Rnnodes vectors of all the degrees of freedom that correspond to the
translational displacements into directions e1, e2, and e3 for the nodes of the finite element mesh.
Let w be the vector of all the degrees of freedom that are not translational displacements. Let u
be the vector of all the degrees of freedom that, consequently, gathers all values of u1, u2, u3, and
w. Assembling u1, u2, u3, and w into u yields

u = [R] w +

3∑
j=1

[T j] u j ,

in which, for all j in {1, 2, 3}, the entries of the ns
dof × nnodes matrix [T j] are 0 or 1 only and such

that, for all j and j′ in {1, 2, 3},

[T j]T [T j′ ] = δ j j′ [Innodes ] ,

[T j]T [R] = [0] .

For all j in {1, 2, 3}, it can then be deduced that

u j = [T j]T u . (11)

In addition, since [Mlump] is diagonal, then, for all j and j′ in {1, 2, 3}, we also have

[T j]T [Mlump] [T j′ ] = δ j j′ [mlump] . (12)

For j in {1, 2, 3}, let u j = [p] c j be the polynomial approximation of vector u j such that c j in
Rnmon minimizes c 7→ ‖[p] c − u j‖2. The solution of this least-square minimization problem is
well known and can be written, using Eqs. (10) and (11), as

c j = [p]T [mlump] [T j]T u .

Consequently, for all j in {1, 2, 3}, the polynomial approximation u j of vector u j is such that

u j = [p] [p]T [mlump] [T j]T u .

Let us introduce the polynomial approximation u of the vector of the degrees of freedom u con-
structed by replacing u j by its polynomial approximation u j and by replacing the non-translational
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degrees of freedom w by the null vector. We then have

u = [P] u ,

in which the ns
dof × ns

dof matrix [P] is defined by

[P] =

3∑
j=1

[T j] [p] [p]T [mlump] [T j]T . (13)

Consequently, [P] can be computed by the usual assembling algorithm of the finite element
method for the element matrix [p] [p]T [mlump]. In addition, the null space of [P] is reduced to
{0}: [P] u0 = 0 implies u0 = 0, because for any non-zero vector u0 and for any vector w, we have

u0 = [R] w +

3∑
j=1

[T j] u j
0with[p]T [mlump] u j

0 = 0 .

Consequently, matrix [P] is referred as the matrix of the finite-element projection associated with
the spatial filtering.

3.3. Projected mass matrix

An unusual mass matrix is introduced and defined as the finite-element projection on the
filtering functions [P]T [Ms] [P] of mass matrix [Ms]. It will be used for setting up an unusual
eigenvalue problem from which the low- and high-complex-level displacement bases will be
constructed. Note that ns

dof can be equal to several millions and consequently, the full matrix [P]
cannot be stored in the random access memory (RAM) or even on a hard disk. The computation
of [P]T [Ms] [P] is replaced by the computation of [Mproj] = [P]T [Mlump] [P] in order to take
advantage of orthogonality relations of polynomials [p]. Replacing [P] defined by Eq. (13), using
Eq. (12) and then Eq. (10), and introducing matrix [b] = [mlump]1/2 [q], allow matrix [Mproj] to
be written as

[Mproj] =

3∑
j=1

[T j][b] [b]T [T j]T . (14)

Consequently, the projected matrix [Mproj] can be constructed by using the usual finite-element
assembling algorithm applied to the nnodes × nnodes matrix [b] [b]T . Furthermore, Eq. (14) can be
rewritten as

[Mproj] = [N] [N]T ,

where the ns
dof × nmon matrix [N] is defined by

[N] = [ [T1] [b] [T2] [b] [T3] [b] ] .

3.4. Conditions on the reduced-order basis for the filtering

Let N be a given positive integer such that N ≤ ns
dof and let [U] be a given ns

dof ×N matrix for
which the columns is a set of linearly independent finite-element displacements that are mutually
orthogonal with respect to the metric defined by [Ms] and [Ks], such that

[U]T [Ks] [U] = [Λ] , [U]T [Ms] [U] = [IN] , (15)
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where [Λ] is a N × N positive-definite diagonal matrix and where [IN] is the N × N unit matrix.
It should be noted that such orthogonality relations are also verified by matrix [Φs] defined in
Section 2. Nevertheless, they do not imply that [Ks] [U] = [Ms] [U] [Λ].

The spatial filtering method that is presented in this paper can be applied to any reduced-
order basis represented by such a matrix [U] that fulfills relations in Eq. (15), such as [Φs] for
instance. Applying the following method with [U] = [Φs] will be carried out in order to define
the first spatial filtering into the next sections.

3.5. Reduced-order projected mass matrix

The reduced-order projected mass matrix [Mproj] is then introduced as the N × N matrix
defined by

[Mproj] = [U]T [Mproj] [U] .

Note that since [Mproj] is positive but not definite, then [Mproj] is also positive but not definite.
Using Eq. (14) yields

[Mproj] = [N] [N]T , (16)

in which the N × nmon matrix [N] is written as

[N] = [U]T [N] ,

= [ [U1]T [b] [U2]T [b] [U3]T [b] ] ,

in which, for j in {1, 2, 3}, [U j] = [T j]T [U] is a nnodes×N matrix. From a numerical programming
aspect, matrix [U j] is constructed by removing in [U] all the rows that do not correspond to the
degrees of freedom of translational displacements into direction e j.

3.6. Construction of the low-complexity-level displacement basis

Let S be the vector space that is spanned by columns of [U]. Let S low be the subspace of S
that is defined as the vector space of all the vectors of finite element displacements v in S with
non-zero kinetic energy 1

2 vT [Mproj] v. Let nlow be the dimension of S low, which is assumed to
be spanned by a set of nlow linearly independent vectors ulow

1 . . . ulow
nlow of dimension ns

dof . Since
S low is a subspace of S by construction, then ulow

α can be written, for all α in {1, . . . , nlow}, as

ulow
α = [U] [Φproj]ϕlow

α ,

where ϕlow
1 , . . . , ϕlow

nlow are linearly independent vectors of dimension nlow and [Φproj] is a N × nlow

rectangular matrix such that [Φproj]T corresponds to the orthogonal projection operator from S
into S low for a given metric that is defined hereinafter. This projection corresponds to a so-called
Rayleigh-Ritz approximation.

The objective of this section is to construct matrix [Φproj] and the set of linearly independent
vectors ulow

1 . . . ulow
nlow .

Let us first consider the following generalized eigenvalue problem: find ϕproj
α in RN and

λ
proj
α > 0 such that

[Λ]ϕproj
α = λ

proj
α [Mproj]ϕproj

α .

