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Abstract

The task of 2D human pose estimation has known a signif-1

icant gain of performance with the advent of deep learning.2

This task aims to estimate the body keypoints of people in3

an image or a video. However, real-life applications of such4

methods bring new challenges that are under-represented5

in the general context datasets. For instance, driver sta-6

tus monitoring on consumer road vehicles introduces new7

difficulties, like self- and background body-part occlusions,8

varying illumination conditions, cramped view angles, etc.9

These monitoring conditions are currently absent in general10

purposes datasets. This paper proposes two main contribu-11

tions. Firstly, we introduce DriPE (Driver Pose Estimation),12

a new dataset to foster the development and evaluation of13

methods for human pose estimation of drivers in consumer14

vehicles. This is the first publicly available dataset depicting15

drivers in real scenes. It contains 10k images of 19 different16

driver subjects, manually annotated with human body key-17

points and an object bounding box. Secondly, we propose a18

new keypoint-based metric for human pose estimation. This19

metric highlights the limitations of current metrics for HPE20

evaluation and of current deep neural networks on pose21

estimation, both on general and driving-related datasets.22

1. Introduction23

Human Pose Estimation (HPE) is a well-known task in24

computer vision. This problem aims to find the position25

of keypoints in the 2D plane or the 3D space. Keypoints26

are generally placed on the body joints (shoulders, elbows,27

wrists, hips, knees, ankles), and the head. Additional points28

can be placed on hands, feet, or face.29

State-of-the-art methods have reached good performances30

on HPE challenges on both single-person [1, 19, 30] and31

multiperson datasets [24], especially through deep learn-32

ing. However, these general-purpose datasets do not depict33

challenging scenes that might occur very often in real-life34

applications, e.g., strong body occlusion or varying illumina-35

tion.36

Pose estimation inside of a vehicle brings new difficulties37

that are under-represented in general datasets (Fig. 1). First,38

the camera placement causes a strong side viewing angle,39

producing both self- and background occlusion (e.g., by the40

dashboard and the wheel). By consequence, the side of the41

subject’s body opposite to the camera becomes more difficult42

to detect (Fig. 1C). Luminance is also an important factor43

in HPE. For instance, body parts can be fully visible in a44

regular pose but be missed by the network due to strong45

illumination (Fig. 1A). Also, the outside light may visually46

split the upper body into two halves, and hence deceive the47

network (Fig. 1B). Finally, the low contrast of the car interior48

can make the detection of body parts difficult, like the right49

forearm in the picture (Fig. 1D), depending on the color50

of the subject’s clothes. To evaluate the open challenges51

on human pose estimation in consumer cars, we propose52

the first publicly-available dataset in real-world conditions53

called DriPE (Driver Pose Estimation) 1.54

Moreover, we study the limitations of existing metrics55

[12, 24, 40] for the evaluation of the HPE task on keypoint56

detection, on both general and driving contexts. Based on57

our observations, we propose a new metric called mAPK to58

characterize the observed limitations. This metric is essential59

to highlight the challenges presented by DriPE, and up to60

now ignored in general datasets, such as background and61

self-occlusion.62

This paper is organized as follows. Section 2 presents63

related work on human pose estimation. In Section 3, we64

present DriPE dataset. We describe in Section 4 the proposed65

mAPK metric. Section 5 introduces the evaluated networks66

and describes their architecture. We present and discuss67

in Section 6 the experimental results. Finally, Section 768

presents our conclusions and future work.69

1DriPE dataset is publicly available on: https://gitlab.liris.
cnrs.fr/aura_autobehave/dripe

https://gitlab.liris.cnrs.fr/aura_autobehave/dripe
https://gitlab.liris.cnrs.fr/aura_autobehave/dripe


Figure 1: Samples of DriPE dataset. The top and bottom rows show, respectively, pose predictions by Simple Baseline network
[39] and ground truth data. Faces have been blurred on this figure to anonymize the participants’ identities.

