N

N
N

HAL

open science

PowDroid: Energy Profiling of Android Applications

Fares Bouaffar, Olivier Le Goaer, Adel Noureddine

» To cite this version:

Fares Bouaffar, Olivier Le Goaer, Adel Noureddine. PowDroid: Energy Profiling of Android Appli-
cations. 2nd International Workshop on Sustainable Software Engineering (SUSTAINSE), Nov 2021,

Melbourne, Australia. 10.1109/ASEW52652.2021.00055 . hal-03380605

HAL Id: hal-03380605
https://hal.science/hal-03380605

Submitted on 15 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03380605
https://hal.archives-ouvertes.fr

PowDroid: Energy Profiling of Android
Applications

Fares Bouaffar*, Olivier Le Goaer!, and Adel Noureddine?
Universite de Pau et des Pays de I’Adour, E2S UPPA, LIUPPA
Anglet, France
*fares.bouaffar @univ-pau.ft, Tolivier.legoaer @univ-pau.fr, tadel.noureddine @ univ-pau.fr

Abstract—While the energy efficiency of mobile apps is receiv-
ing considerable attention in recent years, Android developers
have little tools to assess the energy footprint of their applications.
In this paper, we introduce PowDroid, our tool to estimate the
energy consumption of Android application. It uses system-wide
metrics and does not require access to applications’ source code.
We run PowDroid on a use-case scenario comparing the energy
footprint of applications in different categories.

Index Terms—Energy consumption, Android, Battery drain,
Estimation, Tool

I. INTRODUCTION

Android is the most popular operating system in the world,
with over 2.5 billion active users spanning over 190 countries.
With millions of apps available on the Play Store, energy
efficiency is becoming as important a quality attribute as
security. Android developers have become aware of both the
negative impact on the planet and on the reviews the end-
user leave on the store to blame the battery drain. Indeed,
battery-limited devices powered by Android like smartPhones,
tablets, smartWatches are particularly concerned by energy-
heavy hardware components like the screen, GPS, Wi-Fi and
so on. But as early noticed in [1], developers have little or no
tools to address this hot concern.

In the Android development field, developers are still not
able to compare their app with competing apps nor conduct
studies of energy consumption at large. On one side, hardware-
based solutions require some electrical skills to avoid to
damage the device, are hardly scalable, and come at a great
cost. On the other side, software-based solutions are often
untrustworthy and quickly deprecated as the Android platform
evolves. The only tool officially supported is the Energy
Profiler! integrated within Android Studio IDE. However, it
requires access to the source code (white-box measurement)
and does not provide runtime energy consumption but rather
displays an overview of the energy levels (e.g., light, medium,
etc.) of hardware components over the usage timeline of the
application. In addition, no export functionality is available,
which could have allowed for analysis and decision-making.
To our knowledge, no research paper has still used this tool
despite its potentially large audience.

To fill this gap, this paper introduces a simple command-
line tool to evaluate the amount of energy consumed in

Thttps://developer.android.com/studio/profile/energy-profiler

joules by any application (black-box measurement) run in
isolation in a given time interval. It can be used to perform
energy benchmarks and to analyze which components are the
most influential on the battery drain. This tool should allow
researchers and engineers to get a better understanding of
energy consumption in real-life Android apps.

The rest of this paper is organized as following: Section
II lists the hardware and software solutions found in the
literature. Section III describes how our tool works and how
a developer can use it. Some results obtained with PowDroid
are shown in Section IV before we conclude.

II. RELATED WORKS

There are some existing approaches which directly address
the energy measurement of android apps, involving recurring
elements.

A. Hardware-based approaches

In [2] , the authors used the Monsoon power monitor by
Monsoon Solutions Inc. in order to measure energy (in terms
of Voltage and Intensity) with the special aim of discovering
which API are the most consuming in an android application.
In his thesis [3], the authors used the Otii arc by QOITECH
for measuring the components of the Open Source Smartwatch
PineTime. Their work is probably transposable to an Android
smartWatch, and to a lesser extent, to Android smartPhones.
The Yocto-amp by Yoctupuce was encountered in two aca-
demic works. A master thesis [4] aimed at building a power
model based on the gathered measurements. The implementa-
tion targeted Android-based platform. A PhD. thesis [5] aimed
at evaluating and correcting code source defaults related to
energy consumption in android applications.

