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DriPE: A Dataset for Human Pose Estimation in Real-World Driving Settings

The task of 2D human pose estimation has known a significant gain of performance with the advent of deep learning.

This task aims to estimate the body keypoints of people in an image or a video. However, real-life applications of such methods bring new challenges that are under-represented in the general context datasets. For instance, driver status monitoring on consumer road vehicles introduces new difficulties, like self-and background body-part occlusions, varying illumination conditions, cramped view angles, etc. These monitoring conditions are currently absent in general purposes datasets. This paper proposes two main contributions. Firstly, we introduce DriPE (Driver Pose Estimation), a new dataset to foster the development and evaluation of methods for human pose estimation of drivers in consumer vehicles. This is the first publicly available dataset depicting drivers in real scenes. It contains 10k images of 19 different driver subjects, manually annotated with human body keypoints and an object bounding box. Secondly, we propose a new keypoint-based metric for human pose estimation. This metric highlights the limitations of current metrics for HPE evaluation and of current deep neural networks on pose estimation, both on general and driving-related datasets.

129 2.2.1 Single-person Pose Estimation 130 Single-person methods for HPE using convolutional neural 131 networks can be split into two categories: regression-based 132 and detection-based methods. 133 Regression-based CNN methods aim to directly predict 134 the keypoints coordinates from pictures. AlexNet [21] is the 135 first CNN baseline used for HPE. Toshev and Szegedy [36] 136 use AlexNet as a multi-stage coordinate estimator and refiner. 137 Carreira et al. [8] propose an Iterative Error Feedback net-138 work based on the deep convolution network GoogleNet [33]. 139 Finally, Sun et al. [32] propose a parametrized pose repre-

Introduction

Human Pose Estimation (HPE) is a well-known task in computer vision. This problem aims to find the position of keypoints in the 2D plane or the 3D space. Keypoints are generally placed on the body joints (shoulders, elbows, wrists, hips, knees, ankles), and the head. Additional points can be placed on hands, feet, or face.

State-of-the-art methods have reached good performances on HPE challenges on both single-person [START_REF] Andriluka | 2d human pose estimation: New benchmark and state of the art analysis[END_REF][START_REF] Johnson | Clustered pose and 684 nonlinear appearance models for human pose estimation[END_REF][START_REF] Sapp | Modec: Multimodal decomposable models for human pose estimation[END_REF] and multiperson datasets [24], especially through deep learning. However, these general-purpose datasets do not depict challenging scenes that might occur very often in real-life applications, e.g., strong body occlusion or varying illumina-35 tion.

36

Pose estimation inside of a vehicle brings new difficulties 37 that are under-represented in general datasets (Fig. 1). First, 38 the camera placement causes a strong side viewing angle, 39 producing both self-and background occlusion (e.g., by the 40 dashboard and the wheel). By consequence, the side of the 41 subject's body opposite to the camera becomes more difficult 42 to detect (Fig. 1C). Luminance is also an important factor 43 in HPE. For instance, body parts can be fully visible in a 44 regular pose but be missed by the network due to strong 45 illumination (Fig. 1A). Also, the outside light may visually 46 split the upper body into two halves, and hence deceive the 47 network (Fig. 1B). Finally, the low contrast of the car interior 48 can make the detection of body parts difficult, like the right 49 forearm in the picture (Fig. 1D), depending on the color 54 Moreover, we study the limitations of existing metrics 55 [START_REF] Eichner | 2d articulated human pose estimation and retrieval in (almost) unconstrained still images[END_REF]24,40] for the evaluation of the HPE task on keypoint [START_REF] Xiao | Simple baselines 777 for human pose estimation and tracking[END_REF] and ground truth data. Faces have been blurred on this figure to anonymize the participants' identities.

Related Work

This section presents the work related to keypoint detection for human pose estimation. More precisely, we discuss the datasets used for this task, the current methods for pose estimation, and the metrics used to evaluate their accuracy.

Datasets

Datasets play an important role in the performance of deep learning methods. Improvements in the human pose estimation using deep learning networks have been partly justified by new datasets with more subjects' pictures and more variability in their poses, the angles of view, the background, etc.

