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REACHABILITY RESULTS

FOR PERTURBED HEAT EQUATIONS

SYLVAIN ERVEDOZA∗, KÉVIN LE BALC’H, AND MARIUS TUCSNAK

Abstract. This work studies the reachable space of infinite dimensional con-

trol systems which are null controllable in any positive time, the typical exam-

ple being the heat equation controlled from the boundary or from an arbitrary
open set. The focus is on the robustness of the reachable space with respect

to linear or nonlinear perturbations of the generator. More precisely, our first

main result asserts that this space is invariant under perturbations which are
small (in an appropriate sense). A second main result asserts the invariance

of the reachable space with respect to perturbations which are compact (again
in an appropriate sense), provided that a Hautus type condition is satisfied.

Moreover, our methods give precise information on the behavior of the reach-

able space when the generator is perturbed by a class of nonlinear operators.
When applied to the classical heat equation, our results provide detailed in-

formation on the reachable space when the generator is perturbed by a small

potential or by a class of non local operators, and in particular in one space
dimension, we deduce from our analysis that the reachable space for pertur-

bations of the 1-d heat equation is a space of holomorphic functions. We also

show how our approach leads to reachability results for a class of semi-linear
parabolic equations.
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1. Introduction

Determining the reachable space of controlled dynamical systems is one of the
major problems in control theory. This question is well understood for finite di-
mensional linear systems but it clearly requires further developments in an infinite
dimensional context, namely for systems governed by partial differential equations.
One of the most challenging cases is when the system is described by a parabolic
type equation. Indeed, the well known smoothing effect appearing in this context
is partially balanced by the influence of the input functions, which are generally
supposed to be only in L2. Giving a precise characterization of the states which
can be reached in some time τ > 0 is thus a very difficult question: even for the
constant coefficients heat equation in one space dimension and controlled from the
boundary, the full characterization of the reachable space has been obtained only in
the last years (see the brief description in Section 3 below of some of the relevant ref-
erences). For the heat equation perturbed by a linear (local or non local) operator,
assuming that these perturbations are very “smooth”, one can naturally conjecture
that they will not affect the reachable space. However, the existing methods for the
study of the reachable space for systems described by the constant coefficients heat
equation seem hardly adaptable to the perturbed case. As far as we know, the only
published work proposing a unified methodology to study the reachable spaces for
systems described by the heat equation and a class of their perturbations is Laurent
and Rosier [23].

On the other hand, the related problem of the robustness of the exact control-
lability property with respect to perturbations of the generator is well understood,
even in a general abstract context. More precisely, robustness under small per-
turbations is proved in Hadd [17]. The case of compact perturbations is tackled
in Ĉındea and Tucsnak [6] and Duprez and Olive [9], following the compactness-
uniqueness method introduced in Bardos, Lebeau and Rauch [3]. The methodology
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employed for exactly controllable systems is clearly not directly applicable to sys-
tems described by parabolic PDEs. As far as we know, for these systems there is
no analogue of the small perturbation result in [17] and the only tentative to apply
compactness-uniqueness arguments is due to Fenández-Cara, Lu and Zuazua [13],
where the authors discuss systems described by a class of non local perturbations
of the heat equation.

The main contribution of the present paper is that we propose a quite complete
perturbation theory for systems which are null controllable in any positive time,
with emphasis on systems described by perturbed heat equations. We prove, in
particular, that this theory has many common features with the similar one for
exactly controllable systems (see [17], [6] or Duprez and Olive [9]). More precisely,
a key point in our approach is to prove that for this class of problems the corre-
sponding semigroup leaves the reachable space invariant and it acts continuously
on this reachable space. Consequently, the considered systems become exactly con-
trollable when restricted to their reachable spaces, fact which enables us to develop
both small and compact perturbations techniques. These abstract theorems, when
combined with recently obtained characterizations of the reachable spaces for sys-
tems described by the heat equation, give results which are either completely new
or strongly improving those in the existing literature. As a consequence, we also
often obtain that the null controllability property is invariant with respect to the
considered class of perturbations.

We describe below the organization of the remaining part of this paper. In Sec-
tion 2, after introducing the minimal necessary background on well posed infinite
dimensional control systems, we give the statements of our main abstract results.
Section 3 gives an overview of the recent advances on the characterization of the
reachable spaces for the heat equation and its perturbations by complex analytic
methods. In Section 4 we prove that, when applied to various systems described by
perturbed heat equation, our main abstract theorems give a series of new and often
sharp results. In Section 5 we begin to prepare the proofs of our main abstract
results by providing some additional background on well posed infinite dimensional
control systems. Section 6 is devoted to the proof of the fact that every system
which is null-controllable in any positive time can be seen as an exactly controllable
one, once it is restricted to its reachable space. In Section 7, we prove that the
reachable space of a small-time null-controllable system is invariant with respect
to “small” perturbations. In Section 8 we derive a Hautus test for the approxi-
mate controllability of compactly perturbed systems. The main result allowing the
use of compactness-uniqueness techniques to study the reachable space for systems
obtained by compact perturbations is proved in Section 9. Section 10 presents an ap-
proach, based on Section 6, to deal with time dependent or non-linear perturbations.
Finally, in Section 11, we address final comments and some possible developments
for the next future. In the Appendix, Section A is devoted to a discussion of the
unique continuation properties related to non-local linear perturbations. Section B
is dedicated to a proof of a technical result concerning the reachable space of the
heat equation when the control domain is a neighborhood of the boundary.

2. Statement of the main results

In this section, we state our main abstract results. The corresponding proofs
will be given in Sections 6, 7, 8 and 9. Giving the precise statements requires some
basic concepts and results on well posed linear control systems, which are recalled
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in Subsection 2.1 below and which will be completed in Section 5, before detailing
the main proofs.

2.1. Well-posed control systems and their reachable spaces. The concept of
well posed linear control systems has been introduced in Weiss [38] under the name
of abstract control systems. In this subsection we recall, following [38] and Tucsnak
and Weiss [36, Chapters 2,3,4], [37], just those definitions and basic facts which are
necessary for the statement of our main results. More background on well posed
linear control systems will be provided in Section 5.

We first introduce the Hilbert spaces U (the input space) and X (the state space),
which will be constantly identified with their duals. If there is no ambiguity, the
inner products and the norms on X and U will be simply denoted by 〈·, ·〉 and ‖ · ‖,
respectively.

Definition 2.1. A well-posed linear control system with state space X and input
space U is a couple Σ = (T,Φ) of families of operators such that

(1) T = (Tt)t>0 is a C0 semigroup of bounded linear operators on X;
(2) Φ = (Φt)t>0 is a family of bounded linear operators from L2([0,∞);U) to

X, called input maps, such that

(2.1) Φτ+t(u♦
τ
v) = TtΦτu+ Φtv (t, τ > 0, u, v ∈ L2([0,∞);U)),

where the τ -concatenation of two signals u and v, denoted u♦
τ
v, is the

function

u♦
τ
v =

{
u(t) for t ∈ [0, τ),

v(t− τ) for t > τ.

Note that this abstract setting includes several classical examples of linear control
systems, such as the heat equation with Dirichlet controls from the boundary (with
state space X = H−1), or the wave equation with Dirichlet boundary controls from
the boundary (with state space X = L2 × H−1), see [36, Chapter 10] for more
details. In the following, we will mainly focus on the heat equation with controls
acting on the boundary: the complete framework will be described in Section 3.

Let A : D(A)→ X be the generator of T = (Tt)t>0 on X. We denote by T∗ the
adjoint semigroup, which is generated by the adjoint of A∗ of A. We introduce X1

the Hilbert space obtained by endowing D(A) with the norm

(2.2) ‖z0‖2X1
= ‖z0‖2 + ‖Az0‖2 (z0 ∈ X1).

Similarly, we denote by Xd
1 the Hilbert space obtained by endowing D(A∗) with the

norm

(2.3) ‖z0‖2Xd1 = ‖z0‖2 + ‖A∗z0‖2 (z0 ∈ Xd
1 ).

Let X−1 be the dual of Xd
1 with respect to the pivot space X, so that X1 ⊂ X ⊂

X−1, with continuous and dense embeddings. Note that, for each k ∈ {−1, 1}, the
original semigroup T has a restriction (or an extension) to Xk that is the image
of T through the unitary operator (βI − A)−k ∈ L(X,Xk), where β ∈ ρ(A) (the
resolvent set of A). We refer to [36, Remark 2.10.5] for a proof of the last statement.
This restriction (or extension) will be still denoted by T.

An important consequence of assumptions (1) and (2) in Definition 2.1 is that
there exists a unique B ∈ L(U,X−1), called the control operator of Σ, such that
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(2.4) Φtu =

∫ t

0

Tt−σBu(σ) dσ (t > 0, u ∈ L2([0,∞);U)).

Notice that in the above formula, T acts on X−1 and the integration is carried out
in X−1. The operator B can be found by

(2.5) Bv = lim
t→0+

1

t
Φt(χ · v) (v ∈ U),

where χ denotes the characteristic function of the interval [0, 1]. We mention that
it follows from the above definitions that if (T,Φ) is a well-posed control system
then for all u ∈ L2([0,∞);U), t 7→ Φtu is a continuous function from [0,∞) to X.

From the above facts it follows that a well-posed control system can alternatively
be described by a pair (A,B), where A : D(A) → X generates a C0 semigroup T
on X and B ∈ L(U,X−1) is an admissible control operator for T. This latter
property means that for some t > 0, the operator Φt defined by (2.4) has its range
contained in X. We refer again to [36, Sections 4 and 5] for more material on this
concept. We just mention here that, for every ψ ∈ X, the associated state trajectory
z(t) = Ttψ+Φtu satisfies z(0) = ψ and the usual differential equation ż = Az+Bu,
see Proposition 5.1 below.

In the remaining part of this work we describe, according to our convenience,
every well posed control system either by a couple (T,Φ) as in Definition 2.1 or by
the couple (A,B), where A is the generator of T and B is the unique operator in
L(U,X−1) satisfying (2.4).

Given a well-posed control system Σ = (T,Φ) and t > 0, the reachable space in
time τ of Σ is defined as Ran Φt. This space can be endowed with the norm induced
from L2([0, t];U) which is

(2.6) ‖η‖Ran Φt = inf
u∈L2([0,t];U)

Φtu=η

‖u‖L2([0,t];U) (η ∈ Ran Φt).

Remark 2.1. It is not difficult to check (see, for instance, Saitoh and Sawano [30,
Theorem 2.36]) that, when endowed with the norm (2.6), Ran Φt becomes a Hilbert
space, isomorphic with the orthogonal space in L2([0, t];U) of Ker Φt.

The notion of reachable space can be used to define the main three controlla-
bility concepts used in infinite dimensional system theory (note that in the finite
dimensional case all these concepts coincide).

Definition 2.2. Let t > 0 and let the pair (T,Φ) define a well-posed control system.
• The pair (T,Φ) is exactly controllable in time t if Ran Φt = X.
• The pair (T,Φ) is approximately controllable in time t if Ran Φt is dense in X.
• The pair (T,Φ) is null-controllable in time t if Ran Φt ⊃ RanTt.

We recall the following classical result, which goes back to Fattorini [12] and
Seidman [31]. Following the ideas in [31], a very short proof is provided in Kellay,
Normand and Tucsnak [22].

Proposition 2.1. If the well-posed linear control system (T,Φ) is null controllable
in any positive time then Ran Φt does not depend on t > 0.

Remark 2.2. Let τ > 0. If (T,Φ) is null controllable in any positive time then we
know from Proposition 2.1 that Ran Φt = Ran Φτ for every t ∈ (0, τ). Moreover, it
is easily checked that

(2.7) ‖η‖Ran Φτ 6 ‖η‖Ran Φt (t ∈ (0, τ), η ∈ Ran Φτ ).
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Using the closed graph theorem, it follows that the norms ‖ · ‖Ran Φτ and ‖ · ‖Ran Φt

are equivalent on Ran Φτ .

2.2. Main abstract results. We are now in a position to state our main abstract
results. The first one says, roughly speaking, that every system which is null con-
trollable in any positive time can be seen as an exactly controllable one (in the sense
of Definition 2.2).

Theorem 2.1. Let Σ = (T,Φ) be a well posed control system which is null control-

lable in any positive time. For τ > 0 we denote by T̃ =
(
T̃t
)
t>0

the semigroup of

operators defined by
T̃t = T̃t|Ran Φτ , (t > 0).

Then the family T̃ = (Tt|Ran Φτ )t>0 does not depend on the choice of τ > 0, and

forms a C0 semigroup on Ran Φτ . Moreover, the couple Σ̃ = (T̃,Φ) determines a
well-posed control system with state space Ran Φτ and input space U . Finally, this
system is exactly controllable in any positive time.

This result, proved in Section 6, allows us to tackle linear perturbations P of
the generator A in a manner which is quite close of the pretty simple methodology
employed for exactly controllable systems, see [17, 6, 9]. More precisely, assume that
P ∈ L(X) and let TP be the strongly continuous semigroup generated by A + P
(see Proposition 7.1 below). Then, according to, for instance, [36, Corollary 5.5.1],
ΣP = (TP ,ΦP ), where TP is the semigroup generated by A+ P and

(2.8) ΦPt u =

∫ t

0

TPt−σBu(σ) dσ (t > 0, u ∈ L2([0,∞);U)),

defines a well posed control system with state space X and input space U .
We can now state our two first main abstract results, which will be proved in

Section 7 below.

Theorem 2.2. Assume that Σ is null controllable in any positive time and that
P ∈ L(X) ∩ L(Ran Φτ0) for some τ0 > 0. Then the corresponding input maps ΦP

satisfy

(2.9) ΦPτ ∈ L(L2([0, τ ];U),Ran Φτ0), (τ > 0),

and

(2.10) Ran ΦPτ ⊂ Ran Φτ0 (τ > 0).

Theorem 2.3. Assume that Σ is null controllable in any positive time and that
P ∈ L(X) ∩ L(Ran Φτ0) for some τ0 > 0.

Then there exists δτ0 > 0 such that if

(2.11) ‖P‖L(Ran Φτ0) 6 δτ0 ,

then
Ran ΦPτ0 = Ran Φτ0 .

Remark 2.3. We emphasize that, in Theorem 2.3, the parameter δτ0 depends on
the time horizon τ0, and it is not clear if the condition (2.11) for τ0 would imply
(2.11) for other values of τ . Accordingly, within the setting of Theorem 2.3, we do
not know if Ran ΦPτ is independent of τ > 0. In fact, we do not even know if the
assumptions of Theorem 2.3 are sufficient to guarantee that RanTPτ0 ⊂ Ran ΦPτ0 , i.e.
the null-controllability of (A+ P,B) at time τ0.
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We will see below in Remark 2.5 that, provided an additional technical assump-
tion (namely (2.15) below), one can recover that Ran ΦPτ = Ran Φτ for all τ > 0
and that RanTPτ ⊂ Ran ΦPτ for all τ > 0.

Note that the result above does not require any special property (like analyticity)
of the semigroup T. This means, in particular, that it can be applied to systems
which are exactly controllable in arbitrarily small time (like certain systems de-
scribed by the Schrödinger equations, see [36, Section 11.6] for examples of this
type). However, applying Theorem 2.3 in this case does not bring any novelty with
respect to [17]. Oppositely, as it will be detailed in Section 4, Theorems 2.2 and 2.3
lead to new results when applied to systems described by perturbations of the heat
equations or, more generally, in the case when the generator A is a negative opera-
tor (this means that A is self-adjoint and 〈Aϕ,ϕ〉 < 0 for every ϕ ∈ D(A)\{0}) and
has compact resolvents. Moreover, in this case we can prove a third abstract result,
inspired by the compactness-uniqueness methodology introduced in [3]. To give the
precise statement of this result we remind the reader that if A is negative and has
compact resolvents then A is diagonalizable with an orthonormal basis (ϕk)k∈N of
eigenvectors, such that the corresponding family of eigenvalues (−λk)k∈N satisfies
λk > 0 for every k ∈ N and lim

k→∞
λk =∞ (see, for instance, [36, Proposition 3.2.12]).

Moreover, we have (see, for instance, [36, Proposition 3.2.9])

D(A) =

{
z ∈ X

∣∣∣∣∣ ∑
k∈N

λ2
k |〈z, ϕk〉|

2
<∞

}
,

Az = −
∑
k∈N

λk 〈z, ϕk〉ϕk (z ∈ D(A)),

and

(2.12) Ttz =
∑
k∈N

exp(−λkt)〈z, ϕk〉ϕk, (t > 0, z ∈ X).

Within this context, the scale of Hilbert spaces

X1 ⊂ X ⊂ X−1,

introduced in Subsection 2.1, can be completed to a scale (Xα)α∈R as follows: for
every α > 0, we set Xα := D((−A)α), equipped with the norm

(2.13) ‖ψ‖2α :=
∑
k∈N

λ2α
k |〈ψ,ϕk〉|

2
.

