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Abstract

Although much progress has been made recently in 3D face
reconstruction, most previous work has been devoted to pre-
dicting accurate and fine-grained 3D shapes. In contrast, rela-
tively little work has focused on generating high-fidelity face
textures. Compared with the prosperity of photo-realistic 2D
face image generation, high-fidelity 3D face texture genera-
tion has yet to be studied. In this paper, we proposed a novel
UV map generation model that predicts the UV map from a
single face image. The model consists of a UV sampler and a
UV generator. By selectively sampling the input face image’s
pixels and adjusting their relative locations, the UV sampler
generates an incomplete UV map that could faithfully recon-
struct the original face. Missing textures in the incomplete
UV map are further full-filled by the UV generator. The train-
ing is based on pseudo ground truth blended by the 3DMM
texture and the input face texture, thus weakly supervised. To
deal with the artifacts in the imperfect pseudo UV map, mul-
tiple UV map and face image discriminators are leveraged.

Introduction
3D face reconstruction is an important yet challenging do-
main in computer vision, aiming to faithfully restore the
shape and texture of a face from one or more face images.
It has a wide range of applications, such as face recogni-
tion, face editing, face animation, and other artistic and en-
tertainment fields. Recently, there has been a surge of in-
terest in single-image based 3D face reconstruction (Deng
et al. 2019b; Guo et al. 2020; Richardson et al. 2017; Feng
et al. 2018; Tran and Liu 2018). While most previous work
has been devoted to predicting more accurate and detailed
3D shapes, not much work has focused on generating photo-
realistic face textures. However, studies (Masi et al. 2019;
Hassner et al. 2015) have shown that the texture plays a
more significant role than that of the shape in face recog-
nition tasks. Thus we can never ignore the importance of the
texture in 3D face reconstruction.

Existing 3D face texture generation methods can be
broadly classified into three categories: texture model-based,
image generation-based, and GAN optimization-based.

Texture model-based Since the 3D Morphable Model
(3DMM) (Blanz and Vetter 1999) was proposed, it has been
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Figure 1: Results of the proposed method. The left column
shows the input images. Images on the right are synthesized
using the predicted UV-map.

widely used in 3D face reconstruction. The model is a vec-
tor basis of the shape and texture learned from a set of 3D
face scans. Earlier approaches regress the 3DMM parame-
ters by solving a non-linear optimization problem (Richard-
son, Sela, and Kimmel 2016; Booth et al. 2017), which is
often slow and costly. With the development of Convolu-
tional Neural Networks, recent studies tend to predict the
parameters using learning-based methods (Richardson et al.
2017; Guo et al. 2018; Deng et al. 2019b). However, the
3DMM is constructed by a small number of face scans un-
der well-controlled conditions, limiting its diversity to iden-
tity, race, age, gender, etc. Besides, due to the linear and
low-dimensional nature of the model, it can hardly capture
high-frequency details, resulting in blurred textures that are
far from satisfactory.

Image generation-based Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014) provide a powerful
tool for generating photorealistic images. Since its appear-
ance, numerous image generation methods with stunning re-
sults have been proposed. Thanks to various large databases
and the highly structured geometry of the human face, 2D
face image generation is one of the most prosperous areas
(Huang et al. 2018; Pumarola et al. 2018; Choi et al. 2018;



Karras, Laine, and Aila 2019; Karras et al. 2017). Influenced
by this trend, some recent 3D face reconstruction methods
have also leveraged adversarial training to improve the tex-
ture quality (Tran and Liu 2018; Deng et al. 2018; Lee and
Lee 2020). However, such kind of approaches are highly de-
pendent on large 3D face databases. (Tran and Liu 2018)
is trained on a synthesized 3D face database (Zhu et al.
2016b), where originally self-occluded textures are obtained
by simple interpolation of visible parts, resulting in imper-
fect generation. (Deng et al. 2018; Lee and Lee 2020) are
trained on a large UV map dataset, which is not publicly
available.