2. Related Work70

This section presents the work related to keypoint detec-71

tion for human pose estimation. More precisely, we discuss72

the datasets used for this task, the current methods for pose73

estimation, and the metrics used to evaluate their accuracy.74

2.1. Datasets75

Datasets play an important role in the performance of76

deep learning methods. Improvements in the human pose77

estimation using deep learning networks have been partly jus-78

tified by new datasets with more subjects’ pictures and more79

variability in their poses, the angles of view, the background,80

etc.81

Leeds Sports Pose (LSP) [19] dataset is the first HPE82

dataset released with more than 1k training images, which83

was later extended to 11k. It contains pictures of full-body84

subjects practicing different sports extracted from Flickr.85

Frames Labeled In Cinema (FLIC) dataset [30] is formed86

of around 5k pictures extracted from Hollywood movies.87

The Max Planck Institute for Informatics (MPII) dataset [1]88

contains around 25k images extracted from various YouTube89

videos. Microsoft Common Objects in Context (COCO) [24]90

is originally an object detection and segmentation dataset,91

which was then expanded to a multiperson HPE dataset. It is92

composed of more than 250k pictures extracted from Bing,93

Flickr, and Google.94

Even if these general datasets can be useful for training or95

benchmarking, they might not present certain challenging sit-96

uations that might occur in domain-specific datasets. There-97

fore, several datasets have been published in the last years98

focusing on monitoring people inside cars [3, 4, 13, 18, 25].99

However, they are mostly focused on the action recogni-100

tion task. Furthermore, most of the available datasets are101

recorded in studios and do not represent natural foreground102

nor illumination changes present in vehicle cockpit during a103

daily routine ride, which are true challenges for HPE meth-104

ods. For instance, authors in [25] propose Drive&Act dataset,105

depicting multi-view and multi-modal (RGB, NIR, depth)106

actions in a static driving simulator, with labeled actions107

and predicted 3D human poses. DFKI [13] describes a new108

test platform to record in-cabin scenes. However, no pub-109

lic dataset for HPE in a vehicle using this setup has been110

recorded or published up to now.111

Besides, HPE datasets do not use exactly the same key-112

points to represent the body. Most of the representations,113

commonly called skeletons, include one joint marker per114

major body limb articulation (shoulder, elbow, wrist, hip,115

knee, ankle). However, while some datasets [1, 19] only116

put markers on the top of the head and the base of the neck,117

others adopt a finer representation (eyes, nose, ears) [24].118

Some works also extend the human pose representation to119

hands and feet [16, 6].120

In the end, the most prominent general datasets in the121

state of the art of HPE are MPII [1] and LSP [19] for single-122

person and COCO [24] for multiperson pose estimation.123

Regarding the pose estimation inside of a vehicle, there is124

no publicly available dataset for HPE which presents real125

driving conditions.126

2.2. HPE Methods127

The pose estimation methods may be divided into two128

types: single-person and multiperson methods.129

2.2.1 Single-person Pose Estimation130

Single-person methods for HPE using convolutional neural131

networks can be split into two categories: regression-based132

and detection-based methods.133

Regression-based CNN methods aim to directly predict134

the keypoints coordinates from pictures. AlexNet [21] is the135

first CNN baseline used for HPE. Toshev and Szegedy [36]136

use AlexNet as a multi-stage coordinate estimator and refiner.137

Carreira et al. [8] propose an Iterative Error Feedback net-138

work based on the deep convolution network GoogleNet [33].139

Finally, Sun et al. [32] propose a parametrized pose repre-140



sentation using bones instead of keypoints, paired up with141

the ResNet-50 [14] for both 2D and 3D HPE.142

However, regression-based networks usually lack robust-143

ness due to the high non-linearity of the end-to-end structure144

between the image and the coordinates of the keypoints.145

To overcome this issue, many methods have proposed a146

detection-based approach instead. The majority of these147

methods aim to predict heatmaps, i.e., maps where each pixel148

represents the probability for the keypoint to be located here.149

Newell et al. [27] propose an architecture composed of new150

modules called Hourglasses, which aim to extract features151

from different scales using a network built based on Residual152

Modules [15]. This architecture has inspired several other153

works [11, 20, 34, 35]. In addition to Hourglass-based meth-154

ods, other detection-based architectures have been developed.155

Chen et al. [9] propose an adversarial learning architecture156

that combines a heatmap pose generator with two discrimina-157