For α > 0, the space X−α is defined as the dual space of Xα with respect to the
pivot space X. Equivalently, X−α is the completion of X for the norm

‖ψ‖2−α =
∑
k∈N

λ−2α
k |〈ψ,ϕk〉|2 .

We then have this following result, which follows from Proposition 9.2 and Corol-
lary 9.1 stated and proved in Sections 8 and 9:

Theorem 2.4. Suppose that A < 0 has compact resolvents, B ∈ L(U,X−α)
for some α ∈ [0, 1/2], and that (A,B) is null-controllable in any time τ > 0.
Moreover, assume that P ∈ L(X) is such that, for some τ > 0, the operator
Lτ ∈ L(L2([0, τ ];X), X) defined by

(2.14) Lτv =

∫ τ

0

Tτ−σPv(σ) dσ
(
v ∈ L2([0, τ ];X)

)
,
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satisfies the condition

(2.15) Ran
(
Lτ |L2([0,τ ];X1−α−ε)

)
⊂ Ran Φτ ,

for some ε ∈ (0, 1− α].
Finally, suppose that the pair (A+ P,B) satisfies the Hautus type condition

(2.16) Ker (sI −A− P ∗) ∩KerB∗ = {0} (s ∈ C).

Then for every τ > 0 we have Ran ΦPτ = Ran Φτ , and RanTPτ ⊂ Ran ΦPτ , that is
the system (A+ P,B) is null-controllable in any time τ > 0.

Remark 2.4. Using Theorem 2.1, it is clear that a sufficient condition to guarantee
that the operator Lτ in (2.14) satisfies (2.15) is P ∈ L(X1−α−ε,Ran Φτ ), where
α ∈ [0, 1/2] and ε ∈ (0, 1− α] are as in Theorem 2.4.

Remark 2.5. When A < 0 has compact resolvents, if P ∈ L(X) is such that the
condition (2.15) holds for Lτ0 as in (2.14) for some τ0 > 0, and P ∈ L(Ran Φτ0)
has a small enough L(Ran Φτ0)-norm, then for all τ > 0, Ran ΦPτ = Ran Φτ and
RanTPτ ⊂ Ran ΦPτ .

Indeed, applying Theorem 2.3, when P ∈ L(X)∩L(Ran Φτ0) has a small enough
L(Ran Φτ0)-norm, we have Ran ΦPτ0 = Ran Φτ0 . Accordingly, approximate control-

lability holds for ΣP = (TP ,ΦP ) at time τ0, and the Hautus type condition (2.16)
thus holds, so that Theorem 2.4 applies.

3. Reachable spaces for the heat equation and its perturbations:
state of the art

To apply the abstract theorems in Section 2 to systems described by perturba-
tions of the heat equation it is essential to have detailed information on the reachable
space of the unperturbed systems. It turns out that most of the relevant literature
on the reachable spaces for systems described by heat equations with various types
of controls is very recent. This is why we felt necessary to insert here a section
devoted to the description of these results, with focus on those which we use to
illustrate when applying our main abstract results to perturbed heat equations.

To our knowledge, the work studying the reachable space of the heat equation in
this direction goes back to the famous article of Fattorini and Russell [11]. In this
paper the authors prove that the one-dimensional heat equation is small-time null-
controllable thus implying the invariance of the reachable space with respect to the
time horizon (see Proposition 2.1) and they also give examples of reachable states,
see [11, Theorem 3.3]. The small-time null-controllability of this type of systems
has been extended to several space dimensions and arbitrary control regions in
the works of Fursikov and Imanuvilov [15] and Lebeau and Robbiano [24]. After
the publication of these papers the literature on the null controllability of systems
governed by parabolic PDEs became overwhelming, see, for instance, Barbu [2] for
a recent review of this topic. Significant improvements of the results in [11] on the
reachable space for systems governed by parabolic PDEs came much later, beginning
with the paper of Martin, Rosier and Rouchon [26]. A little bit after that, results
published in the series of papers Dardé and Ervedoza [8], Hartmann, Kellay and
Tucsnak, [18], Kellay, Normand and Tucsnak [22], Orsoni [27] and Hartmann and
Orsoni [20] lead to a full characterization of the reachable space for system governed
by the constant coefficients heat equation in one space dimension and controlled
from the boundary. We describe below, for later use, one of these reachability
results for Neumann boundary controls.
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Before going into the details, let us introduce some notation.
Let n > 1 be an integer.
For Ω an open set of Cn, the space of holomorphic functions on Ω we denote

Hol(Ω) := {f : Ω→ Cn ; f is holomorphic on Ω},
and the Bergman space on Ω is denoted by A2(Ω) := Hol(Ω) ∩ L2(Ω).

For x0 ∈ Rn, r > 0, s0 ∈ C, we note B(x0, r) := {x ∈ Rn ; |x − x0| < r},,
B(r) := B(0, r) and BC(s0, r) := {s ∈ C ; |s− s0| < r}.

Consider the control system described by

(3.1)


∂z

∂t
(t, x)− ∂2z

∂x2
(t, x) = 0 (t > 0, x ∈ (0, π)),

∂z

∂x
(t, 0) = u0(t),

∂z

∂x
(t, π) = uπ(t) (t > 0),

z(0, x) = 0 (x ∈ (0, π)),

with state trajectory z and input function u =

[
u0

uπ

]
. The corresponding input

maps
(

Φ
(0,π),N
τ

)
τ>0

(recall the definition in Subsection 2.1 for a precise definition

of this concept) are defined by

(3.2) Φ(0,π),N
τ u = z(τ, ·) (τ > 0, u ∈ L2([0,∞);C2)).

It is known (see, for instance, [36, Chapter 10]) that the first two equations in (3.1)
determine a well posed control system, with state space X = L2[0, π] and input

space U = C2, in the sense defined in Subsection 2.1. Consequently, Φ
(0,π),N
τ is a

linear bounded map from L2([0,∞);C2) to L2[0, π]. For τ > 0 the range of this

map, denoted by Ran Φ
(0,π),N
τ is the reachable space at time τ of the control system

(3.1).
The following result can be easily deduced from [20, Corollary 3.2].

Theorem 3.1. The reachable space of the system described by (3.1) is independent
of the time horizon τ > 0 and, for all τ > 0,

(3.3) Ran Φ(0,π),N
τ =

{
η ∈ A2(D)

∣∣∣∣ dη

ds
∈ A2(D)

}
,

where

(3.4) D = {s = x+ iy ∈ C | |y| < x and |y| < π − x}.

Moreover, for every τ > 0 the norm induced on Ran Φ
(0,π),N
τ by the Sobolev norm

of W 1,2(D) is equivalent to the norm in Ran Φ
(0,π),N
τ (recall the general definition

(2.6) of the norm in the reachable space).

In the case of systems described by the heat equation in several space dimensions
with control acting on the boundary, the first description of the reachable space has
been recently given in Strohmaier and Waters [34]. To give the precise statement
of this result we need more notation. Let n ∈ N∗ and Ω ⊂ Rn be an open bounded
connected set with boundary ∂Ω of class C2. Consider the control system

(3.5)


∂z

∂t
(t, x)−∆z(t, x) = 0 (t > 0, x ∈ Ω),

z(t, x) = u(t, x) (t > 0, x ∈ ∂Ω),

w(0, x) = 0 (x ∈ Ω).
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The corresponding input maps
(
ΦΩ,D
τ

)
τ>0

are defined by

ΦΩ,D
τ u = z(τ, ·)

(
τ > 0, u ∈ L2([0,∞);L2(∂Ω))

)
.

It is known, see for instance, [36, Section 10.7] that

ΦΩ,D
τ ∈ L

(
L2([0,∞);L2(∂Ω)),W−1,2(Ω)

)
.

Characterizing the reachable space Ran ΦΩ,D
τ by an equality similar to (3.3) seems

an extremely difficult question. However, if Ω is a ball, this space can be sandwiched
between two spaces of holomorphic functions. More precisely, the following result
has been obtained in [34]:

Theorem 3.2. Assume that R > 0 and that Ω = B(R). For r > 0, let us define

E(B(r)) = {x+ iy ∈ Cn, with x, y ∈ Rn, x ∈ B(r), |y| < d(x, ∂B(r))}.
Then the reachable space of the system described by (3.5) is independent of the time
horizon τ > 0, and for every τ > 0 we have

(3.6)
⋃
r>R

A2(E(B(r))) ⊂ Ran ΦΩ,D
τ ⊂

⋂
r<R

A2(E(B(r))).

Remark 3.1. The results in [34] are not stated exactly under the aforementioned
form, since they state that, when Ω = B(R), if a state belongs to Ran ΦΩ,D

τ ,
then it belongs to Hol(E(B(r))) for every r < R, and that if a state belongs to
Hol(E(B(r0))) for some r0 > R, then it is reachable. Still, it is clear that the
inclusions (3.6) are equivalent to the above mentioned results from [34].

The reachable space for a system described by the heat equation with control
localized in an open subset inside the considered spatial domain has not, as far as we
know, been explicitly considered in the literature until very recently, see Remark 3.2
below. However, in Fenandez-Cara and Zuazua [14, Section 6] we can find a result
giving some interesting information in this direction. More precisely, denoting by Ω
a smooth bounded domain of Rn, and O a non-empty open subset of Ω, we consider
the heat equation in Ω controlled from O:

(3.7)


∂z

∂t
(t, x)−∆z(t, x) = u(t, x)1lO(x) (t > 0, x ∈ Ω),

z(t, x) = 0 (t > 0, x ∈ ∂Ω),
z(0, x) = 0 (x ∈ Ω),

where 1lO is the indicator function of the set O. As for the previous examples, for
every τ > 0 we define the input map ΦΩ,O

τ by

ΦΩ,O
τ u = z(τ, ·) (τ > 0, u ∈ L2([0, τ ];L2(Ω)).

The result below can be easily obtained, via a duality argument, from those in [14,
Section 6].

Theorem 3.3. Let A0 : D(A0)→ L2(Ω) be the operator defined by

D(A0) = W 2,2(Ω) ∩W 1,2
0 (Ω), A0φ = −∆φ.

Let us denote by (Hτ )τ>0 the C0 semigroup on L2(Ω) generated by −A
1
2
0 .

Then the reachable space Ran ΦΩ,O
τ of the system described by (3.7) is independent

of the time horizon τ > 0, and there exists a positive constant τ0, depending on Ω
and O, such that for every τ > 0 we have

RanHτ0 ⊂ Ran ΦΩ,O
τ .
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Remark 3.2. Note that very recently, Chen and Rosier [5] consider the reachable
states for the distributed control of the heat equation on an interval and they prove
that the reachable states are in the Sobolev space H1 and that they have complex
analytic extensions on squares whose horizontal diagonals are regions where no
control is applied.

From Theorem 3.2, one can obtain a more precise result than Theorem 3.3 in the
particular situation where Ω is a ball and the control domain O is a neighborhood
of the boundary ∂Ω.

Proposition 3.1. Let 0 < R0 < R1, Ω = B(R1) and O = B(R1) \ B(R0). Then
the reachable space Ran ΦΩ,O

τ of the system described by (3.7) is independent of the
time horizon τ > 0 and we have

∪r∈(R0,R1)Ã
2(E(B(r))) ⊂ Ran ΦΩ,O

τ ,

where for every r ∈ (R0, R1) we have denoted by Ã2(E(B(r)) the set of functions
f ∈ H1

0 (B(R1)) such that f |B(r) can be extended as a function of A2(E(B(r))).

The proof of Proposition 3.1 is based on a cut-off argument and is postponed in
Appendix B.

As far as we know, the only work tackling the question of the determination of the
reachable space for perturbed heat equations is [23]. This paper considers systems
described by the one dimensional heat equation with perturbations of holomorphic
type (linear or nonlinear) and provides results asserting that the states which can
be extended to functions which are holomorphic in a sufficiently large disk can
be reached by L2 boundary controls. The method proposed in [23] is based on
considering the control problem as an ill-posed Cauchy problem in the x variable.
Let us state precisely one of their results.

We consider a system obtained by perturbing the first equation in (3.1) by a
term of the form Pz, with P ∈ L(L2[0, π]). More precisely, this system is described
by the equations

(3.8)


∂zP

∂t
(t, x)− ∂2zP

∂x2
(t, x) =

(
PzP

)
(t, x) (t > 0, x ∈ (0, π)),

∂zP

∂x
(t, 0) = u0(t),

∂zP

∂x
(t, π) = uπ(t) (t > 0),

z(0, x) = 0 (x ∈ (0, π)).

The corresponding input maps
(

Φ
P,(0,π),N
τ

)
τ>0

are defined by

(3.9) ΦP,(0,π),N
τ u = zP (τ, ·) (τ > 0, u ∈ L2([0,∞);C2)).

As far as we know, the only available result on the reachable spaces
(

Ran Φ
P,(0,π),N
τ

)
τ>0

,

when P is a general potential (when P (x) = −x2, we refer to the recent results [19]),
of the system defined by equations (3.8) is a consequence of the results in [23] and
can be stated as follows.

Proposition 3.2. Let R̂ := (2π)e(2e)−1

, b > R̂ and P ∈ L
(
L2[0, π]

)
be defined by

(3.10) (Pψ)(x) = q(x)ψ(x) (ψ ∈ L2(0, π)),

where q admits an holomorphic extension on BC(π/2, b).
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Then for every τ > 0 the range Ran Φ
P,(0,π),N
τ of the map defined in (3.9) contains

all the functions z1 ∈ L2(0, π) which admit an holomorphic extension on BC(π/2, R)

for some R > R̂.

Remark 3.3. The statement given in [23] slightly differs from Proposition 3.2, but
we claim that Proposition 3.2 is a straightforward consequence of Theorem 1.1 in
[23] according to the following remarks:

• For s0 ∈ C, R > 0, a function z ∈ Hol(BC(s0, R)) automatically ad-

mits a power series expansion z(s) =
∑
s αn

(s−s0)n

n! which is convergent
in BC(s0, R

′) for any R′ ∈ (0, R), and the coefficients (αn)n∈N satisfy

(αn(R′)n/n!)n∈N ∈ `∞(N)

(in fact, the sequence (αn(R′)n/n!)n∈N is bounded by ‖z‖L∞((BC(s0,R′)) from
Cauchy’s formula).
• The homogeneity of the linear equation (3.7) allows to pass from local re-

sults, concerning states which are small in some norms, to global results (in
contrast with semilinear cases, which are also handled in Theorem 1.1 in
[23] for which a smallness assumption is needed).

4. Applications to perturbed heat equations

In this section we state and prove several results obtained by applying Theorems
2.3 and 2.4 to systems governed by heat equations with various type of perturba-
tions. For some of these systems we improve the existing results on the robustness
of reachability and null controllability in presence of perturbations. Other results
in this section consider systems for which the reachable spaces are studied here for
the first time.

4.1. The case of small potentials. As a first application we complete and im-
prove (at least for “small” potentials) the result in Proposition 3.2. More precisely,

we give the following characterization of Ran Φ
P,(0,π),N
τ , under weaker regularity

assumptions on the potential q:

Theorem 4.1. Let P ∈ L
(
L2[0, π]

)
be defined by (3.10) and let D be the set

defined in (3.4). Then there exists ε > 0 such that, if q can be extended to a
function holomorphic on D with ‖q‖W 1,p(D) 6 ε for some p > 2, then the reachable

set Ran Φ
P,(0,π),N
τ for the equation (3.8) is independent from τ > 0, and for every

τ > 0,

(4.1) Ran ΦP,(0,π),N
τ = Ran Φ(0,π),N

τ =

{
η ∈ A2(D)

∣∣∣∣ dη

ds
∈ A2(D)

}
.

Proof. We apply Theorem 2.3, with the following choice of the spaces and operators

• The state space is X = L2[0, π] and the control space is U = C2;

• The semigroup generator A : D(A)→ X is defined by A = d2

dx2 , with

D(A) =

{
z ∈ H2(0, π) with

dz

dx
(0) =

dz

dx
(π) = 0

}
;

• The control operator B is defined by

B

[
u0

uπ

]
= −u0δ0 + uπδπ (u0, uπ ∈ L2([0,∞);C)),
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where δ0, δπ are the Dirac masses concentrated at x = 0 and x = π,
respectively;
• The perturbation operator P is defined by

Pψ = qψ (ψ ∈ L2[0, π]).

Indeed, by combining Theorem 2.3 and Theorem 3.1, to prove that Ran Φ
P,(0,π),N
τ =

Ran Φ
(0,π),N
τ for some τ provided ‖q‖W 1,p(D) is small enough, it suffices to check

that for every τ > 0 there exists cτ > 0 such that

‖Pψ‖
Ran Φ

P,(0,π),N
τ

6 cτ‖q‖W 1,p(D) ‖ψ‖Ran Φ
P,(0,π),N
τ

(τ > 0, ψ ∈ L2[0, π]).