Leeds Sports Pose (LSP) [START_REF] Johnson | Clustered pose and 684 nonlinear appearance models for human pose estimation[END_REF] dataset is the first HPE dataset released with more than 1k training images, which was later extended to 11k. It contains pictures of full-body subjects practicing different sports extracted from Flickr.

Frames Labeled In Cinema (FLIC) dataset [START_REF] Sapp | Modec: Multimodal decomposable models for human pose estimation[END_REF] is formed of around 5k pictures extracted from Hollywood movies.

The Max Planck Institute for Informatics (MPII) dataset [START_REF] Andriluka | 2d human pose estimation: New benchmark and state of the art analysis[END_REF] contains around 25k images extracted from various YouTube videos. Microsoft Common Objects in Context (COCO) [24] is originally an object detection and segmentation dataset, which was then expanded to a multiperson HPE dataset. It is composed of more than 250k pictures extracted from Bing, Flickr, and Google.

Even if these general datasets can be useful for training or benchmarking, they might not present certain challenging situations that might occur in domain-specific datasets. Therefore, several datasets have been published in the last years focusing on monitoring people inside cars [START_REF] Borghi | Mercury: a vision-based framework for driver monitoring[END_REF]4,[START_REF] Feld | Dfki cabin simulator: A test platform for visual in-cabin monitoring functions[END_REF][START_REF] Jegham | Mdad: A multimodal and multiview 680 in-vehicle driver action dataset[END_REF]25]. However, they are mostly focused on the action recognition task. Furthermore, most of the available datasets are recorded in studios and do not represent natural foreground nor illumination changes present in vehicle cockpit during a daily routine ride, which are true challenges for HPE methods. For instance, authors in [25] propose Drive&Act dataset, knee, ankle). However, while some datasets [START_REF] Andriluka | 2d human pose estimation: New benchmark and state of the art analysis[END_REF][START_REF] Johnson | Clustered pose and 684 nonlinear appearance models for human pose estimation[END_REF] only 116 put markers on the top of the head and the base of the neck, 117 others adopt a finer representation (eyes, nose, ears) [24].

118 Some works also extend the human pose representation to 119 hands and feet [START_REF] Hidalgo | Single-672 network whole-body pose estimation[END_REF][START_REF] Cao | Openpose: realtime multi-person 2d pose estimation using part affinity fields[END_REF].

120

In the end, the most prominent general datasets in the 121 state of the art of HPE are MPII [START_REF] Andriluka | 2d human pose estimation: New benchmark and state of the art analysis[END_REF] and LSP [START_REF] Johnson | Clustered pose and 684 nonlinear appearance models for human pose estimation[END_REF] for single-122 person and COCO [24] for multiperson pose estimation.

123

Regarding the pose estimation inside of a vehicle, there is 124 no publicly available dataset for HPE which presents real 125 driving conditions. 126

HPE Methods

127

The pose estimation methods may be divided into two 128 types: single-person and multiperson methods. sentation using bones instead of keypoints, paired up with the ResNet-50 [START_REF] He | 663 Deep residual learning for image recognition[END_REF] for both 2D and 3D HPE. However, regression-based networks usually lack robustness due to the high non-linearity of the end-to-end structure between the image and the coordinates of the keypoints.

To overcome this issue, many methods have proposed a detection-based approach instead. The majority of these methods aim to predict heatmaps, i.e., maps where each pixel represents the probability for the keypoint to be located here.

Newell et al. [27] propose an architecture composed of new modules called Hourglasses, which aim to extract features from different scales using a network built based on Residual Modules [START_REF] He | 667 Deep residual learning for image recognition[END_REF]. This architecture has inspired several other works [11,[START_REF] Ke | Multi-scale structure-aware network for human pose 689 estimation[END_REF]34,[START_REF] Tang | Deeply learned compositional models for human pose estimation[END_REF]. In addition to Hourglass-based methods, other detection-based architectures have been developed. Chen et al. [9] propose an adversarial learning architecture that combines a heatmap pose generator with two discriminators. Xiao et al. [START_REF] Xiao | Simple baselines 777 for human pose estimation and tracking[END_REF] use the ResNet-50 [START_REF] He | 663 Deep residual learning for image recognition[END_REF] network but add deconvolution layers in the last convolution stage to predict the heatmaps. Unipose [START_REF] Artacho | Unipose: Unified human pose estimation in single images and videos[END_REF] combines a ResNet backbone for feature extraction with a waterfall module to perform HPE.

