
HAL Id: hal-03380602
https://hal.science/hal-03380602

Submitted on 15 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Preliminary Study of the Impact of Code Coverage on
Software Energy Consumption

Adel Noureddine, Matias Martinez, Houssam Kanso

To cite this version:
Adel Noureddine, Matias Martinez, Houssam Kanso. A Preliminary Study of the Impact of Code
Coverage on Software Energy Consumption. 2nd International Workshop on Sustainable Software En-
gineering (SUSTAINSE), Nov 2021, Melbourne, Australia. �10.1109/ASEW52652.2021.00057�. �hal-
03380602�

https://hal.science/hal-03380602
https://hal.archives-ouvertes.fr


A Preliminary Study of the Impact of Code
Coverage on Software Energy Consumption

Adel Noureddine∗§, Matias Martinez†¶, and Houssam Kanso‡§
§Universite de Pau et des Pays de l’Adour, E2S UPPA, LIUPPA, Anglet, France

¶Université Polytechnique Hauts-de-France, LAMIH UMR, CNRS 8201, Valenciennes, France
∗adel.noureddine@univ-pau.fr, †matias.martinez@uphf.fr, ‡houssam.kanso@univ-pau.fr

Abstract—Software testing plays an important role in building
quality software and improving maintainability. However, there
are no research studies to analyze its impact on energy efficiency.
In this paper, we our hypothesis and research questions on the
impact of software tests (in particular through coverage metrics)
on the energy consumption of software. We also present our
experimental methodology and our initial results.

Index Terms—Software Energy, Software Testing, Power Con-
sumption, Code Coverage

I. INTRODUCTION

Software energy consumption is a major concern for soft-
ware developers, practitioners [1] and architects [2]. An impor-
tant issue is the lack of tools to monitor software energy, and
limited knowledge in understanding the factors impacting the
energy consumption of software [3]. In particular, the authors
of [3] note the lack of knowledge on how to write, main-
tain, and evolve energy-efficient software. The authors also
discussed the state of the art of energy-aware software testing,
and found that few studies propose energy-aware software
testing techniques. These techniques offer new approaches to
reduce the energy consumption of test suites [4], including
in Android [5], or detecting energy bugs through software
tests [6].

Current approaches allow software developers to monitor
the energy consumption of their devices’ architectures [7],
their applications [8], and within the source code [9], thus
allowing to detect energy hotspots. With such tools and in-
depth software energy knowledge, developers can detect and
improve their software. However, the technical and psycholog-
ical scalability of these approaches (such as resistance from
developers to adopt new energy-aware coding behaviors, and
the pressure of project deadlines and release) limits their
effectiveness, as developers report a lack of proper tools
and knowledge as shown in [3]. We argue that leveraging
existing, more accepted, and adopted approaches in software
development, to guide developers in writing energy-aware
software is needed. In particular, we argue for leveraging
software testing for energy efficiency. The advantages of soft-
ware testing are well known in terms of improving software
quality and maintainability, and reducing bugs. Previous works
have previously studied the energy consumption of the testing
activity (e.g., [10], [11]). In this experiment, we investigate
the effects of software tests on energy efficiency. In particular,
we analyze if software written with unit tests and having good

code coverage (along with a few other test metrics), are more
energy-efficient than software with no unit tests or low code
coverage.

II. HYPOTHESIS AND RESEARCH QUESTIONS

We argue that a relation might exist between code quality
and energy consumption. Although specific cases where good
quality code might lead to energy inefficiency, we hypothesize
that software written following the principles of testing (such
as test-driven development) is more energy efficient.

Our intuition behind our hypothesis is the important impact
of bugs on energy consumption as shown in multiple stud-
ies [6], [12], [13]. Untested code may contain bugs that are
usually resource-consuming and can cause power-consuming
problems (such as resource leak, deadlocks, and infinite loops).
Therefore, we argue that writing better code will lead to more
energy efficient software.

Therefore, the research question that guides our research is:
RQ: Is there a correlation between energy consumption of

an application and the quality of its test suite?
To answer the research question, we set up the following

hypotheses:
• Null hypothesis H0: there is no correlation between a

metric that represents test quality and energy consump-
tion of the application of the test.

• Alternative hypothesis H1: there is a correlation between
a metric that represents test quality and energy consump-
tion.

III. PROPOSED METHODOLOGY

To address our research question, we first need to measure
the energy consumption of executing an application, and then
collect the metrics related to the test cases. Finally, we analyze
the correlation between energy consumption and those metrics.

A. Requirements on the evaluation dataset

We decide to study the energy consumption and test quality
of a set of applications from the same domain, i.e., that
implement the same functionalities (e.g., parse a file, compress
a file, implements an arithmetic operation). The main reason
for taking that decision is it allows us to fairly compare
the energy across different implementations of a given func-
tionality, and to remove the potential threats of comparing
two functionally different applications with different energy



requirements. For example, an application that does more
intensive CPU calculations could consume more than another
one that simply reads files.

Last but not least, as we evaluate applications that imple-
ment at least one common functionality F , we can then exe-
cute all of them using the same input values I . Consequently,
for each application A that we consider in this experiment, we
measure the energy demanded by executing the functionality
F from A, given I as input. This implies that we exercise the
same functionality from each implementation using the same
inputs.