tors. Xiao et al. [39] use the ResNet-50 [14] network but add158

deconvolution layers in the last convolution stage to predict159

the heatmaps. Unipose [2] combines a ResNet backbone for160

feature extraction with a waterfall module to perform HPE.161

Sun et al. [?] use a parallel multi-scale approach similar to162

the Hourglass with exchange units.163

The networks mentioned previously achieve state-of-the-164

art performances on recent challenges. However, ResNet165

Simple Baseline [39] presents a competitive performance166

while preserving a light architecture compared to others.167

2.2.2 Multiperson Pose Estimation168

Multiperson HPE brings two difficulties to the problem: find169

the locations of keypoints on the image and associate the170

detected keypoints to the different subjects. Multiperson171

approaches can be divided into two categories: top-down172

and bottom-up methods.173

Top-down approaches first detect the people in the im-174

age and then find the keypoints of each person. Most of175

the top-down methods use a single-person HPE architecture176

preceded by a person detection step: Xiao et al. [39] and177

Sun et al. [31] both use a faster R-CNN [29] while Chen et178

al. [10] use a feature pyramid network [23]. Li et al. [22]179

propose a multi-stage network with cross-stage feature ag-180

gregation. Cai et al. [5] use a similar structure combined181

with an original residual steps block.182

Conversely, bottom-up methods first detect every key-183

point in the image and then infer people instances from them.184

Newell et al. [26] reuse their stacked hourglass network for185

single-person HPE and adapt it to multiperson by predict-186

ing an additional association map for each keypoint. Cao187

et al. [7] propose an iterative architecture with part affinity188

fields used to associate the keypoints to people.189

Among the described architectures, top-down methods190

currently present the highest performance on HPE. For in-191

stance, MSPN [22] and RSN [5] have won the COCO Key-192

point Challenge in 2018 and 2019, respectively.193

2.3. Evaluation Metrics194

The performances of the general 2D HPE methods can195

be difficult to evaluate since it depends on many criteria196

(number of visible keypoints, number of visible people, size197

of the subjects, etc.).198

One of the first commonly used metrics is Percentage199

of Correct Parts (PCP) [12]. Each keypoint prediction is200

considered correct if its distance to the ground truth is in-201

ferior to a fraction of the limb length (e.g., 0.5). Thereby,202

this metric punishes more severely smaller limbs, which are203

already hard to predict due to their size. To mitigate this204

issue, Percentage of Correct Keypoints (PCK) [40] sets the205

threshold for every keypoint of a subject on a fraction of a206

specific limb’s length. Two thresholds are commonly chosen207

to evaluate the performance in the literature. These metrics208

are mostly employed to evaluate algorithms on single-person209

datasets, like MPII and LSP.210

Another common metric is Average Precision (AP),211

paired up with Average Recall (AR). For single-person net-212

works, APK [40] is computed on keypoint detections. A213

detection is considered as a true positive if it falls under a214

set range of the ground truth, similarly to that PCP and PCK215

metrics, and a false positive otherwise.216

In a multiperson context, most metrics compute the per-217

formance of a method at a person detection level instead of218

a keypoint level. For instance, the mAP metric [1] first pairs219

up each person detection with the ground truth using PCK220

metric. Then, the matched and unmatched people are used221

to compute the average precision and recall. COCO dataset222

proposes a second metric for the evaluation of the HPE task223

that we will refer to as AP OKS. This metric uses the Object224

Keypoint Similarity (OKS) score [24], which is similar to225

the Intersection over Union (IoU), to calculate the distance226

between the people detections and ground truth based on227

keypoints. The final scores are still computed over people.228

One of the main limitations of both PCK and AP OKS229

evaluation metrics is that they both put aside false-positive230

keypoints. Moreover, because the COCO dataset is mostly231

used in a multiperson context, its metric measures precision232

and recall based on people detection, instead of keypoints.233

To address the limitations of previous evaluation procedures,234

we define a new general metric based on keypoints detection235

called mAPK.236

3. DriPE Dataset237

We propose DriPE, a dataset to evaluate HPE methods238

on real-world driving conditions, containing illumination239

changes, occluding shadows, moving foreground, etc. The240

dataset is composed of 10k pictures of drivers in real-world241



Figure 2: Image samples from DriPE dataset. Faces on the figure have only been blurred for the purpose of this paper.

