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Figure 1: Main steps of the distributed algorithm. From left to right: multiple input point clouds (aerial and terrestrial),
partial view of the distributed Delaunay triangulation, large and close-up view of the resulting watertight surface (3D tiles
are in different colours).

Abstract

We present an out-of-core and distributed surface re-
construction algorithm which scales efficiently on arbitrar-
ily large point clouds (with optical centres) and produces
a 3D watertight triangle mesh representing the surface of
the underlying scene. Surface reconstruction from a point
cloud is a difficult problem and existing state of the art
approaches are usually based on complex pipelines mak-
ing use of global algorithms (i.e. Delaunay triangulation,
graph-cut optimisation). For one of these approaches, we
investigate the distribution of all the steps (in particular
Delaunay triangulation and graph-cut optimisation) in or-
der to propose a fully scalable method. We show that the
problem can be tiled and distributed across a cloud or a
cluster of PCs by paying a careful attention to the interac-
tions between tiles and using Spark computing framework.
We confirm the efficiency of this approach with an in-depth
quantitative evaluation and the successful reconstruction of
a surface from a very large data set which combines more
than 350 million aerial and terrestrial LiDAR points.

1. Introduction
Surface reconstruction is the task of producing a digital

and continuous representation of the surface of individual
objects or entire scenes from sensing data (mostly images
and LiDAR scans). This problem has been thoroughly stud-
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ied judging by the number of approaches surveyed by [3]
and [20]. This appeal can be explained by the rise in sen-
sor capabilities (in particular number of pixels and pulse
rate by cameras and LiDAR scanners) and the diversifica-
tion of sensing platforms (mobile mapping, drones,). As
highlighted in [3], surface reconstruction methods differ by:
Point Cloud Artefacts: The imperfections of the point
cloud that the method is able to handle such as non-uniform
sampling, noise, outliers, misalignment, missing data/holes
(in particular due to occlusions)...
Input Requirements: The type of inputs associated with
a point cloud required by the algorithm such as oriented or
unoriented normals, sensor information (optical centre po-
sition and/or 2D lattice).
Shape Class: The class of shape that the method is ca-
pable of reconstructing such as organic, man-made, in-
door/outdoor scene, architectural... The shape class is im-
portant to define priors that can help handle the aforemen-
tioned artefacts.
Reconstruction Output: The representation of the recon-
structed surface such as triangle meshes, voxel grids, im-
plicit fields, point sets, deformed models, skeleton curves,
primitives...
Watertightness: A surface is watertight if it has no border.
In the case of a triangle mesh, this means each edge needs
to have exactly two incident faces.
Scalability: The ability to distribute the algorithm on mul-
tiple computers/cores in order to handle massive amounts
of data and still maintain a reasonable computing time and



a memory footprint compatible with the hardware at hand,
without impairing the quality of the reconstruction. In
other terms, assuming that a reference surface was recon-
structed from the whole data with the reference (not dis-
tributed) algorithm on a computer with sufficient RAM and
computing power, we want to ensure that the surface pro-
duced by the distributed algorithm is close enough to this
reference surface. This last point is the main focus of this
paper. Some existing approaches scale up by splitting the
input point cloud in appropriately sized tiles with some
overlaps. This raises two issues:
1) There is no guarantee that the resulting surface matches
the reference one, in particular when there are holes/missing
data on the overlaps that might be filled very differently in
the overlapping tiles.
2) There is no guarantee of surface watertightness as meshes
do not even coincide exactly on the overlaps. This might
be very problematic for applications requiring watertight-
ness (such as physical simulations, and in particular flood-
ing simulation) but also leads to visual artefacts.

Our major contribution is the first Delaunay-based water-
tight surface reconstruction algorithm that can handle arbi-
trarily large point clouds. Poisson surface reconstruction [7]
is the only other known approach that scales while ensur-
ing watertightness but it is not suited to urban scenes as it
fails to reconstruct sharp edges. Recently, [16] proposed
an extension of a segmentation based method to large scale
data set but it does not guarantee watertightness which is
an important property for many applications. Moreover,
[16] only deals with scenes in which a dimension is highly
dominated by the two others (e.g. a city scene enables to
”partition the scene on the ground plane” as said in the
paper). Conversely, our end-to-end distributed out-of-core
algorithm guarantees watertightness and it is suited to any
kind of large-scale point cloud with arbitrarily complex 3D
geometry (overhangs...).