B. Measuring Energy Consumption

To measure the energy consumption of an application A,
we execute A given a set of input values I and measure the
energy consumed between the beginning of the execution and
the end. We call to those steps test workload.

We measure the energy consumption of the workloads using
PowerJoular 1 which uses Linux kernel’s Intel RAPL through
the powercap interface 2. In this preliminary study, we will
focus on the energy consumed by the CPU (and ignore the
energy consumed by other high-consuming components, such
as the GPU). Therefore we choose libraries that only requires
CPU computations.

For each test workload, we run it in a loop for 200 times
and measure its energy consumption. We report the energy
consumption per loop by dividing the total energy by the
number of loops. This is the common strategy to mitigate the
effect of external factors on energy consumption [14].

C. Collecting Test metrics

We use SonarQube3 and JaCoCo4 to collect test and cover-
age metrics for the applications under evaluation, as our initial
software set is written in Java. We collected the following
test and coverage metrics from SonarQube, such as branch
coverage, line coverage, test errors and failures.

IV. PRELIMINARY RESULTS

In our study, we choose applications that focus on the
parsing of JSON files and we measure the energy consumption
of a single functionality F : parsing a JSON file from the
disk and to create a representation of it in RAM memory.
We selected 14 JSON libraries that were analyzed by [15].

Our preliminary study on those 14 libraries shows that
there is a moderate positive correlation between Line coverage
and energy consumption of test case execution, and moderate
negative correlation with uncovered lines.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a method to correlate the energy
consumption of software applications and their testing metrics.

1https://www.noureddine.org/research/joular/powerjoular
2https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
3SonarQube: https://www.sonarqube.org/
4JaCoCo: https://www.eclemma.org/jacoco/

Our initial findings, which finds a moderate positive correla-
tion between Line coverage and energy consumption, encour-
age the software engineering community to further study and
confirm if a correlation exists between energy consumption
and other code coverage metrics. For doing so, we aim to
expand our initial study with more libraries that implement
the same functionality (e.g., more libraries for parsing JSON
files), more application domains (e.g., decompress files), other
programming languages and platforms, and additional testing
metrics.

REFERENCES

[1] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’
perspectives on green software engineering,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
237–248. [Online]. Available: https://doi.org/10.1145/2884781.2884810

[2] R. Bashroush, E. Woods, and A. Noureddine, “Data Center Energy
Demand: What Got Us Here Won’t Get Us There,” {IEEE}
Software, vol. 33, no. 2, pp. 18–21, 2016. [Online]. Available:
https://doi.org/10.1109/MS.2016.53

[3] G. Pinto and F. Castor, “Energy efficiency: A new concern for
application software developers,” Commun. ACM, vol. 60, no. 12, p.
68–75, Nov. 2017. [Online]. Available: https://doi.org/10.1145/3154384

[4] D. Li, Y. Jin, C. Sahin, J. Clause, and W. G. Halfond, “Integrated
energy-directed test suite optimization,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, 2014, pp.
339–350.

[5] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for android apps,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, 2016, pp.
425–436.

[6] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
“Detecting energy bugs and hotspots in mobile apps,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 588–598.

[7] M. Colmant, R. Rouvoy, M. Kurpicz, A. Sobe, P. Felber, and L. Sein-
turier, “The next 700 cpu power models,” Journal of Systems and
Software, vol. 144, pp. 382–396, 2018.

[8] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” in 2017 IEEE 24th international conference on
software analysis, evolution and reengineering (SANER). IEEE, 2017,
pp. 103–114.

[9] A. Noureddine, R. Rouvoy, and L. Seinturier, “Monitoring energy
hotspots in software,” Automated Software Engineering, vol. 22,
no. 3, pp. 291–332, 2015. [Online]. Available: http://dx.doi.org/10.
1007/s10515-014-0171-1

[10] L. Cruz and R. Abreu, “On the energy footprint of mobile testing
frameworks,” IEEE Transactions on Software Engineering, pp. 1–1,
2019.

[11] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:
Training software energy models with automatic test generation,”
Empirical Softw. Engg., vol. 24, no. 4, p. 1649–1692, Aug. 2019.
[Online]. Available: https://doi.org/10.1007/s10664-018-9640-7

[12] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake? characterizing and detecting no-sleep energy bugs in
smartphone apps,” in Proceedings of the 10th international conference
on Mobile systems, applications, and services, 2012, pp. 267–280.

[13] H. Jiang, H. Yang, S. Qin, Z. Su, J. Zhang, and J. Yan, “Detecting energy
bugs in android apps using static analysis,” in International Conference
on Formal Engineering Methods. Springer, 2017, pp. 192–208.

[14] L. Cruz. Scientific guide to collect and analyse software energy
consumption data. [Online]. Available: https://luiscruz.github.io/2021/
08/20/measuring-energy.html

[15] N. Harrand, T. Durieux, D. Broman, and B. Baudry, “The behavioral
diversity of java json libraries,” ArXiv, vol. abs/2104.14323, 2021.