Drive&Act [25] DriPE
N° subjects 15 19

Female / Male 4 / 11 7 / 12
Annotations HPE network Manual

RGB ✓ ✓
Depth ✓ -
NIR ✓ -

N° images 9.6M (videos) 10k
Driving context Simulator Real world

Table 1: Comparison of driving-related datasets for HPE.

conditions, split into 7.4k images for training, and 2.6k im-242

ages equally divided into validation and testing sets. Table 1243

presents a detailed description of the dataset and compares it244

to prior work.245

3.1. Data Collection246

To build DriPE, we extracted pictures from videos247

recorded during several driving experiments. In each ex-248

periment, we installed an RGB camera inside the car on top249

of the passenger’s door, directed towards the driver. The250

subjects drive either in a real-size replica of a city (closed251

track) or on actual roads. In total, we recorded 19 drivers,252

allowing us to collect over 100 hours of video clips. We253

based the image selection process using two metrics: struc-254

tural similarity index measure (SSIM) [37] and brightness255

differential. We chose these two metrics with the objec-256

tive of extracting pictures with both distinct luminance and257

structure. Therefore, we computed the SSIM and the light258

differential between two successive frames, with a step of259

three frames per second. Then, we selected 10k pictures,260

half with the highest absolute light differential, and half with261

the lowest SSIM. We defined a minimum time gap between262

two selected frames to increase variability.263

3.2. Annotations264

We have chosen to follow the COCO dataset’s annota-265

tion style for DriPE since face keypoints are particularly266

interesting to describe driver attention. For each image, we267

annotated the person bounding box and 17 keypoints: arms268

and legs with three keypoints each, and 5 additional markers269

for the eyes, ears, and nose. We split the annotated keypoints270

into two categories: visible and non-visible. The non-visible271

category corresponds to the occluded points, either by an272

object or by the subject body, but which position can still be273

deducted from the visible body parts. Note that in this study,274

both categories are treated equally by the evaluation methods.275

Following the COCO dataset policy, the face keypoints were276

annotated only if visible.277

The ground truth heatmaps were generated using centered278

2D Gaussian with a standard deviation of 1px, centered279

around the keypoint location.280

4. Evaluation Metric281

Following the state of the art, we only evaluate in this282

study detection-based networks, which predict heatmaps.283

Each heatmap is a matrix where the elements represent the284

probability of a particular keypoint to be located at a pixel.285

Therefore, the output of the evaluated network models con-286

tains one heatmap per skeleton keypoint. Following the287

common practice in 2D single-person HPE [27, 35, 38, 39],288

the position of a given keypoint corresponds to the maximum289

value of its heatmap. To separate predictions from noise, a290

minimum confidence threshold is applied to this maximum.291

From these coordinates, several metrics can be calculated to292

evaluate the network performances.293

4.1. Background294

First, we describe and discuss in detail two evaluation295

metrics from the literature: AP OKS and APK.296

4.1.1 AP OKS297

To evaluate the performance of each network on the COCO298

dataset, the official multiperson metric is based on average299

precision (AP) and recall (AR). This evaluation is carried300

out following three steps: 1) compute the distance between301

each detected person and each ground-truth subject, 2) pair302

up the best person detection with its ground-truth, and 3)303

compute the precision and recall.304



The metric used to compute the distance between a per-305

son’s prediction and its ground truth is the OKS (Equation 1).306

OKS =

∑
i KSi ∗ δ(vi > 0)∑

i δ(vi > 0)
(1)

where KSi is defined as follows:

KSi = exp− d2i
2.s2.k2i

(2)