This first eigenvalue problem involves a Rayleigh-Ritz projection of the original stiffness matrix
[Ks] and the projected stiffness matrix [Mproj]. It allows for defining the set of the nlow linearly
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independent finite element vectors [Uproj] = [ uproj
1 . . . uproj

nlow ] such that, for all α in {1, . . . , nlow},
uproj
α is written as

uproj
α = [U]ϕproj

α .

Since matrix [Mproj] is positive semi-definite, then there are infinite eigenvalues. The eigenval-
ues are sorted in ascending order 0 < λ

proj
1 ≤ . . . ≤ λ

proj
nlow < . . . ≤ λ

proj
n in which rank nlow is such

that λproj
α is not finite for any α > nlow. Note that computing matrix [Mproj] is not required. By us-

ing Eq. (16), the thin SVD of matrix [Λ]−1/2 [N] is written as [Λ]−1/2 [N] = [Uproj] [Σproj] [Vproj]T

in which [Uproj] is a rectangular N × nlow matrix with [Uproj]T [Uproj] = [Inlow ], where [Vproj] is
a rectangular nmon × nlow matrix with [Vproj]T [Vproj] = [Inlow ] ([Vproj] does not need to be com-
puted), and where [Σproj] is a diagonal positive-definite nlow × nlow matrix.

For all α = 1, . . . , nlow, we have λproj
α = ([Σproj]αα)−2 and [Φproj] = [Λ]−1/2 [Uproj] [Σproj]

where [Φproj] is the N × nlow modal matrix [Φproj] = [ϕproj
1 . . . ϕproj

nlow ]. Furthermore, we also have
the two orthogonality and normalization relations,

[Φproj]T [Λ] [Φproj] = [Σproj] ,

[Φproj]T [Mproj] [Φproj] = [Inlow ] .

A second eigenvalue problem is then solved for eventually constructing the low-complexity-level
displacement basis. It consists in finding ϕlow

α in Rnlow
and λlow

α > 0 such that

[Σproj]ϕlow
α = λlow

α [Φproj]T [Φproj]ϕlow
α . (17)

This eigenvalue problem involves again a Rayleigh-Ritz projection of the original stiffness and
mass matrices [Ks] and [Ms]. It allows for defining the low-level-complexity displacement ba-
sis as the set of nlow algebraically independent finite element vectors [Ulow] = [ ulow

1 . . . ulow
nlow ]

defined, for all α in {1, . . . , nlow}, by

ulow
α = [U] [Φproj]ϕlow

α .

The nlow eigenvalues 0 < λlow
1 ≤ . . . ≤ . . . ≤ λlow

nlow of the generalized eigenvalue problem defined
in Eq. (17) are finite and positive and the associated eigenvectors ϕlow

1 , . . . ,ϕlow
nlow are assumed to

be normalized with respect to matrix [Φproj]T [Φproj].
Once again, computing matrix [Φproj]T [Φproj] is not required when nlow is large. Using the

SVD allows us to write [Σproj]−1/2 [Φproj]T = [U low] [Σlow] [V low]T in which [U low] and [V low] are
two nlow × nlow unitary matrices and [Σlow] is a diagonal positive-definite nlow × nlow matrix. We
then have λlow

α = ([Σlow]αα)−2 for α in {1, . . . , nlow} and [Φlow] = [Σproj]−1/2 [U low] [Σlow] where
[Φlow] is the nlow × nlow modal matrix [Φlow] = [ϕlow

1 . . .ϕlow
nlow ]. Furthermore, we also have the

two orthogonality and normalization relations

[Φlow]T [Φproj]T [Λ] [Φproj] [Φlow] = [Λlow] , (18)

[Φlow]T [Φproj]T [Φproj] [Φlow] = [Inlow ] , (19)

where [Λlow] = [Σlow]−2 is a diagonal matrix. Note that such low-level-complexity displace-
ment basis spans the same vector space S low as the set of the nlow linearly independent vectors
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{uproj
1 , . . . , uproj

nlow }. It should also be noted that

[Ulow]T [Ks] [Ulow] = [Λlow] ,

[Ulow]T [Ms] [Ulow] = [Inlow ] ,
(20)

while there is only one orthogonality relation that can be built for [Uproj],

[Uproj]T [Ks] [Uproj] = [Λproj] .

Consequently, [Ulow] fulfills orthogonality relations in Eq. (20) and then the spatial filtering
method can also be recurrently applied to [Ulow] by replacing [U] with [Ulow] in the previous de-
velopments, which is not possible for [Uproj]. Such a recurrence will be used for introducing the
second spatial filtering. Despite relations in Eq. (20) seem to be very similar to the relations in
Eq.(3), it should be noted that, in general, λlow

α , λs
α and ulow

α , ϕs
α for all α in {1, . . . , nlow}. Con-

sequently, in general, the low-complexity-level displacement basis [Uproj] does not correspond to
elastic modes. Furthermore, it will be more convenient into the next sections to introduce matrix
[Qlow] = [Φproj] [Φlow]. By using Eq. (19), we then have

[Qlow]T [Qlow] = [Inlow ] , (21)

[Ulow] = [U] [Qlow] . (22)

3.7. Construction of the high-complexity-level displacement basis

Since nlow is usually very small with respect to N, then vector space S low might not allow an
accurate representation of any finite element solution u(ω) that is represented by the basis made
up of the columns of [U]. It is the reason why a second displacement basis is introduced and
that is such that it spans the vector space S high defined as the complement vector space of S low

into S with respect to the metric associated with mass matrix [Ms]. Let nhigh = N − nlow and let
[Uhigh] = [ uhigh

1 . . . uhigh
nhigh ] be the ns

dof×nhigh matrix whose columns form a set of mutually linearly
independent vectors uhigh

1 , . . . , uhigh
nhigh that span S high. Hereinafter, [Uhigh] will be referred as the

high-complexity-level displacement basis. As S high is a subspace of Ss (by construction), then
for all α in {1, . . . , nhigh}, uhigh

α can be written as

uhigh
α = [U] [Φcomp]ϕhigh

α ,

in which ϕhigh
1 , . . . ,ϕhigh

nhigh are linearly independent vectors belonging to Rnhigh
and where [Φcomp]

is a N × nhigh rectangular matrix such that

[Φcomp]T [Φcomp] = [Inhigh ] , (23)

whose construction is defined hereinafter. The orthogonality property is introduced for guaran-
tying the recursive constructions of the low- and high -complexity level displacement bases at
different levels (see Section 4).

