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Hard-magnetic films with precisely tuned switching fields are of great interest for microsystems,
when both the manipulation and the stability of the magnetization are brought into play. Here,
we report on the exchange spring mechanism developed in compositionally-graded nanocomposite
films of FePt integrating x per cent of Co nanoclusters (x varying from 0 to 50%), made from a
combination of mass-selected cluster beam deposition (MS-LECBD) and e-beam evaporation. This
technique offers a precise control over the nanoinclusion size (8 nm diameter) and its volume fraction
in the host FePt matrix. The focus is put on the interplay between the local microstructure and
the magnetic coercivity through a combinatorial approach that involves local determinations of
composition, magnetization reversal from scanning magneto-optical Kerr effect and element-specific
spin and orbital magnetic moments from X-ray magnetic circular dichroism. We show that Co-rich
inclusions allow a fine tuning of the coercivity and that a consequent increase of effective magnetic
spin moment at the Co edge is obtained in our system.

I. INTRODUCTION

Current spintronic technologies for non-volatile mem-
ory involves a recording layer with an anisotropy high
enough to avoid loss due to thermal instability at room
temperature. In this case, both soft ferromagnetic writ-
ing and reading head, and a high energy product spinning
motor are required. The discovery of Giant Magnetore-
sistance (GMR) [1] allowed the transition from longitudi-
nal to perpendicular recording, leading to higher storage
densities [2], but requires an even greater anisotropy from
the recording layer compared to longitudinal recording,
as the anisotropy field must withstand the demagnetizing
field [3].

The anisotropy energy of a magnetic grain is Ea =
Ku × V . As the volume V of the grain decreases, the
anisotropy Ku needs to be increased to ensure magnetiza-
tion stability at room temperature. However, writing be-
comes harder and therefore more energy-consuming [4].
To allow easier writing, one solution could be to add a
softer layer on top of the stable media which serves to
initiate the reversal which then propagates to the harder
layer by exchanged-coupling (exchange-coupled compos-
ite, ECC) at the interface [5–7]. For this nucleation layer,
oriented grains with an easy axis at 45◦can be used, low-
ering by half the required field for reversal, according to
the Stoner–Wohlfarth model [8, 9]. Graded media can
also be used, softer near the writing head, the coercivity
increasing with depth [3, 10]. In both cases, the minimal
energy needed for the reversal is equal to that needed to
create the domain wall in the hard phase [11, 12]. Studies
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on graded material has already been carried out on CoPt
[13] and FePt [10, 14] where a decrease in coercivity of up
to 60% has been observed, but highlight the need of pre-
cise characterization of both structure and magnetism.

In this context, nanocomposite benchmark systems
where the microstructure should be controlled at the
nanometer scale, are expected to give interesting in-
sights. In this work, we produce FePt films integrating
face-centered-cubic (fcc) Co nanoclusters (Co-NCs),
using a mass selected cluster beam deposition (MS-
LECBD) technique, combined with an in-situ electron
beam evaporator. From atomic force microscopy (AFM),
we verified the Gaussian-like profile of the cluster beam,
as expected for MS-LECBD using laser vaporization
[15]. Grown films are compositionally graded in Co-NCs,
which allows us to screen the nanocomposite magnetic
properties as a function of the soft inclusion concentra-
tion. Within the combinatorial approach [16, 17], several
magnetic scanning probe techniques have been developed
for high throughput studies, including superconducting
quantum interference device (SQUID)-based microscopy
[18, 19] or Hall microscopy [20, 21]. Here we used a
scanning magneto-optical Kerr effect (MOKE) system
with a microsecond pulsed magnetic field source capable
of producing fields up to 10 T [22]. In particular, we
studied the evolution of the coercive field with the
volume fraction of Co-NCs and compared it with alloyed
films of equivalent compositions and determined specific
atomic magnetic moments as a function of the soft
magnetic inclusion composition from X-ray magnetic
circular dichroism (XMCD).
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FIG. 1. (a) Schematic view of the sample preparation. (b)
Transmission Electron Microscopy image of an assembly of
Co nanoclusters. (c) schematic view of a fcc-Co truncated
octahedron of the mean size [23]. (d) Statistical analysis of
the Co nanoclusters’ diameter.