We proceed by first tiling the point cloud with a dis-
tributed octree approach which consists in choosing the
maximum depth of an octree decomposition and then merg-
ing cells for which the total number of points they contain
does not exceed a given value (Figure 2a). Then, we com-
pute the exact 3D Delaunay triangulation to discretise space
using the algorithm introduced in [11]. Based on a dis-
tributed triangulation structure with shared cells between
tiles (blue triangles on Figure 2b) associated with the ad-
jacency graph of tiles (red lines on Figure 2b), we propose
an extension of a distributed graph-cut algorithm [28] (ini-
tially introduced for images). The watertight surface can be
extracted on the whole scene (blue line on Figure 2c) with-
out any post-processing thanks to the consistent topology
ensured by the global Delaunay triangulation.

In the next section, we review existing works on large
scale surface reconstruction with a focus on volumetric seg-

mentation and pioneering contributions to large-scale issues
in general. Sections 3 and 4 respectively present the ref-
erence surface reconstruction algorithm and its distributed
version. We then evaluate our pipeline both in terms of ac-
curacy and speedup and the results of this assessment are to
be found in Section 5.

2. Related works
2.1. Watertight surface reconstruction by volumet-

ric segmentation

Volumetric segmentation consists in determining
whether each region of a space subdivision can be traversed
(empty) or not (occupied) by light at the wavelength to
which the sensor used is sensible. Most surface reconstruc-
tion approaches, including the one on which this paper
focuses, follow this principle and we review them here.
[21] and [22] label as occupied or empty each tetrahedron
of the Delaunay triangulation of the point samples thanks
to a graph-cut optimisation of an energy function defined
based on the lines of sight (from the optical center to
the vertex) and the shape of the triangles. A watertight
triangulated surface is then extracted from this labelling as
the set of triangles separating empty and occupied tetraedra.
[17] labels voxels as empty, occupied or unknown based on
the lines of sight. An interesting feature is that undesirable
moving objects such as humans can be erased in the
final surface as they cause inconsistent voxel labels when
combining multiple scans. [10] uses the same paradigm but
relies on the Dempster Shafer theory to provide in addition
a per-triangle confidence measure. This work is the starting
point for further improvements such as densification of the
point cloud in regions of high uncertainty.

2.2. Big Data-oriented methods

As pointed out in [13], RAM size is often a bottleneck
when it comes to deal with large amounts of data. Indeed,
most surface reconstruction algorithms build the surface all
at once by loading the whole point cloud and creating addi-
tional data structures (Delaunay triangulations, voxel grids,
octrees, etc.) to represent the output surface. This im-
plies a strong constraint on the maximum input data size
for a given amount of RAM. Processing time inevitably
increases with the number of points to process, at best lin-
early. Even without considering real-time applications, it is
important to maintain the processing time within reasonable
bounds when the data size becomes very large.

Some authors have pioneered Big Data by introducing
new paradigms bypassing the typical constraints we dis-
cussed. As an example, [18] is an algorithm that can be
streamed given the locality of the information that is nec-
essary to build the surface. The ball-pivoting algorithm [4]
was proposed in 1999 and has come as a forerunner in terms



of out-of-core surface reconstruction. It is an incremental
interpolating algorithm which basic idea is the following:
a ball pivots around an edge of an initial triangle until it
touches another point. If no other point is in the ball, the
three points form a triangle. The process is repeated for
another edge and then from another seed triangle until the
whole point cloud has been explored. The interesting prop-
erty is that only a small neighbourhood is considered. We
can therefore process the data incrementally. To achieve
this, two axis-aligned planes π1 and π2 define the so-called
active region of work for pivoting. When all edges within
this space have been tested, the two planes are shifted, data
that is not going to be used again is dumped and new points
are loaded according to the new active region of work.

[25] introduce a stream-processing model that enables
to process point clouds out-of-core. The basic idea is that
some operators only need a subset of the whole input data
at a given time. Thus, this small number of points is loaded
in memory and the function can be performed while the rest
of the point cloud stays on disk. This has been the theoret-
ical basis for several algorithms including [6] which is still
considered as a standard in this domain.