GAN optimization-based The traditional yet most pow-
erful GANs are trained to synthesize images from noise
vectors (Karras et al. 2017; Karras, Laine, and Aila 2019;
Brock, Donahue, and Simonyan 2019). To leverage the
power of a pre-trained GAN, a series of works are estab-
lished on inverting the image back to a GAN’s latent space
using optimization-based approaches (Shen et al. 2020; Ma,
Ayaz, and Karaman 2018a,b; Zhu et al. 2016a). Similar
methods are used to generate the UV map of a face im-
age (Gecer et al. 2019; Lee et al. 2020). First, they train a
generator that converts noise vectors into UV maps. Then
they directly optimize the latent code to minimize the recon-
struction error between the input face image and the image
rendered by the generated UV map. Instead of training a UV
map generator, (Gecer, Deng, and Zafeiriou 2020) first ro-
tates the input image in 3D and optimizes the latent code of
the pre-trained StyleGAN to fill in the missing textures, then
stitches textures of different view angles by alpha blending
to form the final UV map. By far, the optimization-based
methods can yield the most realistic face UV maps. Never-
theless, they are usually complex and time-consuming, e.g.,
GANFIT (Gecer et al. 2019) takes 30 seconds to generate
the UV map of an input face, while OSTeC (Gecer, Deng,
and Zafeiriou 2020) takes up to 5 minutes.

Besides generating a global face texture, we note that a
series of pure 2D image generation methods can also synthe-
size face images of different view angles (Tran, Yin, and Liu
2017; Zhou et al. 2020; Hu et al. 2018). However, the gen-
eration consistency is poor due to the absence of global con-
sistency constraints and a priori knowledge of the 3D shape.

In summary, among the current texture generation meth-
ods for 3D face reconstruction, those based on texture mod-
els cannot yield high-fidelity results due to the model’s sim-
plicity; those based on image generation rely heavily on
large training dataset; those based on optimization are time-
consuming and require a high computational cost.

To this end, we propose a novel image-to-image trans-
lation model that converts the input face image into its
corresponding UV map. The proposed method is image
generation-based, therefore much faster than optimization-
based methods. We use the pseudo UV map for training,
bypassing the dependency on the real UV map database.
Thanks to multiple partial UV discriminators, we can use
cropped parts of incomplete UV maps (acquired using the
data pre-processing method provided in (Deng et al. 2018))
for training to improve the generation quality. Our contribu-
tions are as follows:

• A novel image generation-based UV map prediction
framework is proposed. The generated results are compa-
rable to the optimization-based method but much faster.

• With the proposed UV sampler module, the visible face
textures can be directly mapped to the UV space, form-
ing an incomplete UV map. No 3D information (shape,
occlusion) is required during the inference stage. There-
fore, our model can be stitched seamlessly with any 3D
shape reconstruction model.

• The training doesn’t rely on the real UV map database,
and the design of multiple discriminators can compensate
well for the imperfect ground truth.

• The proposed method outperforms the state-of-the-art
methods, both qualitatively and quantitatively.

Related Work
3D shape reconstruction From earlier optimization-based
methods to CNN prediction-based methods, acquiring ac-
curate 3D face shape becomes easier and faster, bring-
ing powerful tools and significant opportunities for face-
related tasks. Our training process relies on 3D shape re-
construction of a given face, where numerous 3D shape
fitting methods are applicable. In this paper, we adopt
an off-the-shelf model (Deng et al. 2019b) as our shape
re-constructor, which is the current SOTA 3DMM-based
method. The model will predict its corresponding pose and
3DMM shape/texture parameters with a single face image as
input.

UV map generation There exist mainly two texture rep-
resentation methods for 3D models, vertex-based and UV
map-based. The vertex-based representation is very intu-
itive, where each vertex has a color, and the interpolation of
those colors generates the texture of the 3D surface. How-
ever, such representation flattens the texture into a linear
vector, destroys the spatial relationship of texture patches,
thus prevents it from leveraging powerful CNN-based meth-
ods. The UV map-based representation unwraps the 3D tex-
ture into a 2D space. Briefly, each 3D vertex’s color is
mapped to its corresponding location of a 2D image, and
adjacent vertices are mapped to adjacent regions so that
the positional relationships between vertices are well pre-
served. (Deng et al. 2018) first sample the color of visible
3D vertices from the input face image, then map them to UV
space to get the incomplete UV map, in which the genera-
tive model will further complete the missing parts. However,
their method is highly dependent on the precise 3D shape
and ground truth UV maps. In contrast, our method does
not need the UV map data for training or 3D shape for in-
ference. (Tran and Liu 2018) propose a non-linear 3DMM,
where the predicted texture takes the UV map-based repre-
sentation. Nevertheless, their UV map generator’s input is a
low-dimensional encoding of the input image, resulting in
an loss of detail of the predicted UV map. In addition, their
model is trained on linear 3DMM synthesized images (Zhu
et al. 2016b), where artifacts caused by self-occlusion ap-
pear frequently. Unlike (Tran and Liu 2018), our model is
trained on real face images, and the coding keeps a large di-
mension across the forward path, making the generated UV