Since by construction, uhigh
α is normal (for the metric defined by matrix [Ms]) to subspace

S proj, for all α in {1, . . . , nhigh}, we have

[Uproj]T [Ms] uhigh
α = 0 . (24)
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Since [U]T [Ms] [U] = [IN] then Eq. (24) is rewritten as

[Φproj]T [Φcomp]ϕhigh
α = 0 . (25)

Since Eq. (25) is verified for linearly independent vectors ϕhigh
1 , . . . ,ϕhigh

nhigh in Rnhigh
, we have

[Φproj]T [Φcomp] = [0nlow×nhigh ] . (26)

Taking into account Eqs. (23) and (26), the matrix [Φcomp] can be defined as the real matrix
whose columns are the right-singular vectors associated with the nhigh zero singular values of the
SVD of matrix [Φproj]T . The linearly independent vectors ϕhigh

1 , . . . , ϕhigh
nhigh in Rnhigh

can be defined
as the solutions of the following generalized eigenvalue problem,

[Φcomp]T [Λ] [Φcomp]ϕhigh
α = λ

high
α ϕhigh

α .

Consequently, we have

[Uhigh]T [Ks] [Uhigh] = [Λhigh] ,

[Uhigh]T [Ms] [Uhigh] = [Inhigh ] ,
(27)

in which [Λhigh] is the positive-definite diagonal matrix of the eigenvalues λhigh
1 , . . . , λ

high
nhigh and

where [Φhigh] = [ϕhigh
1 . . .ϕhigh

nhigh ] is such that

[Φhigh]T [Φhigh] = [IN] . (28)

Furthermore, it will be more convenient into the next sections to introduce matrix [Qhigh] =

[Φcomp] [Φhigh]. We then have
[Uhigh] = [U] [Qhigh] . (29)

Using Eqs. (23), (26), and (28) yields

[Qhigh]T [Qhigh] = [Inhigh ] , (30)

[Qlow]T [Qhigh] = [0nlow×nhigh ] . (31)

Similarly to the explanations given in Section 3.6, since [Uhigh] fulfills Eq. (27), the spatial fil-
tering method can be recurrently also applied to [Uhigh] by replacing [U] with [Uhigh] in the
previous developments. Such a recurrence will be used in Section 4 for introducing the second
spatial filtering.

4. Multilevel reduced-order computational model

In this section, the previously presented methodology is used to construct a multilevel reduced-
order computational model by carrying out recursively two successive spatial filterings to the
elastic modes of the structure, which belong to the LF and MF bands. It is assumed that the
upper- and lower-frequency bounds ωL, ωM, and ωH of the LF, MF, and HF bands have already
been defined and are known. The strategy and the principle for the recursive two successive
spatial filterings are shown in Fig. 1.
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Figure 1: Two spatial filterings to construct the multilevel displacement basis

4.1. Construction of the multilevel displacement basis for the LF and MF bands

A first spatial filtering is carried out for [U] = [Φs
LM] with a polynomial degree d (see Sec-

tion 3.1) equal to dM that characterizes the complexity level of the elastic modes in the MF band
in order to filter out any displacements contribution with complexity level higher than those in
the MF band. This first spatial filtering yields the two displacement bases denoted by [ULM]
and [UH] that correspond to [Ulow] and [Uhigh] introduced in Sections 3.6 and 3.6. It should be
noted that the subscript H is used to remind that those displacements vectors have the highest
complexity level, but does not refer to the HF band. The second spatial filtering is carried by re-
placing [U] introduced in Section 3.4 by [ULM] and with a polynomial degree d equal to dL that
characterizes the complexity level of the elastic eigenvectors in the LF band. This second spatial
filtering yields two displacement bases denoted by [UL] and [UM] that correspond to [Ulow] and
[Uhigh] introduced in Sections 3.6 and 3.6 Hereinafter, the complexity level of the set of elastic
modes in a frequency band (LF, MF or HF) will be shortened in complexity level of the frequency
band (LF, MF or HF).

4.2. Complexity level of LF, MF, and HF bands

In order to determine the value dM of d for the first spatial filtering, it is proposed to study the
graph of d 7→ convM(d) where, for all d that is positive, convM(d) is equal to the number nlow of
non-zero eigenvalues introduced in Section 3 for [U] = [Φs

M]. Then, the value dM is fixed as the
smallest value of d such that convM(d) > nH (1 − εM) in which εM is a tolerance threshold close
to zero. Such a method to determine the value dM of d allows the characterization by polynomial
parameter d of the complexity level of the MF band. Then, using the spatial filtering with d = dM
will allow for separating every displacement contributions that have a complexity level higher
than the complexity level of the MF band. To determine the value dL of d for the second spatial
filtering, which allows the characterization by polynomial parameter d of the complexity level
of the LF domain, we use a similar method to the one proposed for determining dM. We study
the graph of d 7→ convL(d) and the number nlow of non-zero eigenvalues for [U] = [Φs

L]. Then,
the value dL is fixed as the smallest value of d such that convL(d) > nL (1 − εL) in which εL is a
tolerance threshold close to zero. The spatial filtering with d = dL will allow for separating the
displacement contributions that have a complexity level higher than the complexity level of the
LF domain.
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Furthermore, due to the limitation of the random access memory (RAM), there is a maximal
value dmax for the polynomial parameter d that can be used in practice to compute matrix [q]
when performing the QR decomposition of matrix [mlump]1/2[m]. At the time this work has been
carried out, we found out that dmax = 40 on a 1500 Gigabytes RAM computer.

Such a relatively high value for dmax makes it possible to estimate the complexity level of the
HF domain by calculating a value dH of d. It will be carried out by studying the graph of the
function d 7→ convH(d) where, for all d > 0, convH(d) is equal to the number nlow of non-zero
eigenvalues introduced in Section 3 with [U] = [Φs

H]. Then, the value dH is fixed as the smallest
value of d such that convH(d) > nH (1 − εH) in which εH is a tolerance threshold much less than
1 (close to zero). Such a method to determine the value dH of d allows the characterization by
polynomial parameter d of the complexity level of the HF domain but it will not be used for
constructing the multilevel reduced-order computational model.

4.3. First spatial filtering
For a given value dM of d, the spatial filtering method presented in Section 3 is performed

again with [U] = [ΦLM] in order to construct two matrices [Ulow] and [Uhigh] that are renamed
as [ULM] and [UH] to avoid any confusion with the previous spatial filtering. Let nULM and nUH

be the number of columns of matrices [ULM] and [UH]. From Eq. (22), matrix [ULM] can be
rewritten as

[ULM] = [Φs
LM] [QLM] , (32)

where the matrix [QLM] is matrix [Qlow] in Eq. (22) with [U] = [Φs
LM] and d = dM. Consequently,

Eq. (21) yields
[QLM]T [QLM] = [InULM

] . (33)

Using Eq. (29), the matrix [UH] can be rewritten as

[UH] = [Φs
LM] [QH] ,

in which the matrix [QH] is matrix [Qhigh] in Eq. (29) with [U] = [Φs
LM] and d = dL. Conse-

quently, Eq. (30) yields
[QH]T [QH] = [InUH

] . (34)

From Eq. (31), it can be deduced that

[QLM]T [QH] = [0nULM×nUH
] . (35)

Each column of matrix [UH] is a displacement vector with a complexity level higher than the
complexity level of the MF domain. In the case of simple structures, matrix [UH] is empty.
Nevertheless, in the case of complex structures such as automobiles, matrix [UH] is never empty
because local displacements are observed even in the LF band.