Sun et al.

[?] use a parallel multi-scale approach similar to the Hourglass with exchange units.

The networks mentioned previously achieve state-of-theart performances on recent challenges. However, ResNet Simple Baseline [START_REF] Xiao | Simple baselines 777 for human pose estimation and tracking[END_REF] presents a competitive performance while preserving a light architecture compared to others. son's prediction and its ground truth is the OKS (Equation 1).

Multiperson Pose Estimation

306

OKS = i KS i * δ(v i > 0) i δ(v i > 0) (1) 
where KS i is defined as follows:

KS i = exp - d 2 i 2.s 2 .k 2 i ( 2 
)
where i iterates over each detected keypoint, d i is the Eu- it is defined as a fifth of the torso size (PCK@0.2 [START_REF] Johnson | Clustered pose and 684 nonlinear appearance models for human pose estimation[END_REF]) or 345 half the head size (PCKh@0.5 [START_REF] Johnson | Clustered pose and 684 nonlinear appearance models for human pose estimation[END_REF]). generally used to compute the people candidates in the scene.

378

In this case, we first carry out a pairing phase to match 379 ground truth and people predictions. We use for this step the 380 pairing algorithm from COCO based on OKS. We set the

381

OKS threshold which controls the pair acceptance to 0 to 382 avoid discarding any person (see [24] for more details).

383

The calculation of mAPK is carried out as follows. Firstly,

384

we compute a keypoint score KS (Equation 2) for each key- 

482

Then, we evaluate the performance of these methods 483 on DriPE test set (Table 3) using the models trained on This evaluation assesses the performance of the same 519 models but at the level of keypoint predictions. We recom-520 puted the performance of the evaluated models (Tables 2 and521 3) using mAPK metric (Table 5 andTable 6).

522

We observe that even if AP OKS and mAPK metrics 523 values are not directly comparable, the recall scores are close 524 between the two metrics (around 75%) (Tables 2,3, 5, and 6).

525 However, we note that the average precision scores are lower 526 with mAPK. This decay in precision is explained by the high 527 number of false positives that are considered by mAPK but 528 ignored by OKS (Table 7). After analysis, we determined 7). In fact, the COCO annotation policy does not 542 annotate occluded keypoints on the head. Therefore, these 543 results highlight that the current models have difficulties 544 not detecting keypoints, i.e., to identify when a keypoint 545 is not visible. Also, the models on DriPE have very low 546 performance on ankles detection, both in precision and recall.

547

The ankles are usually difficult to predict, particularly inside 8). First, we may observe that this metric confirms the increase of prediction performances indicated by AP OKS (Table 4). Then, we notice that the precision did not increase as much as the recall. These results highlight the importance of DriPE to improve the performance of current models on monitoring people in the consumer car context. But they also bring attention to open challenges on keypoint prediction that cannot be solved by simply finetuning the current models on a dataset-specific task. Astonishingly, Simple Baseline ranks higher than more recent methods according to mAPK. This can be observed on both datasets and it is especially true for precision values. It reveals that Simple Baseline has a lower number of false positives, which shows a better ability to not predict non-annotated keypoints. 

Conclusion and Perspectives

50

  of the subject's clothes. To evaluate the open challenges 51 on human pose estimation in consumer cars, we propose 52 the first publicly-available dataset in real-world conditions 53 called DriPE (Driver Pose Estimation) 1 .

  56 detection, on both general and driving contexts. Based on 57 our observations, we propose a new metric called mAPK to 58 characterize the observed limitations. This metric is essential 59 to highlight the challenges presented by DriPE, and up to 60 now ignored in general datasets, such as background and 61 self-occlusion. 62 This paper is organized as follows. Section 2 presents 63 related work on human pose estimation. In Section 3, we 64 present DriPE dataset. We describe in Section 4 the proposed 65 mAPK metric. Section 5 introduces the evaluated networks 66 and describes their architecture. We present and discuss 67 in Section 6 the experimental results. Finally, Section 7 68 presents our conclusions and future work.