This last inequality can be easily checked by combining some elementary Sobolev
embeddings with Theorem 3.1.

It then remains to use the well-known fact that heat equations with L∞ potentials
are null-controllable in any time τ > 0 (see for instance [15]) to conclude that

Ran Φ
P,(0,π),N
τ does not depend on τ > 0 (recall Proposition 2.1) and thus that the

identity (4.1) holds for all τ > 0. �

4.2. Non-local perturbation operators with Neumann controls in 1-d. Our
second application concerns again the reachable space of the system described by
(3.8), this time with a non local perturbation operator P . As far as we know,
such perturbations have not yet considered in the literature in the case of parabolic
systems controlled from the boundary. More precisely, the operator P is defined by

(4.2) (Pη)(x) =

∫ π

0

K(x, y)η(y) dy (η ∈ L2[0, π], x ∈ (0, π)),

with K ∈ L2([0, π] × [0, π]). We stress here the fact that this second application
characterizes the reachable set of the perturbed equation under a unique continua-
tion assumption of the elliptic nonlocal operator associated to (3.8) and (4.2), but
without smallness assumption.

Proposition 4.1. Let P be defined by (4.2) with K ∈ L2([0, π] × [0, π]). Assume
that for a.e. y ∈ [0, π] the map

x 7→ K(x, y) (x ∈ [0, π]),

extends to an element of Hol(D) ∩W 1,2(D), where D is defined by (3.4), and K
belongs to L2

y([0, π];W 1,2
x (D)). Moreover, suppose that for every s ∈ C, the only

function ψ ∈ H2(0, π) satisfying

(4.3)


−d2ψ

dx2
(x)− sψ(x) =

∫ π

0

K(y, x)ψ(y) dy, (x ∈ [0, π]),

ψ(0) =
dψ

dx
(0) = 0,

ψ(π) =
dψ

dx
(π) = 0,

is ψ = 0.
Then the reachable spaces of the system (3.8)–(4.2) do not depend on time and

they satisfy (4.1) for every τ > 0. Furthermore, the system (3.8)–(4.2) is null-
controllable in any positive time.
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Proof. It is not difficult to check that the considered system satisfies the assumptions
in Theorem 2.4 and Remark 2.4 with X, U , A and B as in the proof of Theorem

4.1 and with P defined by (4.2) satisfying P ∈ L(X,Ran Φ
(0,π),N
τ ). �

Remark 4.1. For examples of kernels K which satisfy or not the last assumption
in Proposition 4.1 (i.e., the fact that the only solution of (4.3) is ψ = 0), we refer
to the discussion in Subsection A.2.

4.3. Non-local perturbation operators with distributed controls in multi-
d: the general case. Let us now take Ω a smooth bounded domain of Rn and O
a nonempty open set contained in Ω and let 1lO be the indicator function of the set
O. We consider the system

(4.4)


∂zP

∂t
(t, x)−∆zP (t, x) = (PzP )(t, x) + u(t, x)1lO(x) (t > 0, x ∈ Ω),

zP (t, x) = 0 (t > 0, x ∈ ∂Ω),
zP (0, x) = 0 (x ∈ Ω),

where the operator P is given through a kernel function K ∈ L2(Ω × Ω) by the
formula:

(4.5) (Pη)(x) =

∫
Ω

K(x, y)η(y) dy (η ∈ L2(Ω), x ∈ Ω).

The corresponding input maps
(
ΦP,Ω,Oτ

)
τ>0

are defined by

ΦP,Ω,Oτ u = zP (τ, ·) (τ > 0, u ∈ L2([0,∞);O)).

Decomposing the kernel K on an orthonormal (in L2(Ω)) basis of eigenfunctions
(ϕn)n∈N of the Laplace operator, it follows that there exists coefficients (kn,m)n,m∈N ∈
`2(N2) such that

(4.6) K(x, y) =
∑
n,m∈N

kn,mϕn(x)ϕn(y), (x ∈ Ω, y ∈ Ω).

We then have the following result:

Proposition 4.2. Let P be defined by (4.5) with kernel K satisfying the represen-
tation (4.6).

Let τ0 > 0 be given by Theorem 4.2, and assume

(4.7)
∑
n∈N

exp(2
√
λnτ0)

∑
m∈N

|kn,m|2

λnλm
<∞.

Then the following assertions are equivalent:

(a) for all τ > 0, Ran ΦP,Ω,Oτ = Ran ΦΩ,O
τ ,

(b) for every s ∈ C, the only function ψ ∈ H2(Ω) ∩H1
0 (Ω) satisfying

−∆ψ(x)− sψ(x) =

∫
Ω

K(y, x)ψ(y) dy (x ∈ Ω),

ψ(x) = 0 (x ∈ O),

is ψ = 0.

Furthermore, if condition (b) is satisfied, system (4.4) is null-controllable in any
positive time, that is, for all τ > 0, RanTPτ ⊂ Ran ΦP,Ω,Oτ .
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Remark 4.2 (Comparison with [13]). Condition (4.7) coincides with the condition
(5) in [13]. Compared to [13], the novelty of the above result is twofold: first, it
assumes only a unique continuation result (item (b)) instead of the analyticity of

the function x 7→ K(y, x) for all y ∈ Ω as in [13]; second, while [13] only states
the null-controllability of the perturbed system, the above result provides a full
characterization of its reachable space (note that, although this is not explicitly
mentioned in [13], the equation (16) in [13] actually already contains this type of
conclusion).

To summarize: the sufficient condition given in [13] for getting null-controllability
is stronger than the one we propose. As in our work, although not explicitly stated
in [13], this condition guarantees that the reachable set of the heat equation with
non-local term in space P coincides with the reachable set of the heat equation.

Proof. The above system fits into our abstract framework by setting A = ∆ in
X = L2(Ω) with domain D(A) = H2(Ω) ∩H1

0 (Ω) and B = 1lO, with U = L2(Ω).
The proof thus consists in checking that condition (4.7) implies the condition

(2.15) for Lτ defined by (2.14), so that Theorem 4.2 will be a consequence of The-
orem 2.4, with α = 0 and ε = 1/2.

Using Theorem 3.3, for f ∈ L2([0, τ ];X1/2), writing fm(s) = 〈f(s), ϕm〉X for
m ∈ N and s ∈ [0, τ ], we have for some positive constant C > 0

‖Lτf‖2Ran ΦΩ,O
τ
6 C‖Lτf‖2RanHτ0

6
∑
n

e2
√
λnτ0

∣∣∣∣∣∑
m

kn,m

∫ τ

0

fm(s)e−λn(τ−s) ds

∣∣∣∣∣
2

6
∑
n

e2
√
λnτ0

((∑
m

|kn,m|2

λm

)(∑
m

λm

∣∣∣∣∫ τ

0

fm(s)e−λn(τ−s) ds

∣∣∣∣2
))

6 C
∑
n

e2
√
λnτ0

((∑
m

|kn,m|2

λm

)(∑
m

λm
λn

∫ τ

0

|fm(s)|2 ds

))

6 C

(∑
n

e2
√
λnτ0

∑
m

|kn,m|2

λmλn

)
‖f‖2L2([0,τ ];X1/2).

Note that we have used Cauchy-Schwarz inequality in the third and fourth in-
equalities above. Accordingly, Lτ ∈ L(L2([0, τ ];X1/2),Ran ΦΩ,O

τ ), and Theorem
2.4 applies. �

Remark 4.3. It would be natural to prove Theorem 4.2 using Remark 2.4 and the
sufficient condition P ∈ L(X1/2,Ran ΦΩ,O

τ ) corresponding to the choices α = 0 and
ε = 1/2. This would yield the same result under the slightly stronger condition

∑
n

e2
√
λnτ0

∑
m

|kn,m|2

λm
< +∞,

instead of (4.7).
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Indeed, for η ∈ X1/2 = H1
0 (Ω), we have

‖Pη‖2
Ran ΦΩ,O

τ
6 ‖Pη‖2RanHτ0

6
∑
n

e2
√
λnτ0

∣∣∣∣∣∑
m

kn,mηm

∣∣∣∣∣
2

6 C

(∑
n

e2
√
λnτ0

∑
m

|kn,m|2

λm

)
‖η‖2X1/2

.

4.4. Non-local perturbation operators with distributed controls in multi-
d: the case of a ball controlled from a ring. We now assume that the domain
Ω = B(R1) ⊂ Rn and O = B(R1) \ B(R0) for some R0 and R1 with 0 < R0 < R1

and we show that in this case the assumptions on the kernel K can be considerably
weakened with respect to those in the previous section.

In view of Proposition 3.1, it seems natural to study the case of a perturba-
tion operator P given through a kernel function K as in (4.5), and to assume the
following assumptions:

(4.8)


∀y ∈ Ω, K(·, y) ∈ H1

0 (B(R1))

and

∫
Ω

‖∇xK(x, ·)‖2
H−1
y (Ω)

dx <∞,


∃r ∈ (R0, R1),
∀y ∈ Ω, K(·, y)|B(r)) has an holomorphic extension in E(B(r))

and

∫
x∈E(B(r))

∫
y∈Ω

|K(x, y)|2 dy dx <∞.

We have the following result.

Proposition 4.3. Let Ω = B(R1) and O = B(R1) \B(R0) for some constants R0

and R1 with 0 < R0 < R1.
Let P be defined by (4.5) with kernel K satisfying (4.8).
Then the conclusion of Theorem 4.2 holds true.

Proof. Again, the controlled system under consideration fits the abstract framework
developed in Section 2, and using Remark 2.4 and Theorem 2.4, it is sufficient to
check that P ∈ L(L2(B(R1)),Ran ΦΩ,O

τ ).
Due to the form of the kernel and the assumption (4.8), we have that for all

g ∈ L2(B(R1)), Pg|B(r) admits an holomorphic expansion on E(B(r)) and

‖Pg|E(B(r))‖2A2(E(B(r))) =

∫
x∈E(B(r))

∣∣∣∣∫
y∈Ω

K(x, y)g(y) dy

∣∣∣∣2 dx

6

(∫
x∈E(B(r))

∫
y∈Ω

|K(x, y)|2 dy dx

)∫
y∈Ω

|g(y)|2 dy.

Similarly, for g ∈ H1
0 (B(R1)), according to assumptions (4.8), Pg ∈ H1

0 (B(R1))
and

‖Pg‖2H1
0 (B(R1)) =

∫
x∈Ω

∣∣∣∣∫
y∈Ω

∇xK(x, y)g(y) dy

∣∣∣∣2 dx

6

(∫
x∈Ω

‖∇xK(x, ·)‖2
H−1
y (Ω)

dx

)∫
y∈Ω

|∇yg(y)|2 dy.
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In particular, we have, for all g ∈ H1
0 (B(R1)), Pg ∈ Ã2(E(B(r))) and satisfies

‖Pg‖H1
0 (B(R1)) + ‖Pg|E(B(r))‖A2(E(B(r))) 6 C‖g‖H1

0 (B(R1)) = C‖g‖X1/2
.

Proposition 3.1 then implies that P ∈ L(L2(B(R1)),Ran ΦΩ,O
τ ) as announced. �

5. More background on infinite dimensional control systems

In this section we develop the background on well posed linear control systems,
whose presentation has been initiated in Section 2.1. We first recall, without proofs
but with appropriate references, some known results which will be used in the proofs
of our main theorems. Moreover, we state and prove several results which, although
quite simple, seem new.

We continue to use the notation and assumptions introduced in Section 2.1. We
recall, in particular, that X and U are Hilbert spaces, denoting the state and the
control space, respectively, and that a well-posed control system can be described
either by a couple Σ = (T,Φ) of families of operators or by Σ = (A,B), where A is
the generator of T and B is the control operator, see Definition 2.1.

5.1. Complements on well-posed control systems. We begin by recalling (see,
for instance, [36, Proposition 4.2.5]) that the families T and Φ can also be seen as
the solution operators for the initial value problem

(5.1) ż(t) = Az(t) +Bu(t), z(0) = z0,

in the following sense:

Proposition 5.1. Let τ > 0. Then for every z0 ∈ X and every u ∈ L2([0, τ ];U),
the initial value problem (5.1) has a unique solution

z ∈ C0([0, τ ];X) ∩H1((0, τ);X−1).

This solution is given by

z(t) = Ttz0 + Φtu (t ∈ [0, τ ]).

The two results below are essentially known in the control theoretic community,
but we did not find them explicitly stated in the existing literature. Therefore, with
no claim of originality, we give a short proof.

Proposition 5.2. For every τ > 0, we have that Φτ ∈ L(L2[0, τ ];U),Ran Φτ ) is
onto and

(5.2) ‖Φτ‖L(L2([0,τ ];U),Ran Φτ ) = 1.

Proof. From Definition 2.1, we obviously have the inequality

‖Φτ‖L(L2([0,τ ];U),Ran Φτ ) 6 1.

Moreover, if η ∈ Ran Φτ \{0} there exists a sequence (un)n>0 in (L2([0, τ ];U)\{0})N
such that Φτun = η for every n ∈ N and ‖un‖L2([0,τ ];U) → ‖η‖Ran Φτ as n → ∞.
We thus have that

lim
n→∞

‖Φτun‖Ran Φτ

‖un‖L2([0,τ ];U)
= 1,

and, consequently, (5.2). �
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Remark 5.1. Since Φτ ∈ L(L2([0, τ ];U),Ran Φτ ) is onto, a classical consequence
of the closed graph theorem (see, for instance, [36, Section 12.1]) yields the existence
of an operator Γτ ∈ L(Ran Φτ , L

2([0, τ ];U)) such that

(5.3) ΦτΓτ = IRan Φτ .

We also add the following useful property on the input maps:

Proposition 5.3. For τ > 0, for every 0 6 σ 6 τ , for every u ∈ L2([0,∞);U),

‖Φσu‖Ran Φτ 6 ‖u‖L2([0,σ];U).

Proof. For every u ∈ L2([0,∞);U) and every σ ∈ [0, τ ] we have

Φσu = Φτvσ,

where

vσ(s) =

{
0 for s ∈ [0, τ − σ],

u(s− τ + σ) for s ∈ [τ − σ, τ ].

Accordingly, ‖Φσu‖Ran Φτ = ‖Φτvσ‖Ran Φτ 6 ‖vσ‖L2([0,τ ];U) = ‖u‖L2([0,σ];U) as
announced. �

We also need the following result:

Proposition 5.4. If (T,Φ) is null controllable in some time τ > 0 then Tτ ∈
L(X,Ran Φτ ). Moreover, if (T,Φ) is null controllable in any time τ > 0 then for
every t ∈ (0, τ ] we have Tt ∈ L(X,Ran Φτ ).

Proof. According to a classical result, see, for instance, [35, Proposition 2.4], the
null controllability in time τ of the pair (T,Φ) implies the existence of an operator
Fτ ∈ L(X,L2([0, τ ];U)) such that

Tτ + ΦτFτ = 0.

The above formula implies that

‖Tτψ‖Ran Φτ 6 ‖Fτ‖L(X,L2([0,τ ];U)) ‖ψ‖X (ψ ∈ X),

so that indeed Tτ ∈ L(X,Ran Φτ ).
If (T,Φ) is null controllable in any positive time then we know from Remark

2.2 that ‖ · ‖Ran Φτ and ‖ · ‖Ran Φt are equivalent norms on Ran Φτ . Combining
the equivalence of these norms with the fact that Tt ∈ L(X,Ran Φt) we obtain the
second assertion of the proposition. �

5.2. The role of duality. In this subsection we give the dual versions of some of
the results in Sections 2.1 and 5.1. Throughout this subsection we continue to use
the notation X and U for the state and input space, respectively. The operator
A : D(A) → X is still supposed to be the generator of the C0 semigroup T and
X1, X

d
1 stand for the Hilbert spaces obtained by endowing D(A) and D(A∗) with

the norms defined by (2.2) and (2.3), respectively. Moreover, Y designs another
Hilbert space (the output space) and C ∈ L(X1, Y ) is an admissible observation
operator for T. The admissibility assumption means that for some τ > 0, the
operator Ψτ defined by

(5.4) (Ψτz0)(t) = CTtz0 (t ∈ [0, τ ], z0 ∈ X1),

has an extension to an operator Ψτ ∈ L(X,L2([0, τ ], Y )). We refer to [36, 39]
for more material on this concept. Here we only mention that it follows from the
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admissibility assumption that Ψτ ∈ L(X,L2([0, τ ];Y )) holds for all τ > 0. The
operators Ψτ are called output maps corresponding to the pair (A,C).