4.4. Second spatial filtering
For a given value dL of d, the spatial filtering method presented in Section 3 is carried again

with [U] = [ULM] to construct two matrices [Ulow] and [Uhigh] that are renamed as [UL] and
[UM] to avoid any confusion with the previous spatial filtering. Let nUL and nUM be the number
of columns of matrices [UL] and [UM]. From Eq. (22), matrix [UL] can be rewritten as

[UL] = [Φs
LM] [QLM] [QL] , (36)
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in which the matrix [QL] is matrix [Qlow] in Eq. (22) for [U] = [ULM] and d = dL. Consequently,
Eq. (30) yields

[QL]T [QL] = [InUL
] . (37)

Each column of matrix [UL] is a displacement vector with a complexity level of the same order
than the complexity level of the LF domain. In the case for which dL is less than dM (that is
usually the case), the subscript L reminds that the vectors in the columns of [UL] gather the
vectors with the lowest complexity level and does not refer to the LF band. From Eq. (29),
matrix [UM] can be rewritten as

[UM] = [Φs
LM] [QLM] [QM] , (38)

where the matrix [QM] is matrix [Qhigh] in Eq. (29) with [U] = [ULM] and d = dL. Consequently,
Eq. (30) yields

[QM]T [QM] = [InUM
] . (39)

Each column of matrix [UM] is a displacement vector with a complexity level of higher order
than the complexity level of the LF band but less than the complexity level of the columns of
[UH]. The subscript M reminds that the vectors in the columns of [UM] gather the vectors with a
medium complexity level and does not refer to the MF domain.

4.5. Construction of the multilevel reduced-order model in the LF and MF bands

An approximation of displacement vector u(ω) is then written with respect to its expansion
on the bases represented by matrices [UL], [UM], and [UH],

u(ω) = [UL] qs
L(ω) + [UM] qs

M(ω) + [UH] qs
H(ω) , (40)

which can be rewritten as

u(ω) = [ULMH] qs
LMH(ω) ,

[ULMH] =
[
[UL] [UM] [UH]

]
, qs

LMH =

 qs
L(ω)

qs
M(ω)

qs
H(ω)

 .
Using Eqs. (32), (36), and (38), yields

[ULMH] = [Φs
LM] [QLMH] ,

[QLMH] =
[
[QLM] [QL] [QLM] [QM] [QH]

]
,

and using Eqs. (33), (34), (35), (37), and (39) yields

[QLMH]T [QLMH] = [InLM ] .
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We then obtain the following multilevel reduced-order model,(
− ω2[Ms

LMH] + iω[Ds
LMH] + [Ks

LMH]
)

qs
LMH(ω)

+ [CLMH] qf(ω) = f s
LMH(ω) , (41)(

− ω2[Mf] + iω[Df] + [Kf]
)

qf(ω)

+ ω2[CLMH]T qs
LMH(ω) = 0 , (42)

in which

[Ms
LMH] = [QLMH]T [Ms

LM] [QLMH] , (43)

[Ds
LMH] = [QLMH]T [Ds

LM] [QLMH] , (44)

[Ks
LMH] = [QLMH]T [Ks

LM] [QLMH] , (45)

[CLMH] = [QLMH]T [ CLM] , (46)

f s
LMH(ω) = [QLMH]T f s

LM(ω) . (47)

It should be noted that the orthogonality properties defined by Eq. (3) shows that [Ms
LMH] is

equal to the identity matrix [InLM ] and therefore, it is a diagonal matrix, which is not the case, in
general, for matrices [Ds

LMH] and [Ks
LMH].

4.6. Numerical application for the multilevel reduced-order computational model

In this section, the three frequency bounds ωL, ωM, and ωH are determined by analyzing the
FRF for a given excitation (input) and for a set of observation points (outputs). The multilevel
reduced-order computational model is constructed and validated by comparison with the classical
reduced-order computational model.

4.6.1. Description of the full-order computational model
The full-order computational model is a three dimensional finite-element vibroacoustic model

of an automobile. The finite element mesh of the structure and the acoustic cavity are shown in
Fig. 2. There are ns

dof + nf
dof = 19 984 315 degrees of freedom (structural displacements and

acoustic pressure) in which nf
dof is approximatively equal to 600 000.

An intensive computational effort has been carried out to compute the ns = 25 685 elastic
modes (structure) and the nf = 4 427 acoustic modes (acoustic cavity) in the LF-MF-HF band,
[0 , 2 000] Hz. These modes allow for constructing matrices [Φs] and [Φf] introduced in Sec-
tions 2.2 and 2.3.

For calculating the structural and vibroacoustic frequency responses functions (FRF), the ex-
citations (inputs) and the observations (outputs) are defined as follows. The structure excitations
are the two points clvd and clvg located at engine supports. The structure observation points are
two points on the floor ccuvg and ccurg, and again the points clvd and clvg, as shown in Fig. 2
(top). The acoustic-cavity observation points are located at the points at ear height avd, avg, ard,
and arg of passengers as shown in Fig. 2 (bottom).

4.6.2. Frequency band limits ωL, ωM and ωH

The frequency limits of the frequency bands (LF, MF, and HF) have been determined by
analyzing the FRF for a given input (excitation at point clvg in X-direction) and 12 outputs
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Figure 2: Finite element mesh of the structure and the acoustic cavity made up of 19 984 315
degrees of freedom (structural displacements and acoustic pressure). Top figure: structure exci-
tation points (clvd and clvg) and structure observation points (ccuvg, ccurg and again clvd, clvg).
Bottom figure: acoustic-cavity observation points corresponding to four points at ear height (avd,
avg, ard, and arg) of passengers. In the top figure, the labels can distinctly be seen by zooming.

(observations points ccuvg, ccurg, clvd, and clvg in X-, Y-, and Z-directions). Figures 3 to 6 show
the graph of the mean value of these 12 FRFs with different frequency scaling. Comparing
Figs. 3 and 4 allows for obtaining the value of the upper limit ωL/2π = 200 Hz of the LF band.
Comparing Figs. 3, 5, and 6 allows an estimation of the upper limit ωM/2π = 800 Hz of the MF
band, and of course, the upper limit of the validity domain of the reduced-order computational
model, which is ωH/2π = 2 000 Hz.