B. Software-based approaches

To measure any Android app, Di Nucci et al. [6] intro-
duced their own tool called PETrA, relying on raw data
from Batterystats to compute the energy consumption of each
method call. Huber et al. [7] also used Batterystats but to
study energy consumption of PWAs (Progressive Web Apps)
on two Android devices with four execution scenarios. In
2015, Qualcomm released Trepn Profiler, an Android app
to analyze which installed apps consume resources. It was
used in [8] to analyze and predict the energy consumption of
any android applications. It was also used by Ahmad et al.



[9] in conjunction with the PowerTutor app [10] to evaluate
the performance of dynamic analysis-based energy estimation.
PowerTutor was used alone in the study of Saipullah et al. [11]
to measure the energy consumption for image processing on
Android smartphone.

In [12], the authors developed an application energy metering
for Android smartphone called AppScope. The latter uses
hardware power models and usage statistics for each hardware
component. Finally, they use the Monsoon power monitor to
verify the relevance of their results.

III. PowDROID

In this section, we describe our tool called PowDroid,
a software-based approach for measuring and profiling the
energy consumption of android applications.

A. Architecture

The general architecture of our approach is described in
figure 1. The key idea is to pull system-wise battery data
from any Android-powered device thought the Android Debug
Bridge (ADB). Powdroid connects to the device using WiFi
instead of a USB connection, in order to avoid having the
device falls into a charging state while connected to USB (and
thus preventing the proper observation of the battery drain in
real time). However, it is still possible to use a USB cable by
disabling its charging feature, as in PETrA [6].

Machine-
friendly
data

Raw
battery
data

Device

Fig. 1: PowDroid Architecture

The pulled data are produced by the Android system itself
and serves as ground proofs in our approach. Hence, we do
not introduce over-estimations than those already calculated
natively by the Android platform. Instead, we just refine the
raw data through a specific workflow to spit out a machine-
friendly output. The output contains joules, of course, but
also hardware components status along a fine-grained time
sampling. We think that the resulting set of metrics is valuable
to perform a large panel of analysis and statistics.

B. Components

Our architecture uses multiple components to collect and
process metrics and calculates energy consumption.

1) Batterystats: is a tool included in the Android frame-
work that collects raw battery data on a device. The corre-
sponding ADB command is adb shell batterystats.
To avoid unnecessary accumulation of data between test
sessions, it is wise to clean the history with the com-
mand adb shell batterystats reset. At this stage,
the data are located on the device in a file named
data/local/tmp/battery.txt.

2) Bugreport: is also a tool included in the An-
droid framework which generates a report file in a
ZIP format on the device from the aforementioned
battery.txt. The -corresponding command is adb
bugreport [filename].zip. A bugreport file is a rich
format compatible with Battery Historian.

3) Battery Historian: Google’s Battery Historian® converts
the report from Bugreport into a pretty web-based visualization
that can be viewed in a web browser. We reuse the Go script
local_history
_parse.go to convert a .zip file to a human-readable CSV
file. We use the ——summary=totalTime argument to pro-
duce results based on time, rather than the evolution of the
battery charge.

4) Processing energy scripts: We write several python
scripts to implement the workflow: PowDroid.py is the main
program; split.py cuts a bulk CSV file along its different
metrics, and Merge.py achieves the union of metrics in sync
with the time windows.

2

C. Energy Metrics

Each time that the battery evolve or that the status of hard-
ware components change, an entry is written in the bugreport
file. This is called an energy-related event, delimited by a start
time and an end time (of type Timestamp - TS). Thus, one
can find in information about the states of voltage, Coulomb
charge, top application packages, and so on.

We start with the calculation of the duration of a state (T'a),
thanks to the start time and the end time:

TA(event)(ms) = endtimecyent (T'S) — starttimecyent (T'S)

The energy consumed is not the same for every application
execution as it varies depending on different factors, such as
the hardware components activated by the application, the
complexity of the method call, the active wakelocks and so
on. These factors influence the energy consumption, and can
be sorted chronologically.

In addition to the time windows, we calculate the intensity
of the current from the difference between two remaining
charges (Ca) and the duration of the smartphone charge drain
(T,), by using this formula:

Ca(mAh)
Tw(phonecha'r‘ge) (h?”) .

Intensity(mA) =

With intensity, voltage and duration of event, we can calcu-
late the power and energy consumption of our device for the
monitored event. First, we calculate the power with:

Power(Watt) = Voltage(Volt) x Intensity(Amp).