The concepts of admissible control operator and admissible observation operator
are dual. More precisely, according to results in [36, Section 4.4] we have:

Proposition 5.5. The operator B ∈ L(U,X−1) is an admissible control operator
for T if and only if B∗ ∈ L(Xd

1 , U) is an admissible observation operator for T∗.
In this case, for every τ > 0 the adjoint Φ∗τ ∈ L(X,L2[0, τ ];U)) of the operator Φτ
introduced in (2.4) is given by

(5.5) (Φ∗τη)(t) =
(
Ψd
τη
)

(τ − t) (t ∈ [0, τ ], η ∈ X),

where
(
Ψd
τ

)
τ>0

are the output maps corresponding to the pair (A∗, B∗).

By combining the above result and Proposition 4.3.4 in [36] it is easily checked
that we have

Proposition 5.6. If B be an admissible control operator for T and η ∈ D(A∗) then
the map t 7→ (Φ∗τη)(t) belongs to H1((0, τ);U) and we have

d

dt
((Φ∗τη)(t)) = (Φ∗τ (A∗η)) (t) in D ′(0, τ).

We next recall the definition of the main observability concepts in infinite dimen-
sional systems theory.

Definition 5.1. Let A be the generator of the C0 semigroup T on X and let
C ∈ L(X1, Y ) be an admissible observation operator. Let (Ψτ )τ>0 be the output
maps corresponding to (A,C).

• The pair (A,C) is exactly observable in time τ if there exists a kτ > 0 such
that ‖Ψτz0‖ > kτ‖z0‖ for all z0 ∈ X.
• The pair (A,C) is approximately observable in time τ if Ker Ψτ = {0}.
• The pair (A,C) is final state observable in time τ if there exists a kτ > 0

such that ‖Ψτz0‖ > kτ‖Tτz0‖ for all z0 ∈ X.

Remark 5.2. If A generates an analytic semigroup T on X, then the approximate
observability in some time τ > 0 of the pair (A,C) is equivalent to the approximate
observability in any time τ > 0 of the pair (A,C). This directly comes from the
fact that, for z0 ∈ X, t 7→ CTtz0 is analytic on (0,∞) with values in X1; hence, if
for some τ0 > 0, Ψτ0z0 = 0, then for all τ > 0, Ψτz0 = 0.

According to a classical result (see, for instance, [36, Theorem 11.2.1]), the ob-
servability concepts defined above correspond by duality to the controllability con-
cepts introduced in Subsection 2.1, as made precise in the proposition below.

Proposition 5.7. Assume that B ∈ L(U,X−1) is an admissible control operator
for T, the semigroup generated by A, and let τ > 0.
(1) The pair (A,B) is exactly controllable in time τ if and only if (A∗, B∗) is exactly

observable in time τ .
(2) The pair (A,B) is approximately controllable in time τ if and only if (A∗, B∗)

is approximately observable in time τ .
(3) The pair (A,B) is null-controllable in time τ if and only if (A∗, B∗) is final

state observable in time τ .

We next consider a second notion of duality for the operator Φτ introduced in
(2.4). Let us remind that for the first one, appearing in Proposition 5.5 we have
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considered that Φτ ∈ L(L2([0, τ ];U), X) and we have identified X and L2([0, τ ];U)
with their duals, obtaining the operator Φ∗τ ∈ L(L2([0, τ ];U), X), called adjoint of
Φτ . Remarking that Φτ ∈ L(L2([0, τ ];U),Ran Φτ ) for every τ > 0 (recall Remark
5.2), we can also define a slightly different concept.

Definition 5.2. Assume that the pair (A,B) is approximately controllable in time
τ , so that the dual (Ran Φτ )

′
of Ran Φτ with respect to the pivot space X is well

defined and we have

Ran Φτ ⊂ X ⊂ (Ran Φτ )
′
,

with continuous and dense inclusions.
The dual Φ′τ ∈ L((Ran Φτ )

′
, L2([0, τ ];U)) of the operator Φτ introduced in (2.4)

is defined by

〈Φτu, η〉Ran Φτ ,(Ran Φτ )′ = 〈u, (Φτ )′η〉L2([0,τ ];U),

for every u ∈ L2([0, τ ];U) and η ∈ (Ran Φτ )
′
.

Remark 5.3. From the above definition it clearly follows that, provided that (A,B)
is approximately controllable in time τ > 0, the operator Φ′τ is an extension of the
operator Φ∗τ . Thus, according to Proposition 5.5 we have:

(Φ′τη)(t) =
(
Ψd
τη
)

(τ − t) (t ∈ [0, τ ], η ∈ X).

The norm in the space (Ran Φτ )′ can be characterized as follows:

Proposition 5.8. Assume that (A,B) is approximately controllable in some time
τ > 0. Then

(5.6) ‖η‖(Ran Φτ )′ = ‖Φ∗τη‖L2([0,τ ];U) (η ∈ X).

Proof. We first remark that for every ξ ∈ Ran Φτ , there exists a sequence (uξn) in
L2([0, τ ];U) such that Φτu

ξ
n = ξ for every n ∈ N and

lim
n→∞

‖uξn‖L2([0,τ ];U) = ‖ξ‖Ran Φτ .

We next note that for every η ∈ X and ξ ∈ Ran Φτ \ {0} we have

1

‖ξ‖Ran Φτ

〈ξ, η〉Ran Φτ ,(Ran Φτ )′ =
1

‖ξ‖Ran Φτ

〈uξn,Φ∗τη〉L2([0,τ ];U)

6
1

‖ξ‖Ran Φτ

lim
n→∞

‖uξn‖L2([0,τ ];U)‖Φ∗τη‖L2([0,τ ];U) (n ∈ N).

Passing to the limit when n → ∞ in the last inequality we obtain that for every
η ∈ X and ξ ∈ Ran Φτ \ {0} we have

1

‖ξ‖Ran Φτ

〈ξ, η〉Ran Φτ ,(Ran Φτ )′ 6 ‖Φ∗τη‖L2([0,τ ];U).

The last estimate clearly implies that

‖η‖(Ran Φτ )′ 6 ‖Φ∗τη‖L2([0,τ ];U) (η ∈ X).

The above inequality, combined with the fact, following from (5.2), that

‖Φ∗τη‖L2([0,τ ];U) 6 ‖η‖(Ran Φτ )′ (η ∈ X),

implies the conclusion (5.6). �

We end this subsection with the following result:
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Proposition 5.9. Assume that (A,B) is approximately controllable in time τ > 0.
Then there exists an operator

(5.7) Wτ ∈ L(L2([0, τ ];U), (Ran Φτ )
′
)

such that

WτΦ∗τη = η (η ∈ X).

Proof. Let Γτ ∈ L(Ran Φτ , L
2([0, τ ];U)) be the operator in Remark 5.1 and let

Wτ ∈ L
(
(L2([0, τ ];U), (Ran Φτ )

′)
be the dual of Γτ , defined by

〈Wτu, η〉(Ran Φτ )′,Ran Φτ = 〈u,Γτη〉L2([0,τ ];U) (u ∈ L2([0, τ ];U), η ∈ Ran Φτ ).

Thus, according to (5.3), we have

WτΦ′τ = I(Ran Φτ )′ .

The conclusion (5.7) follows now by recalling from Remark 5.3 that Φ′τη = Φ∗τη for
every η ∈ X. �

5.3. Negative generators with compact resolvents. When A is negative, it is
well-known that it generates an analytic semigroup T on X.

In particular, there is a simple sufficient condition for the admissibility of an
observation operator.

Proposition 5.10. Let A be a negative operator on X. If C ∈ L(X 1
2
, Y ) (recall

the definition of X 1
2

in (2.13)), then C is an admissible observation operator for

the semigroup T generated by A on X. Moreover, the output maps corresponding
to the pair (A,C) satisfy

(5.8) (Ψτz0) (t) = CTtz0 (t ∈ [0, τ ] a.e. , z0 ∈ X).

Proof. The admissibility of C is, with our assumptions, a classical result (see, for
instance, [36, Proposition 5.1.3]).

In order to prove (5.8) we note that from (2.12) it follows that for every z0 ∈ X
the map t 7→ Ttz0 is in L2([0, τ ];X 1

2
). Setting(

Ψ̃τz0

)
(t) = CTtz0 (t ∈ [0, τ ] a.e. , z0 ∈ X)

It follows that the map Ψ̃τ ∈ L(X,L2([0, τ ];Y )) and

Ψ̃τz0 = Ψτz0 (z0 ∈ D(A)).

The above relation, (5.4) and the density of D(A) in X imply the conclusion (5.8).
�

For later use, we also recall two classical results. The first, see, for instance,
Bensoussan et al. [4, Section II.1.3.6] is the so-called maximal regularity property:

Theorem 5.1. Let Ã be the generator of an analytic semigroup S on an Hilbert

space X. For α ∈ [0, 1], we introduce X̃α = [X,D(Ã)]α, where [·, ·]α stands for the

interpolation space of order α between X and D(Ã) (see [4, Section II.1.4.7]), and

for α ∈ [−1, 0], X̃α = X̃ ′−α with X identified with its dual.

Then for all α ∈ [−1, 0] and τ > 0, if f ∈ L2([0, τ ]; X̃α) and z0 ∈ X̃α+1/2, the
solution z of

ż(t) = Ãz(t) + f(t) (t ∈ [0, τ ]), with z(0) = z0,
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equivalently given by

z(t) = Stz0 +

∫ t

0

St−σf(σ) dσ (t ∈ [0, τ ]),

belongs to L2([0, τ ]; X̃α+1) ∩H1((0, τ); X̃α) and satisfies

‖z‖L2([0,τ ];X̃α+1)∩H1((0,τ);X̃α) 6 C
(
‖z0‖X̃α + ‖f‖L2([0,τ ];X̃α)

)
.

Remark that in [4, Section II.1.3.6], the above theorem is stated with α = 0.
Here, we use the fact that, if S is an analytic semigroup on X, it is also an analytic

semigroup on X̃α for any α ∈ [0, 1], and thus by duality, it can be extended as an

analytic semigroup on X̃α for any α ∈ [−1, 0].

Also, when A is negative, the spaces Xα defined in (2.13) and X̃α obviously
coincide for all α ∈ [−1, 1]. In fact, when A is negative, Theorem 5.1 also holds for
any α ∈ R. We chose not to state the above result with such generality when A is
the generator of an analytic semigroup to avoid additional notation.

We then recall the following standard compactness arguments, known as Aubin-
Lions lemma (see, for instance, Simon [33]):

Theorem 5.2. Let H0 ⊂ H1 ⊂ H2 be three Hilbert spaces, which are continuously
embedded one into the other, such that the embedding of H0 to H1 is compact.
Then, for all τ > 0, the set L2([0, τ ];H0)∩H1((0, τ);H2) is compactly embedded in
L2([0, τ ];H1).

In particular, when Ã is the generator of an analytic semigroup on X and has

compact resolvent in X, for all α ∈ [−1, 0] and τ > 0, for all ε > 0, defining X̃α as

in Theorem 5.1, the set L2([0, τ ]; X̃α+1) ∩H1((0, τ); X̃α) is compactly embedded in

L2([0, τ ]; X̃α+1−ε).

6. Well-posed control systems on Ran Φτ : Proof of Theorem 2.1

Throughout this section we still assume that X and U are Hilbert spaces and
that Σ = (T,Φ) is a well posed control system with state space X and input space
U , in the sense of Definition 2.1.

The main aim of this section is to prove Theorem 2.1. Informally, this theorem

says that if Σ is null controllable in any positive time then the system Σ̃ = (T̃,Φ),

where T̃ is the restriction of T to Ran Φτ defines an exactly controllable system, with
state space Ran Φτ and input space U , in the sense of Definition 2.2. Thus every
system which is null controllable in any time can be seen as an exactly controllable
one, provided that the state space is appropriately chosen.

The key point consists in establishing that the restriction of T to Ran Φτ forms a
C0 semigroup on Ran Φτ . The proof of this fact is essentially based on the following

result, stating that the restriction T̃ is bounded (for small times).

Proposition 6.1. Assume that (T,Φ) is null controllable in any positive time.
Then for every τ > 0 there exists a constant cτ > 0 such that

(6.1) ‖Tt‖L(Ran Φτ ) 6 cτ (t ∈ (0, τ ]).

Proof. Using the equivalence (see Remark 2.2) of the norms ‖·‖Ran Φτ and ‖·‖Ran Φ2τ

on Ran Φτ it follows that there exists cτ > 0 such that

(6.2) ‖Ttη‖Ran Φτ 6 cτ‖Ttη‖Ran Φ2τ
(t ∈ (0, τ ], η ∈ Ran Φτ ).
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On the other hand, it is not difficult to see that

(6.3) ‖Ttη‖Ran Φ2τ
6 ‖η‖Ran Φ2τ−t (t ∈ (0, τ ], η ∈ Ran Φτ ).

Indeed, if u ∈ L2([0, 2τ − t];U) is such that Φ2τ−tu = η then ũ ∈ L2([0, 2τ ];U)
defined by

ũ(t) =

{
u(t) (t ∈ [0, 2τ − t]),
0 (t ∈ (2τ − t, 2τ ]),

satisfies Φ2τ ũ = Ttη and ‖ũ‖L2([0,2τ ];U) = ‖u‖L2([0,2τ−t];U). So we get

‖Ttη‖Ran Φ2τ = ‖Φ2τ ũ‖Ran Φ2τ 6 ‖ũ‖L2([0,2τ ];U) = ‖u‖L2([0,2τ−t];U),

for every u ∈ L2([0, 2τ − t];U) such that Φ2τ−tu = η, then by taking the infimum of
u ∈ L2([0, 2τ − t];U) such that Φ2τ−tu = η in both sides of the previous inequality
we obtain (6.3). We can thus combine the two inequalities (6.2) and (6.3) to obtain
that

‖Ttη‖Ran Φτ 6 cτ‖η‖Ran Φ2τ−t (t ∈ (0, τ ], η ∈ Ran Φτ ).

Since 2τ − t > τ we can combine the last estimate and (2.7) to obtain (6.1). �

Proof of Theorem 2.1. We first remark that the space Ran Φτ is independent from
the choice of τ > 0 since Σ = (T,Φ) is null controllable in any positive time, see

Proposition 2.1. Consequently, the family T̃ = (Tt|Ran Φτ )t>0 does not depend on
the choice of τ > 0.

The fact that T̃ is a semigroup of bounded operators on Ran Φτ follows from
Proposition 5.4 and the fact that T is a semigroup of operators on X. The strong
continuity of T̃ follows from Proposition 6.1, the fact that Ran Φτ is a Hilbert space
(see Remark 2.1) and from Corollary 2.4 from Hille [21]. Using next Proposition

5.2 and the identity (2.1) of Definition 2.1 it follows that indeed Σ̃ is a well posed
control system with state space Ran Φτ and input space U .

Finally, the above facts clearly imply that Σ̃ satisfies the Definition 2.2 of an
exactly controllable system in any positive time. �

Remark 6.1. Since Ran Φτ is a closed subspace of X which, by Theorem 2.1,
is invariant for the semigroup T, it follows (see, for instance, Engel and Nagel

[10, p.61]) that the generator of the semigroup T̃ is the operator Ã defined by

D(Ã) = D(A) ∩ RanΦτ and

Ãz0 = Az0 (z0 ∈ D(Ã)).

Remark 6.2. When the semigroup T is further assumed to be an analytic semi-
group on the space X, an interesting open question is whether the semigroup T̃ is
analytic on Ran Φτ . We do not have any clear guess on the answer to the question
above. We think however that a positive answer would be quite surprising in view
of the results in Rebarber and Weiss [29] (see e.g. Corollary 1.7 in [29]), where
it is shown that if (A,B) is exactly controllable, with A having a Riesz basis of
eigenvectors, generating an analytic semigroup and with a finite dimensional input
space, then the eigenvalues of A have to grow faster than every polynomial. On

the other hand, it would be quite natural that the semigroup T̃ retains some of the
smoothing properties of T.

For later use, we also make explicit an extra useful property, which is a direct
consequence of Theorem 2.1 and of [36, Proposition 4.2.4]:
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Proposition 6.2. With the assumptions of Theorem 2.1, for every τ > 0, for every
u ∈ L2([0,∞);U), the map σ 7→ Φσu is continuous from [0,∞) to Ran Φτ .

7. Reachability results under small perturbations: Proof of
Theorems 2.2 and 2.3

We continue to assume that X and U are Hilbert spaces and that Σ = (T,Φ) is
a well posed control system with state space X and input space U , in the sense of
Definition 2.1. Let A : D(A) → X be the generator of the C0 semigroup T on X
and let B ∈ L(U,X−1) be the corresponding control operator, defined by (2.5), so
that B is an admissible control operator for T. Throughout this section we assume
that P ∈ L(X).