where i iterates over each detected keypoint, di is the Eu-307

clidean distance between the predicted and the ground-truth308

keypoints, s is the image scale computed from the bounding309

box size, ki a per-keypoint constant that tries to homoge-310

nize the standard deviations between each body part. Non-311

annotated keypoints have visibility vi equal to 0, therefore312

their associated false positives are ignored by OKS computa-313

tion.314

Secondly, the OKS scores are used to select the best315

paired-up people, starting from the highest score. All un-316

matched detected people or paired-up couples with an OKS317

score lesser than a selected threshold (ranging from 0.5 to318

0.95) are discarded. Finally, considering matched and dis-319

carded people as true and false positives, respectively, the320

metric computes the mean average precision and recall at a321

person-level detection.322

Regarding our problem, this metric has two main limita-323

tions. Firstly, the OKS metric only considers the annotated324

body points. This decision prevents the metric to properly325

measure the keypoint detection’s precision of the evaluated326

methods. This bias can be problematic in contexts where327

many keypoints cannot be annotated, e.g., in a car context328

with the strong occlusion (mostly the legs and the bodyside329

opposite to the camera). Therefore, we want to integrate330

false-positive keypoints into the performance evaluation of331

HPE methods. Secondly, the true and false positives are com-332

puted at the level of person detections instead of keypoints.333

In summary, this procedure does not properly characterize334

the performance of the evaluated methods on the task of335

keypoint detection.336

4.1.2 APK337

Average Precision over Keypoints (APK) [40] is a metric338

that aims to compute precision and recall scores based on339

keypoints. For each keypoint, a prediction is considered as a340

true positive if it is located within a defined radial distance341

from the ground truth. The original work sets this threshold342

to half the size of the hand. A similar threshold is used to343

compute Percentage of Correct Keypoints (PCK) [40], and344

it is defined as a fifth of the torso size (PCK@0.2[19]) or345

half the head size (PCKh@0.5[19]). Then, non-detected346

keypoints are counted as false negatives, while points that347

are detected but not annotated in the ground truth count348

as false positives. Finally, average precision and recall are349

computed.350

This metric is interesting since it handles the two prob-351

lems of the COCO OKS metric: it is keypoint-based, and it352

considers false positives of non-annotated keypoints. This353

metric has not been used in recent HPE work [2, 20, 34, 39].354

One of its main limitations is the use of a distance threshold355

based on body part size. In fact, the COCO annotation style356

does not provide hand or head size. The use of the torso357

is also not an appropriate option in the car cockpit context358

since, depending on the viewing angle, the torso’s full length359

is not always fully visible on the image.360

4.2. mAPK361

To address the problems mentioned previously, we pro-362

pose to compute an evaluation metric based on keypoints363

instead of people. The mAPK metric reuses the concept from364

APK of computing average precision and recall based on365

keypoints but changes the acceptance method. Algorithm 1366

summarizes the computation process. The algorithm takes as367

input a list of matched person (gt, dt) from the ground truth368

and the detection, respectively, as well as two lists represent-369

ing unmatched ground truth and detected people. A person370

(in gt or dt) is defined as a list of keypoint coordinates (if371

a keypoint is not annotated or detected, the corresponding372

element in the list is empty). The output of the algorithm is373

the average precision AP and recall AR.374

For single-person settings, the list of matched people375

consists of the ground-truth annotations and the predicted376

keypoints. For multiperson settings, a person detector is377

generally used to compute the people candidates in the scene.378

In this case, we first carry out a pairing phase to match379

ground truth and people predictions. We use for this step the380

pairing algorithm from COCO based on OKS. We set the381

OKS threshold which controls the pair acceptance to 0 to382

avoid discarding any person (see [24] for more details).383

The calculation of mAPK is carried out as follows. Firstly,384

we compute a keypoint score KS (Equation 2) for each key-385

point which is both annotated and detected. A keypoint is386

considered as correctly detected, i.e., true positive (TP), if387

its KS score exceeds a threshold selected between 0 and 1.388

Otherwise, we consider the ground truth and the prediction389

keypoint unmatched. Then, we count all unmatched keypoint390

predictions as false positives and unmatched ground-truth391

keypoints as false negatives. Finally, we compute precision392

and recall for each type of keypoint. This process is repeated393

with different acceptance-threshold values (e.g., from 0.5 to394

0.95, with a step of 0.05) and then averaged to obtain the395

final performance of the evaluated method.396

5. Evaluated Architectures397

This section describes the HPE methods in evaluated this398

study. From the state of the art, we selected three recent net-399
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Figure 3: Generic pipeline of HPE methods based on heatmap generation.

Algorithm 1: mAPK computation
Input :
matched person: pairs of (gt, dt) of matched ground truth

and detected people
unmatched dts: unmatched detected people
unmatched gts: unmatched ground-truth people
acceptance score: acceptance-score threshold
Output :AP, AR

true positives=0, false positives=0, false negatives = 0
for each (gt, dt) in matched person do

for keypoint kp in the skeleton representation do
if not empty(dt[kp]) and empty(gt[kp]) then