Figure 1 :

 1 Figure 1: Samples of DriPE dataset. The top and bottom rows show, respectively, pose predictions by Simple Baseline network [39] and ground truth data. Faces have been blurred on this figure to anonymize the participants' identities.

  depicting multi-view and multi-modal (RGB, NIR, depth) 106 actions in a static driving simulator, with labeled actions 107 and predicted 3D human poses. DFKI [13] describes a new 108 test platform to record in-cabin scenes. However, no pub-109 lic dataset for HPE in a vehicle using this setup has been 110 recorded or published up to now. 111 Besides, HPE datasets do not use exactly the same key-112 points to represent the body. Most of the representations, 113 commonly called skeletons, include one joint marker per 114 major body limb articulation (shoulder, elbow, wrist, hip, 115

  Multiperson HPE brings two difficulties to the problem: find the locations of keypoints on the image and associate the detected keypoints to the different subjects. Multiperson approaches can be divided into two categories: top-down and bottom-up methods. Top-down approaches first detect the people in the image and then find the keypoints of each person. Most of the top-down methods use a single-person HPE architecture preceded by a person detection step: Xiao et al. [39] and Sun et al. [31] both use a faster R-CNN [29] while Chen et al. [10] use a feature pyramid network [23]. Li et al. [22] propose a multi-stage network with cross-stage feature aggregation. Cai et al. [5] use a similar structure combined with an original residual steps block. Conversely, bottom-up methods first detect every keypoint in the image and then infer people instances from them. Newell et al. [26] reuse their stacked hourglass network for single-person HPE and adapt it to multiperson by predicting an additional association map for each keypoint. Cao et al. [7] propose an iterative architecture with part affinity fields used to associate the keypoints to people. Among the described architectures, top-down methods currently present the highest performance on HPE. For in-stance, MSPN [22] and RSN [5] have won the COCO Key-192 point Challenge in 2018 and 2019, respectively.

193 2 . 3 .

 23 Evaluation Metrics 194 The performances of the general 2D HPE methods can 195 be difficult to evaluate since it depends on many criteria 196 (number of visible keypoints, number of visible people, size 197 of the subjects, etc.). 198 One of the first commonly used metrics is Percentage 199 of Correct Parts (PCP) [12]. Each keypoint prediction is 200 considered correct if its distance to the ground truth is in-201 ferior to a fraction of the limb length (e.g., 0.5). Thereby, 202 this metric punishes more severely smaller limbs, which are 203 already hard to predict due to their size. To mitigate this 204 issue, Percentage of Correct Keypoints (PCK) [40] sets the 205 threshold for every keypoint of a subject on a fraction of a 206 specific limb's length. Two thresholds are commonly chosen 207 to evaluate the performance in the literature. These metrics 208 are mostly employed to evaluate algorithms on single-person 209 datasets, like MPII and LSP. 210 Another common metric is Average Precision (AP), 211 paired up with Average Recall (AR). For single-person net-212 works, APK [40] is computed on keypoint detections. A 213 detection is considered as a true positive if it falls under a 214 set range of the ground truth, similarly to that PCP and PCK 215 metrics, and a false positive otherwise. 216 In a multiperson context, most metrics compute the per-217 formance of a method at a person detection level instead of 218 a keypoint level. For instance, the mAP metric [1] first pairs 219 up each person detection with the ground truth using PCK 220 metric. Then, the matched and unmatched people are used 221 to compute the average precision and recall. COCO dataset 222 proposes a second metric for the evaluation of the HPE task 223 that we will refer to as AP OKS. This metric uses the Object 224 Keypoint Similarity (OKS) score [24], which is similar to 225 the Intersection over Union (IoU), to calculate the distance 226 between the people detections and ground truth based on 227 keypoints. The final scores are still computed over people. 228 One of the main limitations of both PCK and AP OKS 229 evaluation metrics is that they both put aside false-positive 230 keypoints. Moreover, because the COCO dataset is mostly 231 used in a multiperson context, its metric measures precision 232 and recall based on people detection, instead of keypoints. 233 To address the limitations of previous evaluation procedures, 234 we define a new general metric based on keypoints detection 235 called mAPK.

236 3 .

