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Abstract

The existing auto-encoder based face pose editing meth-
ods primarily focus on modeling the identity preserving
ability during pose synthesis, but are less able to preserve
the image style properly, which refers to the color, bright-
ness, saturation, etc. In this paper, we take advantage of
the well-known frontal/profile optical illusion and present
a novel two-stage approach to solve the aforementioned
dilemma, where the task of face pose manipulation is cast
into face inpainting. By selectively sampling pixels from
the input face and slightly adjust their relative locations
with the proposed “Pixel Attention Sampling” module, the
face editing result faithfully keeps the identity information
as well as the image style unchanged. By leveraging high-
dimensional embedding at the inpainting stage, finer details
are generated. Further, with the 3D facial landmarks as
guidance, our method is able to manipulate face pose in
three degrees of freedom, i.e., yaw, pitch, and roll, resulting
in more flexible face pose editing than merely controlling
the yaw angle as usually achieved by the current state-of-
the-art. Both the qualitative and quantitative evaluations
validate the superiority of the proposed approach.

1. Introduction

Face pose editing aims to change the pose of an input
face image while keeping its original identity unchanged.
It has many potential applications, e.g., face recognition,
movie industry and entertainment. The current state-of-the-
art has featured two main research lines in this field, i.e., 3D
reconstruction-based, and simple 2D based.

For 3D reconstruction-based approaches, face pose edit-
ing is achieved by either mapping the 2D face images to 3D
face models with fixed or regressed parameters (25150} 144]]
or directly regressing the UV map [8| [11] of the input face.
The advantage of such models is that pose control is not de-
manding. With the reconstructed 3D face, face images at
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any target pose can be obtained by 3D geometrical transfor-
mation and 2D projection. However, regressing either the
parameters of predefined 3D models or the UV map requires
large amounts of high-quality training data. Moreover, due
to the restriction of the predefined model and the missing
texture of extreme poses, fine details of the images are ig-
nored. As a result, the faces generated by these approaches
are generally not photo-realistic enough and require further
refinements|/13].

Thanks to the development of Generative Adversarial
Networks (GAN) [14]], a number of GAN based 2D ap-
proaches to face pose editing have been proposed in recent
years. GAN has achieved great success in face image in-
painting and facial attribute editing [5} 19,33} 32| |6]. How-
ever, the existing methods are generally only capable of
editing the subtle attributes or local regions of the image,
whereas the global structure remains almost unchanged.
Regarding face pose manipulation, when changing the view
angle from side to front, not only the local texture but also
the global shape of the face image dramatically changes.
Despite these difficulties, there still exist significant efforts
tackling this problem [39, 18| |17, 137, 34]. Most of the
methods are implemented by an encoder-decoder structured
network, with a bottleneck layer in the middle, where the
faces are first encoded into a low dimensional feature vec-
tor, and then decoded into the image space conditioned by
the pose information, e.g., CR-GAN [37], DR-GAN [39].
Howeyver, there exists an intrinsic trade-off between the im-
age style conserving capability and the identity preserving
ability in the compact deep feature space, i.e., it is hard
to model the expertise of both the face identity and other
image properties, such as lightning condition, saturation,
background color, efc.

To highlight the aforementioned dilemma that com-
monly incurs in current 2D based methods, we remove the
face classification branch of DR-GAN [39] (with the latent
feature dimensionality of 320) and train the model only with
the adversarial loss and the reconstruction loss. In this case,
an adversarial auto-encoder (AE) is achieved, where the re-
construction loss aims to efficiently preserve the style of the



Figure 1. Illustration of the trade-off between identity preserving
and style preserving.

input image, and the adversarial loss enforces the generated
images photo-realistic. Figure[T]illustrates the input images
(the first row) and the results obtained by the adversarial
auto-encoder (second row) and DR-GAN (third row), re-
spectively. As can be seen, the auto-encoder properly pre-
serves the style of the input image, but it fails maintaining
the identities. The reconstructed faces by DR-GAN suc-
cessfully catch the identity characteristics of the input im-
ages, whereas the output ones are distorted and present ob-
vious artifacts. If it is even painful for the model to faith-
fully rebuild the given input face in terms of both style and
the identity without any pose manipulation, how can we fur-
ther expect it to preserve them after changing the pose?

