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Abstract: Xmipp is an open-source software package consisting of multiple programs for processing
data originating from electron microscopy and electron tomography, designed and managed by the
Biocomputing Unit of the Spanish National Center for Biotechnology, although with contributions
from many other developers over the world. During its 25 years of existence, Xmipp underwent
multiple changes and updates. While there were many publications related to new programs and
functionality added to Xmipp, there is no single publication on the Xmipp as a package since 2013.
In this article, we give an overview of the changes and new work since 2013, describe technologies
and techniques used during the development, and take a peek at the future of the package.

Keywords: Xmipp; Cryo-EM; Scipion; single-particle analysis

1. Introduction

Xmipp is a software package for cryo-electron microscopy (Cryo-EM) and electron
tomography (ET), available as a standalone project or via Scipion [1] framework. It offers
multiple programs for almost all steps of the typical single particle analysis (SPA) processing
pipeline and several programs for ET.

Originally, Scipion started from the graphical user interface of Xmipp, but it quickly
branched off as a separate project of its own. At that time, Scipion and Xmipp [2] were
available only as a single unit. Scipion was responsible for the inter-package operations
between other programs and scripts, while Xmipp provided the programs, methods, and
scripts for the actual processing.
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Since 2018, Xmipp and Scipion are separate software packages. However, Xmipp is
still providing some crucial functionality to Scipion and many auxiliary protocols that can
be used in the processing pipeline of the Scipion project.

This article provides an overview of the work of the Biocomputing Unit of the CNB-
CSIC, Madrid, concerning Xmipp. In the rest of the text, we use the term program to refer
to the Xmipp executable and protocol to refer to the Scipion protocol provided by Xmipp.
However, both expressions are interchangeable, as the executable is typically at the core
of its respective protocol. Unless stated otherwise, this article refers to the latest Xmipp
release available at the moment, i.e., version 3.21.06, released on 29 June 2021.

The article is divided into three parts. In Section 2, we overview the new programs
and protocols added to the Xmipp package since its last dedicated publication in 2013.
This section can also be interpreted as an overview of the most active research areas
of the Biocomputing Unit of the CNB-CSIC, Madrid. For detailed information on each
program or protocol, the reader is encouraged to visit the corresponding paper. This section
also assumes that the reader has a general understanding of the SPA processing pipeline.
Section 3 then talks about technologies and techniques used during the development. The
last section summarizes our contribution to Cryo-EM, ET, and SPA in the last eight years
and discusses possible future directions of the research.

2. New Programs and Protocols

The image processing pipeline of the Cryo-EM project might be very complicated.
However, it is typically divided into several general steps, as shown in Figure 1. In this
section, we present new programs and protocols for Scipion added to Xmipp since 2013,
thematically grouped.

Figure 1. Typical steps of the Single Particle Analysis processing pipeline [3].

2.1. Movie Acquisition and Frame Alignment

With the adoption of faster microscopes, the acquisition speed and the amount of
the collected data steadily increases, and microscopes are expected to produce one super-
resolution movie every few seconds soon. This creates high demands for (semi)automatic
quality assurance and movie processing algorithms.

In 2016, in collaboration with the industry (Thermo Fisher Scientific), we proposed
an image selection method using fast and efficient image quality descriptors computed
during the acquisition that can be used to reject movies before further processing [4]. This
algorithm was included in the current version of the EPU.

As for the frame alignment, in 2015, we designed a program for compensating the
beam-induced motion called Optical Alignment, using Optical Flow (OF) [5]. The advan-
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tage of the OF is its parameter-free description of local movements, which gives it extremely
high flexibility. In 2020, we presented FlexAlign [6], a GPU accelerated algorithm able to
correctly compensate for the local shifts on the fly, using the current generation of hardware.
This second algorithm sacrifices the flexibility of OF by using a small set of B-splines to
describe the local movements. In practice, we have not found any significant difference
between FlexAlign and Optical Alignment, meaning that the local deformation fields are
sufficiently smooth. With this change, we have gained the possibility to store the local
deformation with a minimal set of coefficients (as opposed to deformation fields twice as
large as the movies themselves).

Xmipp also provides several other utility protocols, for example, the Movie Maxshift
protocol for movie rejection based on the maximum shift of the corrected frames, the Split
frames protocol for extracting only odd/even frames, the Movie Average protocol for
creation of a simple movie average, or the automatic Movie Gain detection protocol [7]
that can identify cases of incorrectly calibrated cameras. In addition, Xmipp provides
the Preprocess Micrograph protocol for micrograph preprocessing, such as filtering or
normalization.