 3 DriPE Dataset 237 We propose DriPE, a dataset to evaluate HPE methods 238 on real-world driving conditions, containing illumination 239 changes, occluding shadows, moving foreground, etc. The 240 dataset is composed of 10k pictures of drivers in real-world

Figure 2 :

 2 Figure 2: Image samples from DriPE dataset. Faces on the figure have only been blurred for the purpose of this paper.

  describe and discuss in detail two evaluation 295 metrics from the literature: AP OKS and APK.

297

  To evaluate the performance of each network on the COCO 298 dataset, the official multiperson metric is based on average 299 precision (AP) and recall (AR). This evaluation is carried 300 out following three steps: 1) compute the distance between 301 each detected person and each ground-truth subject, 2) pair 302 up the best person detection with its ground-truth, and 3) 303 compute the precision and recall.

307

  clidean distance between the predicted and the ground-truth 308 keypoints, s is the image scale computed from the bounding 309 box size, k i a per-keypoint constant that tries to homoge-310 nize the standard deviations between each body part. Non-311 annotated keypoints have visibility v i equal to 0, therefore 312 their associated false positives are ignored by OKS computa-313 tion. 314 Secondly, the OKS scores are used to select the best 315 paired-up people, starting from the highest score. All un-316 matched detected people or paired-up couples with an OKS 317 score lesser than a selected threshold (ranging from 0.5 to 318 0.95) are discarded. Finally, considering matched and dis-319 carded people as true and false positives, respectively, the 320 metric computes the mean average precision and recall at a 321 person-level detection. 322 Regarding our problem, this metric has two main limita-323 tions. Firstly, the OKS metric only considers the annotated 324 body points. This decision prevents the metric to properly 325 measure the keypoint detection's precision of the evaluated 326 methods. This bias can be problematic in contexts where 327 many keypoints cannot be annotated, e.g., in a car context 328 with the strong occlusion (mostly the legs and the bodyside 329 opposite to the camera). Therefore, we want to integrate 330 false-positive keypoints into the performance evaluation of 331 HPE methods. Secondly, the true and false positives are com-332 puted at the level of person detections instead of keypoints. 333 In summary, this procedure does not properly characterize 334 the performance of the evaluated methods on the task of 335 keypoint detection.

  Keypoints (APK) [40] is a metric 338 that aims to compute precision and recall scores based on 339 keypoints. For each keypoint, a prediction is considered as a 340 true positive if it is located within a defined radial distance 341 from the ground truth. The original work sets this threshold 342 to half the size of the hand. A similar threshold is used to 343 compute Percentage of Correct Keypoints (PCK) [40], and 344

385Figure 3 :

 3 Figure 3: Generic pipeline of HPE methods based on heatmap generation.

4065. 1 .

 1 Simple Baseline ResNet407Simple Baseline (SBl) architecture[START_REF] Xiao | Simple baselines 777 for human pose estimation and tracking[END_REF] bases its feature 408 extraction process on the ResNet architecture[START_REF] He | 663 Deep residual learning for image recognition[END_REF]. ResNet 409 model has been proved well efficient for image-feature ex-410 traction [32, 2] and is often used in other image processing 411 tasks. This backbone is based on several convolution lay-412 ers gathered as blocks, with skip connections between each 413 module adding the input of the module to the output. 414 Xiao et al. [39] propose to implement ResNet 50 with a 415 different output module for human pose estimation. First, 416 the ResNet 50 backbone learns to extract the features while 417 reducing the shape of the feature maps. Then, the last stage is 418 composed of three upsampling convolutions combined with 419 BatchNorm [17] and ReLu layers, instead of the original 420 ResNet C5 stage. This deconvolution stage brings back the 421 feature maps to their input size and generates the heatmaps 422 for each keypoint.

4235. 2 .