II. EXPERIMENTAL METHOD

Co-NCs are produced by gas-phase condensation, in
a MS-LECBD system using laser vaporization, and de-
posited in a soft-landing regime [24]. Our experimen-
tal set-up integrates an in-situ electron beam evaporator
with four crucibles to embed the NCs in any hosting ma-
terial. In this study, the deposition incident angles on
the substrate, both for the cluster beam and the atoms
from the evaporator, are of 45◦(Fig. 1a).

Fig. 1b shows a transmission electron microscopy
(TEM) image of the produced Co-NCs supported on an
amorphous carbon membrane, and Fig. 1d the corre-
sponding analysis of the cluster size distribution. In this
work, Co-NCs are selected in mass, leading to a Gaussian
size distribution centered around 7.9 nm in diameter with
a 15% dispersion. In our previous work, we showed that
such as-produced Co-NCs crystallize in a fcc structure,
and form truncated octahedra exhibiting the co-existence
of (111) and (100) facets [25], as expected from the Wulff
model and represented on the schematic view of Fig. 1c.

All Co-NC depositions are made with the same settings
for the clusters source and the electrostatic deviator, in
order to ensure the same density profile of the cluster
beam. We prepared specific samples to thoroughly cali-
brate the Co-NCs deposition profile by means of atomic
force microscopy (AFM). Co-NCs were deposited onto
on a silicon substrate with a native SiO2 layer. Prior to
deposition, Au/Ti marks for X and Y coordinates along
two orthogonal directions of the plane were patterned by
photolithography and lift-off techniques. AFM images of
1 µm2 were then recorded at every millimeter along the
X and Y directions. Fig. 2a shows the reconstructed car-

tography of the density of clusters. Note that this was
repeated once again, during another run of deposition,
at several weeks interval, to validate the calibration, and
further confirmed by superimposing the Co X-rays Ab-
sorption Spectroscopy (XAS) signal mapping prior to Ex-
tended X-Ray Absorption Fine Structure (EXAFS) and
XMCD local measurements.

The Cox@(FePt)1−x nanocomposite films are de-
posited at room temperature in an ultra-high vacuum
(UHV) chamber (base pressure of 10−10 mbar), on a sili-
con substrate with a native SiO2 layer. They are obtained
by sequential deposition of Co-NCs, and atomic bilayers
of Fe (1.2 nm in thickness) and Pt (1.4 nm in thickness),
repeated six times in total and subsequently annealed
at 700C for 20 min in order to obtain the L10-FePt hard
magnetic phase [26, 27]. Throughout the deposition area,
the surface coverage of the Co-NCs in each layer is of
about 21%. The clusters’ flux in the deposition cham-
ber is measured using a Faraday cage before and after
each cluster layer. Due to the incidence angle of 45◦, the
deposition areas of the NCs’ beam and the atoms from
the evaporator form ellipses, with a long axis to short
axis ratio of

√
2. The atoms from the evaporator cover a

larger area of the substrate than the NCs, characterized
by a long axis of 20 mm and 8 mm, respectively.

III. RESULTS AND ANALYSIS

A. Compositionally-graded Co@FePt NC films

The Co-NCs’ deposition leads to the formation of an
ellipse with a long axis to short axis ratio of 1.35, slightly
less than

√
2 (Fig. 2a). The maximum density is found

to be off centered within the ellipse, the concentration
being nearly symmetric with respect to the major axis of
the ellipse and highly asymmetric along the Y direction.
As a result, considering the deposition profile along the
Y axis at X = 0, the density gradient is about six times
larger when going downward as compared to in the up-
ward direction. Along this line, the variation of density
is nearly linear (see Fig. 2b) between a maximum den-
sity of 1100 NCs/µm2 down to 0 over a distance of 8 mm
from the center.