2.2. CTF Estimation

There are multiple approaches to estimate the CTF of a given micrograph. For that
reason, our group initiated the “CTF Estimation Challenge” [8] back in 2015 in collaboration
with the National Center for Macromolecular Imaging (NCMI) at Houston. We have
also designed the CTF consensus protocol, which can compare outputs of multiple CTF
estimation algorithms. The CTF itself can be estimated via the CTF Estimation protocol,
which we accelerated by using Zernike polynomials in [9].

2.3. Particle Picking

Particle picking is a challenging task, given the low Signal-to-Noise ratio of the
input micrographs and the acquisition rate of modern microscopes. There are multiple
approaches to detect particles. We used several new discriminative shape-related features
and some statistical descriptions of the image grey intensities to train two support vector
machine classifiers in the Particle Auto-Picking protocol for SPA [10].

In Random Conical Tilt and Orthogonal Tilt Reconstruction, particle picking is further
complicated by the need to identify particle pairs, which we tried to address via Delaunay
triangulation [11]. It can be found under Assign Tiltpairs protocol in Scipion.

Once the particle centers are known, particles can be extracted and further analyzed. In
the Screen Particles protocol, we implemented a novel particle quality assessment and
sorting method that can separate most erroneously picked particles from correct ones [12].
The Deep Consensus Picking protocol [13] utilizes a deep learning-based algorithm to
lower the incorrectly picked particles by combining results of multiple pickers without any
user intervention. We also used deep learning to detect carbon and other different types of
high-contrast contamination in the Deep Micrograph Cleaner protocol [14].

In addition to the above-mentioned protocols, Xmipp provides several utility pro-
tocols, e.g., the Extract (Movie) Particles protocol for particle extraction from the
micrograph or the movie, the Center Particles protocol for realignment of the uncen-
tered particles, the Remove Duplicates protocol, the Screen Particles and Screen Deep
Learning protocols for rejection based on several metrics or a deep learning model, or the
protocol for Particle Boxsize estimation.

2.4. 2D Classification

2D classification is used to group similar particles into 2D classes, which are then
filtered (to remove bad particles that the previous step has incorrectly identified as good
ones) and used to generate the first 3D model of the sample at low resolution.

In 2014, we designed the CL2D protocol [15] for automatic 2D classification and outlier
detection using a mixture between robust K-means and a hierarchical clustering algorithm.
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We showed that the core class (particles with low variation around the centroid of the
homogeneous class) and the stable class core (a subset of class core images that is classified
together in the classification hierarchy) could effectively remove contaminating particles.
CL2D was accelerated via GPU in 2018 in the GL2D protocol. This GPU version of CL2D
also includes the possibility of assigning particles to a certain class of a static set of classes
on the fly.

In addition to CL2D, Xmipp provides protocols for 2D-alignment using a maximum-
likelihood target function (ML2D) and the protocol for classification using Kohonen’s Self-
Organizing Feature Maps (SOM) and Fuzzy c-means clustering technique (FCM) called
KerdenSOM.

2.5. Ab-Initio Model Building

In 2014, we proposed a method based on an initial non-linear dimensionality reduction
approach and random sample consensus [16], available via the RANSAC protocol. In 2015, we
revised the fundamental mathematical expressions supporting Random Conical Tilt [17],
that can be used to produce the initial structure. We also reformulated the initial volume
problem within a weighted least squares framework, calculating the weights through a
statistical approach based on the cumulative density function of different image similarity
measures [18]. This work is available via the Reconstruct Significant protocol.

The most recent approach that we proposed [19] is a consensus protocol for the initial
volume. It considers the whole population of initial volumes along with the experimental
images. It allows the population to evolve according to the dynamics given by swarm
optimization, thus avoiding user intervention. It can be used through the Swarm Consensus
protocol.

To evaluate the quality of the 3D volumes, we suggested a statistical methodology
that does not require tilt-pair images [20]. We further enhanced this method [21] to provide
objective information about the precision and accuracy of each experimental particle
image used in the reconstruction. These two methods are available through the Validate
Nontilt and the Multireference Alignability protocols.

Xmipp also provides the Shift Particles protocol to correct the center of the parti-
cles in 2D if the 3D map compatible with them is shifted by any arbitrary amount in any
direction.