To fight the trade-off incurred by the low-dimensional
restriction in the feature space, we seek solutions from the
high-dimensional embeddings. But to make the condition
label not ignored by the decoder, the encoding dimension
should not be simply increased. The classical structure of
U-Net [35]], which adds skip-connections between symmet-
ric layers of the encoder and the decoder, is able to prevent
the problem of over-compression by concatenating features
from the shallow layers in the reconstruction path. The
last row of Figure [I] shows the corresponding reconstruc-
tion results, where both the identity and the style of the in-
put face is well preserved. High-dimensional embedding is
indeed promising in image synthesis, however, structures
like U-Net convey too much low-level details, making it
much more challenging to edit the face pose than on the
low-dimension features, especially for the extreme shape
changes. Therefore, how to enable face pose editing in the
high dimensional feature space is the main problem to be
solved.

To tackle the challenge above, we present a novel
two-stage method and a module named ‘“Pixel Attention
Sampling” (PAS) in this paper. Inspired by the fact that
face images of different view angles also share a large num-
ber of similar pixels as highlighted by the optical illusion
of face images [40, 41]] in Figure2(a)} we believe that these
pixels are significant to construct the texture of a face im-
age in the target view through sampling. Specifically, given
a target pose, this PAS module selects pixels from the in-
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Figure 2. (a) Example of front/profile optical illusion. Indicating
that face images in different view angles still share pixel-level sim-
ilarities. (b) The ambiguity of representing 3D face pose by 2D
landmarks. The two faces above have almost the same landmark
distribution, but are in different poses.

put image and slightly change their relative locations in a
learning manner to match the target pose (similarly to a
non-linear image warping). Thus the recovered face edit-
ing result possesses the target pose and shares the original
texture simultaneously, faithfully keeping the identity infor-
mation and image style unchanged. Due to the lack of tex-
ture in invisible regions, the results of PAS would possibly
contain noises and holes, then the main task can be cast as
image inpainting, which has been extensively studied. We
feed the intermediate pose-edited face image into the afore-
mentioned U-Net, so that the noises can be filtered out and
holes filled. By incorporating the module of PAS, the low-
level details preserved by the U-Net are no longer burden-
some for the task of pose editing, instead, they become use-
ful information for generating the visually compelling face
images.

Further, by introducing the 3D landmarks rather than 2D
ones to represent the head pose more precisely, we achieve
a better flexibility of pose manipulation. On the contrary,
the traditional methods like DR-GAN and CR-GAN merely
manipulate face images in several discrete yaw angles, and
TP-GAN [18] can only frontalize face images. Although
CAPG-GAN [17] uses 2D landmarks to guide the genera-
tion, it cannot generate faces in arbitrary poses as it claims,
since using 2D landmarks to represent 3D angles can bring
ambiguity as Figure[2(b)]shows. Besides, the 3D landmarks
tends to provide richer shape-related information, further
facilitating the synthesis of face images.

In summary, our main contributions are as follows:

* A novel two-stage face pose editing method is pro-
posed, which casts the task of face pose manipulation
as face inpainting, thereby enabling it fully utilize the
fine details of the given input image by exploiting high-
dimensional embedding.



* A new “Pixel Attention Sampling” module is de-
signed, which effectively resolves the conflict between
the identity and style preserving.

e The 3D facial landmarks is introduced to represent
face poses for the first time, resulting in more flexi-
ble pose editing than using the discrete one-hot pose
label or ambiguous 2D facial landmarks.

* The proposed method demonstrates competitive per-
formance in comparison with the current state-of-the-
art, both qualitatively and quantitatively.

2. Related Work
2.1. Generative Adversarial Network (GAN)

In recent years, Generative Adversarial Networks (GAN)
has been one of the most popular research directions for im-
age generation. Traditional GAN is composed of a gener-
ator and a discriminator. The training follows an adversar-
ial paradigm. To overcome the problems of unstable gra-
dient and mode collapse, Wasserstein GAN (WGAN) [1]]
proposes the earth move distance as metric in the discrim-
inator’s loss function. To enforce the Lipschitz constraint
of the discriminator, SN-GAN [29]] applies spectral normal-
ization to the weight parameters. Due to its simplicity and
promising effect, most of the recent GAN based algorithms
make use of this technique, including SN-GAN [46], Big-
GANS [3]], StyleGAN [22], etc. In our method, SN-GAN is
also adopted in the structure.