map photorealistic.
Differentiable renderer To obtain the gradient of the loss

function and thus train the network, a differentiable renderer
is widely used in 3D face-related algorithms (Richardson
et al. 2017; Guo et al. 2018; Tran and Liu 2018; Deng et al.
2019b). Briefly, a renderer is composed of a rasterizer and
a shader. The rasterizer applies depth-buffering to select the
mesh triangles corresponding to each pixel, and the shader
computes the pixel colors as follows:

c̄ = w0c0 + w1c1 + w2c2 (1)

where ci is the color of the ith vertex of the mesh triangle the
pixel resides in, wi is the barycentric coordinate of the pixel
in the triangle. During backward propagation, the gradients
are passed from each pixel to the vertices:

dL

dci
=

dL

dc̄

dc̄

dci
=

dL

dc̄
wi (2)

where L is the loss function. Since ci is sampled from the
output of the texture generator, i.e., the UV map, the gra-
dients could be further backpropagated. In our project, we
adopt the off-the-shelf differentiable renderer of PyTorch3D
(Ravi et al. 2020).

Pixel attention sampling To get the UV map of visible
parts, UV-GAN (Deng et al. 2018) first fits a 3DMM to
the input image, then use the vertices’ projected 2D coordi-
nates to sample their corresponding colors, and the incom-
plete UV map is further generated. However, their method
relies on accurate 3D shape fitting and facial landmark de-
tection. Furthermore, such a method does not have a mech-
anism to deal with face occlusions(hands, hair, eyeglasses,
etc.). Inspired by (Yin et al. 2020), we apply a pixel atten-
tion sampling (PAS) module to sample the incomplete UV
map from the input image directly. Thanks to this module,
the inference process is free from 3D shape or facial land-
marks. Besides, different from (Yin et al. 2020), where in-
put images require landmark-based pre-alignment due to the
arbitrary target poses. The target output, i.e., the UV map,
is highly structured, so neither spatial transformation to the
input image nor the target pose condition is demanded.

Proposed Method
The goal of our method is to predict the face UV map from
a single face image. As illustrated in Figure 3, the proposed
model consists of two parts: a UV attention sampling mod-
ule (UV sampler) and a UV map inpainting module (UV
generator). During the inference process, the UV sampler
will sample the pixels from the input image to generate an
incomplete UV map, and then the UV generator will further
complete the semi-finished UV map. We describe the details
of each component as follows.

UV Attention Sampling
The UV map is a two-dimensional representation of the
global texture of a 3D object. Due to self-occlusion, it is an
ill-posed problem to get the UV map from a single image.
This section studies how to generate an incomplete UV map
that contains only visible textures of the input face image. As

Figure 2: The traditional method for incomplete UV map
generation. Which is used for generating the target output of
the UV sampler.

a comparison, we recall the traditional method, which con-
sists of four steps: (1) Get the 3D face shape based on the
input image. (2) Determine the visible vertices using depth-
buffer-based methods. (3) Project these visible vertices onto
the image plane and index their colors according to their co-
ordinates. (4) Render the UV map with the colors and the
pre-defined UV-coordinates corresponding to each visible
vertex. Figure 3 illustrates the above steps. Obviously, such a
method is tedious and relies on an accurate 3D shape fitting.
Since the UV map contains only the texture information of
a 3D surface, is it really necessary to fit the exact 3D shape
before getting the UV map? We do not think so. In fact, the
only purpose of the 3D shape is to establish a one-to-one re-
lationship between the pixel in the 2D face image and the
pixel in the UV map, so why not learn such a mapping re-
lationship in a data-driven manner? To achieve such a goal,
we designed the UV sampler, a CNN-based model that maps
the face image’s pixels directly to the UV map.