 2 MSPN and RSN424MSPN[START_REF] Li | Rethinking on multi-stage networks 699 for human pose estimation[END_REF] is a top-down multiperson HPE network. It 425 is built around two steps. First, MegDet[START_REF] Peng | Megdet: A large minibatch object detector[END_REF] object detector 426 identifies the bounding boxes of each person in the images. 427 Then, the picture is cropped around the boxes, and each part 428 serves as input for the multi-stage pose estimator. A stage of 429 the MSPN has a U-shape architecture that processes features 430 at 4 different scales. A bottleneck residual module processes 431 the features at each scale, and skip connections are used 432 between the downsizing stage and its symmetric counterpart 433 in the upsizing stage. Intermediate supervision is applied to 434 each scale of the upsizing stage. Indeed, the loss is applied on 435 heatmaps generated at each scale and which are previously 436 upsampled to the network's output shape. Stages are then 437 stacked several times (four times in this implementation).438 To reduce information loss between stages, the architecture 439 uses cross-stage aggregation. 440 RSN [5] follows the same global architecture as MSPN. 441 However, a novel residual steps block module (RSB) re-442 places the regular residual block in the downsizing stages.

443

  The RSB module aims to learn delicate local representations, 444 by splitting the features into four channels. At the end of the 445 multi-stage network before the final loss, a pose refine ma-446 chine (PRM) is used as an attention mechanism to generate 447 the final heatmaps.

4485. 3 .468 6 .

 36 Model Training and Inference 449 The training of the models has been done using the code 450 provided by the respective authors in public repositories, 451 following their recommendations for hyperparameters. All images. We used ResNet-50 based Simple Baseline archi-457 tecture, trained for 140 epochs on the COCO dataset with a 458 learning rate of 1e-3. RSN and MSPN are trained for 384k 459 iterations, with a 5e-4 base learning rate divided by 10 at 460 epochs 90 and 120. The networks were trained on two 24GB 461 Nvidia Titan RTX with 64GB of RAM and an Intel i9900k 462 processor. 463 Also, since DriPE is a single-person dataset, all network 464 models took as input the full image. However, for COCO 465 which is a multiperson dataset, the models took as input 466 a patch cropped around the output of a person detection 467 algorithm. Results and Discussion 469 We first present the performance of the three described 470 networks trained on COCO 2017 and tested on both the 471 COCO validation set and the DriPE test set. Then, we present 472 the results of these models after finetuning them on the 473 training set of DriPE dataset. We first use AP metric based 474 on OKS, then compare the results with mAPK metric results.

475 6 . 1 .

 61 Performance of Networks trained on COCO 476 Dataset 477 This evaluation studies the performance of the trained 478 networks on the COCO validation set (Table 2) using the 479 official dataset evaluation procedure. We validate that the 480 trained models achieves a performance close to the original 481 work (around 2% less on average).

484COCO 2017 .

 2017 Due to the camera placement in the car, DriPE 485 contains only "Large" subjects (subjects with a bounding 486 box containing more than 96 2 pixels[24]). Therefore, it is 487 more suitable to compare COCO and DriPE datasets using 488 AP L and AR L column values. 489 The state-of-the-art networks show slightly lower perfor-490 mances on DriPE dataset than on the COCO dataset (Tables 2 491 and 3). On one hand, we note that on average, AP L and 492 AR L are lower on DriPE than on COCO. On another hand, 493 we observe higher precision and recall scores on the three 494 networks when using an OKS threshold of 50% (AP 50 ) or 495 75% threshold (AP 75 ). The results suggest that most of the 496 improvements to be made in the car context concern the pre-497 cision of the localization of keypoint predictions (AR / AP 498 threshold superior to 75 %).

499 6 . 2 .

 62 Finetuning on DriPE Dataset 500 We finetune the three networks on DriPE training set. 501 Finetuning has been done for 10 epochs with a learning rate 502 10 times lower than the original learning rate used for the 503 COCO base training (Table 4). 504 Results indicate a gain from 20 to 25% in AP and 10 to 505 15% in AR after finetuning the networks. This increase can 506 be partially explained by the relatively small variance of the 507 dataset. Therefore, the networks could have overfitted the 508 training set without experiencing an important performance 509 loss on the test set. Despite that, the improvement of perfor-510 mance suggests that the networks learned specific features 511 on DriPE that they did not learn on a general dataset, which 512 highlights the relevance of DriPE dataset to the field. Even-513 tually, AP OKS results may suggest that HPE inside of a 514 car cockpit would be a nearly solved problem, at least when 515 evaluating the performance of keypoint detections methods 516 at a people level.

517 6 . 3 .