Let us now review watertight surface reconstruction
works addressing distribution and scalability as pro-
posed in this paper. [2] presents an out-of-core algorithm
that enables to interactively process point clouds that do not
fit into memory. Their method consists in sub-sampling the
initial input point cloud P to produce a new, smaller one:
Prep. The Delaunay triangulation (DT) ofPrep is computed
and the geometric convection algorithm from [12] allows to
reconstruct a simplified version of the surface implied by P .
After dividing P in n regions Pi, i=1,...,n of equal size such
that:

⋃
i=1,...,n Pi = P , points of each Pi are inserted in the

triangulation and a surface refinement algorithm processes
them in order to update the reconstructed surface.

The methods presented in Parallel Poisson Surface Re-
construction [7] and Streaming MLS [14] are both out-of-
core and parallel. The external memory feature of [7] comes
from the fact that it is based on a previous algorithm [6]
while being able to run several computations at the same
time is the real contribution of this paper. Their approach
consists in formulating the surface reconstruction problem
as a Poisson equation as introduced in [19]. However, they
get rid of the necessity to consider the whole point cloud at
once and rather partition space in order to solve the prob-
lem locally. Streaming MLS [14] is based on Moving Least
Squares [23] and has a very straightforward parallel imple-
mentation that enables it to be run on a cluster of PCs. Be-
sides, [15] also presented an MLS-based out-of-core algo-
rithm.

[26] use Non-Uniform Rational B-Spline (NURBS) ap-
proximation to compute a surface. The optimisation prob-
lem is formulated such that the knot vector T is part of the

(a) Tiled input point cloud with multiple acquisitions.

(b) Tiled Delaunay triangulation. The local cells are shown in white
and mixed in blue. The adjacency graph is drawn in red.

(c) Surface extraction. The cells in red (resp. green) are labelled
as empty (resp. occupied), the light blue line denotes the extracted
surface.

Figure 2: 2D example of the proposed approach.

unknowns. The solution is parallelised using MPI [24] on
the Chemnitzer Linux Cluster supercomputer [1] and the as-
sociated speedup is almost linear.

More recently, [16] proposed a distributed workflow for
urban scene computation, based on local Delaunay triangu-
lation and local graph-cut distribution. However, as men-
tioned in Section 1, their distribution of the optimisation
does not guarantee important properties like watertightness
along borders.

3. Surface reconstruction model
In this section, we present the reference (undistributed)

surface reconstruction algorithm [10] of which we present a
distributed version in Section 4.

Local PCA: Several steps of the pipeline rely on a lo-
cal PCA (Principal Components Analysis) of the inertia
matrix of a carefully chosen neighbourhood of each point
p ∈ P . The resulting normalised eigenvectors define a local
frame f = (p, ~v1, ~v2, ~v3) and the corresponding eigenval-
ues (e1, e2, e3) indicate how much the point cloud locally
spreads in each direction. The eigenvector with smallest
eigenvalue provides a local (unoriented) surface normal di-
rection. The position of the optical centre can then be used
to consistently orient the normals from occupied to empty
space.

Sub-sampling: As planar areas can be represented with



large triangles, the input point cloud is sub-sampled to re-
duce the number of points without impairing the geomet-
ric precision with an adaptive algorithm based on PCA.
Points p from the original point cloud P are randomly sam-
pled and added to the set of sub-sampled points PS only
if ∀j ∈ {1, 2, 3}, pj = |(p − q). ~vj | > σej where pj are
the coordinates of p in the local frame of its closest point
q ∈ PS . The parameter σ controls the density of the re-
sulting point cloud: as it increases, the distance threshold
becomes larger so less points are added to PS which is less
dense.

Delaunay Triangulation (DT): Space is discretised
with the DT [5] of PS . In 3D, cells of this DT are tetra-
hedra which circumspheres do not contain any point of PS

other than the 4 points lying on them and which union ex-
actly covers the convex hull of PS .

Mass computation: Following [10], the
empty/occupied/unknown state at any point y ∈ R3

is defined for each input line of sight associated with
point p using Dempster Shafer Theory (DST) masses
mp(y) = (e, o, u) ∈

[
0, 1
]3

such that e + o + u = 1. For
example, e = 1 means certainty that space is empty, o = 1
that space is occupied and u = 1 means total uncertainty at
y. These masses mp(y) are then combined into an overall
massm(y) = (e, o, u) and integrated over each tetrahedron
t of the DT with a Monte Carlo sampling, yielding a single
occupancy value mt = o/(1− u) that gives the probability
of t to be occupied.