The footprint of the Co-NCs’ beam on the substrate
is significantly smaller than the FePt atomic beam de-
position area. Besides, the thickness and the magnetic
properties of the FePt deposit, studied by AFM, X-ray
reflectivity and scanning MOKE were found to be even
over an area that is 6 times larger than the region con-
taining Co nanoclusters (see Supporting Information [28]
Fig. S1). Therefore, a single deposition contains a large
region of homogeneous Co-free FePt film. Fig. S2 gathers
the structural and magnetic properties of the FePt ref-
erence region and how the chemical ordering scales with
the hard-magnetic properties of the FePt compound. The
formation of the L10-FePt phase is accompanied by an
increase of the coercive field, up to 1.5 T. It is worth men-
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FIG. 2. Co-NCs’ deposition profile. (a) Reconstructed map
of the Co-NCs’ density on a surface, from AFM observations.
For this, images of area of 1 × 1 µm2 were made. (b) Con-
version of the measured AFM Co-NCs density and the Co
concentration in the nanocomposite film. The blue dashed
line is a linear guide to the eye. (c) Schematic profile of the
compositionally-graded Co NCs on a Si substrate.

tioning here that tapping-AFM observations of the film’s
surface revealed a smooth surface of 1 nm roughness (not
shown).

Based on the thoroughly calibrated deposition of the
Co nanoinclusions, the deposition parameters were set
to obtain a compositionally-graded Cox@(FePt)1−x film
with x varying from 0 to 50% (atomic proportions), over
8 mm.

B. Magnetic characterization

Local hysteresis loops were measured using a scanning
polar MOKE system [22]. The system is equipped with
a bipolar pulsed current source coupled with a Cu-coil
of inner (outer) diameter ∼3 (10) mm. The length of
individual field pulses is of the order of 16 µs, and the
delay between positive and negative field pulses is about

10 ms. The hollow center of the coil allows the incident
and reflected light beams to pass through. The film under
measurement is scanned in-plane below the coil using an
X-Y stage (minimum step size = 2 µm) and the coil to
sample distance is set to 100 µm. Out-of-plane magneti-
zation curves were measured every 500 µm in the X and
Y directions across the film’s surface. Fig. 3a shows the
reconstructed map of the coercive field. The colorscale
shows the value of coercive magnetic field and the vari-
ation of the coercive field matches with the footprint of
the Co nanoinclusions deposition. Combining the density
of deposited Co-NCs and the coercive field value leads to
the average dashed curve of Fig. 3b. The symbols corre-
spond to the results over a line at X = 1 and Y starting
at 0, as schematized in Fig. 3c.
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FIG. 3. (a) Coercive field mapping over the clusters’ deposi-
tion area of the Co@FePt nanocomposite film, from scanning
MOKE with measured hysteresis cycles superimposed. (b)
Deduced compositional dependence of the nanocomposite co-
ercive field (dashed line is a third order polynomial interpo-
lation). (c) Schematic profile of the compositionally-graded
Cox@(FePt)1−x film, as deposited.

Moreover, scanning XMCD measurements have also
been carried out (on the DEIMOS beamline at SOLEIL
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synchrotron [29, 30]) in total electron yield (TEY) and
fluorescence to probe element-specific magnetic proper-
ties at the L2,3 edges of Fe and Co. The sample was
scanned every 500 µm along the long axis of the Co clus-
ter deposition area to analyze the evolution of the atomic
magnetic moments with the Co content.
The magnetic moment reversal recorded at the L3 edge
of Fe and Co (Fig. 4) shows a clear single magnetic phase
behavior over the whole range of Co-NCs content (0 to
50%), indicating a strong coupling between Co and Fe,
in these graded-interface nanocomposite films. The de-
cay of the coercive field with the Co content appears to
be linear in XMCD while it decreases faster on SMOKE
analysis (shown on Fig. 3b), probably as an effect of the
probed depth: around 5 nm for XMCD TEY measure-
ments [31, 32], 20 nm for MOKE [22]. Therefore, while
MOKE probes the entire thickness of the sample, roughly
a quarter of the sample is analyzed in XMCD.
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FIG. 4. Coercive field at the Fe and Co L3-edges as a
function of Co-NCs content.

XAS spectra were recorded at room temperature, un-
der an external field of 5 T parallel to the incident X-
ray beam and perpendicularly to the sample plane (90◦).
XMCD spectra on Fe L2,3 peaks show a systematic in-
crease of intensity when the Co content increases, as ex-
pected for higher amount of Co-Fe bonds (getting closer
to Fe65Co35) (Fig. 5) [3].