false positives += 1
else if empty(dt[kp]) and not empty(gt[kp]) then

false negatives += 1
else

if KS(gt[kp], dt[gp]) > acceptance score
then

true positives += 1
else

false positives += 1
false negatives += 1

for each keypoint in all unmatched gts do
false negatives += 1

for each keypoint in all unmatched dts do
false positives += 1

AP = compute AP(true positives, false positives)
AR = compute AR(true positives, false negatives)

works [5, 22, 39] with competitive performances on single400

and multiperson settings, as discussed in Section 2.2. Using401

these two categories of methods will allow us to evaluate the402

relevance of the mAPK metric for both single-person and403

multiperson settings. These networks are detection-based404

architectures (Fig. 3). At last, we describe the procedure fol-405

lowed for training and evaluation of the selected networks.406

5.1. Simple Baseline ResNet407

Simple Baseline (SBl) architecture [39] bases its feature408

extraction process on the ResNet architecture [14]. ResNet409

model has been proved well efficient for image-feature ex-410

traction [32, 2] and is often used in other image processing411

tasks. This backbone is based on several convolution lay-412

ers gathered as blocks, with skip connections between each413

module adding the input of the module to the output.414

Xiao et al. [39] propose to implement ResNet 50 with a415

different output module for human pose estimation. First,416

the ResNet 50 backbone learns to extract the features while417

reducing the shape of the feature maps. Then, the last stage is418

composed of three upsampling convolutions combined with419

BatchNorm [17] and ReLu layers, instead of the original420

ResNet C5 stage. This deconvolution stage brings back the421

feature maps to their input size and generates the heatmaps422

for each keypoint.423

5.2. MSPN and RSN424

MSPN [22] is a top-down multiperson HPE network. It425

is built around two steps. First, MegDet [28] object detector426

identifies the bounding boxes of each person in the images.427

Then, the picture is cropped around the boxes, and each part428

serves as input for the multi-stage pose estimator. A stage of429

the MSPN has a U-shape architecture that processes features430

at 4 different scales. A bottleneck residual module processes431

the features at each scale, and skip connections are used432

between the downsizing stage and its symmetric counterpart433

in the upsizing stage. Intermediate supervision is applied to434

each scale of the upsizing stage. Indeed, the loss is applied on435

heatmaps generated at each scale and which are previously436

upsampled to the network’s output shape. Stages are then437

stacked several times (four times in this implementation).438

To reduce information loss between stages, the architecture439

uses cross-stage aggregation.440

RSN [5] follows the same global architecture as MSPN.441

However, a novel residual steps block module (RSB) re-442

places the regular residual block in the downsizing stages.443

The RSB module aims to learn delicate local representations,444

by splitting the features into four channels. At the end of the445

multi-stage network before the final loss, a pose refine ma-446

chine (PRM) is used as an attention mechanism to generate447

the final heatmaps.448

5.3. Model Training and Inference449

The training of the models has been done using the code450

provided by the respective authors in public repositories,451

following their recommendations for hyperparameters. All452



training stages were done on the COCO 2017 train set, with453

mini-batches of 32 images and data augmentation operations454

(horizontal flipping, rotation, etc.). The training set is com-455

posed of 118k pictures, while the validation set contains 5k456

images. We used ResNet-50 based Simple Baseline archi-457

tecture, trained for 140 epochs on the COCO dataset with a458

learning rate of 1e-3. RSN and MSPN are trained for 384k459

iterations, with a 5e-4 base learning rate divided by 10 at460

epochs 90 and 120. The networks were trained on two 24GB461

Nvidia Titan RTX with 64GB of RAM and an Intel i9900k462

processor.463

Also, since DriPE is a single-person dataset, all network464

models took as input the full image. However, for COCO465

which is a multiperson dataset, the models took as input466

a patch cropped around the output of a person detection467

algorithm.468

6. Results and Discussion469

We first present the performance of the three described470

networks trained on COCO 2017 and tested on both the471