2.2. Image-to-Image Translation

The combination of auto-encoder with discriminator
has achieved impressive results in image-to-image trans-
lation [6) 151} 48}, 33]. In multi-domain image translation
tasks, the domain information is provided either to the bot-
tleneck layer of the auto-encoder [48| [16] 39], or to the
entry of the encoder/generator [6| 33| [17], by simply con-
catenating the domain label with the features or input im-
ages. Conditional batch normalization [7]] and conditional
instance normalization (CIN) [[LO] provide another way of
introducing the conditional label in addition to concatena-
tion, via predicting the affine parameters of the normalized
feature map (either by batch normalization or by instance
normalization) from the input label. Here, the CIN tech-
nique is exploited in our decoder to avoid the operation of
duplicating the label.

In multi-domain image translation, the discriminator is
used to not only estimate the image quality, but also control
the target domain of the generated image. Our approach
borrows the idea of projection discriminator [30]], which in-
troduces the reality score and the inner product of the em-
bedded label with the features of the input data.

2.3. Face Pose Manipulation

The existing methods can be roughly divided into two
categories: 3D reconstruction based, and simple 2D based.

For the 3D based models, DA-GAN [50] uses a prede-
fined 3D face model to produce the synthesized faces with
arbitrary poses, and the dual agents serve to keep the iden-
tity information stable and improve the realism, Feng et
al. [11] train a model to regress the UV map from a single
2D image directly, which records the 3D shape information.
Tran et al. [38]] proposes a framework to learn a nonlinear
3DMM model from a large set of unconstrained face im-
ages. FF-GAN [44] incorporates 3DMM [2] into the GAN
based structure, where the 3DMM coefficients provide the
low-frequency information, while the input image injects
high-frequency local information.

For 2D based models, DR-GAN [39] learns a disentan-
gled representation of face identity with the supervision of
an auxiliary face classifier of the discriminator. TP-GAN
[18] employs a two-pathway architecture to preserve both
global and local texture information separately, and gen-
erates the frontalized face images. With the guidance of
2D facial landmarks, CAPG-GAN [17] is able to gener-
ate faces of arbitrary poses, where the couple-agent dis-
criminator distinguishes the generated face/landmark pairs
and profile/front pairs from ground-truth pairs, such de-
sign enables the algorithm generate face images of target
poses while keeping the identity unchanged. CR-GAN [37]]
trains the generator to produce face images directly from
the noises, together with the training of pose manipula-
tion, maintaining the completeness of the learned embed-
ding space. FNM [34] employs unsupervised training and
synthesizes normalized face images of Multi-PIE [[15] style.
Most of the above methods only focus on modeling the
identity preserving ability, whereas they generally ignore
the image style preserving ability, such as color, facial ex-
pression, lightning, efc. Although it is claimed that the syn-
thesized frontal face images improve the face verification
accuracy, the generated face images are visually far from
the input images, thus greatly limits their further usage sce-
narios other than face recognition.[47] frontalizes the face
image by predicting the pixel displacement. However, it’s
hard to extend to the arbitrary face pose editing problem due
to the time consuming SIFT feature extraction.

3. Method

The goal of our method is to keep not only the identity
but also the image style during face pose manipulation. We
first define several notations: (1, .J) denotes paired face im-
ages in the training set, where I is the source image, and .J
is the target one. The 3D facial landmarks are denoted as
ldmkr and ldmk ;, which could be detected by an off-the-
shelf 2D\3D facial landmark detector [4]. I; ¢ Tepresents
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Figure 3. (a) and (e) are the source image and the target one, re-
spectively, where the corresponding landmarks and the bounding
boxes of their bigger side are shown to illustrate our aligning strat-
egy. (b) and (f) are the 3D facial landmarks detected by [4]. (c)
shows the aligned image I;;. (g) is the alpha blend of /;y and
J, illustrating that the target image shares pixel-level similarities
with the source image. (d) and (h) are the segmentation maps of
Iiy and J transformed from their 2D facial landmarks.

the input image after similarity transformation. To guide
the training, the landmark based segmentation maps of I; ¢
and J are also required, which we denote as I,y and
Jseq- These notations are visualized in Figure @

Our approach is composed of three major steps: pre-
processing, pixel attention sampling, and image inpainting.
They are described in detail subsequently.

3.1. Preprocessing

Given the fact that human faces are roughly left-right
symmetrical, thus a face at an arbitrary pose always has at
least one side fully exposed to the camera. This preprocess-
ing step aims to align the fully exposed side of face I to that
of a target face J.