The model has three parts, i.e., the feature extractor, the
segmentation head, and the sampler head. Similar to most
generative models, the feature extractor is composed of
stacked residual blocks (He et al. 2016). Spectral normal-
ization (Miyato et al. 2018) is applied to each convolution
layer to stabilize the training. With this module, 2D feature
maps of different scales and a 512-dimensional vector are
extracted from the input image. The 2D feature maps are
fed into the FPN structured (Lin et al. 2017) segmentation
head and output an attention mask m. Besides, the 1D fea-
ture vector is fed into the sampler head, a stack of fully
connected layers interspersed with ReLU activations. The
sampler head’s output is reshaped as Satt ∈ RB×256×256×2,
which is the attention sampling map, where B is the batch
size, 256 is the height/width of the UV map, and the last
two channels hold the normalized abscissa and ordinate of
the pixel in the input image to sample. Based on Satt and
m, differentiable sampling (Jaderberg et al. 2015) is applied
to the masked input image I , and an incomplete UV map
ÛV spl is finally obtained.

To train the model, we use the above-mentioned tradi-
tional method to generate the ground truth (incomplete) UV
map, UVgt. A minor improvement is that we multiply the
input image by the eroded mask of the face before sam-



Figure 3: Overview of our approach. (1) Given an input face image, the UV sampler predicts its face mask m and sampling
map Satt, based on which samples an incomplete UV map UVspl (2) The UV generator will further complete the sampled
UV map and output the UVpred. (3) With an off-the-shelf 3DMM regressor, we predict the shape and texture of the input face
image, which is used for getting the ground truth of the UVspl: UVgt and the pseudo ground truth of the UVpred: UVbl. (4) The
predicted UV map is used to render face images of different poses: IR0 and IR1 , which are further fed into a face discriminator.
(5) UVpred is cropped to the side part ÛV sd and center part ÛV ctr, fed into their corresponding discriminators.

pling, which avoids incorrectly sampling the occlusion and
the background (due to the inaccurate 3D shape) into the UV
map. We erode the mask’s edge to ensure that the region in-
side of which must be the face, the generation of UVgt only
takes into account the vertices that fall inside the mask. Al-
though this would result in a loss of texture near the edge,
it is worth sacrificing the unimportant edges to ensure the
accuracy of UVgt.

The training is guided by the following loss function:

Lspl = ‖ÛV spl − UVgt‖1 + ‖Satt − Sgt‖1+

Lseg(m,mgt) + λTV (ÛV spl)
(3)

where Satt and m are the outputs of the UV sampler, ÛV spl

is the sampled UV map based on them. Sgt is the ground
truth sampling map, which is obtained by mapping the
normalized x,y coordinates of the visible 3D vertices into
the UV space, i.e., UV position map (Feng et al. 2018).
Lseg(m,mgt) is the binary cross-entropy loss of the pre-
dicted face mask.

Lseg = −[mgtlogm+ (1−mgt)log(1−m)] (4)

TV (ÛV spl) is the total variation loss (Mahendran and
Vedaldi 2015) of the predicted UV map, which is powerful

in smoothing the noises of the generated UV map.

TV (ÛV spl) =

W−1,H,C∑
x,y,c=1

∣∣∣ÛV spl(x+ 1, y, c)− ÛV spl(x, y, c)
∣∣∣2 +

W,H−1,C∑
x,y,c=1

∣∣∣ÛV spl(x, y + 1, c)− ÛV spl(x, y, c)
∣∣∣2

(5)

Thanks to the UV sampler, an incomplete UV map could
be sampled directly from the input image, bypassing a series
of complex and expensive steps of traditional methods, in-
cluding 3D shape fitting, visible vertices determination, UV
map rendering, etc.

UV Map Inpainting
With the UV sampler described above, we can sample an
incomplete UV map from a face image. The next task is to
fill the missing parts with textures consistent with the sam-
pled parts. This is an image inpainting problem, which has
been extensively studied. However, most image inpainting
methods are trained on paired images, meaning the ground
truth image is uniquely determined. In contrast, in our case,
the ground truth is not available. This section studies how
to train a UV map inpainting model without the supervision
of the ground truth. Briefly, our approach is to generate a
pseudo ground truth UV map to assist the training. Then,
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Figure 4: (a) The input image. (b) UVgt. (c) The face re-
constructed from UVbfm. (d) UVbfm. (e) The face recon-
structed from UVbl. (f) UVbl. (g) The face in (e) under dif-
ferent view angle. (h) The texture marked in blue is used to
fill the missing texture in its symmetric area (marked in red).

we work with multiple discriminators to make the generated
images as photorealistic as possible.