We first recall a classical perturbation result, see, for instance, Pazy [28, Section
3.1, Theorem 1.1, Equation (1.2)]:

Proposition 7.1. The operator A + P : D(A) → X is the generator of a strongly
continuous semigroup TP on X. For every τ > 0, this semigroup can be defined as
the sum in C0([0, τ ];L(X)) of the series

TPt =
∑
n>0

Sn(t) (t ∈ [0, τ ]),

where the sequence (Sn) is defined by S0 = T and

(7.1) Sn+1(t)ψ =

∫ t

0

Tt−σPSn(σ)ψ dσ (t > 0, ψ ∈ X).

Moreover, TP satisfies the integral equation

(7.2) TPt ψ = Ttψ +

∫ t

0

Tt−σPTPσ ψ dσ (ψ ∈ X, t > 0).

Remark 7.1. We can invert the roles of A and A+P in (7.2) to obtain the formula

(7.3) TPt ψ = Ttψ +

∫ t

0

TPt−σPTσψ dσ (ψ ∈ X, t > 0).

Using the above proposition it follows that:

Proposition 7.2. With the above notation and assumptions, the pair (A + P,B)
defines a well posed linear control system. The corresponding input maps ΦP satisfy

(7.4) ΦPτ u = Φτu+Kτu (τ > 0, u ∈ L2([0, τ ];U)),

where Kτ ∈ L(L2([0, τ ;U), X) is defined by

Kτu =

∫ τ

0

TPτ−σPΦσudσ (τ > 0, u ∈ L2([0, τ ];U)).

Proof. For t > 0 and u ∈ L2[0,∞);U) we set w(t) = Φtu and ξ(t) = ΦPt u. Accord-
ing to Proposition 5.1, the functions w and ξ are the solutions (in the sense made
precise in [36, Section 4.1]) of the initial value problems

ẇ(t) = Aw(t) +Bu(t) (t > 0), w(0) = 0,

and

ξ̇(t) = (A+ P )ξ(t) +Bu(t) (t > 0), ξ(0) = 0.
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Noting that ξ = w + ϕ, where

ϕ̇(t) = (A+ P )ϕ(t) + Pw(t) (t > 0), ϕ(0) = 0,

we obtain that

ξ(τ) = w(τ) +

∫ τ

0

TPτ−σPw(σ) dσ.

The last formula and (2.8) imply the conclusion (7.4). �

The conclusion of the proposition below says that the first assertion in Theorem
2.1 is robust with respect to a class of perturbations of the generator.

Proposition 7.3. Assume that Σ is null controllable in any positive time and that
P ∈ L(X) ∩ L(Ran Φτ0) for some (and hence all) τ0 > 0. Then, for all τ > 0,

the restriction T̃P of TP to Ran Φτ is a C0 semigroup on Ran Φτ , which is

independent of τ > 0. Moreover, the generator ÃP of T̃P is given by

(7.5) D
(
ÃP
)

= D(A) ∩ Ran Φτ

(7.6) ÃP η = Ãη + Pη (η ∈ D(ÃP )).

Finally, there exist M > 1 and ω ∈ R such that

(7.7) sup
t∈[0,τ ]

‖TPt ‖L(Ran Φτ0 ) 6Me

(
ω+M‖P‖L(Ran Φτ0

)

)
t
.

Proof. First, thanks to Theorem 2.1 and to an elementary result in semigroup theory
(see, for instance, [28, Corollary 1.4]) we know that there exist M > 1 and ω ∈ R
such that

(7.8) ‖T̃t‖L(Ran Φτ ) 6M exp(ωt) (t > 0).

Let (Sn) be the sequence defined in (7.1). For each n ∈ N and t > 0 we denote by

S̃n(t) the restriction of Sn(t) to Ran Φτ . By induction, using (7.1) and (7.8), we

have that S̃n(t) ∈ L (Ran Φτ ) for every n ∈ N and t > 0.
We then prove below by induction that

(7.9) ‖S̃n(t)‖L(Ran Φτ ) 6 exp(ωt)
Mn+1tn‖P‖nL(Ran Φτ )

n!
(n ∈ N, t > 0).

Indeed, the above inequality reduces to (7.8) for n = 0. Assuming next that (7.9)
holds for some n ∈ N it follows from (7.1) that for every t > 0 and

‖S̃n+1(t)‖L(Ran Φτ ) 6 exp(ωt)Mn+2‖P‖n+1
L(Ran Φτ )

∫ t

0

σn

n!
dσ,

which clearly implies that (7.9) holds with n replaced by n + 1 and thus for all
n ∈ N.

We next note that (7.9) implies that there exists a C0 semigroup S on Ran Φτ
such that for all T > 0,

lim
n→∞

sup
t∈[0,T ]

‖Stη −
n∑
k=0

S̃k(t)η‖Ran Φτ = 0 (η ∈ Ran Φτ ).

On the other hand, it follows from Proposition 7.1 that for all T > 0

lim
n→∞

sup
t∈[0,T ]

‖TPt η −
n∑
k=0

S̃k(t)η‖X = 0 (η ∈ Ran Φτ ).
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The last two formulas and the continuous embedding Ran Φτ ⊂ X imply that T̃P
obtained by restricting TP to Ran Φτ is equal to S; then it is indeed a C0 semigroup
on Ran Φτ .

Moreover, the fact that the generator ÃP of T̃P is described by (7.5) and (7.6)
follows from [10, Corollary p.61].

Finally, the bound (7.7) directly follows from (7.9). �

We are now in a position to give the proof of Theorem 2.2.

Proof of Theorem 2.2. Propositions 7.3 and 6.2 imply that for every τ ∈ [0, τ0] we
have ∫ τ

0

TPτ−σPΦσudσ ∈ Ran Φτ0 (u ∈ L2([0, τ ];U)),

and that for every τ ∈ [0, τ0] and u ∈ L2([0, τ0];U) we have

(7.10)

∥∥∥∥∫ τ

0

TPτ−σPΦσudσ

∥∥∥∥
Ran Φτ0

6 τ sup
t∈[0,τ ]

‖TPt ‖L(Ran Φτ0 )‖P‖L(Ran Φτ0 )‖u‖L2([0,τ0];U).

The above estimate, combined with (7.4) and the fact that for every τ ∈ (0, τ0] we
have Ran Φτ = Ran Φτ0 , (with equivalent norms) implies that indeed we have (2.9).
A direct consequence of this fact is the inclusion (2.10). �

Proof of Theorem 2.3. To prove Theorem 2.3 it suffices to show that there exists
δτ0 > 0 such that (2.11) implies that

Ran ΦPτ0 ⊃ Ran Φτ0 .

To this aim it suffices to note that from (7.4) and (7.10), for every ε > 0 there exists
δτ0 > 0 (depending also on ε) such that if (2.11) holds then

‖ΦPτ0 − Φτ0‖L(L2([0,τ0];U),Ran Φτ0) 6 ε.

Since the subset formed by the surjective operators in L
(
L2([0, τ0];U),Ran Φτ0

)
is

open, it follows that the condition (2.11) for δτ0 > 0 small enough implies that ΦPτ0
is surjective and maps indeed L2([0, τ0];U) onto Ran Φτ0 , which ends the proof of
Theorem 2.3. �

8. A Hautus test for approximate controllability

In this section we study the behavior of some of the admissibility and controllabil-
ity properties of a system with negative generator when this generator is perturbed
by a class of bounded operators. We give, in particular, sufficient conditions for the
validity of a Hautus test for the approximate observability and approximate control-
lability of the perturbed system. This study will be continued in the next section,
where we give the proof of the abstract perturbation result stated in Theorem 2.4.

Notation: Throughout this section we continue to use the notation and the as-
sumptions introduced in Section 5 and more particularly the ones of Subsection 5.3.
More precisely, we assume that X, U and Y are Hilbert spaces, A : D(A) → X is
supposed to be negative with compact resolvents, (Xα)α∈R is the scale of Hilbert
spaces introduced in (2.13), B ∈ L(U,X−1) and C ∈ L(X1, Y ) are admissible
control, respectively observation, operators for the semigroup T generated by A.
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Moreover, (Φτ )τ>0 are the input maps corresponding to the pair (A,B), whereas
(Ψτ )τ>0 are the output maps corresponding to (A,C).

We first note the following classical results, see, for instance, Pazy [28, Section
3.2, Theorem 2.1]:

Proposition 8.1. Suppose that A < 0 and let P ∈ L(X). Then A + P generates
an analytic semigroup TP on X.

Furthermore, when P ∈ L(X), we easily check that D(A + P ) = D(A), so that

the space X̃1 corresponding to the generator Ã = A+ P of the analytic semigroup
S = TP in X, defined in Theorem 5.1, coincide with the spaces X1 in (2.13). This

implies that for any α ∈ [−1, 1], the spaces X̃α corresponding to the generator

Ã = A+ P defined in Theorem 5.1 coincide with the spaces Xα in (2.13). We can
thus use Theorem 5.1 for both semigroups T and TP on the spaces Xα defined in
(2.13).

We then state the following regularity result for the perturbed semigroup TP :

Proposition 8.2. Suppose that A < 0 and let P ∈ L(X). For every ψ ∈ X, the

linear map ψ 7→ TPt ψ is bounded from X to L2
(

[0, τ ];X 1
2

)
.

Proof. From Theorem 5.1, the map

f 7→
∫ t

0

Tt−σf(σ) dσ,

is linear and bounded from L2([0, τ ];X) to L2
(

[0, τ ];X 1
2

)
. This, combined with

the fact that the map
ψ 7→ TPt ψ (t ∈ [0, τ ]),

is linear and continuous from X to L2([0, τ ];X), together with (7.2) yields the
conclusion of this proposition. �

For the remaining part of this section we found more convenient to state and
prove our results in the case of observation systems (A,C) and then use duality to
go back to controllability properties.

We first note that a consequence of Proposition 8.2 is that the result in Propo-
sition 5.10 is still valid for systems with the generator obtained by a bounded
perturbation of a negative operator with compact resolvents.

Proposition 8.3. Suppose that A < 0 and assume that Q ∈ L(X) and C ∈
L(X 1

2
, Y ). Then C is an admissible observation operator for the semigroup TQ

generated by A+Q and the corresponding output maps ΨQ
τ satisfy(

ΨQ
τ z0

)
(t) = CTQt z0 (t ∈ [0, τ ] a.e., z0 ∈ X).

We next prove the following preliminary result:

Proposition 8.4. Suppose that A < 0, C ∈ L(Xα, Y ) for some α ∈ [0, 1/2] and
that Q ∈ L(X) is such that there exist M > 0 and τ > 0 with

(8.1)

∫ τ

0

‖QTtη‖2X−1+α
dt 6M2

∫ τ

0

‖CTtη‖2Y dt (η ∈ D(A)).

Then

(8.2)

∫ τ

0

∥∥∥CTQt η∥∥∥2

Y
dt 6M2

∫ τ

0

‖CTtη‖2Y dt (η ∈ D(A)).
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Proof. Using formula (7.3) with Q instead of P it follows that

(8.3) TQt η = Ttη +

∫ t

0

TQt−σQTση dσ (η ∈ X, t > 0).

Since for every η ∈ D(A) the map σ 7→ QTση belongs to L2([0, τ ];X−1+α) with
‖QTtη‖L2([0,τ ];X−1+α) 6M‖CTtη‖L2([0,τ ];Y ), from (8.1) and the maximal regularity

results for TQ (recall Theorem 5.1) it follows that∥∥∥∥∫ t

0

TQt−σQTση dσ

∥∥∥∥
L2([0,τ ];Xα)

6M‖CTtη‖L2([0,τ ];Y ) (η ∈ D(A)).

Accordingly, since C ∈ L(Xα, Y ), we have∥∥∥∥C ∫ t

0

TQt−σQTση dσ

∥∥∥∥
L2([0,τ ];Y )

6M‖CTtη‖L2([0,τ ];Y ).

The conclusion (8.2) follows now easily from (8.3). �

We can now state and prove the main result of this section, which gives sufficient
conditions allowing to test the approximate observability of the pair (A+Q,C), with
Q ∈ L(X), by a Hautus type condition completely similar to the one encountered
in the classical finite dimensional case.

Proposition 8.5. Suppose that A < 0 and has compact resolvents, C ∈ L(Xα, Y )
for α ∈ [0, 1/2] and that (A,C) is approximately observable in some (thus any) time
τ > 0. Moreover, suppose that Q ∈ L(X) is such that there exist M0 > 0 and τ0 > 0
such that for every η ∈ D(A) we have

(8.4)

∫ τ0

0

‖QTtη‖2X−1+α+ε
dt 6M2

∫ τ0

0

‖CTtη‖2Y dt,

for some ε ∈ (0, 1− α]. Moreover, assume that

(8.5) Ker (sI −A−Q) ∩KerC = {0} (s ∈ C).

Then the pair (A+Q,C) is approximately observable in any time τ > 0.

Remark 8.1. In order to prove Proposition 8.5 it is convenient to introduce some
new notation and to rephrase one of our previous results. Let η ∈ X, and let us
define, for every t > 0,

(8.6) ϕ(t) = TQt η, p(t) = Ttη, ζ(t) =

∫ t

0

TQt−σQTση dσ.

Rephrasing (8.3), we have ϕ = p+ ζ and the proof of Proposition 8.4 implies:

(8.7) ‖ζ‖L2([0,τ ];Xα) + ‖Cζ‖L2([0,τ ];Y ) 6M‖Cp‖L2([0,τ ];Y ).

We are now in a position to prove Proposition 8.5.

Proof of Proposition 8.5. According to Definition 5.1 and to Proposition 8.3 it suf-
fices to prove that the set

(8.8) Nτ =
{
η ∈ X | CTQt η = 0 for t ∈ [0, τ ] a.e.

}
reduces to the trivial one, i.e., that

(8.9) Nτ = {0}.
The proof of (8.9) is divided into four steps.
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In the first step of our proof we introduce the input maps Φd =
(
Φdt
)
t>0

of the

system (A,C∗) (with state space X and input space Y ). From Proposition 5.10 and
Proposition 5.5 it follows that C∗ ∈ L(Y,X−α) is an admissible control operator for
T, then we have that Φdτ ∈ L

(
L2([0, τ ];Y ), X

)
. Moreover, by Proposition 5.7, the

pair (A,C∗) is approximately controllable in time τ .
A second step of our proof consists in showing that the space Nτ is finite dimen-

sional. Knowing from the first step that Ran Φdτ is dense in X, let
(
Ran Φdτ

)′
be the

dual of Ran Φdτ with respect to the pivot space X.

From (5.6), (5.5) and (5.4), we recall that we have for every η ∈
(
Ran Φdτ

)′
,

‖η‖(Ran Φdτ )′ = ‖(Φdτ )∗η‖L2([0,τ ];Y ) = ‖CTτ−·η‖L2([0,τ ];Y ) = ‖CT·η‖L2([0,τ ];Y ).

Note that, since condition (8.1) is stronger than (8.4), the result of Proposition
8.4 holds. Thus, recalling (5.6), CTQ can be extended uniquely as a continuous

operator from
(
Ran Φdτ

)′
to L2([0, τ ];Y ). For the sake of simplicity, this extension

will be still denoted by CTQ.
On the other hand, using the notation in Remark 8.1, it follows from (8.7) that

the linear map η 7→ ζ from X to L2([0, τ ];Xα) can be uniquely extended to a linear

bounded map from
(
Ran Φdτ

)′
to L2([0, τ ];Xα), and similarly, η 7→ CTQt η can be

extended to
(
Ran Φdτ

)′
to L2([0, τ ];Y ).

Let

Ñτ =
{
η ∈

(
Ran Φdτ

)′ | CTQt η = 0 for t ∈ [0, τ ] a.e.
}
,

and let (ηj) be a sequence in Ñτ such that

(8.10) ‖ηj‖[Ran Φd
τ ]′ 6 1 (j ∈ N).

For each j ∈ N we denote by (ϕj) and (ζj) the functions given by (8.6) with η = ηj ,
so that

(8.11) CTtηj + Cζj(t) = 0 (t ∈ [0, τ ] a.e.).

At this stage we remark that (8.10) and (5.6) imply that

‖CTtηj‖L2([0,τ ];Y ) 6 1 (j ∈ N).

The above estimate and (8.4) imply that the sequence (QTtηj) contains a sub-
sequence which is weakly convergent in L2([0, τ ];X−1+α+ε). Using the maximal
regularity property for TQ (recall Theorem 5.1) it follows that the sequence (ζj)
contains a subsequence which is weakly convergent to some ζ ∈ L2([0, τ ];Xα+ε) ∩
H1((0, τ);X−1+α+ε). The Aubin-Lions lemma (Theorem 5.2) then gives that the
sequence (ζj) is strongly convergent to ζ ∈ L2([0, τ ];Xα). This convergence, the fact
that C ∈ L(Xα, Y ) and (8.11) imply that, up to the extraction of a subsequence,
we have

lim
j→∞

∫ τ

0

‖Cζj(t)− Cζ(t)‖2Y dt = 0,

so that

CTtηj + Cζ(t)→ 0 in L2([0, τ ];Y ).