Sum rules [33, 34] were applied to quantify the orbital
and effective spin moments of Co and Fe on TEY
measurements. The spectra were normalized and the
continuum has been subtracted from the XAS for each
polarization. The number of holes used in calculation is
3.7 for Fe (reported value for L10-FePt [35]) and 2.42 for
Co (fcc bulk value calculated using the fully relativistic
Dirac linear muffin-tin orbital band-structure method,
[36]). The magnetic dipole term, which cannot be
neglected in highly anisotropic phases such as L10-FePt
here [37], has not been removed. Therefore, only the
effective spin moment is being shown and compared
to other effective spin moments found in the literature
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FIG. 5. TEY acquisition of the XAS and XMCD at Fe L2,3

edges for various Co content. An increase in Co content raises
the intensity of the peaks.

[35, 38–41] (denoted µS(Fe) and µS(Co) for Fe and Co,
respectively). The results are displayed as a function of
the Co content on Fig. 6 (Fig. S4). To our knowledge,
only a few works, like Sakamoto et al. [37], were reported
on the element-specific magnetic moments of the ternary
FeCoPt alloy, shown as a comparison in Fig. S3.

The effective spin moment at Fe edges increases contin-
uously with the Co content, from 2.35µB in the Co-free
area up to 2.76µB in the Co richest area (50% Co). The
absolute value reaches the higher range of reported values
for chemically ordered L10-FePt, or Fe3Pt [35]. However,
the large dispersion of the absolute values found in the
literature show its high sensitivity to the chemical and
structural order [35, 38]. The proximity of Fe atoms to
Co favors the increase of the Fe atomic moment, as pre-
dicted by the rigid band model of Slater-Pauling, and
experimentally measured on B2 FeCo [42]).

The increase of the Fe spin moment is nearly linear but
displays a slight change of slope at around 35% Co. In
the Fe-Pt alloy, the structural transition from tetragonal
L10 to face-centered-cubic L12 is expected to occur be-
tween 65% and 68% Fe, with potential intermediate A1
solid solution face-centered-cubic [43]. However, given
that the orbital moment of Fe is greater in the L10 phase
than in the L12 phase, one could expect that this struc-
tural change comes with a drastic decrease in the orbital
moment when the Co content increases. But our findings
show instead a nearly constant µL/µS ratio, suggesting
a similar trend for both µL and µS . In a recent study of
the chemical structure of Co@FePt nanocomposite films
studied by EXAFS [27], analysis showed that Co-rich re-
gions are well described by fcc (Co+Fe)3Pt chemical en-
vironment.

As opposed to µS(Fe), µS(Co) decreases linearly when
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the Co content increases. Interestingly, the slope is sim-
ilar to the one that goes from the µS(Co) measured in
CoPt [35, 38, 41] to the one in Co (hcp) [32, 39] (slope
better viewed on Fig. S5). This is in good agreement
with the persistence of Co-rich regions after annealing
that are larger when the Co content increases. The ab-
solute value of µS(Co) is systematically higher (ranging
from 1.99µB at high Co content to 2.08 µB at lower con-
centration) as compared to 1.98µB in disordered CoPt
[38] or 1.62µB in bulk hcp Co [32, 39]. However, the
high values of µS(Co) must be taken with caution as the
number of holes in NCs often differs from the one of the
bulk [44, 45]. Moreover, surface-induced anisotropy in
clusters can sometimes lead to either a lift [46] or a rein-
forcement [47] of the orbital moment quenching typically
found in 3d transition-metals, depending on the cluster
size and interaction with the matrix.

Contrary to µL(Fe) which increases, we found that
µL(Co) remains nearly constant, at 0.21µB , over the
whole range of concentration. Like in Fe-Pt alloy, it
is established that the proximity effect of Co and Pt
on the Co magnetic moment highly depends on the
structure. An increase in magnetic moment is expected
for distorted FeCo alloys [48]. In our samples, the
tetragonal L10 matrix could have induced a distortion of
the Co-rich inclusion. The experimental work of Ueno
et al. on ultra-thin Co layers sandwiched in between
Pt layers showed that as the fraction of Co-Pt bonds
with respect to Co-Co increases, the spin and orbital
moments decrease while the ratio µL/µS is constant
[49]. In contrast, density functional theory-generalized
gradient approximation (DFT-GGA) computations on
small CoPt alloyed clusters by Hu et al. [50] revealed a
systematic increase of the Co magnetic moment as the
number of Co-Pt bonds increases.