Pseudo UV Map Generation Generating the pseudo UV
map consists of three steps: 1) incomplete ground truth UV
map generation, 2) 3DMM texture fitting, 3) seamless im-
age blending. The first step has been described in detail in
the previous section. For the second step, we use directly
the BFM (Paysan et al. 2009) texture parameter predicted
by (Deng et al. 2019b). The UV map representation of the
reconstructed BFM texture is denoted as UVbfm. Obviously,
due to the linear, low-dimensional nature of the BFM model,
UVbfm is far from reality, as can be seen in Figure 4d. There-
fore, we move to the third step: seamless image blending.

Seamless image blending With Poisson image edit-
ing (Pérez, Gangnet, and Blake 2003), we can seamlessly
blend the results of the first two steps together. We also lever-
age the texture of the visible region to fill its missing sym-
metric region. That is, we do two times Poisson Blending,
the first time blends the UVgt to the UVbfm, the second time
blends the flipped UVgt to its symmetric missing parts, as
illustrated in Figure 4h. The final blending result is denoted
as UVbl, as in Figure 4f, both Figure 4e and Figure 4g are
generated from it, which is far more photorealistic than the
BFM reconstruction result in Figure 4c.

Multiple discriminators The training of the UV gen-
erator follows an adversarial paradigm; therefore, a large
amount of data from the target domain is essential. How-
ever, the pseudo UV map Ubl generated above is not very
reliable. Its quality depends on the accuracy of UVbfm, the
texture area of UVgt, and the accuracy of the 3D shape. We
only use the pseudo UV map to calculate the reconstruction
loss, which is a rough guide to the generator’s output. Al-
though the complete UV map data is not available, we might
as well collect a bunch of partial UV maps using the tradi-
tional method, i.e., for UV maps generated from frontal face
images, the central region, denoted as UVctr, is accurate,
and for UV maps generated from profile face images, the

visible half side, UVsd is precise. Note that the partial UV
maps collected in this way are not paired with UVpred, so
they are only used for adversarial loss, thus indirectly force
the UVpred lying in the real domain.

We design two partial UV map discriminators, one for the
half side, the other for the center region. Together with the
masked face discriminator, the system has three discrimina-
tors in total, as shown in Figure 3. The training is guided by
the following losses.

Adversarial loss Given an output of the UV sampler,
UVspl, the generator will predict a global UV map, UVpred.
Three UV patches can be cropped from UVpred, namely
ÛV ctr, ÛV left, ÛV right. Due to UV map’s symmetry, the
latter two can be put together and denoted as ÛV sd. With
the UVpred and the 3D shape/pose parameters predicted by
the model of (Deng et al. 2019b), a reconstructed face im-
age IR0 could be rendered. By changing the pose parameter,
we can get a face image in a different view angle, denoted as
IR1 . So far, we have three types of fake data: ÛV sd, ÛV ctr,
and IR0,1, each of which corresponds to real data represented
as UVsd, UVctr, and Im, where Im is the input face image
with occlusions/background masked.

The adversarial loss is thus formulated as:

Ladv = Ex[logD(x)] + Ex̂[log(1−D(x̂))] (6)

where

(x, x̂,D) ∈ {(UVctr, ÛV ctr, Dctr),

(UVsd, ÛV sd, Dsd)

({Im, IR0,1} �mgt, Dface)}
Reconstruction loss The reconstruction loss consists of

two terms, the UV reconstruction loss and the face recon-
struction loss.

Lrec = ‖UVpred − UVbl‖1 + ‖IR0 �mgt − Im‖1 (7)

Symmetry loss Since the UV map of the face is left-right
symmetrical, we design the symmetry loss to help the model
learn this property.

Lsym = ‖UVpred − FlipLR(UVpred)‖1 (8)

Identity loss Since the pose is arbitrary, the ground
truth of IR1 is not available. Thus we use the pre-trained
FaceNet (Schroff, Kalenichenko, and Philbin 2015) to ex-
tract the identity feature of IR1 and Im, and minimize their
L1 distance.