The determination of the value dM (resp. dL) of polynomial parameter d for the first (resp.
second) spatial filtering depends on the elastic modes belonging to the MF (resp. LF) band. It
is clear that the uncertainty on the values of ωM (resp. ωL) yields uncertainties on the value of
dM (resp. dL) as well on the construction of the multilevel reduced-order computational model.
In the frequency band [0, ωM], there are nLM = 7 470 structural modes and nf

LM = 419 acoustic
modes.
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Figure 3: Graph of the mean value of the 12 FRFs for a same excitation at point clvg in
X−direction and observation at points ccuvg, ccurg, clvd, and clvg in X−, Y−, and Z−directions.
Vertical axis: acceleration in dB. Horizontal axis: frequency f = ω/2π in Hz for f ∈
[0, 2 000]Hz.
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Figure 4: Graph of the mean value of the 12 FRFs for a same excitation at point clvg in
X−direction and observation at points ccuvg, ccurg, clvd, and clvg in X−, Y−, and Z−directions.
Vertical axis: acceleration in dB. Horizontal axis: frequency f = ω/2π in Hz for f ∈ [0, 200]Hz.

4.7. Complexity level for the HF band

As presented in Section 4.2, the complexity level of the HF band is quantified by the value dH
of polynomial degree parameter d by studying the graph of mapping d 7→ convH(d) (see Fig. 7).
It can be seen that dH = 32. Nevertheless, it can also be seen that the values of convH(d) are
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Figure 5: Graph of the mean value of the 12 FRFs for a same excitation at point clvg in
X−direction and observation at points ccuvg, ccurg, clvd, and clvg in X−, Y−, and Z−directions.
Vertical axis: acceleration in dB. Horizontal axis: frequency f = ω/2π in Hz for f ∈
[200, 800]Hz.
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Figure 6: Graph of the mean value of the 12 FRFs for a same excitation at point clvg in
X−direction and observation at points ccuvg, ccurg, clvd, and clvg in X−, Y−, and Z−directions.
Vertical axis: acceleration in dB. Horizontal axis: frequency f = ω/2π in Hz for f ∈
[800, 2000]Hz.

not negligible for small values of d. A possible interpretation is that there is no cutoff value
d cutoff

H of d, which can filter out all the elastic modes in the HF band into the columns of matrix
[Uhigh]. Consequently, the HF band cannot be considered as a purely high-complexity-level
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domain because a superposition of large structural displacements with very local displacements
is observed. It is not expected that the values dL and dM be higher than dH because it would mean
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Figure 7: Graph of mapping d 7→ convH(d). Horizontal axis: polynomial degree d. Vertical axis:
number of columns of matrix [Uhigh] for [U] = [ΦH].

that the level of complexity of the LF or MF band is higher than the level of complexity of the
HF band.

4.8. Multilevel reduced-order model

The value ωL is assumed to be equal to 200 × 2π rad/s. The complexity level of the LF
(resp. MF) band is quantified by the value dL (resp. dM) of polynomial degree parameter d
by studying the graph of the mapping d 7→ convL(d) (resp. d 7→ convM(d)) that is shown in
Fig. 8. It can be seen that dM = 22 and dL = 14 that are still lesser than dH is in accordance
with the usual expertise in structural dynamics for which the complexity level of the HF band
is higher than the complexity level of the MF band, which is higher than the complexity level
of the LF band. Again, there is no cutoff value d cutoff

M of d, which can filter out all the elastic
modes in the MF band into the columns of matrix [Uhigh]. Consequently, the MF band cannot
be considered as a purely (moderate) high-complexity-level domain only. Again, a superposition
of large structural displacements with more or less local displacements can be observed. As a
reminder, for constructing the multilevel reduced-order computational model, the parameters are
ωL = 200/2π, ωM = 800/2π, dL = 14 and dM = 22. The number of columns of [UL] (resp.
[UM] and [UH]) is then nUL = 2 040 (resp. nUM = 4 698 and nUH = 742). Three multilevel
reduced-order computational models have been used by removing some columns of [ULMH] =[
[UL] [UM] [UH]

]
. Figure 9 (resp. Fig.10) presents the FRF for an excitation at point clvg

in X-direction and an observation at point ccuvg (resp. ccurg) in X-direction for [ULMH] =

[UM], [UL], [UH], and [ULMH] =
[
[UL] [UM] [UH]

]
(black line). It has previously been checked

that the FRF calculated with the multilevel reduced-order computational model with [ULMH] =[
[UL] [UM] [UH]

]
perfectly fits the FRF calculated by the ROM defined by Eqs. (5) and (6).

These results allow us to conclude that, in general, [UM] does not span the same vector space as
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Figure 8: Complexity level in the LH and MF bands. Top figure: graph of d 7→ convM(d).
Bottom figure: graph of d 7→ convL(d). Horizontal axis: polynomial degree d. Vertical axis:
Number of columns of matrix [Ulow] for [U] = [ΦM] (top) and for [U] = [ΦM] (bottom).

the elastic modes in the MF band (note that we have nLM ; nUM ). Figure 11 presents the FRF for
an excitation at point clvg in X-direction and four observations of the acoustic pressure (in dB) at
points avg, arg, avd, and ard for [ULMH] = [UM], [UL], [UH], and [ULMH] =

[
[UL] [UM] [UH]

]
.

As already explained, it has previously been checked that this FRF computed with the multilevel
reduced-order computational model with [ULMH] =

[
[UL] [UM] [UH]

]
perfectly fits the FRF

computed by the ROM defined by Eqs. (5) and (6). In Fig. 11, it can be seen that none of the
bases [UL], [UM], and [UH] (for representing displacement vector u(ω)) is able to predict alone
the responses for such a complex vibroacoustic system.
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Figure 9: FRF for an excitation at point clvg and an observation at point ccuvg, both in
X−direction, for [ULMH] = [UM] (green line), = [UL] (red line), = [UH] (cyan line, but out
of range in the figure), and [ULMH] =

[
[UL] [UM] [UH]

]
(black line). Horizontal axis: frequency

ω/2π in Hz. Vertical axis: acceleration in dB.
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Figure 10: FRF for an excitation at point clvg and an observation at point ccurg, both in
X−direction, for [ULMH] = [UM] (green line), = [UL] (red line), = [UH] (cyan line, but out
of range in the figure), and [ULMH] =

[
[UL] [UM] [UH]

]
(black line). Horizontal axis: frequency

ω/2π in Hz. Vertical axis: Acceleration in dB.