The inputs of this step are the input face image I, its
3D facial landmarks ldmk;, and the landmarks Idmk; of
the image J at a target pose. We first find the fully ex-
posed side by calculating the bounding box region of the
projected facial landmarks, as illustrated in Figure 3(a) and
Figure Then, the least square regression on the corre-
sponding landmarks is applied to calculate the transforma-
tion matrix, based on which the aligned image I;; could be
obtained, as shown in Figure From Figure 3(g)] we
observe that I; ¢ and J indeed share pixel-level similarities.
Finally, with the 2D facial landmarks of I and the trans-
formation matrix obtained above, we obtain the 2D facial
landmarks of Iy, as well as the landmark based segmenta-
tion map I,., +y. Besides, to guide the training process of
the PAS module, the segmentation map of the target image
Jseg 18 also prepared at this stage.

3.2. Pixel Attention Sampling

The previous preprocessing step delivers the input face
image with the larger side aligned to the target pose. Despite

the fact that the transformed input face image I;; and the
face at the target pose J share many similarities in terms of
texture, there still exist great gaps between them, from the
global shape to the finer details of textures. Therefore, our
goal at this stage is to preserve and fine-tune their similar
face regions while eliminating the major differences. This
is achieved by a novel pixel sampling based module, which
we call Pixel Attention Sampling module (PAS), since the
process of sampling mainly “focuses” on bridging the gaps.
Figure [ depicts the corresponding diagram.

Specifically, given the transformed image Iy and the tar-
get pose ldmk;, PAS generates a two-channel coordinate
sampling map of the same size as I;y. The first channel
holds the abscissa while the second one for the ordinate.
Each pixel location of the map is registered a coordinate,
indicating which input pixel of I;; that location will sam-
ple from. Note, the original pixel indices are converted
into decimal coordinates ranging from -1 to 1, for the pur-
pose of gradient backpropagation, and the final sampling is
achieved by interpolating the adjacent pixels. Our sampling
map is similar to the one used in the spatial transformer
network[20]]. The difference lies in that the one in [20] is
determined by a 2D affine transform matrix, with only six
parameters, whereas our sampling map is directly predicted
by the neural network, resulting in height x width x 2 pa-
rameters in total. The PAS module is composed of two parts
i.e., the image embedder and the sampler. The embedder
consists of stacked convolution layers, conditional instance
normalization [10] layers (CIN), and self-attention [46] lay-
ers (SA). The CIN layers incorporates the 3D facial land-
marks of the target pose to guide the embedding, and the
SA layers enable the embedder focus more on the global
structure of the face.The embedder finally outputs a 512-
dimensional feature vector, which is further fed into the
sampler to generate the sampling maps. The sampler is
composed of fully connected layers and ReLU layers. Af-
ter applying the obtained sampling map to the transformed
input face image I,y and its corresponding segmentation
map I ¢y, we could obtain the intermediate face image
at the target pose, denoted as J take» and its corresponding
fake segmentation map, denoted as Jgeq_fake. In order to
maintain the reconstruction ability of the module, the origi-
nal image [ and its corresponding 3D landmarks ldmk; are
also fed into the PAS module and the reconstructed output
frecon is achieved.

The training process of the PAS is guided by the follow-
ing losses:

Pixel-wise loss between .J take and J, f,wm and I,
which is commonly used in the image-to-image translation
algorithms. It can be formulated as:

Lpiz = Ll(jfake7 J) +0.1- Ll(jrecony I) (1)
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Figure 4. Structure of the proposed Pixel Attention Sampling (PAS) module.

W,H,C

|I(.’L‘,y,0) —J(x7y7c)| (2)

x,y,c=1

Since it does not take much effort to learn an identity
mapping, we set the weight of the reconstruction loss to
0.1, which makes the PAS module concentrate much more
on the pose manipulation task.