 63 Comparison with mAPK Metric 518

529

  that most of the false positives come from the non-annotated 530 points, particularly for the MSPN and RSN architectures. 531 These results show that the networks are overconfident in 532 their prediction and cannot properly detect the absence of 533 a keypoint on the image. Note that this information cannot 534 be found with AP OKS since the score is not computed at a 535 keypoint level. 536 It is worth noticing that even if the head keypoints are 537 considered as some of the easiest keypoints to detect in HPE, 538 trained models have attained a very low average precision 539 on their detection. The overall number of false positives 540 is almost twice higher than the number of true positives 541 (Table

548

  of a car, where the lower limbs are almost totally occluded by 549 the dashboard. This occlusion difficulty paired up with the 550 low contrast and luminosity makes the detection of ankles 551 very challenging. 552 Finally, we compare the evaluation of the finetuned net-553 work using mAPK (Table

  This paper has presented two contributions: firstly, a new keypoint-based metric, named mAPK, to measure the performance of HPE methods. Secondly, a novel dataset, named DriPE, to benchmark methods for monitoring the pose of drivers in consumer vehicles. The mAPK metric is an extension of APK and OKS evaluation metrics. Results indicate it characterizes more precisely the performance of HPE methods in terms of keypoint detection, both on general and driving datasets. The DriPE dataset is the first publicly available dataset depicting images of drivers in real-world conditions. We have shown that it may contribute to further improve the performance of deep neural networks on the driver monitoring task. Moreover, the mAPK metric indicates that simply finetuning current methods on the DriPE dataset is insufficient to fully address the driver monitoring task. These results imply that more precise methods must be developed to tackle the existing challenges. Future work will investigate how to include other evaluation aspects in the proposed metric. For instance, the impact of the confidence threshold on the measured performance. Also, the proposed metric ignores the varying difficulty of predicting keypoints of different limbs and treats equally keypoints of different levels of visibility. Predicting the visibility of keypoints could provide interesting information for a spatial understanding of the interactions of the person with the scene.

Table 1 :

 1 Comparison of driving-related datasets for HPE.

		Drive&Act [25]	DriPE
	N°subjects	15	19
	Female / Male	4 / 11	7 / 12
	Annotations	HPE network	Manual
	RGB	✓	✓
	Depth	✓	-
	NIR	✓	-
	N°images	9.6M (videos)	10k
	Driving context	Simulator	Real world

conditions, split into 7.4k images for training, and 2.6k im-242 ages equally divided into validation and testing sets. Table

1

243 presents a detailed description of the dataset and compares it 244 to prior work. 245 3.1. Data Collection 246 To build DriPE, we extracted pictures from videos 247 recorded during several driving experiments. In each ex-248 periment, we installed an RGB camera inside the car on top 249 of the passenger's door, directed towards the driver. The 250 subjects drive either in a real-size replica of a city (closed 251 track) or on actual roads. In total, we recorded 19 drivers, 252 allowing us to collect over 100 hours of video clips. We 253 based the image selection process using two metrics: struc-254 tural similarity index measure (SSIM) [37] and brightness 255 differential. We chose these two metrics with the objec-256 tive of extracting pictures with both distinct luminance and 257 structure. Therefore, we computed the SSIM and the light 258 differential between two successive frames, with a step of 259 three frames per second. Then, we selected 10k pictures, 265 tion style for DriPE since face keypoints are particularly 266 interesting to describe driver attention. For each image, we 267 annotated the person bounding box and 17 keypoints: arms 268 and legs with three keypoints each, and 5 additional markers 269 for the eyes, ears, and nose. We split the annotated keypoints 270 into two categories: visible and non-visible. The non-visible 271 category corresponds to the occluded points, either by an 272 object or by the subject body, but which position can still be 273 deducted from the visible body parts. Note that in this study, 274 both categories are treated equally by the evaluation methods. 275 Following the COCO dataset policy, the face keypoints were 276 annotated only if visible. 277 The ground truth heatmaps were generated using centered 278 2D Gaussian with a standard deviation of 1px, centered 279 around the keypoint location.

280 4. Evaluation Metric 281 Following the state of the art, we only evaluate in this 282 study detection-based networks, which predict heatmaps.

