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ABSTRACT

This work is dedicated to joint image restoration and con-
tour detection considering the Ambrosio-Tortorelli func-
tional. Two proximal alternating minimization schemes
with convergence guarantees are provided, PALM-AT and
SL-PAM-AT, as well as closed-form expressions of the in-
volved proximity operators. A thorough numerical study is
conducted in order to evaluate the performance of both nu-
merical schemes as well as comparisons to a more standard
ℓ1-based discrete Mumford-Shah functional.

Index Terms— Image restoration, edge detection,
Mumford-Shah & Ambrosio-Tortorelli functional, proxi-
mal algorithms

1. INTRODUCTION

The field of image reconstruction is at the core of image
analysis, often being a preprocessing task before other
crucial tasks such as segmentation or contour detection.
Hence, image restoration is rarely the end of the processing
chain, since the user usually needs to extract descriptors to
analyze the resulting images, e.g. the disease course when
tackle with medical image analysis and computer-aided
diagnosis [1, 2, 3] or the estimation of the phase contact
area to identify hydrodynamic regimes [4].

Formally, an image restoration problem relies first on a
well-defined degradation model, formulated here as:

z = Au+ n, (1)

where u ∈ RN is the original image, A ∈ RM×N models
a linear degradation (e.g. a blur) and n ∼ N (0, σ2IM ) de-
notes a realization of a white Gaussian noise with standard
deviation σ > 0.

Traditionally, the purpose of image restoration frame-
work is to only estimate a restored image û from the de-
graded data z. In this work, we improve it by performing
a joint estimation of both the restored image û and its con-
tours, which will be denoted by ê in the following.

The first class of variational formulations aiming to es-
timate jointly the image and its contours traces back to the
Mumford-Shah (MS) functional [5], in the continuous set-
ting, and the Geman-Geman model [6], as a discrete coun-
terpart. Following [7, 8], a discrete counterpart of the MS
(D-MS) functional can be written as:

∗This work is supported by the ANR (Agence Nationale de la
Recherche) from France ANR-19-CE48-0009 Multisc’In and Labex MI-
LYON / ANR-10-LABX-0070.

minimize
u∈RN ,e∈R|E|

1

2
∥Au−z∥22+β∥(1−e)⊙D0u∥2+λR(e), (2)

where D0 ∈ R|E|×N models a finite difference operator
and e ∈ R|E| denotes the edges between nodes1, and whose
value is 1 when a contour change is detected, and 0 other-
wise. The first term is the data fidelity term, the second
one aims to enforce smoothness everywhere in the image
except at the location on the contours (i.e. when ei ≡ 1 for
every i ∈ {1, . . . , |E|}), while the last term R penalizes the
length of the contours, being the discrete counterpart of the
1D Hausdorff measure. Finally, β > 0 and λ > 0 denote
the regularization parameters controlling the smoothness
and the length of the contour respectively.
State-of-the-art – The MS problem being non-convex and
difficult to solve, several studies provide approximations
of this model. Most of these approaches are formulated in
the following general two-terms minimization problem:

û ∈ argmin
u∈RN

1

2
∥Au− z∥22 + µP(u), (3)

where µ > 0. The contours ê are then deduced from the re-
constructed image û. For instance, the restriction to piece-
wise constant images leads to the ROF model in the denois-
ing framework [9] (corresponding to P(u) = ∥D0u∥1,2),
and to TV restoration in a more general framework [10].
Some works improve over the standard TV model, e.g. the
TGV model [11], or the hybrid regularization proposed in
[12], which combines the TV penalization and a smooth
penalization. Such a class of convex models can efficiently
be solved with convergence guarantees when using prox-
imal algorithms framework [13, 14]. Regarding contour
extraction, Cai et al. [15, 16] provide a post-processing
step that consists in thresholding the ROF solution, mak-
ing the bridge between ROF minimizers and the piecewise
constant MS solutions.

The MS energy is also closely related to the weak
membrane energy suggested by Blake and Zisserman [17],
and to the Potts model [18], that are both non-convex.
Storath, Weimann and coauthors [19, 20] provided several
schemes based on dynamic programming to solve them.
They proposed a fast and convergent algorithmic solution
in 1D while the extension to 2D, based on Gauss-Seidl
iterations has weaker convergence guarantees [21].