The ratio µL/µS at both Fe and Co edges does not
vary with the overall composition, showing a similar
variation of µS and µL for each element. Its absolute
value does not depend on the number of holes [33, 34],
and remains in between the L10 phase and the L12
phase for Fe, which could suggest a mixture of the two
structures. As for Co, the ratio µL/µS is in the high
range of reported values in Co-Pt alloy. The high value
of µL could be of structural origin in the graded interface
between the Co inclusions and the matrix.

Samples were probed at two different angles, at
90◦ (the X-ray beam is perpendicular to the sample
plane, and the electric field lies in the plane of the
sample) and at 30◦(with thus a non-zero out-of-plane
component of the electric field). The results are summa-
rized in Table I for Fe and Table II for Co, in order to
investigate the magnetocrystalline anisotropy [52, 53].

At the Fe edges, µL is systematically larger in the plane
of the sample. This is even stronger in the regions that
contain Co. At the Co edges, in contrast, µL is slightly
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TABLE I. Orbital, spin moment and ratio of Fe atoms at
different Co content at 90◦ (X-ray beam perpendicular to the
sample plane) and 30◦. Moments in µB/at.

(Fe edges) µL µL µS µS µL/µS µL/µS

Co % (30◦) (90◦) (30◦) (90◦) (30◦) (90◦)
0 0.05 0.13 2.52 2.36 0.020 0.055
25 0.12 0.15 2.59 2.51 0.046 0.060
50 0.12 0.17 2.74 2.74 0.044 0.067

TABLE II. Orbital, spin moment and ratio of Co atoms at
different Co content at 90◦and 30◦. Moments in µB/at.

(Co edges) µL µL µS µS µL/µS µL/µS

Co % (30◦) (90◦) (30◦) (90◦) (30◦) (90◦)
25 0.23 0.21 2.31 2.08 0.10 0.10
50 0.25 0.22 2.13 2.00 0.12 0.11

smaller in-plane, as it increases by around 10% when the
electric field is at 30◦out of the plane. Note that as-
deposited Co nanoclusters are face-centered cubic and
are randomly oriented. Our findings would translate in
a film plane that is easy for µL(Fe) but hard for µL(Co).

However, several effects qualify this conclusion about
the anisotropy of the orbital moment. Indeed, spin-orbit
coupling and interface roughness between hetero-atoms
may lead to an in-plane spin reorientation, overshadow-
ing the magnetocrystalline anisotropy. In particular, it
has been shown that the presence of intermixing may
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lead to the orbital anisotropy not being proportional to
magnetocrystalline anisotropy [54, 55]. Besides, it is now
well established that TEY measurements suffer from sat-
uration effect which results in a recorded signal not pro-
portional to the cross-section, especially at grazing inci-
dence, and this effect is more pronounced for Fe than for
Co atoms [31].

IV. CONCLUSION

To conclude, compositionnally-graded Cox@FePt1−x

nanocomposite films (x varying from 0 to 50%) were
prepared by co-deposition from two independent MS-
LECBD and e-beam evaporation techniques. We used
combined local characterization techniques to thoroughly
analyze the dependence of the magnetic properties on
the concentration of Co nanoinclusions. Interestingly,
the decay of coercivity is found to be substantially
smaller in the nanocomposite films as compared to the
alloyed configuration, as expected in a two-phase ex-
change spring magnet. Fe and Co magnetic moments
were quantified using XMCD for the first time in such

compositionnally-graded Cox@FePt1−x nanocomposite
films, which showed significant variations over the stud-
ied range of composition. Fe spin and orbital moments
are found to increase with the Co content. Oppositely, Co
spin and orbital moments, which remain relatively high
as compared to any references, decrease. These unprece-
dented experimental findings could be of great interest
for the design of semi-hard nanocomposite films with a
fine tune of magnetization reversal.
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