2.6. 3D Alignment and Reconstruction

We introduced a gridding-based direct Fourier method for the three-dimensional
reconstruction approach that uses a weighting technique to compute a uniform sampled
Fourier transform [22] in 2015. In 2019, we accelerated this algorithm [23] as part of
the extended collaboration with the High-Performance Computing research group at the
CERIT-SC Centre in the Czech Republic. Both the CPU and GPU versions are available via
the Reconstruct Fourier protocol.

While participating in the Map Challenge by the Electron Microscopy Data Bank, we
developed the High-Resolution Reconstruction Protocol (HighRes) [24]. This protocol uses
an approach similar to the standard projection matching with some important modifica-
tions, especially in detecting significant features in the reconstructed volume. HighRes was
eventually accelerated using GPU in 2020.

We also helped with the evaluation of the Map Challenge [25] and we proposed a pair
comparison method to sort reconstructions based on a figure of merit [26].

DeepAlign is our latest contribution towards 3D alignment [27]. We showed that the
combination of deep learning and the classical projection matching approach could lead to
improved reconstructions while decreasing the computational time.

In addition to the aforementioned protocols, Xmipp provides several utility protocols
for volume (pre)processing, such as Preprocess volumes for thresholding or segmentation,
the Filter Volumes for filtering, the Crop/resize volumes protocol, the Create|Apply
3D mask protocol, the Helical|Rotational Symmetry parameter estimation protocol, and
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the Validate overfitting protocol for checking how the resolution changes with the
number of projections used for the 3D reconstruction.

2.7. 3D Classification

With the increasing resolution of the microscopes, automated data acquisition, and
better and faster processing abilities, we can detect minor conformational changes in the
examined sample. We participated in the web service 3DEM Loupe [28], which allowed for
analysis of the reconstructed volume via Normal Mode Analysis (NMA). This service is
no longer available. In 2014, we published a method on the detection of the continuous
heterogeneity in Cryo-EM images and the visualization of these images in a conformational
space of reduced dimension (Hybrid Electron Microscopy NMA, HEMNMA [29]), featuring
easy-to-use and comprehensible graphical interface and the protocol in Xmipp [30]. This
method is based on NMA of an atomic structure or a Gaussian-based representation of the
reconstructed volume. The Gaussian-based representation of the reconstructed volume is
described in detail and its performance fully evaluated in 2016 for NMA [31] and other
tasks such as volume denoising in [32]. All work related to NMA is currently available via
the ContinuousFlex plugin in Scipion [33], which is maintained by the group of Dr. Jonić.

The ContinuousFlex plugin currently contains the protocols required to run HEMNMA
method (e.g., Convert to Pseudoatoms protocol, NMA Analysis protocol, NMA Alignment
protocol, and NMA Dimred protocol) [33], StructMap method (Structure Mapping proto-
col) [34], and HEMNMA-3D method (Convert to Pseudoatoms protocol, NMA Analysis
protocol, NMA Alignment Vol protocol, and NMA Vol Dimred protocol) [35]. The same
Convert to Pseudoatoms and NMA Analysis protocols are called in both HEMNMA and
HEMNMA-3D. The ContinuousFlex plugin additionally provides a protocol for synthesiz-
ing single particle images (Synthesize Images protocol) and a protocol for synthesizing
subtomograms (Synthesize Subtomograms protocol) from a given atomic structure or an
EM map. As these protocols can synthetize Cryo-EM and Cryo-ET data with several types
of conformational distributions as well as without any conformational heterogeneity, they
can be used for testing various methods, including those provided by ContinuousFlex
plugin.

StructMap features a visualization technique that is based on a statistical analysis of
distances among elastically aligned pairs of EM maps [34]. If one map is continuously
deformed to fit the other map, we can visualize an arbitrary number of Cryo-EM maps as
points in lower-dimensional distance space.

HEMNMA-3D is an extension of HEMNMA to analysing continuous heterogeneity in
Cryo-ET subtomograms and includes missing-wedge compensation [35]. Each Cryo-ET
subtomogram is analyzed in terms of conformational differences with respect to a reference
(an atomic structure, a Cryo-EM map or a subtomogram average), independently from
other subtomograms, which results in a conformational space of reduced dimension in
which all subtomograms are visualized.