Volumetric segmentation via graph-cut optimisation:
The reconstruction method relies on assigning to each tetra-
hedron t of the DT the label 0 if t is empty or 1 if t is occu-
pied. For simplicity we call T both the DT of PS and the
set of tetrahedra of this DT. This labelling problem is for-
mulated as a Boolean energy minimisation (1). The energy
function is composed of a data term (2) encouraging labels
to be in accordance with overall masses and a prior term (3)
smoothing the surface, balanced by a parameter α:

x̂ = argmin
x∈{0,1}|T |

(
Edata(x) + α Eprior(x)

)
(1)

where x = (xt)t∈T ∈ {0, 1}|T | is the set of tetrahedra
labels and |T | the number of tetrahedra.

Edata(x) =
∑
t∈T

Vt.|xt −mt| (2)

Eprior(x) =
∑

(t,t′)∈T 2

At∩t′ .|xt − xt′ | (3)

where Vt is the volume of tetrahedron t andAt∩t′ is the area
of the interface between tetrahedra t and t′.

This energy (1) can be optimised via a graph-cut algo-
rithm. To do so, let us denote by G = (V,E) the dual graph

of which the vertices V = {s, t} ∪ T are the source s, the
sink t and the tetrahedra of T . The edgesE are the triangles
making the interface between all pairs of adjacent tetrahe-
dra but also those connecting every tetrahedron to both s
and t. Each edge is weighted so that the cost of an s-t cut in
the dual graph has the same value as the energy function (1)
after attributing the label values x. To minimise the energy,
we then need to minimise the sum of cut edges weights:∑

(i,j)∈E

ci,jxi,j (4)

where ci,j is the weight of edge (i, j) and xi,j is a Boolean
indicating if the edge is cut (1=cut, 0=not cut). Moreover,
xi (the label of tetrahedron i) indicates whether vertex i is
linked to s (xi = 0) or to t (xi = 1) after a given cut. We
then have: xs=0, xt=1 and ∀(i, j) ∈ E, xi,j = |xi − xj |.

Surface extraction: The final surface is defined as the
set of triangles separating occupied and empty tetrahedra.

4. Distributed surface reconstruction
In this section, we explain the distribution strategy. Al-

gorithm 1 sums up in detail the different steps and Figure 3
presents the complete distributed workflow.

4.1. Algorithm distribution

Tiling: Given a point set P , we note the partition PK =
(Pk)k∈K its decomposition into |K| disjoint subsets Pk,
where K denotes a discrete set of tile indices (Figure 2a,
Algorithm 1 line 2). We can define the primary tile of a
point p ∈ P as the unique tile Pk such that p ∈ Pk.

Local PCA: The PCA is distributed by computing it
separately on each tile Pk. The tile along with the PCA
Information is denoted PI

k .
Sub-sampling: Each tile Pk is sub-sampled separately

yielding Sub-sampled tiles PS
k .

Distributed Delaunay triangulation: We use the algo-
rithm proposed in [11] to compute a distributed DT of the
union of the sub-sampled point clouds PS

K =
⋃

k∈K PS
k

(Algorithm 1 line 6). The distributed DT of a tiled point
set P =

⋃
k∈K Pk is defined in [11] as a set of DTs:

TK = (Tk)k∈K such that Pk is a subset of the vertices of
Tk. The vertices of Tk are said to be local in Tk if they
belong to Pk and foreign in Tk if they belong to another
tile Pl with l 6= k. By extension, cells and facets of Tk
are local (resp. foreign) in Tk if all their vertices are local
(resp. foreign) in Tk, and mixed otherwise. For a mixed
cell t, we call Kt the set of indices of tiles containing t. We
call a mixed cell main in Tk if min(Kt) = k. The algo-
rithm of [11] guarantees that the union of all local and main
mixed cells is exactly the DT of P and that these cells are
disjoint. We define the adjacency graph of the triangulation
GA = (T A, EA) where T A are the tile-triangulations and
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Figure 3: The proposed distributed surface reconstruction workflow. P denotes the input point set, Pk the tiled point set,
PI
k and PS

k are the tiled point set with PCA information and the simplified one, Tk the tile-triangulations, T m
k the tile-

triangulation with the mass score, T x,t
k the labelled tile-triangulation at iteration t, xk the updated mixed cells during the

optimisation and Mk the final mesh.