5. Stochastic multilevel reduced-order computational model in vibroacoustics

The objective of this section is to take into account the model uncertainties induced by the
modeling errors by using the nonparametric probabilistic approach and to construct the stochastic
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Figure 11: FRF for an excitation at point clvg in X-direction and four observations of acoustic
pressure (in dB) at points avg (top left), arg (top right), avd (bottom left), and ard (bottom right)
for [ULMH] = [UM] (green line), = [UL] (red line), = [UH] (cyan line, but out of range in the
figure), and [ULMH] =

[
[UL] [UM] [UH]

]
(black line). Horizontal axis: frequency ω/2π in Hz.

Vertical axis: acoustic pressure in dB.

multilevel reduced-order computational vibroacoustic model. The nonparametric probabilistic
approach for the model uncertainties (see [64, 42]) consists in directly substituting the matrices
of the multilevel reduced-order computational model presented in Section 4.4 by random matri-
ces. The probabilistic model of these random matrices has been constructed by the use of the
MaxEnt Principle. The hyperparameters of the probabilistic model for each random matrix con-
sist of the mean value of the random matrix and a dispersion coefficient that controls the level
of statistical fluctuations, and which reflects the level of uncertainties. We start by introducing
the nonparametric probabilistic approach in the classical stochastic reduced-order computational
model and then its implementation in the multilevel reduced-order computational model is pre-
sented.

5.1. Nonparametric probabilistic approach of uncertainties for the classical reduced-order com-
putational model

It is assumed that there are no model uncertainties in the acoustic cavity but only on the
structure and on its coupling with the acoustic cavity. The classical stochastic reduced-order
computational model is then obtained by substituting [CLM], [Ms

LM], [Ds
LM], [Ks

LM] in Eqs. (7)
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and (8) by random matrices [CLM], [Ms
LM], [Ds

LM], [Ks
LM], which yields(

− ω2[Ms
LM] + iω[Ds

LM] + [Ks
LM]

)
Qs(ω) + [CLM] Qf(ω) = f s

LM(ω) , (48)(
− ω2[Mf] + iω[Df] + [Kf]

)
Qf(ω) + ω2[CLM]T Qs(ω) = 0 , (49)

in which Qs(ω) (resp. Qf(ω)) is a Cns
(resp. Cnf

)-valued random vector. The displacement vector
u(ω) (resp. the acoustic pressure vector p(ω)) is then replaced by the Cns

dof -valued random vector
U(ω) (resp. the Cnf

dof -valued random vector P(ω)) such that

U(ω) = [Φs
LM] Qs(ω) , P(ω) = [Φf] Qf(ω) . (50)

Random matrix [CLM] belongs to the ensemble SErect (see [42]) with a dispersion coefficient δCLM

and with a mean value [CLM]. Random matrix [Ms
LM] (resp. [Ds

LM] and [Ks
LM]) belongs to the

ensemble SE+ (see [42]) with dispersion coefficient δMs
LM

(resp. δDs
LM

and δKs
LM

) and with a
mean value [Ms

LM] (resp. [Ds
LM], and [Ks

LM]).

5.2. Nonparametric probabilistic approach of uncertainties for the multilevel reduced-order
computational model

Again, it is assumed that there are no model uncertainties in the acoustic cavity but only on
the structure and on its coupling with the acoustic cavity. The stochastic multilevel reduced-
order computational model is constructed by substituting [CLMH], [Ms

LMH], [Ds
LMH], and [Ks

LMH]
in Eqs. 41 and 42 by random matrices [CLMH], [Ms

LMH], [Ds
LMH], and [Ks

LMH]. We then obtain(
− ω2[Ms

LMH] + iω[Ds
LMH] + [Ks

LMH]
)

Qs
LMH(ω) + [CLMH] Qf(ω) = f s

LMH(ω) , (51)(
− ω2[Mf] + iω[Df] + [Kf]

)
Qf(ω) + ω2[CLMH]T Qs

LMH(ω) = 0 , (52)

in which Qs
LMH(ω) is a CnUL+nUM+nUH -valued random vector and where Qf(ω) is a Cnf

-valued
random vector. The displacement vector u(ω) (resp. the acoustic pressure vector p(ω)) is then
replaced by the Cns

dof -valued random vector U(ω) (resp. the Cnf
dof -valued random vector P(ω))

such that
U(ω) = [ULMH] Qs

LMH(ω) , P(ω) = [Φf] Qf(ω) . (53)

Concerning the probabilistic models of [CLMH], [Ms
LMH], [Ds

LMH], and [Ks
LMH], a naive approach

would consist in substituting matrices [CLM], [Ms
LM], [Ds

LM], and [Ks
LM] in the expressions of

matrices [CLMH], [Ms
LMH], [Ds

LMH], and [Ks
LMH] given by Eqs. (43) to (46) by the random ma-

trices [CLM], [Ms
LM], [Ds

LM], and [Ks
LM] that have been introduced in Section 5.1. However,

such a probabilistic model would exactly be the same as the one presented in Section 5.1 and
consequently, would not be interesting. Hence, the probabilistic model of random matrix [CLMH]
is constructed by substituting matrix [CLM] in Eq. (46) by random matrix [CLM] that has been
introduced in Section 5.1. We then have

[CLMH] = [QLMH]T [CLM] . (54)

Furthermore, let [A] be any of random matrices [Ms
LMH], [Ds

LMH], and [Ks
LMH] for which the

mean values are [Ms
LMH] = E{[Ms

LMH]}, [Ds
LMH] = E{[Ds

LMH]}, and [Ks
LMH] = E{[Ks

LMH]} with
E{·} is the mathematical expectation operator. The Cholesky factorization of matrix [A] = E{[A]}
is written as [A] = [LA]T [LA] in which [LA] is an upper triangular matrix. The probabilistic model
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of random matrix [A] is then written as

[A] = [LA]T [GA] [LA] , (55)

where the random matrix [GA] is written as

[GA] =

[GL,A] [0] [0]
[0] [GM,A] [0]
[0] [0] [GH,A]

 . (56)

In Eq. (56), the random matrices [GL,A], [GM,A], and [GH,A] belong to ensemble SG+
0 (see [42])

with dimension nUL×nUL , nUM×nUM , and nUH×nUH , and with dispersion coefficients δL,A, δM,A, and
δH,A. Consequently, the construction of the stochastic multilevel reduced-order computational
model involves ten dispersion coefficients that are
δCLMH for [CLMH],
δL,Ms

LMH
, δM,Ms

LMH
, δH,Ms

LMH
for [Ms

LMH],
δL,Ds

LMH
, δM,Ds

LMH
and δH,Ds

LMH
for [Ds

LMH],
δL,Ks

LMH
, δM,Ks

LMH
, δH,Ks

LMH
for [Ks

LMH].