Segmentation loss between Jseg fare and Jso4. Based
on the assumption that if the sampled image J fake 18 close
to the target image J, the segmentation map Jseg fake
should be close to the target segmentation map J,.4 as well.
We therefore introduce a segmentation-related loss so as to
push J take close to J. To facilitate the training converge,
the segmentation loss is used as a complement to the afore-
mentioned pixel-wise loss L,;,. Here, we make use of the
Dice loss[28], which has been widely exploited in image
segmentation tasks, and it can be formulated as:

N E seg( ) J;:eg,fake(x7y)

se 1-
7 Z Z JGCPg(I y) + Z seg,fu,ke(x7 y)

3)

where c represents the different classes of facial attributes.
Since each pixel location (z, y) of the segmentation map is
represented by a c-dimensional one-hot vector, the fraction
in Equation [3]is thus a simple intersection over union. The
benefit of the adopted loss function is that it is independent
to the amount of pixels of different classes.

Perceptual loss[21] between J take and J. Perceptual
loss is significant to preserve the identity information and
high-level semantic features of the face images. We follow
the work of [45] and employ the pre-trained VGG-Face [31]]
network to extract the features:

Lper = VGGloss(jfakea J) (4)

with
VGGloss I J Z |VGGFace( )z - VGGFace(J)i|
(5)

where ¢ is the layer index of the pre-trained model and ¢ €
{3,8,15,22,29}, which are the last convolutional layer of
each feature map scale.

Total variation loss. Total variation [27]] loss has been
widely used in GAN based algorithms for its powerful abil-
ity of reducing the noises and smoothing the generated re-
sults. In our PAS module, there inevitably exist obvious
noises, since the resultant face image is pixel-wise sampled
from the transformed input face image. Therefore, the TV
loss is incorporated:

Ltv = Tv(jfake) + TV(f7'econ) (6)
where
W—1,H,C
V()= Y |+ 1y.c)—Izy0c)
x,y,c=1
W,H-1,C 7
+ Z |I(x,y+1,c)—](x,y,c)|2
z,y,c=1

The overall training loss of the PAS module is a sum of
the above losses:

Lsampler = Lpiac + Lseg + Lper + Ltv (8)

Thanks to the PAS module, we achieve a face image
whose facial attributes have been aligned to the target pose
location, with the original identity and style characteristics
well preserved. It should be noted that, as the sampling is
accomplished by interpolating adjacent pixels, it only mod-
ifies the location of the pixels within a small area around
them, the PAS module is thus not able to sample for in-
stance the left eye from the right one or the opposite. As
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Figure 5. The result of PAS. The first row shows the guiding face images at target poses, the first image in the second row is the input face
image, and the remaining images are synthesized faces based on the landmarks of the guiding face images. We can see that the pixels are
sampled and adjusted to the target pose. The noises and holes will be removed or filled at the next image inpainting stage.

a result, the sampled face images possibly contain artifacts,
holes and noises, as illustrated in Figure 5| In order to fur-
ther improve the generated image quality, image inpainting
is introduced subsequently.

3.3. Image Inpainting

The image inpainting stage is to restore the holes and
remove the noises and artifacts on the intermediate faces
generated by PAS, and finally generate photo-realistic face
images. To accomplish this goal, we introduce a Condi-
tional Adversarial Auto-Encoder, where the discriminator
is implemented by a projection discriminator [30], and the
auto-encoder is based on the U-Net structure [33]]. We also
make use of CIN layer to merge the information provided
by 3D facial landmarks, the identity features, and the image
features, thereby making the generated face image in de-
sired pose and shape. More precisely, the inputs of the en-
coder are the images generated by PAS together with their
target poses, i.e., J ‘take With ldmk; for the task of pose
manipulation, and I recon, With ldmk for the task of recon-
struction. To well preserve the face identity, the decoder is
conditioned by the high level feature extracted by the pre-
trained LightCNN model, where the parameters of the
fully connected layer is fine-tuned during training. The out-
puts of the auto-encoder are denoted as J¢qke and Irecon,
whose ground truths are J and I, respectively. To further
improve the model’s generalization ability, unpaired face
images could also be exploited to supplement the training
set. This is achieved by feeding the network with the par-
tially occluded face images S,.. and their 3D landmarks,
and expect the network to output Si.cc.,, restoring the orig-
inal S. For the discriminator, we feed all the generated im-
ages, including Jyare, Irecon and Srecon, as fake samples,
while their corresponding ground truth as the genuine ones,
with dis,eq and dis pqke as output, respectively.

The loss function of the inpainting network is composed
of four parts:

Pixel-wise loss, formulated as:

Lpia: = Ll(Jfakea J) + A Ll(Irecona I) + Ll(Srecmu S)
©)

where L is defined in equation 2]

Perceptual loss to capture the semantic similarity:
Lper - VGGloss(Jfak67 J) + VGGloss(Srecona S) (10)

where VGG,ss is defined in equation El We do not in-
clude (Irecon, I) here, because compared to image recon-
struction task, image inpainting and pose manipulation are
more likely to lose the identity consistency.