Lid = ‖F(IR1 )−F(Im)‖1 (9)

TV loss TV loss of Equation 5 is also applied to UVpred.
The total loss function is as follows:

L = Lrec + λ1Ladv + λ2Lsym + λ3Lid + λ4TV (10)

Experiments
The proposed method can faithfully convert the input face
image to its corresponding UV map. To demonstrate the con-
version ability, we qualitatively compare the 3D reconstruc-
tion results with the current state-of-the-art methods, both
2D-based and 3D-based. A quantitative evaluation is also
presented.



Figure 5: Frontalization results comparing with 2D-based
face pose editing methods. Zoom-in for a better view.

Implementation details
Our training is based on two datasets:, CelebA-HQ (Karras
et al. 2017), and FFHQ (Karras, Laine, and Aila 2019). Face
images are pre-aligned with landmarks detected by (Bulat
and Tzimiropoulos 2017). The input image size is 256×256,
and the predicted UV map is the same size as the input.
As for the ground-truth face mask, we first train a stand-
alone face segmentation model, using the attribute mask
of the CelebA-HQ and our manually labeled occlusions
(eyeglasses, hands, etc.). Then we use this model to de-
tect the face masks of the training data, and use them as
the ground truth. We set the learning rate to 1e−4 and use
Adam(Kingma and Ba 2014) optimizer with betas of [0.5,
0.999], the batch size is set to 6. We first pre-train the UV
sampler until it outputs an incomplete UV map that can per-
fectly reconstruct the input image, which takes about 100K
steps. Then we train the UV generator for 150K steps with
the UV sampler’s weights fixed. The training of the whole
model takes about 100 hours on two Titan X Pascal graph-
ics cards. Since most of the face images in the training sets
are frontal, making the model not robust to the large view
angles, to solve this problem, one trick we adopt is to rotate
and render the input faces with their corresponding shapes
and pseudo UV maps, then train the model to reconstruct
the original face images.

Qualitative results
We use the predicted UV maps to render 3D shapes. By
changing the pose parameters, images of different view an-
gles are generated. For the qualitative evaluation, as a usual
convention, we take the same inputs as others and paste the
generated results after them. Figure 5 compares our frontal-
ization results with 2D-based face pose editing methods,
including TP-GAN (Huang et al. 2017), CAPG-GAN (Hu
et al. 2018), HF-PIM (Cao et al. 2018), FNM (Qian, Deng,
and Hu 2019) and Zhouel al.(Zhou et al. 2020). As shown
in Figure 5, TP-GAN doesn’t convert the pose well, and the
third face image it generates is obviously left-skewed. Fur-
thermore, the images generated by TP-GAN, CAPG-GAN,
and FNM have large color deviations with the input images
due to the influence of Multi-PIE (Gross et al. 2010) data
in the training set. Besides our method, only HF-PIM and
Zhou et al. maintain a consistent texture style with the in-
put image. However, due to the lack of a priori knowledge

Training Data Method ACC(%) AUC(%)
CASIA(baseline) Zhou et al. 98.77 99.90
CASIA+rot Zhou et al. 98.95 99.91
CASIA(baseline) UV-GAN 99.02 -
CASIA+augUV UV-GAN 99.22 -
CASIA(baseline) ours 98.75 99.88
CASIA+augUV ours 98.98 99.90

Table 1: Comparison of the face augmentation ability with
UV-GAN (Deng et al. 2018) and (Zhou et al. 2020)

of the 3D shape, HF-PIM cannot preserve the face shape
well while editing the face pose. In addition, the second im-
age generated by it preserves the finger on the mouth corner,
showing that it cannot handle the face occlusions well. Our
method achieves similar performance to the current state-of-
the-art, Zhou et al., we both use an off-the-shelf shape re-
gressor. However, their method is based on face image gen-
eration, which means that we need to re-infer the missing
texture each time we change the view angle. Another lim-
itation of face image generation-based method is that the
training settings greatly limit their pose editing freedom. The
method of Zhou et al. cannot well generate face images of
a large yaw angles; TP-GAN, FNM, and HF-PIM can only
generate face images in frontal view.