COCO validation set and the DriPE test set. Then, we present472

the results of these models after finetuning them on the473

training set of DriPE dataset. We first use AP metric based474

on OKS, then compare the results with mAPK metric results.475

6.1. Performance of Networks trained on COCO476

Dataset477

This evaluation studies the performance of the trained478

networks on the COCO validation set (Table 2) using the479

official dataset evaluation procedure. We validate that the480

trained models achieves a performance close to the original481

work (around 2% less on average).482

Then, we evaluate the performance of these methods483

on DriPE test set (Table 3) using the models trained on484

COCO 2017. Due to the camera placement in the car, DriPE485

contains only ”Large” subjects (subjects with a bounding486

box containing more than 962 pixels [24]). Therefore, it is487

more suitable to compare COCO and DriPE datasets using488

APL and ARL column values.489

The state-of-the-art networks show slightly lower perfor-490

mances on DriPE dataset than on the COCO dataset (Tables 2491

and 3). On one hand, we note that on average, APL and492

ARL are lower on DriPE than on COCO. On another hand,493

we observe higher precision and recall scores on the three494

networks when using an OKS threshold of 50% (AP50) or495

75% threshold (AP75). The results suggest that most of the496

improvements to be made in the car context concern the pre-497

cision of the localization of keypoint predictions (AR / AP498

threshold superior to 75 %).499

6.2. Finetuning on DriPE Dataset500

We finetune the three networks on DriPE training set.501

Finetuning has been done for 10 epochs with a learning rate502

10 times lower than the original learning rate used for the503

COCO base training (Table 4).504

Results indicate a gain from 20 to 25% in AP and 10 to505

15% in AR after finetuning the networks. This increase can506

be partially explained by the relatively small variance of the507

dataset. Therefore, the networks could have overfitted the508

training set without experiencing an important performance509

loss on the test set. Despite that, the improvement of perfor-510

mance suggests that the networks learned specific features511

on DriPE that they did not learn on a general dataset, which512

highlights the relevance of DriPE dataset to the field. Even-513

tually, AP OKS results may suggest that HPE inside of a514

car cockpit would be a nearly solved problem, at least when515

evaluating the performance of keypoint detections methods516

at a people level.517

6.3. Comparison with mAPK Metric518

This evaluation assesses the performance of the same519

models but at the level of keypoint predictions. We recom-520

puted the performance of the evaluated models (Tables 2 and521

3) using mAPK metric (Table 5 and Table 6).522

We observe that even if AP OKS and mAPK metrics523

values are not directly comparable, the recall scores are close524

between the two metrics (around 75%) (Tables 2, 3, 5, and 6).525

However, we note that the average precision scores are lower526

with mAPK. This decay in precision is explained by the high527

number of false positives that are considered by mAPK but528

ignored by OKS (Table 7). After analysis, we determined529

that most of the false positives come from the non-annotated530

points, particularly for the MSPN and RSN architectures.531

These results show that the networks are overconfident in532

their prediction and cannot properly detect the absence of533

a keypoint on the image. Note that this information cannot534

be found with AP OKS since the score is not computed at a535

keypoint level.536

It is worth noticing that even if the head keypoints are537

considered as some of the easiest keypoints to detect in HPE,538

trained models have attained a very low average precision539

on their detection. The overall number of false positives540

is almost twice higher than the number of true positives541

(Table 7). In fact, the COCO annotation policy does not542

annotate occluded keypoints on the head. Therefore, these543

results highlight that the current models have difficulties544

not detecting keypoints, i.e., to identify when a keypoint545

is not visible. Also, the models on DriPE have very low546

performance on ankles detection, both in precision and recall.547

The ankles are usually difficult to predict, particularly inside548

of a car, where the lower limbs are almost totally occluded by549

the dashboard. This occlusion difficulty paired up with the550

low contrast and luminosity makes the detection of ankles551