Hence the map t 7→ CTτ−tηj+Cζ(τ−t) converges to 0 in L2([0, τ ];Y ) when j →∞.
Using the operator Wτ constructed in Proposition 5.9 it follows that the sequence

(ηj) contains a subsequence which converges strongly in Ñτ , endowed with the norm
‖ · ‖(Ran Φdτ )′ , towards −Wτ (t 7→ Cζ(τ − t)). We have thus shown that the unit ball
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of Ñτ , endowed with the norm ‖ · ‖(Ran Φdτ )′ , is relatively compact so that indeed

Ñτ is finite dimensional. Since Nτ ⊂ Ñτ , this obviously implies that Nτ is of finite
dimension.

The third step of the proof begins by remarking that for every z0 ∈ X and δ > 0

the map t 7→ CTQt z0 is analytic from (δ,∞) to Y . Thus the set Nτ defined in (8.8)
is equal to

Nτ =
{
η ∈ X | CTQt η = 0 for t ∈ [0,∞) a.e.

}
.

Using again the analyticity of the semigroup TQ it follows that Nτ satisfies (8.9) iff
the set N∞ defined by

N∞ =
{
ψ ∈ D ((A+Q)∞) | CTQt ψ = 0 for t > 0

}
,

reduces to the trivial space, i.e., we have

N∞ = {0}.

The fourth and last step of the proof begins by remarking that (A+Q)N∞ ⊂
N∞. Indeed, if ψ ∈ N∞ then d

dt

(
CTQt ψ

)
= 0 for every t > 0, thus

CTQt
(
AQψ

)
= 0 (t > 0).

It follows that AQψ = (A+Q)ψ ∈ N∞. We end by a contradiction argument.

Assume that N∞ 6= {0} and denote AQN the restriction of A + Q to N∞. Then

AQN ∈ L(N∞). Since, as seen from the first step, N∞ is finite dimensional it follows

that AQN has at least one eigenvalue, which clearly contradicts (8.5). �

By duality, or more precisely by combining Proposition 8.5 and Proposition 5.7,
we obtain:

Proposition 8.6. Let τ > 0. Suppose that A < 0 has compact resolvents, B ∈
L(U,X−α) for α ∈ [0, 1/2] and that (A,B) is approximately controllable in some
(and hence all) time τ > 0. Moreover, assume that P ∈ L(X) is such that the
operator Lτ ∈ L(L2([0, τ ];X), X) defined by

(8.12) Lτv =

∫ τ

0

Tτ−σPv(σ) dσ
(
v ∈ L2([0, τ ];X)

)
,

satisfies the condition

(8.13) Ran
(
Lτ |L2([0,τ ];X1−α−ε)

)
⊂ Ran Φτ ,

for some ε ∈ (0, 1−α]. Finally, suppose that the pair (A+P,B) satisfies the Hautus
type condition

(8.14) Ker (sI −A− P ∗) ∩KerB∗ = {0} (s ∈ C).

Then the pair (A + P,B) is approximately controllable in any time τ > 0 and
Ran ΦPτ ⊂ Ran Φτ .

Proof. Assume that (8.13) holds. Let us compute the adjoint of

L̂ := Lτ |L2([0,τ ];X1−α−ε) ∈ L(L2 ([0, τ ];X1−α−ε),Ran Φτ ).
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We have that for every η ∈ Ran Φτ ,〈∫ τ

0

Tτ−σPv(σ) dσ, η

〉
(Ran Φτ )′,Ran Φτ

=

∫ τ

0

〈Tτ−σPv(σ), η〉(Ran Φτ )′,Ran Φτ
dσ

=

∫ τ

0

〈Tτ−σPv(σ), η〉X,X dσ

=

∫ τ

0

〈
v(σ), P ∗T∗τ−ση

〉
X,X

dσ

=

∫ τ

0

〈v(σ), P ∗Tτ−ση〉X1−α−ε,X−1+α+ε
dσ.

By identification, the adjoint of L̂ is given, for η ∈ (Ran Φτ )′, by

L̂∗(η) = (σ 7→ P ∗Tτ−ση) ,

seen as an element of L2([0, τ ];X−1+α+ε).
Now, we recall that we have from (5.5) and (5.6)

‖η‖(Ran Φτ )′ = ‖B∗Tτ−·η‖L2([0,τ ];Y ).

Therefore using the fact that L̂∗ belongs to L((Ran Φτ )′, L2([0, τ ];X−1+α+ε)), we
have (8.4) with Q = P ∗, C = B∗. Moreover by using the duality Proposition 5.7,
we have that (A,C) is approximately observable in time τ . Finally, (8.14) exactly
corresponds to (8.5). So by applying Proposition 8.5 and Proposition 5.7, we obtain
that (A+ P,B) is approximately controllable in any time τ > 0.

Finally, using (5.6), we interpret (8.2) as (Ran Φτ )′ ⊂ (Ran ΦPτ )′. By duality,
this means Ran ΦPτ ⊂ Ran Φτ as announced. �

9. Proof of Theorem 2.4

In this section we continue to use all the notation and assumptions described at
the beginning of Section 8. We first prove the following result:

Proposition 9.1. With the assumptions in Proposition 8.5, assume moreover that
(A,C) is final state observable in any time τ > 0. Then there exists a constant
c0 > 0 such that

(9.1) ‖CTQt η‖L2([0,τ ];Y ) > c0‖CTtη‖L2([0,τ ];Y ) (τ > 0, η ∈ X).

Proof. We argue by contradiction. If the conclusion of the proposition were false it
would exist a sequence (ηj) formed of elements of D(A) such that

(9.2)

∫ τ

0

‖CTtηj‖2Y dt = 1 (j ∈ N),

(9.3) lim
j→∞

∫ τ

0

∥∥∥CTQt ηj∥∥∥2

Y
dt = 0.

For each j ∈ N we introduce pj , ϕj and ζj as in (8.6) with η = ηj . With this
notation, (9.2) and (9.3) can be rephrased as

(9.4)

∫ τ

0

‖Cpj(t)‖2Y dt = 1 (j ∈ N),

(9.5) lim
j→∞

∫ τ

0

‖Cϕj(t)‖2Y dt = 0.
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Since pj = ϕj − ζj , it follows that

(9.6)

∫ τ

0

‖Cpj(t)‖2Y dt 6 2

∫ τ

0

‖Cϕj(t)‖2Y dt+ 2

∫ τ

0

‖Cζj(t)‖2Y dt (j ∈ N).

To obtain a contradiction it thus suffices to show that

(9.7) lim
j→∞

∫ τ

0

‖Cζj(t)‖2Y dt = 0.

Indeed, assuming that (9.7) holds, we can combine (9.5) and (9.6) to obtain that

lim
j→∞

∫ τ

0

‖Cpj(t)‖2Y dt = 0,

which contradicts (9.4).
The remaining part of the proof is devoted to checking (9.7). To this aim we first

note that using (9.4) and (8.4) it follows that

(9.8) sup
j∈N

(∫ τ

0

‖Qpj(t)‖2X−1+α+ε
dt

)
<∞.

Using the smoothing effect of the analytic semigroup TQ (or, more precisely, the
maximal regularity property of the equation satisfied by ζj , recall Theorem 5.1) it
follows that the sequence (ζj) is bounded in

L2([0, τ ];Xα+ε) ∩H1((0, τ);X−1+α+ε).

Using next the Aubin-Lions compactness theorem (Theorem 5.2), it follows that,
up to the extraction of a subsequence, we have

‖ζj − ζ‖L2([0,τ ];Xα) → 0 as j →∞.

This implies, in particular, that

(9.9) sup
j∈N

(∫ τ

0

‖ζj(t)‖2Xα dt

)
<∞. (j ∈ N),

On the other hand, from the identity ϕj = pj + ζj it follows that for every j ∈ N
and δ ∈ (0, τ) we have

(9.10)

∫ τ

δ

‖ϕj(t)‖2Xα dt 6 2

∫ τ

δ

‖pj(t)‖2Xα dt+ 2

∫ τ

δ

‖ζj(t)‖2Xα dt.

Moreover, using the final state observability in any positive time of (A,C), (9.4),
and the analyticity of T, it follows that

sup
j∈N

(∫ τ

δ

‖pj(t)‖2Xα dt

)
<∞.

Thus, by combining the last estimate with (9.9) and (9.10) we have, up to the
extraction of a subsequence,

(9.11) ϕj → ϕ in L2([δ, τ ];Xα) weakly,

with ϕ satisfying

ϕ̇(t) = (A+Q)ϕ(t) (t ∈ (δ, τ)).

Moreover, from (9.5) it follows that

Cϕ(t) = 0 (t ∈ (δ, τ)),
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so that, by the conclusion of Proposition 8.5, ϕ = 0 in (δ, τ). Now, using the equa-
tion satisfied by ϕj and the fact that the semigroup TQ is analytic, the convergence
(9.11) for any δ > 0 implies that for any δ > 0,

ϕj → 0 in L2([δ, τ ];X) strongly.

Accordingly,

(9.12) ‖Qϕj‖L2([δ,τ ];X) → 0 (δ > 0).

On the other hand, from (9.8) and (9.9) it follows thatQϕj is bounded in L2([0, τ ];X−1+α+ε).
Thus, up to the extraction of a subsequence, we have

Qϕj → γ in L2([0, τ ];X−1+α+ε) weakly.

The last convergence and (9.12) imply that

Qϕj → 0 in L2([0, τ ];X−1+α+ε) weakly.

This, combined with the fact, following from the equation satisfied by ζj and the
identity ϕj = ζj + pj , that

ζ̇j(t) = Aζj(t) +Qϕj(t), ζj(0) = 0,

and the maximal regularity of the semigroup T (recall Theorem 5.1) implies that ζj
converges to 0 weakly in L2([0, τ ];Xα+ε)∩H1((0, τ);X−1+α+ε) as j →∞, and thus
strongly in L2([0, τ ];Xα) by the Aubin-Lions lemma (Theorem 5.2). In particular,
this proves (9.7), and as mentioned at the beginning of the proof, this yields the
announced contradiction. �

Proposition 9.2. Suppose that A < 0 has compact resolvents, B ∈ L(U,X−α) for
α ∈ [0, 1/2] and that (A,B) is null controllable in any time τ > 0. Moreover, assume
that P ∈ L(X) is such that the operator Lτ , defined in (8.12) as an operator in
L(L2([0, τ ];X), X) satisfies (8.13), and that (8.14) holds. Then Ran ΦPτ = Ran Φτ
for every τ > 0.

Proof. Recalling identity (5.6), the inclusion Ran ΦPτ ⊃ Ran Φτ simply is the dual
version of the inequality (9.1), corresponding to the choice C = B∗ and Q = P ∗.

Indeed, on one hand, we know that (A,B) is null controllable in any time τ > 0
so by Proposition 5.7, (A,B∗) is final state observable. Moreover the assumptions in
Proposition 8.5 are all satisfied because (8.13), (8.14) hold taking C = B∗, Q = P ∗.
Then one can apply Proposition 9.1.

The other inclusion Ran ΦPτ ⊂ Ran Φτ has already been proved in Proposition
8.6. �

Let us finally give the following result:

Corollary 9.1. With the assumptions in Proposition 9.2, the pair (A + P,B) is
null controllable in any time τ > 0.

Proof. Let τ > 0.
For ψ ∈ X1/2, σ 7→ Tσψ ∈ L2([0, τ ];X1) and assumption (8.13) implies that

Lτ (σ 7→ Tσψ) belongs to Ran Φτ .
Now, the identity (7.2) implies that for ψ ∈ X,

TPτ ψ = Tτψ + Lτ (σ 7→ Tσψ).

Therefore, for ψ ∈ X1/2, each term in the right hand-side of this identity belongs

to Ran Φτ (recall Proposition 5.4 for the first term), and TPτ ψ ∈ Ran Φτ .
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Since τ > 0 is arbitrary and TP is an analytic semigroup, if ψ ∈ X, TPτ/2ψ ∈ X1/2

and thus TPτ ψ = TPτ/2(TPτ/2ψ) ∈ Ran Φτ/2 = Ran Φτ .

Using then Proposition 9.2, we easily conclude the null controllability of the pair
(A+ P,B). �

Proof of Theorem 2.4. Theorem 2.4 directly follows from Proposition 9.2 and Corol-
lary 9.1. �

10. Towards non autonomous or semi-linear systems

The results we presented in the previous sections are limited to perturbations
preserving the time invariant and linear character of the original system. In the
present section we show how our methods extend to some time dependent or non-
linear perturbations of linear time invariant systems which are null controllable in
any positive time. We first state some abstract results and then we apply them to
systems described by non autonomous or semi-linear parabolic equations.

10.1. Abstract results. Throughout this subsection we assume that X and U are
Hilbert spaces and that Σ = (T,Φ) is a well posed control system with state space
X and input space U , in the sense of Definition 2.1.

We show, in particular, that the abstract result in Theorem 2.1 allows us to
deduce some reachability results for perturbed semi-linear parabolic equations, see
Corollary 10.1 below.

Before that we show that Theorem 2.1 implies, with appropriate assumptions,
that the reachable space is not affected by the presence of a source term.

Proposition 10.1. With the assumptions of Theorem 2.1, let τ > 0. Then there
exist a positive constant C > 0 and a continuous linear map

L : Ran Φτ × L1([0, τ ]; Ran Φτ )→ L2([0, τ ];U)

such that for every η ∈ Ran Φτ and g ∈ L1([0, τ ]; Ran Φτ ) the solution of

(10.1) ż(t) = Az(t) +Bu(t) + g, (t ∈ [0, τ ]), z(0) = 0,

associated to the control u = L(η, g), satisfies z ∈ C0([0, τ ]; Ran Φτ ), together with

(10.2) z(τ) = η,

and

(10.3) ‖z‖C0([0,τ ];Ran Φτ ) + ‖u‖L2([0,τ ];U) 6 C
(
‖η‖Ran Φτ + ‖g‖L1([0,τ ];Ran Φτ )

)
.

Proof. The solution z of (10.1) is given by

z(σ) =

∫ σ

0

Tσ−sg(s) ds+ Φσu (σ ∈ [0, τ ]).

Using Proposition 6.1, Theorem 2.1 and our assumptions on η and g we see that

η −
∫ τ

0

Tτ−sg(s) ds ∈ Ran Φτ ,

and ∥∥∥∥η − ∫ τ

0

Tτ−sg(s) ds

∥∥∥∥
Ran Φτ

6 ‖η‖Ran Φτ + cτ‖g‖L1([0,τ ];Ran Φτ ).
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Accordingly, with Γτ the operator introduced in Remark 5.1, we can take

u = Γτ

(
η −

∫ τ

0

Tτ−sg(s) ds

)
,

to obtain that

Φτu = η −
∫ τ

0

Tτ−sg(s) ds,

with the estimate

‖u‖L2([0,τ ];U) 6 C
(
‖η‖Ran Φτ + ‖g‖L1([0,τ ];Ran Φτ )

)
,

for some constant C > 0 (not depending on η and on g).
The above estimate on the control function, together with Proposition 6.1 and

Theorem 2.1, implies the estimate (10.3). �

As a corollary of Proposition 10.1 we can provide some “local” information on
the reachable states in the presence of some nonlinear perturbations.

Corollary 10.1. With the assumptions of Theorem 2.1, let τ > 0. Moreover,
suppose that f : C0([0, τ ]; Ran Φτ ) → L1([0, τ ]; Ran Φτ ) is such that f(0) = 0 and,
for all z1, z2 ∈ C0([0, τ ]; Ran Φτ ) we have

(10.4) ‖f(z1)− f(z2)‖L1([0,τ ];Ran Φτ )

6 ‖z1 − z2‖C0([0,τ ];Ran Φτ )

(
ε+ C‖(z1, z2)‖(C0([0,τ ];Ran Φτ ))2

)
,

with C, ε positive constants.
Then there exists ε0 > 0 such that if (10.4) holds with ε < ε0, then there exists

δ > 0 such that for every η ∈ Ran Φτ satisfying ‖η‖Ran Φτ 6 δ, there exist a
control function u ∈ L2([0, τ ];U) and a controlled trajectory z ∈ C0([0, τ ]; Ran Φτ )
satisfying

(10.5) ż(t) = Az(t) +Bu(t) + f(z)(t), (t ∈ [0, τ ]), z(0) = 0,

and the final condition (10.2).
When f is linear, i.e. f ∈ L(C0([0, τ ]; Ran Φτ ), L1([0, τ ]; Ran Φτ )), and satisfies

‖f‖L(C0([0,τ ];Ran Φτ ,L1([0,τ ];Ran Φτ ))) 6 ε, then the same conclusion holds for any η ∈
Ran Φτ .