In a preliminary work [8], we explored the three-terms
minimization problem (2) with various penalization terms

1For instance if the set of edges are limited to the horizontal and ver-
tical edges between two pixels, then |E| = 2N − Nr − Nc, where
N = Nr ×Nc is the size of the grid.



R(e) designed to be minimum when ei ≡ 0, for every
i ∈ {1, . . . , |E|}. In this case, there is no need to add ad-
ditional constraints on e, since both the second and third
terms in (2) force the solution ê to be between 0 and 1. In
particular, we dealt with the ℓ1-norm and the BerHu pe-
nalization, whose main interest in terms of optimization
is to be separable, facilitating the design of the algorithm
schemes. However, the literature dedicated to edge detec-
tion mentions that other penalization could be more appro-
priated than the ℓ1-norm to penalize contour length, such
as the Ambrosio-Tortorelli (AT) penalization [22, 7]. It is
of particular interest since it Γ-converges (in the continu-
ous setting) to the (continuous) MS model [5], and then
accurately approximates the Hausdorff measure originally
involved in the MS model.
Contributions – This work focuses on a special instance
of (2), when R models the AT penalization over e [22].
We derive two proximal alternating schemes PALM and
SL-PAM in this context, leading to algorithmic schemes
with convergence guarantees to a critical point of (2). A
particular attention is paid to the derivation of the involved
proximity operators. Numerous experiments are run in or-
der to evaluate the performance of the proposed PALM and
SL-PAM for minimizing D-MS with AT penalization over
e. A multiresolution Golden-grid search strategy is pro-
posed to efficiency extract the optimal set of hyperparam-
eters (β, λ) and to provide fair comparisons with state-of-
the-art methods for different types of degradation.
Outline – In Section 2, we provide a discrete version of
the AT penalization using Discrete Exterior Calculus oper-
ators. Section 3 is dedicated to the proposed algorithmic
schemes PALM and SL-PAM and Section 4 provides nu-
merical experiments.

2. AMBROSIO-TORTORELLI

Ambrosio-Tortorelli regularization – In the discrete set-
ting, the AT penalization over e [22, 7] writes:

RAT(e) =
1

4ε
∥e∥22 + ε∥D1e∥22 (4)

with ε > 0 the Γ-convergence parameter. Large values of
ε lead to thick contours but help to detect the set of discon-
tinuities. Then, as ε tends to 0, the penalization of ∥e∥22
increases and enforces e to become sparser, and thus con-
tours become thinner.

This penalization term relies on the derivative operator
D1 ∈ R|F|×|E|, stemming from the Discrete Exterior Cal-
culus (DEC) framework [23]. Following [7] it allows us to
better control the topology of the problem by decompos-
ing the image domain into a 2D cell complex, composed of
vertices, edges, and faces (living in space F), as illustrated
on the left-hand side of Fig. 1. Following the original idea
of Mumford and Shah in their seminal paper [5], the key
point of this work is to set the contours e to live in-between
the vertices encoding the pixels value, that is, on the edges.
As a consequence, e can truly tend to a 1D contour.
Design of D1 – DEC provides differential operators Dk be-
tween k-forms. Basically, a discrete differential k-forms is
defined as a column vector living on k-dimensional cells.
In particular, the discrete gradient operator D0 : RN →
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Fig. 1: Left: example of a discrete image complex for illustrating Dk

without boundary conditions. Pixel values live on the vertices (si)i,
while each arrow (ej)j encodes the contour between two pixels. Right:
horizontal and vertical pixelwise discrete gradient operators H and V .
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Fig. 2: Left: example of a discrete image complex for illustrating Dk

with periodic boundary conditions. Right: corresponding horizontal and
vertical pixelwise discrete gradient operators Hper and Vper .

R|E| is the oriented vertex-to-edge incidence matrix. As il-
lustrated in Fig. 1 in a simple case where Nr = Nc = 3,
it can be expressed in terms of the horizontal and ver-
tical pixel-wise discrete gradient operators H and V as
D0 =

[
H⊤ V ⊤]⊤. In other words, it maps our image u

into a pair of e = [e⊤h , e
⊤
v ]

⊤, where eh (resp. ev) denotes
horizontal (resp. vertical) edges.

Similarly, D1 ∈ R|F|×|E| is defined as the edge-to-
face incidence matrix . By computing a kind of curl on
the faces, it acts as a differential operator on edges. We
can observe that it results in a combination of the vertical
derivatives of horizontal edges, and conversely. As a con-
sequence, we can simply rewrite D1 as

D1 =
[
V −H

]
(5)

even if [23] does not provide such a trivial form.
In order to design efficient algorithmic schemes, dis-

crete gradient operators with boundary effects are used nu-
merically (see Fig. 2 for the periodic counterpart of Fig. 1).