One of the main limitations after discrete 3D classification is that typically we obtain
few majoritarian classes. These classes are capturing most of the particles and can be
used to generate high-resolution maps. The rest of the 3D classes captured are usually
minoritarian with low Signal-to-Noise ratios, which cannot be refined to high resolution.
To increase the population of these minoritarian classes, we have recently proposed an
approach to locally deform particles by the Optical Flow algorithm from one conformation
to a different (but close) conformation, thus, increasing the number of particles of the
minoritarian 3D classes [36]. This work is available via the Enrich protocol.

In 2016, we published a work on the automatic analysis of the forces associated with
local deformations [37] available via the Calculate Strain protocol.

2.8. Sharpening, Denoising, and (Local) Resolution Estimation

Interpretation of the reconstructed volume can still be challenging due to the noise at
high-frequency signal components. In 2016, we proposed denoising the EM maps using
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Gaussian functions [32]. This work is available via the Convert to Pseudoatoms protocol
from the ContinuousFlex plugin for Scipion.

Local MonoRes protocol [38] is our method for local resolution estimation, which
provides fully automatic and fast per-voxel resolution estimations. We later modified
the algorithmic core of this MonoRes to deal with spatially variant noise and, therefore,
estimate the local resolution in Electron Tomography. This algorithm is called MonoTomo [39]
and, up to our knowledge, is the unique local resolution method for electron tomography.

In 2019, we proposed Local DeepRes, a deep learning 3D feature detection algorithm
for local resolution estimation [40], and Localdeblur Sharpening [41], a fully automatic
local sharpening method exploiting the local resolution information.

While local resolution provides a per-voxel estimation of the final resolution, it still
does not provide information about resolution in specific directions. In 2020, we proposed
MonoDir [42], which decomposes local resolution into the different projection directions,
thus, providing a detailed level of analysis of the final map.

Our newest contribution is towards comparison of the Cryo-EM volumes. Current
proposals to compare Cryo-EM volumes perform map subtraction based on adjustment
of each volume grey level to the same scale. In [43], we present a more sophisticated way
of adjusting the volumes before the comparison, which implies adjustment of grey level
scale and spectrum energy, but keeping phases intact inside a mask and imposing the
results to be strictly positive. The adjustment that we propose leaves the volumes in the
same numeric frame, allowing to perform operations among the adjusted volumes in a
more reliable way. This work is available in the development version of Xmipp and will
be included in the next release via Volumes Adjust, Volumes Subtraction and Volume
Consensus protocols.

2.9. Model Building

Partially related to model building is our contribution to the 3D model construction
from the atomic structures using a very accurate conversion with Electron Atomic Scattering
Factors [44]. It is available via the Convert PDB protocol.

In 2020, we contributed towards the inter-package integration of the model-building
tools in Scipion [45] by adding several protocols, e.g., Extract Asymmetric Unit protocol
or Export to DB protocol to help in the export process to the EMDB/PDB database. Note
that to see these protocols, Scipion View has to be changed to the Model building.

To evaluate the quality of the map-to-model fit, we have proposed the FSC-Q mea-
sure [46] available via the Validate FSC-Q protocol, which is a quantitative estimation of
how much of the model is supported by the signal content of the map.

2.10. Our Other Contributions and Xmipp Applications

We have used our knowledge of the SPA and many of the above-mentioned programs
while processing data of multiple challenging structures. For example, we helped to
reconstruct or analyze the VirE2-ssDNA complex [47], a bacterial multidrug homodimeric
ABC transporter [48], human adenovirus light particles [49], polyhedral protein cages
that efficiently self-assemble in vitro and in vivo [50], three-dimensional structure of
paired C2S2M PSII-LHCII supercomplexes [51], oligomers of HsCPAP897-1338 [52], human
RuvBL2 protein coding gene [53], human mAb–fHbp–mAb cooperative complexes [54],
the flexibility and conformational dynamics of the infamous SARS-CoV-2 spike [55], and
the triangular bipyramid fold comprising 18 coiled-coil-forming segments [56].

In 2014, we proposed a standard for transferring the information on the three-dimensional
orientation between packages [57].

In 2017, we provided a detailed survey of the iterative reconstruction algorithms used
in SPA and Electron Tomography [58]. In the same year, we also analyzed theoretical foun-
dations and derivation of several concepts and thresholds used for resolution assessment
in 3DEM [59].
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In 2019, we published a survey of the analysis of continuous conformational variability
of biological macromolecules [60] and reference analysis of the β-galactosidase using
streaming in Scipion [61].