5.3. Numerical results obtained with classical stochastic reduced-order computational model

The Monte-Carlo numerical method is used for solving Eqs. (48) to (50) in order to quantify
the role played by uncertainties in the FRF. The number of realizations is 46 and there are 200
frequency points distributed in log10-scale between 20 HZ and 800 Hz. The relatively small value
of the number of realizations has been chosen to make calculations feasible with acceptable CPU
time using the available computers. It was verified that this value made it possible to qualitatively
and quantitatively preserve the prediction of the upper envelopes of the confidence domains. The
main influence of this small number of realizations is a relatively poor estimate of the lower
envelopes of the confidence domains. These lower envelopes would be smoother with a greater
number of realizations, but the upper envelopes would remain stable as we have been able to
numerically verify by choosing a lower number of realizations.

Figure 12 shows the random structure-structure FRF for the structural excitation at point clvd
in X-direction and for the structural observation at point ccuvg in X-direction, with δCLM = 0.4,
δMs

LM
= δDs

LM
= δKs

LM
= 0.3.

Figure 13 shows the random structure-acoustic FRF for the structural excitation at point clvg
in X-direction and for the acoustical observation at point at ear height avg, with δCLM = 0.4,
δMs

LM
= δDs

LM
= δKs

LM
= 0.3.

5.4. Numerical results obtained with stochastic multilevel reduced-order computational model

Similarly to the classical stochastic reduced-order computational model, the Monte-Carlo
numerical method is used for solving Eqs. (51) to (53). The number of realizations is always 46
with 200 frequency points distributed in log10-scale between 20 HZ and 800 Hz.

Two FRFs are analyzed. The first one, referred as EX1, is the structure-structure FRF for
which the structural excitation is at point clvd and the structural observation is at point ccuvg,
both in X-direction. The second one, referred as EX2, is the structure-acoustic FRF for which
the structural excitation is at point clvg in X-direction and the acoustical observation is at point
at ear height avg.
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Figure 12: Structure-structure FRF estimated with the classical stochastic ROM for the structural
excitation at point clvd and observation ccuvg, both in X-direction. Confidence region at of 95%
(yellow), nominal (blue), statistical mean value (red). Horizontal axis: frequency in Hz. Vertical
axis: acceleration in dB.
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Figure 13: Structure-acoustic FRF estimated with the classical stochastic ROM for the structural
excitation at point clvg in X-direction and for the acoustical observation at point avg. Confi-
dence region at 95% (yellow), nominal (black), and statistical mean value (red). Horizontal axis:
frequency in Hz. Vertical axis: acoustic pressure in dB.

The calculations have been carried out for 4 sets of dispersion coefficients values. These
sets are labelled as cases (i), (ii), (ii), and (iv) and are defined in Table 1. For these 4 cases,
δCLMH = 0.4. The results are presented in Figs. 14 to 21. In each figure, it can be seen the
confidence region for a probability level of 95%, the statistical mean value, and the nominal FRF
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calculated with the deterministic computational vibroacoustic model.

Table 1: For L, M, and H, values of the dispersion coefficients δMs
LMH

, δDs
LMH

, and δDs
LMH

, for the
4 cases (i), (ii), (iii), and (iv)
.

(i) (ii) (iii) (iv)
δL,Ms

LMH
0.3 0.05 0.05 0.3

δL,Ds
LMH

0.3 0.05 0.05 0.3
δL,Ks

LMH
0.25 0.05 0.05 0.25

δM,Ms
LMH

0.05 0.3 0.05 0.3
δM,Ds

LMH
0.05 0.3 0.05 0.3

δM,Ks
LMH

0.05 0.25 0.05 0.25
δH,Ms

LMH
0.05 0.05 0.3 0.3

δH,Ds
LMH

0.05 0.05 0.3 0.3
δH,Ks

LMH
0.05 0.05 0.25 0.25
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Figure 14: Structure-structure FRF (EX1) for case (i): confidence region at 95% (yellow), nom-
inal (blue), and statistical mean (red).

5.5. Discussions
The nominal FRFs are calculated by using the deterministic computational vibroacoustic

model. At a given frequency, the value of a nominal FRF may or may not belong to the confi-
dence region calculated with the classical stochastic reduced-order computational model or with
the stochastic multilevel reduced-order computational model. The nominal value is not a refer-
ence as would be experimental measurements. Unfortunately, experimental measurements are
not available for this vibroacoustic system. Consequently, the identification of the dispersion
coefficients by solving statistical inverse problems and experiments cannot be done. This is the
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Figure 15: Structure-acoustic FRF (EX2) for case (i): confidence region at 95% (yellow), nomi-
nal (black), and statistical mean (red).
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Figure 16: Structure-structure FRF (EX1) for case (ii): confidence region at 95% (yellow), nom-
inal (blue), and statistical mean (red).

reason why a sensitivity analysis with respect to the level of uncertainties that are controlled by
the dispersion coefficients have been carried out.

The introduction of model uncertainties, which makes it possible to take into account the
modeling errors, is precisely done to give robustness to the results given by the computational
model. There is no reason the responses of the nominal deterministic system always belong to
the confidence regions.

The Nastran software has been used with available computation servers, to compute the elas-
tic modes, the acoustic modes, and to export the generalized matrices of the vibroacoustic system,
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Figure 17: Structure-acoustic FRF (EX2) for case (ii): confidence region at 95% (yellow), nom-
inal (black), and statistical mean (red).
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Figure 18: Structure-structure FRF (EX1) for case (iii): confidence region at 95% (yellow),
nominal (blue), and statistical mean (red).

in particular the generalized full coupling matrix between the structure and the acoustic cavity.
Taking into account the very large dimension of the computational vibroacoustic model (approx-
imately 20 million degrees of freedom), it has not been possible to do the computations in one
run, for all the frequency band of analysis (which would have made it possible to export the gen-
eralized full matrix of coupling), but had to be made by frequency sub-band. In this case, for a
given frequency sub-band, Nastran generates only the diagonal block of the generalized coupling
matrix for the elastic modes and the acoustic modes that belong to this sub-band. Thus, it is not
possible to obtain the full generalized coupling matrix for the entire band of analysis, but only
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Figure 19: Structure-acoustic FRF (EX2) for case (iii): confidence region at 95% (yellow), nom-
inal (black), and statistical mean (red).
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Figure 20: Structure-structure FRF (EX1) for case (iv): confidence region at 95% (yellow),
nominal (blue), and statistical mean (red).

the diagonal blocks, the extra-diagonal blocks then being zero, which is not perfectly correct.
Under these conditions, the prediction of the acoustic response of the vibroacoustic system is an
approximation whose level of approximation cannot be evaluated given the size of the problem.