3. ALGORITHMIC SCHEME

The minimization of (2) when R is defined by (4) appears
to be a bi-convex minimization problem. In [7], the au-
thors propose to alternate the resolution of two linear sys-
tems, derived from the optimality conditions. Mimicking
the Γ-convergence process, they decrease ε during the op-
timization process. It allows them to better capture thin
structures. This numerical scheme converges to a station-
ary point, but at the price of a huge computational time.

In this work, we propose to derive two proximal al-
ternating schemes (following [24, 25, 8]) relying on im-
plicit gradient (proximal) steps rather than using a standard
Gauss-Seidel method, which consists in alternately mini-
mizing the objective function w.r.t each variable.
Proximal alternating minimization – The first scheme,
referred as PALM-AT, is presented in Algorithm 1, while



the second one, called SL-PAM-AT, is presented in Al-
gorithm 2. The benefit of considering a full proximal
step in the update of e[k+1] in Algorithm 2 is to relax
the bound associated with the step-size parameter, com-
puted from the Lipschitz constant of the gradient of the
linearized coupling term. The convergence of the se-
quence {(u[k], e[k])}k∈N generated in Algorithm 1 (resp.
Algorithm 2) to a critical point of (2) when R is defined
by (4) follows similar arguments than those in [25, Ass.
A-B, Theorem 3.1] (resp. [8]). Among the different re-
quested technical assumptions, one deserves a specific
attention in our context. We need to have a closed form
expression of the involved proximity operators, whose def-
inition for a proper convex lower semicontinuous function
f : H →]−∞,+∞], when H models a real Hilbert space,
is

(∀x ∈ H) proxf (x) = argmin
y∈H

1

2
∥y − x∥22 + f(y).

Proximity operators closed forms – The computation
of prox 1

2ck

∥A · −z∥22 is standard [13, Table 10.1 (xx.i)].
It can be efficiently computed when A models a shift-
invariant blur with periodic effects. The key issue in
Algorithms 1 and 2 is the computation of prox 1

dk
λRAT

(e)

and prox β
dk

S(·,u[k+1])+ λ
dk

RAT
(e) whose closed form ex-

pressions are given by the following propositions.

Proposition 1. The update of the edge variable in Algo-
rithm 1 takes a closed form that is:

e[k+1] =

[
2λε

dk
D1

∗D1 +

(
1 +

2λ

4εdk

)
Id

]−1

e[k].

Proposition 2. The update of the edge variable in Algo-
rithm 2 takes a closed form that is:

e[k+1] =

[
2λε

dk
D∗

1D1 +
2β

dk
diag

(
(D0u

[k+1])2
)
+ . . .(

λ

2εdk
+ 1

)
Id

]−1 (
2β

dk
(D0u

[k+1])2 + e[k+1]

)
.

These results are obtained from straightforward com-
putations relying on [13, Table 10.1 (xx.i)].

In terms of implementation, the major limitation relies
on the inversions involved in Proposition 1 and in Proposi-
tion 2. When D1 is defined by (5), the update of e[k+1] for
PALM-AT can be efficiently obtained by using inversion
lemma leading to

e[k+1] =

[
F +GQM GQ

QM Q

]
e[k]

where η1 = (1 + λ
2εdk

), η2 = 2λε
dk

, F = (η2V
∗V +

η1Id)
−1, G = F (η2V

∗H), M = (η2H
∗V )F , and

Q = (η2H
∗H + η1Id − (η2H

∗V )F (η2V
∗H))−1 where

inversion is a cheap operation in the Fourier domain.
However, similar inversion properties cannot be used
for SL-PAM, requiring the inversion of 2λε

dk
D∗

1D1 +
2β
dk
diag

[
(D0u

[k+1])2
]

+
(

λ
2εdk

+ 1
)
Id which starts to

become intractable even for medium size restoration prob-
lems as it is performed at each iteration.