In 2020, we showed that global B-factor sharpening and deposition of only the sharp-
ened maps in the Electron Microscopy DataBase could be detrimental [62]. In the same
year, we also published a review of local resolution concepts and algorithms [63].

In 2021 we had a look at several issues related to data processing. In [64], we suggested
that principal component analysis (PCA) is a useful tool to analyze flexibility, but only
at low resolution. In [65], we analyzed the sensitivity to preferred orientations of several
image processing algorithms used for angular assignment and 3D reconstruction. Then, we
showed how to combine Xmipp and other plugins in Scipion to distinguish correctly from
incorrectly estimated parameters of the processing pipeline to achieve a more confident
assessment about the reconstructed structures [66]. Finally, in [67] we showed how Xmipp
could be utilized with other protocols available via the Scipion framework in a complex
processing pipeline. We also showed how combination of different packages and consensus
tools can improve the resolution of the reconstructed volume. More specifically, the
Plasmodium falciparum 80S Ribosome (EMPIAR entry: 10028, EMDB entry: 2660) with
reported resolution of 3.2 Å has been reconstructed at 3 Å.

2.11. GPU Acceleration

Several of the Xmipp protocols and programs have their computationally intensive
portions of the code accelerated via GPU using the CUDA Toolkit. The deep learning
programs then use TensorFlow or Keras. The list includes the most performance critical
protocols, such as CL2D (GL2D) [15], DeepAlign [27], RANSAC [16], FlexAlign [6], Projection
Matching, Reconstruct Fourier [23], Reconstruct Significant [18], HighRes [24],
Swarm Consensus [19], Split Volume, and Validate Overfitting protocol.

Programs using deep learning and the Optical Flow movie alignment can be executed
both on CPU and GPU, though GPU is recommended for performance reasons.

We also use two additional tools to further optimize the performance of the GPU
code. We have experimentally used the Kernel Tuning Toolkit (KTT) [68] to optimize
the execution of several programs on the most commonly used GPUs. We also use the
cuFFTAdvisor [69] to optimize the parameters used for the invocation of the cuFFT library.

2.12. New Programs and Protocols Summary

Figure 2 shows publications listed above, except those listed in the Section 2.10 [1,2,35].
As can be seen, the majority of contributions was towards the 3D classification and ab-initio
model building, followed by 3D alignment and reconstruction and sharpening, denoising,
and (local) resolution estimation. This is expected, as with the advances in the quality
and amount of the input images, we need new techniques to fully utilize the information
present in data. On the other end of the spectra, we have published only a single publication
on the 2D classification implying that we no longer see 2D classification as a limiting factor.

One of the possible ways to measure the impact of the presented work is via citations.
Figure 3 shows citations (As reported by Scopus, August 2021) of publications listed above,
except those listed in the Section 2.10 and [35]. Our most cited papers, [2] and [1] with
208 and 165 citations, are also excluded. On average, we have over 14 citations per paper
and over 63 citations on average per category. The most cited paper included in the figure
is [38] with 74 citations, followed by [29] with 49 citations and [5,10,16] with 43 citations
each.

Figure 4 shows publications of the presented work by year, including those listed in
the Section 2.10, [2] and [1], excluding [35]. On average, we publish or participate in over
7 papers per year.

Figure 5 shows citations of Xmipp related publications mentioned above by the year
of publishing, including those listed in the Section 2.10, [2] and [1], excluding [35]. As can
be seen, both [2] and [1] had a huge impact on the Cryo-EM community.
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Figure 5. Citations of Xmipp related publications by year.

Scipion Protocol Popularity

Scipion provides a list of the most used protocols at http://scipion.i2pc.es/report_
protocols/protocolTable/. Provided that the user agreed with this data collection, each
time the Scipion project is opened, a list of protocols used within this project is sent to our
servers. This information is useful for checking which protocols are more used than others
and concentrating on any performance issue related to those. This database currently holds
information about over 25,000 workflows opened since November 2016.

At the time of writing this article (August 2021), Xmipp provided 37 out of the 100
most popular protocols. Out of them, the Manual|Auto Picking protocol [10], CL2D [15],
HighRes [24], MonoRes [38], and several auxiliary protocols were the most used (each one
has been used over 3000 times).