A further qualitative comparison of our method and two
representative 3D reconstruction-based methods are demon-
strated in Figure 6. The method proposed by Deng et
al. (Deng et al. 2019b) is based on 3DMM parameter regres-
sion, and GANFIT (Gecer et al. 2019) is based on latent-
code optimization of a pre-trained GAN model. As can be
seen, our results are more visually pleasant: large amounts
of details are well preserved, including freckles, wrinkles,
and expressions. Due to the model’s low-dimensional na-
ture, it’s difficult for 3DMM-based methods to restore the
input image’s details faithfully. As can be seen in the 3rd-
row of Figure 6, freckles and wrinkles are not well recon-
structed. The results of GANFIT do contain richer details,
but the resulting textures’ styles are very homogeneous and
differ considerably from their corresponding input images.
We believe this is due to the lack of diversity in their training
data, as the face UV map datasets are not easily accessible.

Quantitative results
Data augmentation As in many previous works, we use our
proposed method to synthesize face images for face data
augmentation and evaluate the performance of the model
trained on the augmented dataset to demonstrate the merits
of our approach. The experiment is based on the CASIA (Yi
et al. 2014) dataset. Due to the low resolution of the im-
ages in CASIA, we retrained a model with an input/output
resolution of 128× 128. Moreover, we remove the segmen-
tation head in the UV sampler to increase the diversity of the
augmented images. For each image with less than 30◦ yaw
angle, we randomly increase its yaw angle from 15◦ to 60◦

and get a synthesized images. Our basic training settings are
the same as (Zhou et al. 2020), with ResNet18 (He et al.
2016) for the backbone and ArcFace (Deng et al. 2019a)



Figure 6: Qualitative comparison with other state-of-the art 3D reconstruction methods.

Reconstruction Recognition
Method L1 SSIM Recon Front

Deng et al. 0.064 0.698 0.554 0.501
Zhou et al. 0.069 0.613 0.780 0.675

Ours 0.021 0.913 0.862 0.684

Table 2: Pixel-wise reconstruction and the identity-
preserving ability on AFLW2000-3D, non-facial areas of all
images are masked out for fair comparison.

for the loss function. Results are shown in Table 1. Since
UV-GAN (Deng et al. 2018) uses ResNet27 as its backbone,
which is deeper than ours and (Zhou et al. 2020), it is not
surprising that it achieves the highest accuracy. Although we
take the same settings as Zhou et al., we achieve a slightly
lower baseline due to numerous differences in training de-
tails (learning rate, batch size, optimizer, etc.). However, by
training on the augmented dataset, our model exceeds their
accuracy, and our AUC closes the gap with them, demon-
strating the efficiency of our data augmentation ability.

Face reconstruction We evaluate the proposed method
in two aspects: the pixel-wise reconstruction ability and the
identity-preserving ability. As most previous works are not
open-sourced, we only compare with Deng et al. (Deng et al.
2019b) and Zhou et al. (Zhou et al. 2020), SOTA meth-
ods based on 3DMM and 2D face image generation, re-
spectively. We conduct the experiments on the AFLW2000-
3D (Zhu et al. 2016b), which contains 2000 face images with
ground truth shape parameters.

For the reconstruction ability evaluation, we calculate the
L1 loss and the structural similarity (Wang, Simoncelli, and
Bovik 2003) of the reconstructed face images. As can be
seen from Table 2, our method outperforms others in both

these metrics.
As for the identity-preserving ability, the evaluation

is conducted by features extracted by the pre-trained
LightCNN-29 v2 (Wu et al. 2018) model. We calculate the
cosine similarity of the features corresponding to the input
images and the reconstructed/frontalized images. Results are
shown in the two rightmost columns of Table 2. An interest-
ing thing to notice is that, although Zhou et al. is inferior
to the 3DMM-based model in terms of reconstruction loss,
they are more capable of preserving the face identity. How-
ever, our proposed method achieves the best performance in
both aspects.

Conclusion
This work proposes a novel 2-stage image-to-image trans-
lation model that can convert the input face image into its
corresponding UV map. In the first stage, with the pro-
posed UV sampler, pixels in the input face images are selec-
tively sampled and adjusted to form an incomplete UV map,
which contains all the visible textures of the face. With the
help of this module, the inference stage no longer requires
the intervention of 3D shapes. In the second stage, the in-
complete UV map is further completed by a UV generator.
The training is conducted on purely pseudo UV maps, thus
weakly-supervised. With the help of two carefully designed
partial UV discriminators, we can generate photo-realistic
face textures without the supervision of the complete UV
map. Qualitative and quantitative experiments validate the
reconstruction ability and the identity-preserving ability of
the proposed method.
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