Algorithm 1: Distributed surface reconstruction
Input: Point set P
// Tiling

1 for p ∈ P do in parallel
2 k ← TileId(p)
3 Pk ← Pk

⋃
{p}

// PCA/Sub-sampling
4 for k ∈ K do in parallel
5 PI

k,PS
k ← PCA(Pk)

// Delaunay Triangulation (DT)
6 T A, EA = DDT (PS)
// Mass computation

7 for k ∈ K do in parallel
8 T m

k ← mass computation(T A
k ∪ PI

k)

// Volumetric segmentation
9 t← 0
10 for k ∈ K do in parallel
11 T x

k,t, xk→l 6=k,t ← graph cut(T m
k )

12 t← 1
13 while t < max iterations do
14 for k ∈ K do in parallel
15 λk

t ← update lagrange (
⋃

l xl→k,t−1)

16 T x
k,t, xk→l 6=k,t ← graph cut(T x

k,t−1,λ
k
t )

17 t← t+ 1

// Surface extraction
18 for k ∈ K do in parallel
19 T ′

k ← aggregate neigbors(Tk,t, EA)
20 Mk = extract surface(T ′

k )

21 return M

EA the edges between them. Two triangulations are con-
nected by an edge if and only if these triangulations share
mixed points (see Figure 2b).

Mass computation: Given that the effect of an input
point p on a tetrahedron t decreases with the distance,
the mass function is only computed locally on each tile-
triangulation Tk using PI

k (Algorithm 1 line 8).
Volumetric segmentation: The energy function 1 is op-

timised in parallel with independent graph-cuts on each tile
(Algorithm 1 line 9) where the labels of mixed cells are en-
couraged to agree with an iterative scheme as explained in
Section 4.2.

Surface extraction: To extract the full surface, each tile
is loaded with its respective neighbours regarding the adja-
cency graph’s edges E (Algorithm 1 line 18). We denote by
aggregate neigbors(T A

k , EA) the function that aggregates
the triangulation and its respective neighbours. Because the
iterative scheme does not provide guarantee to converge on
the same label on mixed cells (for which copies exist in
multiple tile-triangulations), the label from the main mixed
cell is systematically chosen for the surface extraction. Note
that the surface is watertight even if the labels do not agree
since the optimisation ends with a unique set of labels which
inevitably leads to a watertight mesh.

4.2. Distributed graph-cut

The main challenges to distribute a DT based surface re-
construction method is distributing the DT itself, for which
we use the implementation of [11], and distributing the
graph cut. Graph cuts distribution approaches are highly
dependent on the structure of the graph. While many ap-
proaches exist to distribute graphs that come from the regu-
lar 2D structure of image segmentation [29], we did not find
an approach tackling the specific structure of the adjacency



Figure 4: 2D visualisation of the full triangulation (left) be-
ing split into 2 tiles (middle and right) with local cells in
white and mixed cells in blue. Mixed cells are duplicated in
both sub-graphs.

graphG of the cells of a DT (see Section 3) and of its tiling-
induced split into |K| sub-graphs Gk = (Vk, Ek). Thus
one of the major contributions of this paper is the generali-
sation to our tiled graph G of the method proposed in [28]
to distribute the graph-cut optimisation across our multiple
tiles. We use the structure of the tiled DT to split G into
|K| subgraphs Gk, one for each tiled-triangulation Tk. In
practice, each Gk is defined as the adjacency graph of the
set of local and mixed cells of Tk (Figure 4). The main issue
of the distributed problem is to ensure that the mixed cells
have the same label relative to the tiles that share them. For
any k ∈ |K|, we respectively denote by xki,j and xki the
values of xi,j and xi in sub-graph k. Besides, we define
cki,j =

ci,j
|{k:(i,j)∈Ek}| : the weight of edge (i, j) normalised

by the number of tiles it appears in. Using this decomposi-
tion, the optimised function becomes:

f(x) =
∑

(i,j)∈E

ci,jxi,j =
∑
k∈K

∑
(i,j)∈Ek

cki,jx
k
i,j (5)

under the condition that labels xki should have the same
value amongst all subgraphs they appear into:

∀ k, l ∈ K2, ∀ i ∈ Vk ∩ Vl, xki − xli = 0 (6)