Identity loss to maintain the identity-related characteris-
tics stable. We use the pre-trained LightCNN [42] to extract
the identity feature of the synthesized image and the target
image, and minimize the L, loss of them:

1 N
Lia = 5 D 1F(Jrare)i = F(J) (11)
i=1

Adversarial loss to guarantee the generated image qual-
ity:
Logy = _disfake (12)
Besides, we also incorporate the total variation loss to
reduce the spike artifacts. The overall training loss of the
generator of the image inpainting network is a sum of the
aforementioned losses:

Lgen = Lpiac + Lpe'r‘ + Lig + Ly + Laao (13)

Following the work of [24], the discriminator loss is
defined as:

Lgis = max(l — disyeqr, 0) + max (1 + disfare, 0) (14)

4. Experiments

Given an input face image, the proposed method aims to
manipulate its pose while keeping the identity unchanged
along with its style. Correspondingly, we evaluate it in
two aspects: the style-conserving skill and the identity-
preserving ability during face pose editing. In this section,
we present the training details first, then the qualitative anal-
ysis for face style conserving, followed by the quantitative
results for identity preserving. Ablation studies are also car-
ried out to highlight the effectiveness of the proposed PAS
module.



4.1. Training details

The training is based on four databases: Multi-PIE [15],
300W-LP [52], CAS-PEAL-R1 [12]], and CelebA [26].
Multi-PIE has four sessions with face images under 13
poses and 20 illuminations. We follow Setting 1 of TP-
GAN [18] and train the proposed algorithm on the first 150
subjects of session 1, then test on the remained 99 sub-
jects. 300W-LP contains large-pose face images synthe-
sized from 300W [36]. After manually filtering out the low-
quality images, we have 40,159 images from 2,815 subjects
in total. CAS-PEAL-R1 contains 1,040 subjects. For each
subject, gray-scale images across 21 different poses are in-
cluded. CelebA is a large-scale face attributes dataset with
more than 200K celebrity images in it.

During the training process, we use the occluded face
images as input, and train the U-Net based generator to re-
store the original face images. This operation improves the
generalization ability of the network, and make the gener-
ated images photo-realistic. All of the training images are
cropped to 128 x 128 pixels. The learning rate is set to 1le ™4,
and the Adam [23]] optimizer is utilized with betas of [0.9,
0.999]. We first pre-train the generator and the discrimina-
tor on CelebA for 20000 iterations, making it a fundamen-
tal image inpainting model, which facilitates the subsequent
training procedure. Then, we train the proposed PAS model
and the image inpainting model jointly for 110000 itera-
tions in total. Observing that the CAS-PEAL-R1 dataset
consists of gray-scale images, which degenerates the color
saturation of the generated images, we thus exclud the data
of CAS-PEAL-RI1 for the last 10000 iterations.

4.2. Style-conserving validation

Multi-PIE images under different poses are used as the
guiding images, the pose of faces from CelebA are edited
accordingly. As shown in Figure[] the synthesized face im-
ages comply with the guiding faces in term of pose. They
are visually photo-realistic and both the identities and the
styles are well preserved, clearly validating the effective-
ness of the proposed method. A further qualitative com-
parison of our method and CR-GAN [37], DR-GAN [39]
and FNM [34] are demonstrated in Figure As can
be seen, our results are more visually convincing and the
styles are closer to the input images compared to DR-GAN,
and the identities are better preserved than CR-GAN. As for
FNM, the generated image style is more similar to the train-
ing set, where the lighting and expressions are normalized,
and the color has been changed, by contrast, our results bet-
ter preserve those characteristics of the input face images.
Moreover, the proposed approach is able to manipulate face
poses in three degrees of freedom, resulting in more flexible
pose editing results than merely controlling the yaw angles
as usually achieved by previous methods. Figure[7(b)|shows
the results of editing both pitch and yaw angles of input face

Table 1. FID score of frontalized face images (lower is better)
CR-GAN DR-GAN FNM ours

204 122 150 105

Table 2. Rank-1 recognition rates (%) across views, illuminations
and emotions under Setting 1.