283

Each heatmap is a matrix where the elements represent the 284 probability of a particular keypoint to be located at a pixel.

285

Therefore, the output of the evaluated network models con-286 tains one heatmap per skeleton keypoint. Following the 287 common practice in 2D single-person HPE

[27,[START_REF] Tang | Deeply learned compositional models for human pose estimation[END_REF][START_REF] Carreira | Human pose estimation with iterative error feedback[END_REF][START_REF] Xiao | Simple baselines 777 for human pose estimation and tracking[END_REF]

, 288 the position of a given keypoint corresponds to the maximum 289 value of its heatmap. To separate predictions from noise, a 290 minimum confidence threshold is applied to this maximum.

291

From these coordinates, several metrics can be calculated to 292 evaluate the network performances.

Table 2 :

 2 AP OKS (%) AP AP50 AP 75 AP L AR AR 50 AR 75 AR L HPE on the COCO 2017 validation set. AP OKS (%) AP AP 50 AP 75 AP L AR AR 50 AR 75 AR L

	SBl [39]	72 92	80	77 76 93	82	80
	MSPN [22] 77 94	85	82 80 95	87	85
	RSN [5]	76 94	84	81 79 94	85	84
	SBl [39]	75 99	91	75 81 99	94	81
	MSPN [22] 81 99	97	81 85 99	97	85
	RSN [5]	75 99	93	75 79 99	95	79

Table 3 :

 3 HPE on the DriPE test set. AP OKS (%) AP AP 50 AP 75 AP L AR AR 50 AR 75 AR L

	SBl [39]	97 100	80 97 ↑ 97 100	99	99
	MSPN [22] 97 100	99 97 ↑ 98 100	99	98
	RSN [5]	91 99	98 91 ↑ 94 100	99	94

Table 4 :

 4 HPE of finetuned networks on the DriPE test set.

	mAPK (%)	Head Sho. Elb. Wri. Hip Knee Ank. Mean
		SBl [39]	44 69 59 55 65 62	60	59
	AP	MSPN [22] 49 76 60 53 62 47	40	55
		RSN [5]	49 76 59 52 61 46	39	55
		SBl [39]	82 86 83 79 80 81	80	82
	AR	MSPN [22] 87 88 87 84 82 85	85	86
		RSN [5]	86 88 86 83 82 84	84	85

Table 5 :

 5 HPE on the COCO 2017 validation set.

	mAPK (%)	Head Sho. Elb. Wri. Hip Knee Ank. Mean
		SBl [39]	29 86 78 92 91 75	14	66
	AP	MSPN [22] 25 80 77 90 91 77	13	65
		RSN [5]	25 78 76 89 88 68	11	62
		SBl [39]	89 92 93 96 88 61	09	75
	AR	MSPN [22] 96 87 96 97 92 77	45	85
		RSN [5]	94 85 95 96 89 68	33	81

Table 6 :

 6 HPE on the DriPE test set.

	Head Should. Elbow Wrist Hip Knee Ankle Total
	GT 17k	25k	21k 26k 26k 26k 11k 152k
	TP 16k	21k	20k 23k 23k 18k 2.8k 124k
	FP 50k 5.7k	6.4k 3.1k 3.1k 8.4k 24k 100k
	FN 0.7k 3.8k	1.1k 2.9k 3.0k 8.3k 8.2k 28k

Table 7 :

 7 Performance of RSN model on DriPE test set with mAPK metric.

	mAPK (%)	Head Sho. Elb. Wri. Hip Knee Ank. Mean
		SBl [39]	24 90 79 94 98 98	40 75 ↑
	AP	MSPN [22] 25 89 79 91 97 94	38 73 ↓
		RSN [5]	25 88 78 91 95 86	30 70 ↓
		SBl [39]	93 97 98 98 98 98	94 97 ↑
	AR	MSPN [22] 97 97 98 99 98 94	87 96 ↑
		RSN [5]	91 95 98 98 95 86	73 91 ↑

Table 8 :

 8 HPE on the DriPE test set of finetuned networks.

DriPE dataset is publicly available on: https://gitlab.liris. cnrs.fr/aura_autobehave/dripe
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The metric used to compute the distance between a permini-batches of 32 images and data augmentation operations