3. Technologies Used in Xmipp

As mentioned before, Xmipp is a suite of programs and (Scipion) scripts. It is a
collaborative open source project hosted on GitHub, divided into four main repositories:

• Xmipp (https://github.com/I2PC/xmipp/) is the main repository.
• XmippCore (https://github.com/I2PC/xmippCore/) contains code responsible for

data handling.
• XmippViz (https://github.com/I2PC/xmippViz/) contains code responsible for data

visualization.
• Scipion-em-xmipp (https://github.com/I2PC/scipion-em-xmipp/) contains proto-

cols for Scipion.

Historically, over 70 people participated in writing Xmipp. Currently, we version
786 C/C++ files (419,000 LOC (Lines of Code, comments excluded, including tests)),
278 Python files (55,500 LOC), and almost 200 Java files (31,100 LOC), contributing to the
290 executables and scripts used in 110 Scipion protocols.

Xmipp requires C++11 compatible compiler and JDK 11. Scipion protocols are written
with Python 3.x. Xmipp provides Python binding, as well as optional Matlab binding.
Optionally, Xmipp can use CUDA 8 to 11 and OpenCV versions 2 to 4. Xmipp uses SCons
(https://scons.org/) as its construction tool.

We use multiple technologies to parallelize the execution of our binaries. In addi-
tion to MPI (https://www.open-mpi.org/) and built-in parallelization in Scipion, we
use the CTPL library (https://github.com/vit-vit/CTPL) for multithreading, CUDA
(https://developer.nvidia.com/cuda-toolkit) and cuFFTAdvisor (https://github.com/
HiPerCoRe/cuFFTAdvisor) for GPU acceleration, and deep learning via TensorFlow
(https://www.tensorflow.org/) and Keras (https://keras.io/). Experimentally, we also

http://scipion.i2pc.es/report_protocols/protocolTable/
http://scipion.i2pc.es/report_protocols/protocolTable/
https://github.com/I2PC/xmipp/
https://github.com/I2PC/xmippCore/
https://github.com/I2PC/xmippViz/
https://github.com/I2PC/scipion-em-xmipp/
https://scons.org/
https://www.open-mpi.org/
https://github.com/vit-vit/CTPL
https://developer.nvidia.com/cuda-toolkit
https://github.com/HiPerCoRe/cuFFTAdvisor
https://github.com/HiPerCoRe/cuFFTAdvisor
https://www.tensorflow.org/
https://keras.io/
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use StarPU (https://files.inria.fr/starpu/) for processing on heterogeneous machines and
KTT (https://github.com/HiPerCoRe/KTT) for CUDA kernel optimization.

To ensure a certain quality of the code, we use a combination of unit testing via
googletest (https://github.com/google/googletest), GitHub Actions for automatic project
build, and static code analysis via SonarCloud (https://sonarcloud.io/organizations/i2
pc/projects), pull request reviews, and integration testing via dedicated buildbot (https:
//buildbot.net/, http://scipion-test.cnb.csic.es:9980/)).

4. Summary

As can be seen, Xmipp has been heavily enhanced since its last publication in 2013.
We have proposed, implemented, and provided to the community multiple algorithms for
solving many steps of the SPA and ET processing pipeline.

There are three main general focus points of Xmipp.

1. High-quality results. As a general premise, we have favored accurate results over
execution speed.

2. Automation of the data processing. The benefits include increased reproducibility
and faster processing due to the minimization of manual intervention.

3. Consensus algorithms. By combining the results of multiple algorithms solving the
same problem, we may verify the correctness of the answer.

4. Acceleration of the processing. Proper resource utilization and utilization of GPUs
allow for much faster processing than just a few years ago.

We are also working hard to introduce new protocols for Electron Tomography, which
is getting popular and a novel approach to conformational landscape analysis. Both will be
accompanied by a publication once ready.

We also plan on improving the so-called meta-protocols, that is, protocols that create
multiple intermediate protocols. These meta-protocols allow for fine-level control of the
computation, such as the HighRes refinement or 3D classification of the input images.

In addition to the aforementioned papers, we are preparing a publication on ap-
proximating deformation fields to analyze continuous heterogeneity of biological macro-
molecules by 3D Zernike polynomials. This publication has been accepted and it is to be
published soon.

We would also like to focus more on additional performance and resource utilization
optimization as part of the long-term collaboration with the High-Performance Comput-
ing research group at the CERIT-SC Centre, Institute of Computer Science at Masaryk
University in the Czech Republic.
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