Secondly, we calculate the energy consumption for each
event in Joules:

Energy cvent)(Joule) = Power(Watt) * Ta (epent) (Second)

Zhttps://github.com/google/battery-historian



We are then able to calculate the energy consumption of the
application by adding every energy consumption of all events:

Energyapp) (Joule) = Z Energycvent,)(Joule)
i=0
In summary, our tool will generate one CSV file, crossing
all events, their time windows and energy consumption. The
final structure of our file is presented in Table I.

Metric Description Unit
Start time when the event start Timestamp
End time when the event ends Timestamp
Duration duration of the event Millisecond

Voltage electric voltage emitted by Millivolt

the battery.

Remaining charge

electric charge remaining
in the battery

Milliampere-hour

Intensity electric intensity Milliampere
calculated from remaining
charge
Power amount of energy during a Watt

given time, usually 1 sec-
ond.

Consumed charge

amount of charge passing
through the cross-section
of smartphone

Milliampere-hour

Energy total energy consumed Joule
when the application was
run.
Top app name of the package run- String
ning in the foreground.
Wakelock wakelocks acquired by the String
application.
Screen indicates if the screen is Boolean
active or not.
GPS indicates if GPS is on or Boolean
not
Mobile radio indicates if mobile GSM Boolean
is active for scanning or
transmitting data
Wifi on indicates the status of wifi Boolean
(On/Off)
Wifi radio indicates if the wifi is Boolean
transferring data
Camera indicates if the camera is Boolean
active or not
Video indicates if there is a video Boolean
like video reading or a
video call
Audio indicates if the audio com- Boolean
ponent (like speakers) is
active
TABLE I: Metrics of the Output CSV file

IV. EVALUATION

In order to evaluate PowDroid, we decided to compare
the energy consumption of several Android apps from three
categories: web browsers, camera, and weather applications.
We chose these applications in order to get a wide spectrum
of use cases using various hardware components (WiFi, GPS,
Camera, CPU, GPU, etc.).

A. Experimental Setup

To conduct our experiments, we use a Google Pixel 3a
device in debug mode. Accurate measures need to run an app

in the maximum isolation as possible: First, we remove the
SIM card to prevent from accidental phone calls and messages,
and to avoid the continuous impacts of cellular network
connectivity. Then,we disable running background services
as Google Play Store and closed all forefront applications.
Finally, we disable the Battery Saver Mode.

We then set up the config.json, the configuration file of
PowDroid that contains all the directories paths where the gen-
erated files will be saved. The smartphone is then connected
on the same WiFi network as our personal computer. Notice
that the first time a device is plugged, a brief USB connection
is required to get the INET address of the WLAN interface.

Once our smartphone is properly connected, we drag and
drop the apk file to the PowDroid shell: the app is automat-
ically installed and launched on the device. Then, the user
drives the test session. PowDroid simply asks when the user
is ready to test the application, until the user decides to stop
the recording. Then PowDroid generates a CSV file containing
all the metrics and data as described in Section III.

B. Experimental Scenarios

We conduct our experiments on three software categories:
web browsers, camera and weather applications. For each
category, we define an experimental but realistic scenario that
is conducted for all applications. We have installed the latest
versions of the applications available at the time of writing
this paper.

For each application, we run them for 4 minutes, with the
battery level at 50% at the start of the measurement (we
recharge back to 50% before running the next experiment),
screen brightness at 50%, and audio at 50%. We run each
scenario three times for each application and average the
results in joules. For web browsers, the scenario includes
typing a URL, searching with a keyword, and selecting and
watching a link from the search results, and repeat all for 3
different websites. For camera applications, we take pictures
from both front and back cameras in normal, panoramic and
HDR modes, and record a 10-second video clip. And for
weather applications, we locate our position, get weather
information for today, check monthly view and another day,
and view the radar map.

C. Experimental Results

Table II outlines the energy consumption of all our tested
applications and domains: web browsers, camera and weather
applications. Overall, our results are consistent with recent
comparative studies (such as for web browsers 3).

For web browsers, our experiments found that Brave is the
most energy efficient, while Firefox was the worst with a
33.8% increase in energy consumption (a increase of 108.12
joules for the same workload). However, this can be partially
attributed to the default built-in adblock feature in Brave,
which also blocks YouTube and video ads. However, Sam-
sung Internet Browser achieved the second place in energy

3https://greenspector.com/en/what-are-the-best-web-browsers-to-use-in-
2020/



TABLE II: Energy consumption of our different application domains

(a) Web browsers

(b) Camera applications

(c) Weather applications

Application Energy (Joule) Application Energy (Joule) Application Energy (Joule)
Mozilla Firefox 427,78 Open Camera 711,35 AccuWeather 441,12
Google Chrome 404,27 Google camera 683,45 The weather channel 398,92
Microsoft Edge 386,18 Samsung S10 camera 661,92 Weather Forecast 318,82

Opera 368,33 ProCam X 660,54 Advanced Weather 236,92
Samsung Browser 345,93 Manual camera DSLR Pro 610,54

Brave 319,66

efficiency without blocking ads. Google Chrome and Mozilla
Firefox were within a slim margin of 5.8% in energy con-
sumption.