To split this problem in sub-problems using our tiled graph
structure, we solve the graph-cut on each sub-graph Gk

with variables xki,j . To guarantee the condition expressed
in equation 6, we add a penalty term to the energy using
Lagrangian duality:

L(x,λ) =
∑
k∈K

∑
(i,j)∈Ek

cki,jx
k
i,j

+
∑
k∈K

∑
l>k

∑
i∈Vk∩Vl

λk,li (xki − xli) (7)

with λ = {λk,li : (k, l) ∈ K2, i ∈ Vk ∩ Vl}. By defining,
for any tile index k ∈ K:

Lk(x
k,λ) =

∑
(i,j)∈Ek

cki,jx
k
i,j

+
∑
l 6=k

∑
i∈Vk∩Vl

{
1 if k < l
−1 otherwise

}
λk,li xki (8)

We then have:

L(x,λ) =
∑
k∈K

Lk(x
k,λ) (9)

Since the Lagrange dual function g(λ) = minx L(x,λ)
is concave [9], we can find an optimal distributed solu-
tion to our problem (5+6) by maximising g(λ) via an as-
cent method. We denote by t the iteration index and by
τ = {τk,li : (k, l) ∈ K2, i ∈ Vk ∩ Vl} the vector of
step amplitudes by which we increment λ. We initialise the
Lagrange multiplier vector λ(t = 0) = 0 and the vector
of steps τ (t = 0) by τk,li = τ0. As demonstrated in [28],
(xk−xl)k,l∈K2 is a supergradient to g at λ. Consequently,
we can solve the distributed graph cut by iterating:

• Solve the graph-cut problems Lk(x
k,λ) for xk

• Update λ and τ :

for k ∈ K and l < k :

λk,li,t+1 = λk,li,t + τk,li,t (x
k
i,t − xli,t) (10)

τk,li,t+1 =
τk,lt

2
if xki,t−xli,t 6= xki,t−1−xli,t−1 (11)

To perform this update at iteration step t, each tile Gl sends
to its neighbour tiles Gk the labels of their shared mixed
cells (according to Gl) in a vector xl→k,t.

4.3. Implementation details

The workflow is implemented with the Apache Spark
framework [31]. The input of the algorithm is a point cloud
separated in several files stored on the Hadoop distributed
filesystem (HDFS) [27]. To ensure a reasonable memory
footprint in the tiling, we split large files to ensure that each
input file contains less than 1 million points. Each such file
is serialised into an RDD [30] with a Base64 encoding in a
String. The key/value formalism is used: each element of
the RDD is represented by a key and a value which is a list
of sets (list of point sets, list of tile-triangulations, etc.). A
transformation on an RDD (Local graph-cut, mass compu-
tation, etc.) is performed with a C++ call in parallel on each
RDD chunk by using the pipe operator. The union operator
(∪ in Algorithm 1 and � in Figure 3) is a union followed by
a ReduceByKey in Spark.

5. Experimental results

While memory and computational efficiency are the
main goals when trying to distribute an algorithm, the most
important aspect of evaluation is to verify that the dis-
tributed algorithm reproduces as closely as possible the out-
put of the reference algorithm. For that reason, we will
first evaluate the distributed algorithm in comparison with
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Figure 6: Evolution of the resulting mesh along iterations
on a real case data. First line shows the result with the local
graph-cut without iterating, second line at iteration 3, third
line at iteration 15 and fourth line at iteration 30.

the reference, and then focus on the scalability. More-
over, as PCA and sub-sampling are expected to suffer mi-
nor border effects, and the distributed Delaunay triangula-
tion is proved to produce the exact Delaunay Triangulation
[11], we mainly focus our evaluation on our major con-
tribution: the distributed graph cut. In all the following
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Figure 7: Execution time (left) and strong scaling factor
(right) according to the number of cores with 4,3,2 and
1 cores/executors (12Go Ram/executors) on a 10 million
points data set.

experiments, unless otherwise stated, we used the values:
α = 0.005, τ0 = 5, and 30 iterations.