Algorithm 1: PALM-AT

Input: Noisy image z
Output: Denoised image u∗, contour e∗

Set: S(u, e) = ∥(1− e)⊙D0u∥2, L[k]
∇uS and L

[k]
∇eS the

Lipschitz constants of ∇uS(·, e[k]) and ∇eS(u[k+1], ·)
Initialization: u[0] ∈ RN , e[0] ∈ R|E|

while Φ[k+1]−Φ[k]

Φ[k] < ζ and k ∈ N do
Choose ck > βL

[k]
∇uS

u[k+1] = prox 1
2ck

∥A·−z∥22

(
u[k] − β

ck
∇uS(e[k],u[k])

)
Choose dk > βL

[k]
∇eS

e[k+1] = prox λ
dk

RAT

(
e[k] − β

dk
∇eS(e[k],u[k+1])

)

Algorithm 2: SL-PAM-AT

Input: Noisy image z
Output: Denoised image u∗, contour e∗

Set: S(u, e) = ∥(1− e)⊙D0u∥2 and L
[k]
∇uS is the

Lipschitz constant of ∇uS(·, e[k])
Initialization: u[0] ∈ RN , e[0] ∈ R|E|

while Φ[k+1]−Φ[k]

Φ[k] < ζ and k ∈ N do
Choose ck > βL

[k]
∇uS

u[k+1] = prox 1
2ck

∥A·−z∥22

(
u[k] − β

ck
∇uS(e[k],u[k])

)
Choose dk > 0

e[k+1] = prox 1
dk

(βS(·,u[k+1])+λRAT)

(
e[k]

)

4. EXPERIMENTS

Multiresolution golden search – The selection of the hy-
perparameters (β, λ) impacts significantly the estimation
so it is important to select them in an optimal way if we
want to compare several types of regularization terms.

Algorithm 3: Multiresolution Golden-grid search

for ℓ = 0, 1, . . . do
1- Run the minimizers of (2) on a 5× 5-equally spaced

grid with (β, λ) ∈ [βL,ℓ, βR,ℓ]× [λL,ℓ, λR,ℓ].
2- Identify the pair (β∗

ℓ , λ∗
ℓ ) maximizing the score (e.g.

PSNR or Jaccard index).
3- The grid bounds βL,ℓ+1, βR,ℓ+1, λL,ℓ+1, and λR,ℓ+1

are updated in order to be centered in (β∗
ℓ , λ∗

ℓ ) and with
a twice smaller width.

Simulation settings – Our experiments are performed on
a toy example displayed in Table. 1 (top-left), which al-
low us to have access to the ground truth both in terms of
image to restore and contour to extract and to study care-
fully the impact of the different algorithmic strategies and
penalization. We consider two degradation models (1): (i)
a Gaussian noise of variance σ2 without linear degrada-
tion (i.e. A = I) and (ii) a degradation combining a linear
Gaussian blur with standard deviation of 1.1 and Gaussian
noise of variance σ2 provided in Fig. 3. We evaluate the
results both in terms of PSNR and Jaccard index, to eval-
uate respectively the image restoration and contour detec-
tion performances. The stopping criterion for all the algo-
rithms is set to ζ = 10−4, ck = 1.01 ∗ β ∗ 2, dk = 10−4

(for SL-PAM) and dk = 1.01 ∗ βL[k]
∇eS (for PALM) where

the Lipschitz constant is computed with the power method.
The ε parameter can be either selected fixed or decreasing
εmax ↘ εmin.



Original (u, e)

Degraded z

Grid search to maximize PSNR Golden-grid search to maximize PSNR Grid search to maximize Jaccard Golden-grid search to maximize Jaccard

Algorithm PALM AT
ε=0.2 ε=2↘0.02 ε=0.2 ε=2↘0.02 ε=0.2 ε=2↘0.02 ε=0.2 ε=2↘0.02

Map

[
u∗
e∗

]

PSNR 26.83 26.31 28.53 28.53 21.20 24.93 22.62 26.13
Jaccard 0.518 0.527 0.556 0.556 0.857 0.869 0.869 0.886
CT per (β,λ) 1–10s per ε

Table 1: Comparison between grid search and the proposed multiresolution Golden-grid search for (β,λ)–hyperparameters selection in the context of Gaussian noise
degradation with variance σ2 = 0.05. The original and degraded data are displayed on the left. The column 2-5 (resp. 6-9) present the results obtained when maximizing
the PSNR (resp. Jaccard index). The map row shows the SNR or Jaccard index map for several values of (β, λ). The grid seach map is composed with 121 values while the
multiresolution Golden-grid is displayed for 125 in order to provide fair comparisons. The images displayed correspond to the optimal solution obtained with different grid
search approaches and algorithms. The associated PSNR and Jaccard index are also provided.