For camera applications, we also observe an energy increase
of 16.5% (100.81 joules) between the most efficient of our
experiments (Manual camera DSLR Pro) and the least (Open
Camera).

Finally, we tested 4 weather application with even bigger
variation: an increase of 86.19% (204.2 joules) between Ad-
vanced Weather (the most efficient), and AccuWeather (the
least efficient). This can be explained by the presence of ads
in all applications, except Advanced Weather which does not
contain any ads.

These results for ad-supported applications, for the different
categories, are consistent with state-of-the art studies which
show that ads are known to have a huge impact on energy
consumption in mobile applications [13].

D. Limitations

Although our tool allows energy profiling of Android appli-
cations in an easy and automated approach, it exhibits a few
limitations.

First, our tool monitors the energy consumption of the entire
Android smartphone as reported by Batterystats, and does not
monitor individual applications directly. This can be alleviated
by isolating and running a single application during profiling.
However, this is not a fail-proof approach as some Android
background services still run and impacts our profiling.

Second, we rely on the hardware and battery information
provided by Android through Batterystats, which does not
offer a real time and fine-grained estimations. Energy metrics
are based on battery drain, and the energy consumption
of individual hardware components are not mapped in our
approach.

V. CONCLUSION

We presented, in this paper, PowDroid, our automated
Android energy profiling approach and command-line tool.
We also presented a preliminary study comparing the energy
consumption of multiple applications in different categories
across a common workload. Our findings are consistent with
recent studies.

For future works, we aim to study the influence of each
hardware component (i.e., energy of WiFi, GPS, CPU, etc.) on
the global energy consumption, and being able to isolate the

energy consumption of individual applications automatically
during runtime.

REFERENCES

[1] A. Hindle, “Green software engineering: The curse of methodology,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 5, 2016, pp. 46-55.

[2] M. Linares-Vasquez, G. Bavota, C. Bernal-Cardenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. New York, NY,
USA: ACM, 2014, p. 2-11.

[3] L. Berglund, “What is draining the battery on the pinetime smartwatch?”
p. 23, 2020.

[4] C. Petropoulos, “Power measurement infrastructures and power analysis
of an android based smartphone,” 2016.

[5] M. A. Ait Younes, “Evaluation et correction des défauts de code liés a la
consommation d’énergie dans les applications mobiles android,” 2017.

[6] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Petra: A software-based tool for estimating the energy
profile of android applications,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), 2017, pp.
3-6.

[7]1 S. Huber, L. Demetz, and M. Felderer, “Pwa vs the others: A compara-
tive study on the ui energy-efficiency of progressive web apps,” in Web
Engineering, M. Brambilla, R. Chbeir, F. Frasincar, and I. Manolescu,
Eds. Cham: Springer International Publishing, 2021, pp. 464-479.

[81 Y. Hu, J. Yan, D. Yan, Q. Lu, and J. Yan, “Lightweight energy
consumption analysis and prediction for android applications,” Science
of Computer Programming, vol. 162, pp. 132-147, 2018, special Issue
on TASE 2016.

[91 R. W. Ahmad, S. H. A. Hamid, A. Gani, M. S. Obaidat, J. Shuja,
F. Rehman, and A. U. R. Khan, “Performance assessment of dynamic
analysis based energy estimation tools,” in 2018 International Sympo-
sium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS), 2018, pp. 1-12.

[10] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-
ceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. New York, NY,
USA: ACM, 2010, p. 105-114.

[11] K. M. Saipullah, A. Anuar, N. A. Ismail, and Y. Soo, “Measuring power
consumption for image processing on android smartphone,” American
Journal of Applied Sciences, vol. 9, pp. 2052-2057, 2012.

[12] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Applica-
tion energy metering framework for android smartphone using kernel
activity monitoring,” in 2012 USENIX Annual Technical Conference
(USENIX ATC 12). Boston, MA: USENIX Association, Jun. 2012,
pp- 387-400.

[13] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond, “Truth in
advertising: The hidden cost of mobile ads for software developers,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, 2015, pp. 100-110.