very challenging.552

Finally, we compare the evaluation of the finetuned net-553

work using mAPK (Table 8). First, we may observe that554



this metric confirms the increase of prediction performances555

indicated by AP OKS (Table 4). Then, we notice that the556

precision did not increase as much as the recall. These557

results highlight the importance of DriPE to improve the558

performance of current models on monitoring people in the559

consumer car context. But they also bring attention to open560

challenges on keypoint prediction that cannot be solved by561

simply finetuning the current models on a dataset-specific562

task. Astonishingly, Simple Baseline ranks higher than more563

recent methods according to mAPK. This can be observed564

on both datasets and it is especially true for precision val-565

ues. It reveals that Simple Baseline has a lower number of566

false positives, which shows a better ability to not predict567

non-annotated keypoints.568

7. Conclusion and Perspectives569

This paper has presented two contributions: firstly, a570

new keypoint-based metric, named mAPK, to measure the571

performance of HPE methods. Secondly, a novel dataset,572

named DriPE, to benchmark methods for monitoring the573

pose of drivers in consumer vehicles. The mAPK metric is574

an extension of APK and OKS evaluation metrics. Results575

indicate it characterizes more precisely the performance of576

HPE methods in terms of keypoint detection, both on general577

and driving datasets.578

The DriPE dataset is the first publicly available dataset579

depicting images of drivers in real-world conditions. We580

have shown that it may contribute to further improve the per-581

formance of deep neural networks on the driver monitoring582

task. Moreover, the mAPK metric indicates that simply fine-583

tuning current methods on the DriPE dataset is insufficient to584

fully address the driver monitoring task. These results imply585

that more precise methods must be developed to tackle the586

existing challenges.587

Future work will investigate how to include other evalua-588

tion aspects in the proposed metric. For instance, the impact589

of the confidence threshold on the measured performance.590

Also, the proposed metric ignores the varying difficulty of591

predicting keypoints of different limbs and treats equally592

keypoints of different levels of visibility. Predicting the visi-593

bility of keypoints could provide interesting information for594

a spatial understanding of the interactions of the person with595

the scene.596

Acknowledgements597

This work was supported by the Pack Ambition598

Recherche 2019 funding of the French AURA Region in599

the context of the AutoBehave project.600

AP OKS (%) AP AP50 AP75 APL AR AR50 AR75 ARL

SBl [39] 72 92 80 77 76 93 82 80
MSPN [22] 77 94 85 82 80 95 87 85

RSN [5] 76 94 84 81 79 94 85 84

Table 2: HPE on the COCO 2017 validation set.

AP OKS (%) AP AP50 AP75 APL AR AR50 AR75 ARL

SBl [39] 75 99 91 75 81 99 94 81
MSPN [22] 81 99 97 81 85 99 97 85

RSN [5] 75 99 93 75 79 99 95 79

Table 3: HPE on the DriPE test set.

AP OKS (%) AP AP50 AP75 APL AR AR50 AR75 ARL

SBl [39] 97 100 80 97 ↑ 97 100 99 99
MSPN [22] 97 100 99 97 ↑ 98 100 99 98

RSN [5] 91 99 98 91 ↑ 94 100 99 94

Table 4: HPE of finetuned networks on the DriPE test set.

mAPK (%) Head Sho. Elb. Wri. Hip Knee Ank. Mean

AP
SBl [39] 44 69 59 55 65 62 60 59

MSPN [22] 49 76 60 53 62 47 40 55
RSN [5] 49 76 59 52 61 46 39 55

AR
SBl [39] 82 86 83 79 80 81 80 82

MSPN [22] 87 88 87 84 82 85 85 86
RSN [5] 86 88 86 83 82 84 84 85

Table 5: HPE on the COCO 2017 validation set.

mAPK (%) Head Sho. Elb. Wri. Hip Knee Ank. Mean

AP
SBl [39] 29 86 78 92 91 75 14 66

MSPN [22] 25 80 77 90 91 77 13 65
RSN [5] 25 78 76 89 88 68 11 62

AR
SBl [39] 89 92 93 96 88 61 09 75

MSPN [22] 96 87 96 97 92 77 45 85
RSN [5] 94 85 95 96 89 68 33 81

Table 6: HPE on the DriPE test set.

Head Should. Elbow Wrist Hip Knee Ankle Total
GT 17k 25k 21k 26k 26k 26k 11k 152k
TP 16k 21k 20k 23k 23k 18k 2.8k 124k
FP 50k 5.7k 6.4k 3.1k 3.1k 8.4k 24k 100k
FN 0.7k 3.8k 1.1k 2.9k 3.0k 8.3k 8.2k 28k

Table 7: Performance of RSN model on DriPE test set with
mAPK metric.

mAPK (%) Head Sho. Elb. Wri. Hip Knee Ank. Mean

AP
SBl [39] 24 90 79 94 98 98 40 75 ↑

MSPN [22] 25 89 79 91 97 94 38 73 ↓
RSN [5] 25 88 78 91 95 86 30 70 ↓

AR
SBl [39] 93 97 98 98 98 98 94 97 ↑

MSPN [22] 97 97 98 99 98 94 87 96 ↑
RSN [5] 91 95 98 98 95 86 73 91 ↑

Table 8: HPE on the DriPE test set of finetuned networks.
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