5.1. Distributed graph-cut convergence

Graph cut implementations provably find the global min-
imum cut of the graph [8] which equivalently achieves the
global minimum of the associated energy (eq 1). Thus
we will assess our distributed graph cut implementation by
comparing the energy obtained with our distributed imple-
mentation with this global minimum energy. In order to
evaluate our capacity to handle a large proportion of mixed
cells (which makes the distributed problem harder), the al-
gorithm is run with different octree depths for a fixed num-
ber of points. A larger depth induces more and smaller tiles,
resulting in a higher proportion of mixed cells. As our iter-
ative scheme is mainly influenced by the value of τ0, we
also evaluate its impact on convergence. Figure 5 shows
the evolution along iterations t of the ratio between the en-
ergy (eq 1) of the labelling computed with the distributed
graph-cut Ed and the labelling computed with the reference
graph-cut Er. It is important to note that even if two sur-
faces with the same energy are not necessarily the same,
they are considered equally good. For all values of τ0 and
octree depths, the energy ratio increases during the first it-
erations until it reaches a maximum around iteration 5, then
decreases until converging significantly under the initiali-
sation value,which shows the robustness of our distributed
algorithm to these two factors.

Figure 6 shows the resulting mesh along iterations on
a LiDAR data set. Shared cells are visually the most im-
pacted after the first graph-cut. In some areas, tiles are not
or badly connected, only triangles between local cells at the
centre of a tile are well reconstructed. After 3 iterations, the
mesh is better regularised but the quality remains bad at the
boundary. After 15 iterations, the main errors are removed
and the tiles are globally well connected. At iteration 30,
small shared areas like the car hood in the example are well
reconstructed.



Figure 8: Reconstruction result on a 350 million points data set. Tiling is visualised through a random color per tile.

5.2. Speedup

The efficiency of the proposed approach is evaluated on
a Spark cluster with 28 cores and 100GB of RAM. This
configuration is close to the m51 setup of the Amazon EMR
service dedicated to general usage that provides 4GB per
core. We evaluate the strong scaling speedup which quan-
tifies how the algorithm scales with an increasing number
of cores for a fixed number of points. We compute the
surface of a 10 million points data set with different clus-
ter configurations: a varying number of executors (7,4,2
and 1) and, for each executor, a varying number of cores
(4,3,2,1) for a fixed 12GB of RAM per executor in every
case. The total number of cores is the number of executors
times the number of cores per executor. The result is shown
on Figure 7 where the strong scaling factor is defined by
t1 core/(n.tn cores) as a function of the number of cores. As
our application is fully distributed, we compare it to the per-
fect scale factor of 1. Results show that every configuration
has a scale factor > 0.6. In other words, the execution time
with a single thread is at least divided by 0.6 times the num-
ber of cores with the distributed implementation.

5.3. Large data set result

We tested our algorithm on a very large data set that
combines more than 350 million points acquired with both
aerial and terrestrial LiDAR (Figure 8), on which our avail-
able hardware could not run the reference implementation
by lack of RAM. The point cloud was split into 9520 tiles
and it took 17 hours to process using 28 cores. The pro-
posed approach produces a watertight mesh of the whole
area with highly detailed and complex 3D structures, com-

1https://aws.amazon.com/ec2/instance-types/m5/

posed of around 80M vertices. We empirically set the sub-
sampling parameter σ = 0.3 to have a good trade-off be-
tween accuracy and computing time (a higher σ would re-
duce computing time at the cost of accuracy).

6. Conclusion and perspectives

In this paper, we have presented a fully distributed and
out-of-core surface reconstruction method. The extension
of the distributed graph-cut method of [28] to the struc-
ture of the tiled 3D Delaunay Triangulation of [11] leads
to a fully distributed method that ensures both watertight-
ness of the resulting mesh and preservation of sharp edges.
The evaluation confirms that the proposed method produces
meshes of quality similar to the reference (non-distributed)
implementation. The fully distributed framework allows an
efficient speedup while maintaining a reasonable memory
footprint even for very large inputs. The implementation
on the state-of-the-art Apache-Spark framework shows very
good results on managing very large data sets. One of the
drawbacks of our approach is that it is still slow compared
to a classic optimised algorithm on small data sets that fits
in memory. Thus the next step is to further optimise the al-
gorithm in order to get processing times comparable to non
distributed algorithms on small data set without neglecting
the quality. Moreover, we want to improve the quality of
the surface reconstruction method by benchmarking recent
state of the art DT based surface reconstruction methods (in-
cluding learning based) that could be easily distributed us-
ing our framework as only the mass computation part would
change.
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