Method +90 +75° +60° +45° +30 +15
HPN [9] 29.82 47.57 61.24 7277 78.26 84.23
c-CNN [43] 47.26 60.7 74.4 89 94.1 97.0
TP-GAN [18] 64.0 84.1 92.9 98.6 99.9 99.8
PIM [49] 75.0 91.2 97.7 98.3 99.4 99.9
CAPG-GAN [17] 77.1 87.4 93.7 98.3 99.4 99.9
FNM [34] 55.8 81.3 93.7 98.2 99.5 99.9
Light CNN [42] 2.6 10.5 32.7 71.2 95.1 99.8
Ours 455 78.7 90.0 99.6 99.9 100

images (leftmost).

Quantitative evaluations are further performed. We cal-
culate the FID score of the above models, on the frontal-
ized large pose face images from CelebA, the results are
shown in Table|l} indicating that the proposed method gen-
erates face images with styles closer to the input face im-
ages, which can be applied to more perceptual applications.

4.3. Identity-preserving ability evaluation

There are 249 subjects in Session 1 of Multi-PIE. Fol-
lowing the Setting 1 of TP-GAN, we use the first 150 sub-
jects for training, and the remaining 99 subjects for test-
ing. The identity preserving ability is evaluated by Rank-1
recognition rate. The face with frontal view and normal il-
lumination in the testing set compose the gallery, and the
rest non-frontal images are used as probe.

The evaluation is conducted based on the features ex-
tracted by the pre-trained Light-CNN model. We directly
extract the features of the probe images as baseline. For the
proposed method, we first frontalize the probe face images,
based on which their face representations are extracted. As
can be seen from Table 2] the proposed method achieves
similar or even better Rank-1 recognition rate in compari-
son with the baseline and state-of-the-art algorithms when
the rotation angle is smaller than 60°. For larger rotation
angles (> 60°), the proposed algorithm drastically outper-
forms the baseline, whereas it does not perform as well as
the SOTA algorithms. There exist two possible reasons:
1) The face images of extreme poses share relatively less
pixels with the face images of front view, thus the pixels
sampled by the PAS module are not sufficient enough for
the following inpainting stage, and 2) most of the SOTA al-
gorithms normalize the face images into a consistent style,
where the information irrelevant to identity is filtered out,
in contrast, our method preserves relatively more style in-
formation.

4.4. Ablation Study

To highlight the effectiveness of the PAS module, the
ablation study is conducted by removing it and training the
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Figure 6. The final result of our approach. The first row shows the guidance images. The input images are in the first column, and the simple
reconstructed images are in the second column. The rest images are the pose editing results based on the landmarks of the exemplars.

©
Figure 7. (a) From top to bottom shows the input images, results of CR-GAN, DR-GAN, FNM and our method. (b) From left to right are
the input images and the generated images with both yaw angles and pitch angles changed. (c) From left to right are the input images,
half-face aligned images, frontalized images w/o PAS module, results of the proposed algorithm, and the ground-truth images.

U-Net based conditional adversarial auto-encoder directly.
For the sake of fair comparison, we apply the same prepro-
cessing pipeline (i.e., align the larger side of the input image
to match the target pose) and train the model with the same
number of iterations. Figure [7(c)| shows the results. As can
be seen, the synthesized images without PAS are blurred.
More specifically, in the second row and the fourth row, the
mouths are not well aligned, and the unexpected edges of
the aligned input images are not well removed. The results
indicate that it is indeed difficult for the single U-Net based
model to change the original patterns of the input image
thus results in undesired artifacts.

5. Conclusion

In this work, we first carefully analyze the trade-
off between the style-preserving ability and the identity-
preserving ability of the existing 2D based pose manipula-

tion methods. Based on the observation that face images in
different poses share a large number of pixels, we propose
a novel pose editing method and a sophisticatedly designed
PAS module. The method selectively samples pixels from
the input face and adjust their relative locations with the
PAS module, so that the recovered face editing result match
the target pose and faithfully keeps the original identity and
style information unchanged. In this way, we convert the
pose manipulation problem to a image inpainting problem,
and further make the best of the finer details in the original
face images to obtain convincing pose editing results. We
also utilize 3D facial landmarks to represent the face pose,
which is more precise and flexible comparing to the one-
hot labels and the 2D facial landmarks adopted in previous
studies. Extensive experiments validate that the proposed
pose editing approach preserves the style information of the
input images better than the existing methods.
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