ROF[[9]] T-ROF PALM l1 SL-PAM l1 PALM-AT ε=0.2 SL-PAM-AT ε=0.2 PALM-AT ε=2↘0.02 SL-PAM-AT ε=2↘0.02

[
u∗
e∗

]

Jaccard 0.530 0.869 0.876 0.869 0.883 0.886 0.899
PSNR 19.17 22.62 23.73 22.62 22.52 26.13 26.10
Min-Max CT per (β,λ) 1s 1–10s 1s 1–10s 60–840s 1–10s per ε 50–840s per ε

Table 2: Comparison between different schemes using observation z provided in Table. 1 (top-left). All the results are obtained with a multiresolution golden-grid search
strategy (even for T-ROF) to maximize the Jaccard index. The second row displays the optimal solution for each methods. The optimum Jaccard index, the associated PSNR
and the computational time is also provided.

Grid search versus Multiresolution Golden-grid search
– The performances of PALM-AT for two different pa-
rameter selection strategies: grid search and the proposed
multiresolution Golden-grid search (Algorithm 3) are pro-
vided in Table 1. We can observe that the proposed hyper-
parameter selection procedure always leads to better per-
formances whatever the considered algorithm (more that
1.5dB in PSNR). Since the latter leads to the best param-
eter estimation both in terms of PSNR and Jaccard, next,
we only use the Golden-grid search strategy.
PSNR versus Jaccard – In Table 1, we observe that maxi-
mizing the PSNR leads to a poor contour estimation while
maximizing the Jaccard index performs much better. We
also notice that maximizing Jaccard index, AT penaliza-
tion with decreasing ε does not only give the best Jaccard
index but also a good restoration related with high PSNR
score compared to the others. In the following, we then
focus on Jaccard index.
PALM versus SL-PAM – In Tab. 2, we display the opti-
mal results in terms of Jaccard index using a multiresolu-
tion Golden-grid search strategy for PALM and SL-PAM
with different choices of R. The choice R = ∥ · ∥1 refers
to the method presented in [8] while AT penalization refers
to the strategies presented in this work. We can observe
that SL-PAM and PALM strategies for a similar penal-
ization lead to close performance both quantitatively and
visually, even if SL-PAM is slightly better and more pre-
cisely, among all strategies. PALM-AT and SL-PAM-AT
with ε = 2 ↘ 0.02 leads to the best results. However, we
can notice that SL-PAM-AT requires huge computational
cost due to the inversion so for more extensive results and
comparisons we focus on PALM-AT.
Impact of the choice of R in PALM – In Fig. 3, we per-
form comparisons between PALM-l1, PALM-AT with ε =
0.2, and PALM-AT with ε = 2 ↘ 0.02. We also provide
a comparison with the state-of-the-art method T-ROF. We

evaluate the performance for different degradation models,
different levels of noise variance, and several realizations
of them. We can observe that for the configuration with-
out blur, all penalization lead to similar performance, while
with Gaussian blur PALM-AT with ε = 2 ↘ 0.02 appears
to be the best choice.
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(e) 0.592 (f) 0.398 (g) 0.312 (h) 0.239

Fig. 3: (Left) 1st & 3rd rows: observation degraded by an additive white
Gaussian noise and (a)–(d) without blur, (e)–(h) with a Gaussian blur. 2nd & 4th
rows: Best estimated image u∗ and contours e∗ (delineated in red) using PALM
AT with ε = 2 ↘ 0.02 maximizing the Jaccard index, provided below. (Right)
Comparisons between T-ROF, PALM-l1, PALM-AT with ε = 0.2, and PALM-AT
with ε = 2 ↘ 0.02 obtained with multiresolution Golden-grid search strategy
maximizing the Jaccard index. For each method, we display the mean (min and
max) of Jaccard index for several realizations of Gaussian noise.

5. CONCLUSION
In this work, we derive two iterative schemes to solve the
AT functional, relying on PALM and SL-PAM. We also in-
troduce a multiresolution Golden-grid search hyperparam-
eters selection to compare their performances on contour
detection and restoration. From numerical experiments,
SL-PAM gives better results than PALM for AT regular-
ization but at the price of larger computational time. Ex-
tensive experiments illustrate the benefit of PALM-AT with
ε = 2 ↘ 0.02 compared to PALM-l1 and T-ROF.
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