On the other hand, to test the methodology and algorithms, the nonparametric probabilis-
tic model of uncertainties has been implemented in a general framework, which means that the
random matrix germs are full as the theory of random matrices specifies for the ensembles of ran-
dom matrices considered. However, as it has just been explained, the generalized coupling matrix
of the nominal model, which should be full (taking into account all the couplings between the
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Figure 21: Structure-acoustic FRF (EX2) for case (iv): confidence region at 95% (yellow), nom-
inal (black), and statistical mean (red).

elastic and acoustic modes), is not and presents extra-diagonal blocks, which are zero matrices.
The construction of the random matrices associated with this generalized coupling matrix of the
nominal model, therefore substitutes the zero blocks of this nominal matrix by non-zero random
blocks. Therefore, for the prediction of acoustic responses, the level of approximation used, be-
tween the nominal vibroacoustic model and the classical or multilevel stochastic computational
model, is not exactly the same. This could induce an additional small error in the interpretation
of the acoustic results of the vibroacoustic system when comparing the acoustic response of the
nominal system with the acoustic response of the classical or multilevel stochastic model. De-
spite these approximations, the errors induced remain low and do not modify quantitatively the
results presented, both for the structure-structure FRF and for structure-acoustic FRF. In accor-
dance with what it is indicated as perspectives, a necessary development would be to obtain the
complete vibroacoustic coupling matrix and to see what is its influence on the vibroacoustic FRF.
It should be noted that such a development is directly linked to the possibilities of the commer-
cial software, here Nastran, used and not to the developments, strictly speaking, of the proposed
method.

In the light of the comments, which have been made above, the results obtained are consis-
tent and are the expected results. The stochastic multilevel ROM takes better into account the
uncertainties as a function of the LF and MF frequency bands than the classical stochastic ROM.
Examination of all the Figures (Figs. 12 to 21) clearly shows that, a same and unique analysis
can be given for the structure-structure FRF and the structure-acoustic FRF. From now on, we
will no longer differentiate between these two types of FRF.

Four different sets (cases (i) to (iv)) of dispersion coefficients (that is to say of uncertainty
levels) are used for the three complexity levels L, M, and H (see Section 4). A comment is
formulated hereinafter for each one of these sets.

The first set that features high-level uncertainties for the L complexity level and low-level
32



uncertainties for the M and H complexity levels can be seen in Figs. 14 and 15.
The results for the second set that presents a high level of uncertainty for the M complexity

level and a low level of uncertainty for the L and H complexity levels, are given in Figs. 16 and
17. This case gives narrow confidence regions in the LF band, whose width increases with the
frequency.

For the third set, which deals with a high level of uncertainty for the H complexity level and a
low level of uncertainty for the L and M complexity levels, the results are shown in Figs. 18 and
19. The width of confidence region as well as the position of the statistical mean yield a robust
model. This case of the uncertainty level yields a very thin confidence region that grows with the
frequency.

The last set introduces a high level of uncertainty for the three levels of complexity, L, M,
and H, and the results are shown in Figs. 20 and 21.

Comparing these results with the results given by the classical stochastic ROM, it can be
concluded that the classical stochastic ROM is a special case of the stochastic multilevel ROM
and that the stochastic multilevel ROM is better than the classical stochastic ROM. First of all the
robustness with regard to uncertainty level does not depend solely on the choice of the polynomial
degrees but also of the three complexity levels. Finally, it is well known that the MF band is
sensitive to uncertainties unlike the LF band that has very little sensitivity to model uncertainties.
In the multilevel method, it is therefore consistent to consider a significant level of uncertainties
for the M complexity level and a very low level of uncertainty for the L complexity level. This
situation corresponds to the second set (case (ii)) of values for the dispersion coefficients for
which the results are given in Figs. 16 and 17. We obtain a good result in terms of taking into
account the uncertainties as a function of the frequency and which is consistent with the fact that
the value of ωL/2π = 200 Hz gives a good separation of the 3 complexity levels: L, M, and H.

6. Conclusions and perspectives

This work has proposed an improvement of the general method of spatial filtering previously
developed for complex structures and has presented an extension to vibroacoustic systems made
up of a complex structure coupled with an internal acoustic cavity. The systems studied are all the
more complex as the number of degrees of freedom increases with the frequency band of analysis.
The modified method has been made to construct a multi-complexity-level displacement basis in
order to obtain the multilevel ROM.

The principal use is for robust analysis of complex vibroacoustic systems over a broad fre-
quency band for which the probabilistic model of uncertainties induced by modeling errors is
adapted to each one of the three vibration regimes, LF, MF, and HF. For that, a multilevel stochas-
tic ROM has been developed for the structure, which is able to take into account the variability
induced by the overlap in the three vibration regimes.

This work is in continuation of the work in [80, 81] for which a complete reformulation of the
method has been proposed in this paper, for which a novel presentation and numerical develop-
ments are performed, and for which novel interpretations are given. For large scale computational
vibroacoustic model, we have constructed a predictive stochastic multilevel ROM whose dimen-
sion is inferior to the usual ROM constructed by using the classical modal analysis. Algorithms
have specifically been developed to be used for very large computational models without encoun-
tering problems related to the limitation of Random Acces Memory (RAM) and with numerical
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costs that remain low. This capability of the proposed method has required in-depth methodolog-
ical and algorithmic reflection. In particular, the numerical analysis and the developed algorithm
have been written to improve the existing codes. The high dimension of the computational model
compelled us to propose an efficient computation to optimize time calculation (CPU) and data
storage limitations (RAM). The database (modal analysis, lumped mass matrix, vibroacoustic
modal coupling matrix) has been computed from a dedicated software (Nastran). All the pro-
posed approach and the post-processing have been implemented in Matlab. Consequently, the
approach proposed is nonintrusive with respect to commercial software. We have automated
some parameters like the range of the first eigenvalue problem and not use the cutoff frequency
in the process of the filtering.

The applications have been performed for an automobile whose computational vibroacoustic
model is made up an acoustic cavity (cockpit) of 600 000 dofs coupled with a complex struc-
ture (car) (of nearly 19 million of dofs). Several cases have been considered in order to test
the method, the numerical analysis, and the algorithms. The validation has been given and the
capability of the proposed approach has been tested, for the stochastic multilevel reduced-order
computational vibroacoustic model. This nonparametric stochastic multilevel ROM gives better
results than the classical nonparametric stochastic ROM with respect to the taking into account
of uncertainties as a function of the frequency.
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