Proof. The result is proved by a fixed point method. To this aim we define a
map Λ : C0([0, τ ]; Ran Φτ ) → C0([0, τ ]; Ran Φτ ), which associates to every ẑ ∈
C0([0, τ ]; Ran Φτ ) the controlled state trajectory z = Λ(ẑ) corresponding to the
final state η and g = f(ẑ), given by Proposition 10.1.

According to Proposition 10.1 and using assumption (10.4), we obtain that for
every ẑ ∈ C0([0, τ ]; Ran Φτ ) we have

‖Λ(ẑ)‖C0([0,τ ];Ran Φτ ) 6 C
(
‖η‖Ran Φτ + ‖f(ẑ)‖L1([0,τ ];Ran Φτ )

)
6 C‖η‖Ran Φτ + Cε‖ẑ‖C0([0,τ ];Ran Φτ ) + C‖ẑ‖2C0([0,τ ];Ran Φτ ).

In particular, if ε > 0 is such that Cε 6 1/3, choosing R such that CR = 1/3, and
δ such that Cδ = R/3, we get that for every η satisfying ‖η‖Ran Φτ 6 δ, for all ẑ ∈
C0([0, τ ]; Ran Φτ ) with ‖ẑ‖C0([0,τ ];Ran Φτ ) 6 R, ‖Λ(ẑ)‖C0([0,τ ];Ran Φτ ) 6 R/3+R/3+

R/3 = R, i.e. the set BR = {ẑ ∈ C0([0, τ ]; Ran Φτ ) with ‖ẑ‖C0([0,τ ];Ran Φτ ) 6 R} is
stable by Λ.
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Furthermore, using assumption (10.4), for all ẑ1, ẑ2 ∈ BR,

‖Λ(ẑ1)− Λ(ẑ2)‖C0([0,τ ];Ran Φτ ) 6 C‖f(ẑ1)− f(ẑ2)‖L1([0,τ ];Ran Φτ )

6 ‖ẑ1 − ẑ2‖C0([0,τ ];Ran Φτ )

(
Cε+ C‖(ẑ1, ẑ2)‖(C0([0,τ ];Ran Φτ ))2

)
6 ‖ẑ1 − ẑ2‖C0([0,τ ];Ran Φτ )

(
Cε+

√
2CR

)
6 ‖ẑ1 − ẑ2‖C0([0,τ ];Ran Φτ )

(
1

3
+

√
2

3

)
.

In particular, BR is stable by Λ, and Λ is contractive there. Accordingly, by
Banach-Picard fixed point theorem, Λ admits a unique fixed point in BR, and
by construction this fixed point satisfies (10.5) and (10.2) for some control function
u ∈ L2([0, τ ];U).

When f is linear it suffices to remark that for all ẑ1, ẑ2 ∈ C0([0, τ ]; Ran Φτ ),

‖Λ(ẑ1)− Λ(ẑ2)‖C0([0,τ ];Ran Φτ )

6 C‖f‖L(C0([0,τ ];Ran Φτ ),L1([0,τ ];Ran Φτ ))‖ẑ1 − ẑ2‖C0([0,τ ];Ran Φτ ).

In particular, if C‖f‖L(C0([0,τ ];Ran Φτ ),L1([0,τ ];Ran Φτ )) < 1, the map Λ is strictly
contractive and has a unique fixed point by Banach-Picard fixed point theorem. �

Remark 10.1. Looking back to the above proof of Proposition 10.1, it is clear that
the assumption (10.1) only needs to be valid in a neighborhood of 0 in C0([0, τ ]; Ran Φτ ).
Indeed, if the assumption (10.1) holds only for z ∈ C0([0, τ ]; Ran Φτ ) satisfying
‖z‖C0([0,τ ];Ran Φτ ) 6 ρ for some positive constant ρ, it suffices to define the map Λ
on Bρ, and check that one can find R 6 ρ such that Λ is stable and contractive on
BR. Details are left to the reader.

A first application of Corollary 10.1 concerns the linear case and yields the fol-
lowing extension of Theorem 2.3 when the perturbation P is time dependent:

Theorem 10.1. Assume that Σ is null controllable in any positive time and that
P ∈ L1([0, τ0];L(X)) ∩ L1([0, τ0];L(Ran Φτ0)) for some τ0 > 0.

Then there exists δτ0 > 0 such that if

(10.6) ‖P‖L1([0,τ0];L(Ran Φτ0)) 6 δτ0 ,

then
Ran ΦPτ0 = Ran Φτ0 ,

where Ran ΦPτ0 denotes the set of all z(τ0) obtained by solving

(10.7) ż(t) = Az(t) +Bu(t) + P (t)z(t), (t ∈ [0, τ0]), z(0) = 0,

for u ∈ L2([0, τ0];U).

Proof. The inclusion Ran Φτ0 ⊂ Ran ΦPτ0 follows for a small enough parameter δτ0 in

(10.6) from Corollary 10.1 corresponding to f given by, for all z ∈ C0([0, τ0]; Ran Φτ )
and t ∈ [0, τ0], f(z)(t) = P (t)(z(t)).

The other inclusion is similar to the proof of Theorem 2.2. Indeed, for u ∈
L2([0, τ0];U), we write the solution z of (10.7) as z = z1 + z2, where z1 solves

ż1 = Az1(t) +Bu(t), (t ∈ [0, τ0]), z1(0) = 0,

i.e. z1(t) = Φtu, and z2 solves

(10.8) ż2(t) = (A+ P (t))z2 + P (t)z1, (t ∈ [0, τ0]), z2(0) = 0.
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Using Proposition 6.2, z1 ∈ C0([0, τ0]; Ran Φτ0).
We then prove that z2 in C0([0, τ0]; Ran Φτ0) by constructing it through a con-

vergent iteration argument. Indeed, we define z2,0 = 0 and for n ∈ N, we set

z2,n+1(t) =

∫ t

0

Tt−s(P (s)z2,n(s) + P (s)z1(s)) ds, (t ∈ [0, τ0]).

Using then Theorem 2.1, a straightforward recurrence shows that for all n ∈ N,
z2,n ∈ C0([0, τ0]; Ran Φτ0).

Using again Theorem 2.1, we also check that there is a constant C > 0 such that
for all n ∈ N,

‖z2,n+2 − z2,n+1‖C0([0,τ0];Ran Φτ0 )

6 C‖P‖L1([0,τ0];L(Ran Φτ0))‖z2,n+1 − z2,n‖C0([0,τ0];Ran Φτ0 ).

Accordingly, if ‖P‖L1([0,τ0];L(Ran Φτ0)) is small enough, the sequence (z2,n) is a

Cauchy sequence in C0([0, τ0]; Ran Φτ0). In particular, its limit z2,∞ also belongs
to C0([0, τ0]; Ran Φτ0) and satisfies

z2,∞(t) =

∫ t

0

Tt−s(P (s)z2,∞(s) + P (s)z1(s)) ds, (t ∈ [0, τ0]).

By uniqueness of the solutions of (10.8), we deduce z2,∞ = z2 and thus, that
z2 ∈ C0([0, τ0]; Ran Φτ0). In particular, z(τ0) = z1(τ0) + z2(τ0) belongs to Ran Φτ0 ,
and thus Ran ΦPτ0 ⊂ Ran Φτ0 . �

10.2. Applications to non autonomous or semilinear parabolic equations.
We give below some applications of Corollary 10.1 and of Theorem 10.1 to systems
described by parabolic PDEs. For the sake of simplicity, we focus on the case
in which the unperturbed system is the one-dimensional heat equation controlled
from both ends through Neumann boundary conditions, i.e. equation (3.1) with

input maps Φ
(0,π),N
τ as in (3.2). However, the proposed methodology can be easily

adapted to other situations in which we have detailed information on the reachable
space of the unperturbed system.

We first remark that using Theorem 10.1, the results in Theorem 4.1 can be
easily generalized to potentials depending on time:

Theorem 10.2. Let D be the set defined in (3.4), τ > 0 and q ∈ L1([0, τ ];L∞[0, π]).
Assume that for a.e. t ∈ [0, τ ], the map x 7→ q(t, x) can be extended to a function
holomorphic on D with q ∈ L1([0, τ ];W 1,p(D)) for some p > 2. Then there exists
ε > 0 such that if ‖q‖L1([0,τ ];W 1,p(D)) 6 ε, then the set of all z(τ, ·) obtained by
solving

∂z

∂t
(t, x)− ∂2z

∂x2
(t, x) = q(t, x)z(t, x) (t > 0, x ∈ (0, π)),

∂z

∂x
(t, 0) = u0(t),

∂z

∂x
(t, π) = uπ(t) (t > 0),

z(0, x) = 0 (x ∈ (0, π)),

for u0, uπ ∈ L2([0, τ ];C) coincides with Ran Φ
(0,π),N
τ given in (3.3).

Proof. This is a straightforward adaptation of the proof of Theorem 4.1 by applying
Theorem 10.1 instead of Theorem 2.3. �
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We can also consider quadratic and non local perturbations. We give here two
examples: for z ∈ C0([0, τ ];L2[0, π]), f1 and f2 are given by

f1(z)(t, x) =

(∫ π

0

z(t, y) dy

)
z(t, x), (t ∈ [0, τ ], x ∈ [0, π]),(10.9)

f2(z)(t, x) =

(∫ t

0

∫ π

0

z(s, y) dsdy

)
z(t, x), (t ∈ [0, τ ], x ∈ [0, π]).(10.10)

As a consequence of Corollary 10.1, we obtain the following result:

Theorem 10.3. Let τ > 0 and i ∈ {1, 2}. Then there exists δ > 0 such that for

every η ∈ A2(D) with dη
ds ∈ A2(D) satisfying ‖η‖W 1,2(D) 6 δ, there exist control

functions u0, uπ ∈ L2([0, τ ];C) such that the solution z of
∂z

∂t
(t, x)− ∂2z

∂x2
(t, x) = fi(z)(t, x) (t > 0, x ∈ (0, π)),

∂z

∂x
(t, 0) = u0(t),

∂z

∂x
(t, π) = uπ(t) (t > 0),

z(0, x) = 0 (x ∈ (0, π)),

with f1 and f2 defined in (10.9)-(10.10), satisfies the terminal condition z(τ, ·) = η.

Proof. The proof simply consists in recalling (3.3) and checking that condition (10.4)
holds with ε = 0 for fi. In both cases, this mainly consists in noticing that, for
z ∈ A2(D) with dz

ds ∈ A
2(D),

∫ π
0
z(y) dy is well-defined and satisfies∣∣∣∣∫ π

0

z(y) dy

∣∣∣∣ 6 C‖z‖W 1,2(D),

as a consequence of standard trace results. Details are left to the reader. �

It would be natural to consider quadratic terms f(z) = z2 or polynomials with
no constant and linear terms, but this clearly requires the reachable set to be an

algebra, which is not the case of Ran Φ
(0,π),N
τ in (3.3). A natural strategy is thus

to consider smoother controls, relying on [22, Proposition 5.1], which gives the
reachable space of the system described by the 1-d heat equation with Dirichlet
boundary controls when the controls are restricted to a space of smooth functions.
This result can be adapted for Neumann boundary controls, yielding:

Theorem 10.4. For τ > 0, let H1
L(0, τ) be the set of all functions v ∈ H1(0, τ)

satisfying v(0) = 0.

Then for every τ > 0 the range of the restriction of Ran Φ
(0,π),N
τ to H1

L((0, τ);C2)
is A3,2(D), where

A3,2(D) =

{
η ∈ A2(D),

dkη

dks
∈ A2(D) for all k ∈ {1, 2, 3}

}
.

Proof. The proof of Theorem 10.4 can be obtained following line by line the proof
of [22, Proposition 5.1], thus it is omitted here. �

The feature making the space A3,2(D) suitable for the application we have in
mind is that this space is an algebra (this follows by standard Sobolev’s embedding
since D is of dimension two). More precisely, we have the following result:
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Theorem 10.5. Let τ > 0. Let f(t, x, s) be a function of t ∈ [0, τ ], x ∈ [0, π] and
s ∈ R such that f can be expanded as

f(t, x, s) =

∞∑
k=2

fk(t, x)sk, (t ∈ [0, τ ], x ∈ [0, π], s ∈ R),

with coefficients fk(t, x) ∈ L1([0, τ ];A3,2(D)) satisfying for some ρ > 0,

(10.11)

∞∑
k=2

k‖fk‖L1([0,τ ];A3,2(D))ρ
k <∞.

Then there exists δ > 0 such that for every η ∈ A3,2(D), satisfying ‖η‖A3,2(D) 6 δ

there exist control functions u0, uπ ∈ L2([0, τ ];C) such that the solution z of

(10.12)


∂z

∂t
(t, x)− ∂2z

∂x2
(t, x) = f(t, x, z) (t > 0, x ∈ (0, π)),

∂z

∂x
(t, 0) = u0(t),

∂z

∂x
(t, π) = uπ(t) (t > 0),

z(0, x) = 0 (x ∈ (0, π)),

satisfies the terminal condition z(τ, ·) = η.

Proof. To fit the assumptions of Corollary 10.1, it is convenient to introduce the
extended system

(10.13)



∂z

∂t
(t, x)− ∂2z

∂x2
(t, x) = 0 (t > 0, x ∈ (0, π)),

∂z

∂x
(t, 0) = u0(t),

∂z

∂x
(t, π) = uπ(t) (t > 0),

du0

dt
(t) = v0(t),

duπ
dt

(t) = vπ(t), (t > 0),

(z(0, x), u0(0), uπ(0)) = (0, 0, 0) (x ∈ (0, π)),

with control functions v0 and vπ in L2[0, τ ]. Accordingly, the state space should
now be considered as

X =

Z =

 zu0

uπ

 , z ∈ H2(0, π), u0, uπ ∈ C, with
dz

dx
(0) = u0,

dz

dx
(π) = uπ

 ,

and the corresponding operator A is defined by

A =


d2

dx2
0 0

0 0 0
0 0 0

 ,
with domain

D(A) =

Z =

 zu0

uπ

 ∈ X, with z ∈ H4(0, π), and
d3z

dx3
(0) =

d3z

dx3
(π) = 0

 .

The control operator is then simply given by

Bv =

 0
v0

vπ

 (
v =

[
v0

vπ

]
∈ C2

)
.
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It is clear that the reachable space in time τ of system (10.13) with controls v0, vπ ∈
L2[0, τ ] coincides with the reachable space in the same time of (3.1) with controls
u0, uπ ∈ H1

L(0, τ). Accordingly, using Theorem 10.4, the reachable setR for (10.13)
with controls v0, vπ ∈ L2[0, τ ] is

R =

Z =

 zu0

uπ

 ∈ A3,2(D)× C2 with
dz

dx
(0) = u0,

dz

dx
(π) = uπ

 .

System (10.12) should now be seen as a perturbation of the extended system (10.13).

The nonlinear perturbation F is given, for every Z =

 zu0

uπ

 ∈ C0([0, τ ];X) by

F (Z) =



f(t, x, z)

∂

∂x

(
f(t, x, z(t, x)

)∣∣∣∣∣
x=0

∂

∂x

(
f(t, x, z(t, x)

)∣∣∣∣∣
x=π


,

and we then check condition (10.4) for F for Z = [z, u0, uπ]tr ∈ C0([0, τ ];R) in a
neighborhood of 0 (see Remark 10.1).

Using that A3,2(D) is an algebra, there exists C0 > 1 such that for all z1, z2 ∈
A3,2(D), ‖z1z2‖A3,2(D) 6 C0‖z1‖A3,2(D)‖z2‖A3,2(D). We have that for all z1, z2 in

C0([0, τ ];A3,2(D))

‖f(t, x, z1)− f(t, x, z2)‖L1([0,τ ];A3,2(D)) 6
+∞∑
k=2

‖fk(zk1 − zk2 )‖L1([0,τ ];A3,2(D))

6 C0

+∞∑
k=2

‖fk‖L1([0,τ ];A3,2(D))‖zk1 − zk2‖C0([0,τ ];A3,2(D)).

Then using that for all s1 and s2 in C, and k ∈ N,

sk1 − sk2 = (s1 − s2)

k−1∑
j=0

sk−1−j
1 sj2

 ,

we deduce that for all k ∈ N, k > 2,

‖zk1 − zk2‖C0([0,τ ];A3,2(D))

6 C0‖z1 − z2‖C0([0,τ ];A3,2(D))

k−1∑
j=0

Ck−2
0 ‖z1‖k−1−j

C0([0,τ ];A3,2(D))‖z2‖jC0([0,τ ];A3,2(D))

6 C0‖z1 − z2‖C0([0,τ ];A3,2(D))|k|Ck−1
0 ‖(z1, z2)‖k−1

(C0([0,τ ];A3,2(D)))2 .

Choosing ρ0 > 0 such that C0ρ0 6 ρ with ρ as in (10.11), we get, for all z1 and z2

in C0([0, τ ];A3,2(D)) satisfying ‖z1‖C0([0,τ ];A3,2(D)) 6 ρ0 and ‖z2‖C0([0,τ ];A3,2(D)) 6
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ρ0,

(10.14) ‖f(t, x, z1)− f(t, x, z2)‖L1([0,τ ];A3,2(D))

6 C0‖z1 − z2‖C0([0,τ ];A3,2(D))

( ∞∑
k=2

k‖fk‖L1([0,τ ];A3,2(D))ρ
k−1

)
.

We then recall that standard trace estimates give that for z ∈ A3,2(D), dz
dx (0)

and dz
dx (π) are well-defined and satisfies∣∣∣∣dzdx

(0)

∣∣∣∣+

∣∣∣∣dzdx
(π)

∣∣∣∣ 6 C‖z‖A3,2(D), ( z ∈ A3,2(D) ).

Therefore, combining estimate (10.14) with these trace estimates, condition (10.4)
holds for any Z1, Z2 in C0([0, τ ];R) satisfying ‖Z1‖C0([0,τ ];R) 6 ρ0 and ‖Z2‖C0([0,τ ];R) 6
ρ0.

Corollary 10.1 and Remark 10.1 then give the claimed result. �

Theorem 10.5 should be compared with the recent results of [23] dealing with
the reachable set for non-linear heat equations. We do not recall here the main
assumptions in [23] as they are quite technical, but we only underline the following
elements:

• Theorem 1.1 in [23] handles nonlinearities depending analytically on z and
∂z
∂x , whereas our Theorem 10.5 does not allow to deal with terms in ∂z

∂x .
Note that this is related to the fact that we do not know if the semigroup

T̃ obtained by restricting the heat semigroup to the reachable space of the
considered system is analytic or not, recall Remark 6.2.
• Theorem 1.1 in [23] requires coefficients which are independent of the time

variable, while Theorem 10.5 allows coefficients in L1 with respect to the
time variable.
• Theorem 1.1 in [23] also allows first order terms without any smallness

condition on it, while, using our methodology, Theorem 10.5 could clearly
be adapted only to the case of small potentials as in Theorem 10.2.
• Theorem 1.1 in [23] requires stronger analyticity conditions on the nonlin-

earities than the ones in Theorem 10.5.
• The set of reachable states described in [23] is much smaller than the one

obtained in Theorem 10.5, since it is shown that data which admit an

holomorphic extension on BC(π/2, R) for some R > R̂ = (2π)e(2e)−1

are
reachable. Theorem 10.5 only requires analyticity on the set D, which
is much more natural in view of the reachable space for the linear heat
equation (recall Theorem 3.1).

11. Final comments and open questions

This paper provides, using the theories of C0-semigroups and of well posed linear
time invariant control system, a general framework describing the robustness of the
reachable space of these systems with respect to perturbations of the generator. The
basic assumption is that the considered systems are null controllable in any positive
time, so that our results potentially apply to a large class of systems described by
parabolic or Schrödinger type equations.

In the case of Schrödinger type systems, the framework we propose does not
bring important novelties. Indeed, in this case, null controllability is equivalent to



42 SYLVAIN ERVEDOZA, KÉVIN LE BALC’H, AND MARIUS TUCSNAK

exact controllability, so that if such a system is null controllable in any positive time
then its reachable space at any positive time coincides with the whole state space.

Our approach is in principle applicable to many systems described by parabolic
equations, with control acting at the interior of the domain or from the boundary.
However, providing sharp conditions on the type of perturbation requires a precise
description of the reachable space of the unperturbed system. It turns out that such
complete descriptions have been obtained only very recently and that they essen-
tially concern the scalar heat equation with boundary controls. This explains why
many of the applications to PDE systems in this paper focus on systems obtained
by perturbing the one dimensional heat equation. However, in a spirit close to the
one in Proposition 4.2, one can hope to obtain still interesting, although slightly
less precise, results whenever we have less complete information on the reachable
space. We can think, for instance, to systems described by several coupled para-
bolic equations in one space dimension, see for instance the review article [1] on this
topic, or to the system described by the evolution Stokes equations with distributed
controls.

Another possible issue, that could be developed in the future, consists in focusing
on reachability results for non-autonomous evolution controlled systems. One of a
major difficulties in determining the reachable space for linear time-variant con-
trolled systems is due to the fact that this space should a priori depend on time (see
for instance Silverman, Meadows [32] and [25] for results in the finite-dimensional
settings).

Appendix A. Unique continuation properties for non-local linear
perturbations

This appendix provides sufficient conditions and illustrative examples in which
the last assumption in Proposition 4.1 or assumption (b) in Propositions 4.2 and
4.3 are verified.

A.1. Checking condition (b) in Propositions 4.2 and 4.3.

A.1.1. The case of a distributed control. In the case of distributed controls as in
(4.4), for each of Theorems 4.2 and 4.3, condition (b) reads as follows:

(A.1)

{
ϕ ∈ L2(Ω)
s ∈ C and


∆ϕ(x) +

∫
Ω

K(y, x)ϕ(y) dy = sϕ(x), x ∈ Ω,

ϕ = 0, x ∈ ∂Ω,
ϕ = 0, x ∈ O,

⇒ ϕ = 0 in Ω.

As we will see in the following, this unique continuation property is rather delicate
to prove, and we shall provide below several sufficient conditions guaranteeing the
unique continuation property.

Proposition A.1. If for all y ∈ Ω, x 7→ K(y, x) is analytic, then the unique
continuation property (A.1) holds.

Proof. Indeed, if ϕ vanishes on O, from the first equation of (A.1), we should have
that

∀x ∈ O,
∫

Ω

K(y, x)ϕ(y) dy = 0,
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which entails from analyticity of all functions K(y, ·) for y ∈ Ω that

∀x ∈ Ω,

∫
Ω

K(y, x)ϕ(y) dy = 0.

So the first equation and the third equation of (A.1) read as

∆ϕ(x) = sϕ(x), x ∈ Ω and ϕ = 0 in O.

Classical unique continuation properties for elliptic equations (see e.g. [36, Ap-
pendix IV]) then imply that ϕ = 0 in Ω, and concludes the proof of Proposition
A.1. �

Proposition A.2. If there exists a finite dimensional vector space V of L2(Ω) such
that for all y ∈ Ω, x 7→ K(y, x) ∈ V , and such that

(A.2) ∀ψ ∈ V, ψ = 0 in O ⇒ ψ = 0 in Ω,

then the unique continuation property (A.1) holds.
In particular, if the kernel function K is of the form K(x, y) = g(x)h(y) with

g and h in L2(Ω) and ‖h‖L2(O) 6= 0, then the unique continuation property (A.1)
holds.

Remark A.1. The sufficient condition for unique continuation stated in Proposi-
tion A.2 is in fact closely related to the one used in the recent work of Guerrero and
Takahashi [16], see in particular conditions (1.10), (1.11) and Remark 1.2 therein.

Remark A.2. In fact, the assumptions of Proposition A.2 can be slightly relaxed,
by assuming, instead of V being of finite dimension, that the vector space V is a
closed subspace of L2(Ω) for which the unique continuation property (A.2) holds.

Proof. For ϕ ∈ L2(Ω), the function ψ defined by ψ(x) =
∫

Ω
K(y, x)ϕ(y) dy belongs

to V . Thus, if ϕ satisfies the conditions of (A.1), necessarily, the function ψ vanishes
in O, and thus, according to property (A.2), ψ vanishes in the whole domain Ω.

It follows then from classical unique continuation properties for elliptic equations
(see e.g. [36, Appendix IV]) that ϕ = 0 in Ω, and this concludes the proof of
Proposition A.1. �

A.2. Unique continuation from the boundary in the 1-d case. As we shall
see next, checking condition (b) in Theorem 4.1 in the case of boundary control is
much more delicate than in the case of distributed control, partly because we have
strictly less information in such case.

To better explain it, we focus on the 1-d case set on Ω = (0, π) with Neumann
boundary conditions, observation at x = 0, meaning that the unique continuation
property we are interested in is the following one:

(A.3)

{
ϕ ∈ L2(0, π)
s ∈ C and


d2ϕ

dx2
(x) +

∫ π

0

K(y, x)ϕ(y) dy = sϕ(x), x ∈ (0, π),

dϕ

dx
(0) =

dϕ

dx
(π) = 0,

ϕ(0) = 0,

⇒ ϕ = 0 in (0, π).
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Moreover, to clearly formulate our results, we restrict ourselves to more specific
kernels k of the form

(A.4) K(x, y) = g(x)h(y), for some g ∈ L2(0, π) and h ∈ L2(0, π).

In this case we have the following result:

Theorem A.1. Let K be as in (A.4) for some g ∈ L2(0, π) and h ∈ L2(0, π).
Then the unique continuation property (A.3) is satisfied if and only if there is no

s ∈ C such that

(A.5)
∂ϕh
∂x

(π, s) = 0, and

∫ π

0

ϕh(x, s)g(x) dx = 1,

where ϕh is defined on (0, π)× C by the formula

(A.6) ϕh(x, s) = −
∫ x

0

sinh(
√
s(x− x0))√
s

h(x0) dx0.

Remark A.3. Let us remark that for all x ∈ (0, π), ϕh(x, ·) is a holomorphic
function in C, since for all a ∈ C, s 7→ sinh(

√
sa)/
√
s is holomorphic in C, as it can

be easily seen from the expansion

sinh(
√
sa)√
s

=

∞∑
n=0

sna2n+1

(2n+ 1)!
.

Similarly, one easily gets that ∂ϕh
∂x (π, ·) is a holomorphic function on C.

Theorem A.1 then expresses the fact that the unique continuation property
(A.3) holds if and only if the two holomorphic functions s 7→ ∂xϕh(π, s) and

s 7→
∫ π

0
ϕh(x, s)g(x) dx− 1 do not vanish simultaneously.

Proof. Before going to the proof of Theorem A.1, let us do two remarks.
First, for K of the form (A.4), condition (A.3) can be reformulated as follows:

{
ϕ ∈ L2[0, π]
s ∈ C and


d2ϕ

dx2
(x) + h(x)

∫ π

0

g(y)ϕ(y) dy = sϕ(x), x ∈ (0, π),

dϕ

dx
(0) =

dϕ

dx
(π) = 0,

ϕ(0) = 0,

⇒ ϕ = 0 in (0, π).

Second, ϕh given by (A.6) is the only solution of the problem
d2ϕh
dx2

(x, s)− sϕh(x, s) = −h(x), x ∈ (0, π), s ∈ C,

ϕh(0, s) =
dϕh
dx

(0, s) = 0, s ∈ C.

It is then obvious that, if there exists s ∈ C such that both identities in (A.5)
are satisfied, then the unique continuation property (A.3) is violated for this choice
of s and ϕ = ϕh(·, s).
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We thus focus on the other implication, and assume that the unique continuation
property (A.3) is violated for some ϕ ∈ L2[0, π] \ {0} and s ∈ C. Then ϕ satisfies

d2ϕ

dx2
(x) + h(x)

∫ π

0

g(y)ϕ(y) dy = sϕ(x), x ∈ (0, π),

dϕ

dx
(0) =

dϕ

dx
(π) = 0,

ϕ(0) = 0.

If
∫ π

0
g(y)ϕ(y) dy = 0, the classical unique continuation property for the Laplace

operator with Neumann boundary conditions would yield a contradiction. We can
thus assume that

∫ π
0
g(y)ϕ(y) dy 6= 0. We then set

ϕ0(x) =
ϕ(x)∫ π

0

g(y)ϕ(y) dy

(x ∈ (0, π)),

which, by construction, satisfies

(A.7)

∫ π

0

g(y)ϕ0(y) dy = 1 and
dϕ0

dx
(π) = 0.

Moreover, ϕ0 also satisfies
d2ϕ0

dx2
(x) + h(x) = sϕ0(x), x ∈ (0, π),

dϕ0

dx
(0) = 0,

ϕ(0) = 0.

which implies that ϕ0 = ϕh(·, s). Conditions (A.7) are thus equivalent to (A.5). �

As an example of application of Theorem A.1, let us point out that the unique
continuation property (A.3) holds for the kernel function K(x, y) = cos(x) cos(y).

Indeed, for such kernel, corresponding to K(x, y) = g(x)h(y) with g(x) = cos(x)
and h(y) = cos(y), one can compute explicitly ϕh(x, s):

ϕh(x, s) =
cosh(

√
sx)− cos(x)

1 + s
, (x ∈ (0, π), s ∈ C).

We then obtain:

∂ϕh
∂x

(π, s) =

√
s sinh(π

√
s)

s+ 1
;∫ π

0

ϕh(x, s)g(x) dx− 1 =
π(s+ 1) + 2

√
s sinh(π

√
s)

2(s+ 1)2
− 1.

Accordingly, the function s 7→ ∂ϕh
∂x

(π, s) vanishes if and only if s = −k2 for some

k ∈ N \ {1}, whereas one easily checks that the right hand side of the last formula
cannot vanish for such s.
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Appendix B. Proof of Proposition 3.1

Proof. We first remark that, for any smooth bounded domain Ω, Ran ΦΩ,Ω
τ =

H1
0 (Ω), as this can be easily deduced from the following observability inequality:

for any w solving

(B.1)


∂w

∂t
(t, x)−∆xw(t, x) = 0, t > 0, x ∈ Ω,

w(t, x) = 0, t > 0, x ∈ ∂Ω,
w(0, x) = w0 x ∈ Ω,

for any τ > 0, there exists Cτ such that

‖w(0)‖H−1(Ω) 6 C‖w‖L2([0,τ ];L2(Ω)).

This observability estimate comes immediately by expressing the solutions of (B.1)
on the basis of eigenfunctions of the Laplace operator and using their orthogonality
properties.

For obtaining the reachability result Ran ΦΩ,Ω
τ = H1

0 (Ω) from there, one can see
for instance [7, Proof of Theorem 2.42].

Accordingly, for f ∈ H1
0 (B(R1)), there exists a control function u1 such that the

solution w1 of

(B.2)


∂w1

∂t
(t, x)−∆xw1(t, x) = u1, t > 0, x ∈ B(R1),

w1(t, x) = 0, t > 0, x ∈ ∂B(R1),
w1(0, x) = 0 x ∈ B(R1),

satisfies w1(τ, ·) = f in B(R1).
Let r ∈ (R0, R1), and f ∈ H1

0 (B(R1)) be such that f |B(r) can be extended as a

function of A2(E(B(r)), and choose u1 and w1 as above.
We then take r0 ∈ (R0, r). Then f |B(r0) is holomorphic on E(B(r)). Thus, by

Proposition 3.2, and in particular, there exists u0 ∈ L2([0, τ ];L2(∂B(r0))) such that
the solution w0 of

∂w0

∂t
(t, x)−∆xw0(t, x) = 0, t > 0, x ∈ B(r0),

w0(t, x) = u0, t > 0, x ∈ ∂B(r0),
w0(0, x) = 0 x ∈ B(r0),

satisfies w0(T, ·) = f in B(r0).
Accordingly, taking a cut-off function ζ equal to one on B(R0) and vanishing in

a neighborhood of B(R1) \B(r0), we have that w̃0 = ζw0 satisfies
∂w̃0

∂t
(t, x)−∆xw̃0(t, x) = ũ0, t > 0, x ∈ B(R1),

w̃0(t, x) = 0, t > 0, x ∈ ∂B(R1),
w̃0(0, x) = 0 x ∈ B(R1),

satisfies w̃0(τ, ·) = ζf in B(R1), with ũ0 = [∆, ζ]w0 = −2∇w0 · ∇ζ − w0∆ζ, which
is localized in B(R1) \B(R0), and belongs to L2([0, τ ];L2(B(R1) \B(R0))) due to
the regularizing effects of the heat equation.
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We then set w̃1 = (1 − ζ)w1, where w1 is given by (B.2). Easy computations
show that w̃1 satisfies

∂w̃1

∂t
(t, x)−∆xw̃1(t, x) = ũ1, t > 0, x ∈ B(R1),

w̃1(t, x) = 0, t > 0, x ∈ ∂B(R1),
w̃1(0, x) = 0 x ∈ B(R1),

with ũ1 = (1− ζ)u1− [ζ,∆]w1 localized in B(R1) \B(R0) and belongs to the space
L2([0, τ ];L2(B(R1) \B(R0))), while w̃1(τ, ·) = (1− ζ)f in B(R1).

Accordingly, f = ζf + (1 − ζ)f = w̃0(τ, ·) + w̃1(τ, ·) ∈ Ran Φ
B(R1),B(R1)\B(R0)
τ ,

corresponding to the control function u = ũ0 + ũ1. �
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